第7章电力系统的潮流计算

合集下载

电力系统潮流计算

电力系统潮流计算

S 0 (GT jBT )U 2
注意单位! (4-29) (4-31)
双绕组变压器功率损耗计算
总的有功损耗:PT PTS P0 总的无功损耗:
QT QTS Q0
(一)电力网的功率损耗 ▪三绕组变压器的功率损耗计算
PT PTS1 PTS 2 PTS 3 P0 QT QTS1 QTS 2 QTS 3 Q0
开式电力网的潮流计算
解:
1)根据已知条件,进行各元件参数计算;
画出计算用等值电路:
已知量
待求量
2) 应用前述阻抗环节的功率、电压计算方法,由 末端往始端逐环节递推计算……
开式电力网的潮流计算
2)已知末端功率及始端电压,
求网络潮流分布
✓ 计算网络元件参数并作等值电路;
✓ 设全网为UN,从末端向始端逐段近似推算各元 件的功率损耗和功率分布;
➢ 给定网络始端(或末端)的功率及电压, 求潮流分布。(两种,但都属于已知为 同侧量)
➢ 给定网络末端功率及始端电压(或始端 功率及末端电压)求潮流分布。(两种, 但都属于已知为异侧量)
开式电力网的潮流计算 1)已知末端功率及电压,作潮流计算:
将电压和功率由末端向始端交替推进 ;
对于110KV及以下网络,可略去电压降落的 横分量,从而使计算简化;
电压的降落、损耗及偏移
输电系统其它相关技术经济指标: 电压损耗率% U1 U2 100 UN
始端电压偏移% U1 U N 100 UN
末端电压偏移% U 2 U N 100 UN
输电效率% P2 100 P1
二、开式电力网的潮流计算
简称”开式网”,可分为: ➢ 同一电压等级的开式网(无变压器) ➢ 多级电压开式网(含变压器)

电力系统潮流计算

电力系统潮流计算

3.2.1 节点电压方程与节点导纳矩阵和阻抗矩阵
将节点电压法应用于电力系统潮流计算,变量为节点电压与节
点注入电流。通常以大地作为电压幅值的参考(U0 = 0),以
系统中某一指定母线的电压角度作为电压相角的参考,以支路
导纳作为电力网的参数进行计算。节点注入电流规定为流向网
络为正,流出为负。
Pmax P
表征年有功负荷曲线特点的两个指标
0
年最大负荷利用小时数 Tmax
t Tmax 8760
根据年负荷曲线,可求得全年所需电能:
8760
A 0
Pdt MWh
定义年最大负荷(最大值 Pmax)利用小时: Tmax
A Pmax
h
Tmax 越大,负荷曲线越平坦
负荷曲线为一水平线时, Tmax 达到最大值8760 (h)
2
1 ZT1
2
Zl
T2
34
3
ZT2 4
YT3
Yl /2
YT2
已知末端功率和电压, 计算网上潮流分布。
1 ZT1 2 Zl
3 ZT2 4
已知始端功率和电压, 计算网上潮流分布。
Y20
Y30
已知末端功率和始端电 压,计算网上的潮流。
不管哪种情况,先作等值电路
3.1.3 辐射形网络的分析计算
1)已知末端功率、电压 利用前面的方法,从末端逐级 往上推算,直至求得各要求的量。
Pm(t)
损耗称年电能损耗,是电网运行经
济性的指标。
Pmi
1)年电能损耗的准确计算方法
已知各负荷的年有功和无功负荷曲线 时,理论上可准确计算年电能损耗。
8760小时分为 n 段,第 i 时段时间为 Dti (h),全网功率损耗为DPi (MW),则 全网年电能损耗为

第7章电力系统的潮流计算

第7章电力系统的潮流计算

7.2.1电力线路的电压降落及电压损耗
(1) 电压降落:电力线路的首末端、或电力网任意两节点间电压的向量差。
电压降落 的纵分量
dU 2 U 1 U 2 (S2/U 2 )2 Z
P2 jQ2 U 2
P2R Q2 U 2
(R jX)
X电 j压横P2降 分XU落量2Q的2R
U jU
U1 (U2 U)2 (U2 )2
Sb2
i1
l
i1 l
i1 l
电力系统分析 7.4.2两端供电网络的最终潮流分布计算
第7章 电力系统的潮流计算
(1)功率分点 求出了功率分布之后,有的负荷功率是由两个方向流入的,如图7.4.2中的C 点,这样的点叫功率分点,并用 △标出。
(2)两端供电网络的最终潮流分布计算
如果已知功率分点电压,由功率分点将电网解开为两个开式网络。从功率 分点分别由两侧逐段向电源端推算电压降落和功率损耗。。
4如果已知末端电压和负荷,从末端开始逐段交替计算电压降落和功率损耗。向 电源端推算功率分布和各节点电压。如果有变压器,还应进行电压归算。
电力系统分析
第7章 电力系统的潮流计算
7.4 简单闭式网络的潮流计算
A
A1
b
c
A2
b
c
Sb (a)环式网络
Sc 图 简单的闭式网络
Sb
Sc
(b)两端供电网络
电力系统分析 7.4.1两端供电网络的初步功率分布计算
*
*
*
*
Sb2
Za1 S1 (Za1 Z12 )S2
*
*
*
(Ua Ub)UN
*
*
*
Sb2,LD Scir
Za2 Z12 Zb2

电力系统潮流计算

电力系统潮流计算
( k 1) x 迭代计算反复进行,通式是:
(k ) f ( x ) (k ) x f ( x ( k ) )
迭代过程的收敛判据为 f ( x ( k ) ) 1
x ( k ) 2

牛顿—拉夫逊法实质上就是切线法,是一种逐步线性化的 方法。牛顿法不仅用于求解单变量方程,它也是求解多变 量非线性方程的有效方法。

(0) (0) (0) (0) f1 ( x1(0) x1(0) , x2 x2 , , xn xn )0 (0) (0) (0) (0) f 2 ( x1(0) x1(0) , x2 x2 , , xn xn )0
(0) (0) (0) (0) f n ( x1(0) x1(0) , x2 x2 , , xn xn )0
牛顿-拉夫逊法潮流计算
一、牛顿—拉夫逊法的基本原理 单变量非线性方程: x=x(0)+ Δx(0) 即 f(x=x(0)+ Δx(0) ) = 0 f(x)=0 (11—29) 解的近似值x(0),它与真解的误差为Δx(0)
展成泰勒级数
f (x
(0)
x ) f ( x ) f ( x )x

f1 (0) xn )0 xn 0 f (0) 2 xn )0 xn 0
(0) f n ( x1(0) , x2 ,
写成矩阵形式:
f n f (0) x1(0) n x2 x1 0 x2 0 f1 x1 0 (0) (0) (0) f1 ( x1 , x2 , , xn ) f 2 (0) (0) (0) f 2 ( x1 , x2 , , xn ) x 1 0 (0) (0) (0) f ( x , x , , x n 1 2 n ) f n x1 0

电力系统分析潮流计算最终完整版

电力系统分析潮流计算最终完整版

电力系统分析潮流计算最终完整版电力系统潮流计算是电力系统运行的基础,它对电力系统的稳定运行和安全运行具有重要意义。

本文将介绍电力系统潮流计算的主要内容和步骤,并阐述其在电力系统运行中的应用。

电力系统潮流计算是指对电力系统中各节点的电压和功率进行计算和分析的过程。

它主要用于确定电力系统中各个节点的电压和相应的功率,以评估电力系统的稳定性和安全性。

潮流计算的结果可以用于电力系统的规划、调度和运行等各个环节。

潮流计算的主要步骤主要包括:建立电力系统潮流模型、制定潮流计算方程、选择潮流计算方法和求解潮流计算方程。

建立电力系统潮流模型是潮流计算的第一步,它主要包括确定电力系统的拓扑结构、电气参数和发电机和负荷模型等。

通过建立电力系统的拓扑结构和电气参数,可以确定电力系统中各个节点之间的连接关系和传输条件。

发电机和负荷模型则用于描述电力系统中的发电机和负荷之间的相互作用。

制定潮流计算方程是潮流计算的第二步,它主要是根据电力系统的拓扑结构和电气参数,建立潮流计算的数学模型。

潮流计算方程主要包括功率方程、节点电压方程和变压器方程等。

功率方程用于描述发电机和负荷之间的功率平衡关系,节点电压方程用于描述电力系统中各个节点的电压平衡关系,变压器方程用于描述变压器的运行状况。

选择潮流计算方法是潮流计算的第三步,它主要是选择合适的方法来求解潮流计算方程。

常见的方法包括直接迭代法、高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速迭代法等。

不同的方法在精度和收敛速度上有所差异,根据实际情况选择合适的方法。

求解潮流计算方程是潮流计算的最后一步,它主要是通过迭代计算,求解潮流计算方程得到电力系统各个节点的电压和功率值。

在求解过程中,需要根据实际情况设置迭代的初始值和收敛条件,以保证计算结果的准确性和稳定性。

电力系统潮流计算在电力系统运行中具有广泛的应用。

它可以用于电力系统规划,通过计算电力系统中各个节点的电压和功率,评估电力系统的输电能力和供电质量,为电力系统的扩容和优化提供指导。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统的潮流分布是描述电力系统运行状态的技术术语,它表明电力系统在某一确定的运行方式和接线方式下,系统从电源到负荷各点的电压以及功率分布情况。

对电力系统在各种运行方式下进行潮流计算,可以让我们全面、准确地掌握电力系统中各元件的运行状态,正确地选择电气设备和导线截面,确定合理的供电方案,合理地调整负荷。

通过潮流计算,还可以发现系统中的薄弱环节,检查设备、元件是否过负荷,各节点电压是否满足供电要求,从中发现问题,提出必要的改进措施,实施相应的调压措施、调频措施,保证电力系统运行时各点维持正常的电压水平,保证电力系统运行时频率,并使整个电力系统获得最大的经济性。

一、 电力网元件的电压降落、电压损耗和电压偏移当电力网传输功率时,电流将流过网络元件,由于元件阻抗的存在,会使元件首末两端的电压发生变化。

电压变化程度是衡量电能质量的重要指标之一,所以研究电力网的电压变化规律是很必要的。

1. 电压降落元件首末两端电压的相量差即该元件的电压降落,用ph U ∆表示。

为了分析问题简便起见,我们以集中参数的等值电路来代表电力网元件,并暂时不考虑导纳的影响,网络传输功率的无功为感性,这时元件的等值电路和相量图如图1所示。

U 2U 1S 2S Ij X(a)(b)2ϕphI U 1ph U a2ph U ∆2phδU 图1 集中参数元件的等值电路和相量图(a )等值电路;(b)相量图由图1(b)的相量图中可知,元件首末两端的相量差存在下列关系 1p h 2p hp h p h d (j )U UU I R X-==+ (1) 它实质上就是电流在元件阻抗上的压降,相量图中的三角形abc 就是阻抗压降三角形,ac 边为总的电压降落,ab 边为电阻压降(或电压降落的有功分量),bc 边为电抗压降(或电压降落的无功分量)。

但是,在进行电网潮流计算时,常采取另一种方法来将电压降落相量加以分解,即取ph d U 在参考相量1phU (或2ph U )方向上的投影称为电压降落的纵向分量1ph U ∆(或2ph U ∆),而取ph d U 在与参考相量1ph U (或2ph U )垂直方向上的投影称为电压降落的横向分量1phδU(或2ph δU )。

电力系统分析潮流计算

电力系统分析潮流计算

电力系统分析潮流计算电力系统分析是对电力系统运行状态进行研究、分析和评估的一项重要工作。

其中,潮流计算是电力系统分析的一种重要方法,用于计算电力系统中各节点的电压、功率和电流等参数。

本文将详细介绍电力系统潮流计算的原理、方法和应用。

一、电力系统潮流计算的原理电力系统潮流计算是基于潮流方程的求解,潮流方程是描述电力系统各节点电压和相角之间的关系的一组非线性方程。

潮流方程的基本原理是基于电力系统的等效导纳矩阵和节点电压相位差的关系,通过潮流计算可以得到电力系统各节点的电压和功率等参数。

电力系统潮流方程的一般形式如下:\begin{align*}P_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\cos(\theta_i-\theta_j)+B_{ij}\sin(\theta_i-\theta_j))) \\Q_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\sin(\theta_i-\theta_j)-B_{ij}\cos(\theta_i-\theta_j)))\end{align*}其中,$n$为节点数,$P_i$和$Q_i$表示第i个节点的有功功率和无功功率。

$V_i$和$\theta_i$表示第i个节点的电压和相角。

$G_{ij}$和$B_{ij}$表示节点i和节点j之间的等效导纳。

二、电力系统潮流计算的方法电力系统潮流计算的方法主要包括直接法、迭代法和牛顿-拉夫逊法等。

1.直接法:直接法是一种适用于小规模电力系统的潮流计算方法,它通过直接求解潮流方程来计算电力系统的潮流。

直接法的计算速度快,但对系统规模有一定的限制。

2.迭代法:迭代法是一种常用的潮流计算方法,通常使用高尔顿法或牛顿法。

迭代法通过迭代求解潮流方程来计算电力系统的潮流。

迭代法相对于直接法来说,可以适用于大规模电力系统,但计算时间较长。

3.牛顿-拉夫逊法:牛顿-拉夫逊法是一种高效的潮流计算方法,它通过求解潮流方程的雅可比矩阵来进行迭代计算,可以有效地提高计算速度。

电力系统的潮流计算

电力系统的潮流计算

电力系统的潮流计算电力系统的潮流计算是电力系统分析中的基础工作,主要用于计算电力系统中各节点的电压和功率流动情况。

通过潮流计算可以得到电力系统的电压、功率、功率因数等关键参数,为电力系统的运行和规划提供有效的参考依据。

本文将介绍电力系统潮流计算的基本原理、计算方法和应用。

一、电力系统潮流计算的基本原理电力系统潮流计算基于电力系统的能量守恒原理和基尔霍夫电流定律,通过建立电力系统的节点电压和功率平衡方程组来描述系统中各节点间的电压和功率流动关系。

潮流计算的基本原理可简述为以下三个步骤:1.建立节点电压方程:根据基尔霍夫电流定律,将电力系统中各节点的电流状况表达为节点电压和导纳矩阵之间的乘积关系。

2.建立功率平衡方程:根据能量守恒原理,将电力系统中各支路的功率流动表达为节点电压和导纳矩阵之间的乘积关系。

3.解算节点电压:通过求解节点电压方程组,得到系统中各节点的电压值。

二、电力系统潮流计算的常用方法电力系统潮流计算常用的方法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流法等。

其中,高斯-赛德尔迭代法是一种基于节点电压的迭代算法,通过在每一次迭代中更新节点电压值来逐步逼近系统潮流平衡状态。

牛顿-拉夫逊迭代法是一种基于节点电压和节点功率的迭代算法,通过在每一次迭代中同时更新节点电压和节点功率值来逼近系统潮流平衡状态。

快速潮流法则是一种通过行列式运算直接求解节点电压的方法,对于大规模复杂的电力系统具有较高的计算效率和精度。

三、电力系统潮流计算的应用电力系统潮流计算在电力系统的规划和运行中有广泛应用。

具体应用包括:1.电力系统规划:通过潮流计算可以预测系统中各节点的电压和功率流动情况,为电力系统的设计和扩建提供参考依据。

2.电力系统稳定性分析:潮流计算可以帮助分析系统中节点电压偏差、功率瓶颈等问题,为系统的稳态和暂态稳定性分析提供基础数据。

3.运行状态分析:潮流计算可以实时监测系统中各节点的电压和功率流动情况,为电力系统的运行调度提供参考。

电力系统潮流计算

电力系统潮流计算

武汉理工大学《电力系统分析》课程设计目录摘要 (1)1课程目的 (2).2潮流计算的理论方法 (2)2.1潮流计算简介 (2)2.2牛顿-拉夫逊法概述 (3)2.2.1牛顿-拉夫逊法基本原理 (3)2.2.2牛顿-拉夫逊法求解过程 (6)2.3牛顿-拉夫逊法潮流计算程序框图 (6)3计算实例 (8)4手工计算过程 (9)4.1等值电路 (9)4.2计算过程 (9)5 MATLAB程序设计 (14)5.1 程序 (14)5.2 程序结果 (20)5.3运行结果与分析 (23)6小结及体会 (25)7参考文献 (26)摘要电力系统是由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。

电力系统的主体结构有电源、电力网络和负荷中心。

电源指各类发电厂、站,它将一次能源转换成电能;电力网络由电源的升压变电所、输电线路、负荷中心变电所、配电线路等构成。

它的功能是将电源发出的电能升压到一定等级后输送到负荷中心变电所,再降压至一定等级后,经配电线路与用户相联。

电力系统中网络结点千百个交织密布,有功潮流、无功潮流、高次谐波、负序电流等以光速在全系统范围传播。

它既能输送大量电能,创造巨大财富,也能在瞬间造成重大的灾难性事故。

实际电力系统的潮流计算主要采用牛顿-拉夫逊法。

按电压的不同表示方法,牛顿-拉夫逊潮流计算分为直角坐标形式和极坐标形式两种。

本次计算采用极坐标形式下的牛顿-拉夫逊法,牛顿-拉夫逊法有很好的收敛性,但要求有合适的初值。

目前matlab已成为国际控制界最流行、使用最广泛的语言了。

它的强大的矩阵处理功能给电力系统的分析、计算带来很多方便。

所以本次课程设计程序设计采用matlab计算。

关键字:潮流计算牛顿-拉夫逊法matlab电力系统潮流计算课程设计1课程目的通过课程设计, 使学生巩固电力系统潮流计算的基本原理与方法,掌握潮流计算的数值求解方法(节点导纳矩阵,修正方程),开发系统潮流计算的计算程序。

电力系统的潮流计算

电力系统的潮流计算

QB2
1 2
BV22
线路
S0 (GT jBT )V 2 变压器
S0
P0
jQ0
P0
j
I0% 100
SN
直接用变压器空载试
验数据计算
8
开式网络的电压和功率分布计算
一、已知供电点电压和负荷点功率时的计算方法 ➢ 已知末端的功率和电压:从末端开始依次计算出
电压降落和功率损耗。
➢ 已知电源点的电压和负荷的功率:采取近似的方 法通过叠代计算求得满足一定精度的结果
V1 S ' R
I
jX S '' V2
I
S LD
V1 V2 (R jX )I
5
计算电压降落时,必须用同一端的电压与功率.
V2
V2
P''R Q'' X V2
P'' X Q''R V2
arctg V2
V2 V2
V1
V2
P'R Q'X V1
P'X Q'R V1
arctg V1
Sb SG STc S0c jQB2 jQB3
1
b
2
c
3
d
A
Tb
Tc
Td
SLDb
SG
G
SLDd
16
二、两级电压的开式电力网计算
➢ 计算方法一:包含理想变压器,计算时,经过理
想变压器功率保持不变,两侧电压之比等于实际
变比k。
L-1 b
A
Tc
1 A
b Z'T c' k:1 c
Sc
Sd
VAb

电力系统潮流计算

电力系统潮流计算
潮流计算中心任务
功率 注入
母线 电压
5/75
7.1 潮流计算的基本概念
3) 对潮流计算的要求
收敛可靠性(尤其病态系统) 计算速度(如用于静态安全分析) 内存占用量 可移植性 可扩展性 使用灵活性
6/75
7.2 潮流计算的手工计算
1) 元件的等值电路
线路模型
i
Z
j
Y/2
SA
b
c
A
VA
d Si VN Vd
VA SA
Sb
Sc
Sd
Vi
10/75
7.3 潮流计算的基本原理
1) 潮流计算的基本方程
基本公式 其展开式
I YV 或 V ZI
*
n
Ii Y ijV j j 1
Ii

Si V i


Pi
j Qi
*
Vi
n
Pi
第7章 电力系统潮流计算
一.潮流计算的基本概念 二.潮流计算的手工计算 三. 潮流计算的基本原理 四.极坐标牛顿法潮流计算 五.直角坐标牛顿法潮流计算 六. 其他形式的牛顿法潮流
1/75
第7章 电力系统潮流计算 七.PQ分解法潮流计算 八.导纳矩阵的形成 九. 线性方程组的解法
2/75
思考题
1. 潮流计算的节点分哪几类? 2. 导纳矩阵有哪些元件形成?如何形成? 3. 牛顿法求解非线性方程的原理。 4. 直角坐标和极坐标牛顿法的修正方程? 5. 快速分解法原理?简化假设对计算结果的精度
2 j
2 Qij Q ji
变压器损耗
PT I 2 RT Pij Pji
QT I 2 X T Qij Q ji S0 (GT jBT )Vi2

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是一种重要的计算方式,它主要用于计算电力系统分布式负荷和源之间的电力特性,以确定系统负荷和发电源之间的电力分配。

自上世纪80年代以来,随着电力系统越来越动态变化和智能化,电力系统潮流计算的发展就变得越来越重要。

电力系统潮流计算是基于电力系统的物理特性建模和计算,其目的是确定系统的电气特性,以确定系统的运行方式和改善系统效率。

它采用非线性扩展的模型和数学方法,建模和分析电力系统的电力特性,以确定系统发展趋势,满足入口电压和出口电压之间的平衡,为系统安全运行提供依据。

电力系统潮流计算主要分为三类:包括系统潮流分析、支路潮流分析和支路方程式分析。

系统潮流分析是基于负荷分布的潮流分析,主要用于分析和评估系统的负荷和发电源之间的电气特性,满足系统负荷和发电源之间的平衡,为系统安全运行提供分析。

支路潮流分析可以用于分析支路参数对电力系统电力特性的影响,预测改变支路参数后电力系统的变化及其他潮流分析方面的影响。

支路方程式分析是系统潮流计算的重要组成部分,它综合分析每条支路的电流和电压,以确定每条支路的电气特性。

另外,电力系统潮流计算还包括潮流抑制器的分布式潮流计算、无功补偿的潮流计算、复杂网络的潮流计算等。

电力系统潮流计算的发展有助于提高电力系统的安全性和可靠性,保证其正常运行,满足客户的负荷要求。

力系统潮流计算的重要性将更加凸显,因为它能够帮助电力公司分析和管理系统参数,以实现电力系统目标。

随着电力系统技术的不断发展,潮流计算方式也在不断改进,可以更好地满足不断变化的电力系统需求,从而更好地支持电力系统的可靠运行。

为此,电力系统潮流计算的研究和发展也将会继续受到重视。

综上所述,电力系统潮流计算是一种重要的电力系统计算技术,为电力系统的安全运行作出了重要贡献。

它的发展不仅为电力系统的智能化发展提供了重要技术支撑,而且还可以为电力系统的可靠运行提供保障,从而实现电力系统的综合优化。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。

它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各中的功率分布以及功率母线上的电压(幅值及相角)、网络损耗等。

电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。

意义:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。

(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。

(3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。

(4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。

总结为在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。

同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。

因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。

在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。

潮流计算的发展史利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。

此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。

对潮流计算的要求可以归纳为下面几点:(1)算法的可靠性或收敛性(2)计算速度和内存占用量(3)计算的方便性和灵活性电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。

因此其数学模型不包含微分方程,是一组高阶非线性方程。

电力系统牛拉法潮流计算

电力系统牛拉法潮流计算

电力系统牛拉法潮流计算电力系统的潮流计算是电力系统运行中一项重要的工作,它用来确定电力系统中各节点的电压和功率的分布情况。

牛拉法(Newton-Raphson)方法是一种主要的潮流计算方法,它是基于牛顿迭代法的一种改进方法,可以用来求解非线性方程组,并被广泛应用于电力系统的潮流计算。

牛拉法潮流计算的基本原理是通过不断迭代求解节点电压和相应的功率,直到收敛为止。

具体步骤如下:1.建立潮流计算的数学模型。

电力系统的潮流计算可以被建模为一个非线性方程组,其中未知量为各节点的电压和功率,方程组的解表示系统的潮流分布情况。

2.初始化节点电压。

初始时,可以假设所有节点的电压为1,并根据负荷功率和潮流方向,计算各发电机节点的功率注入。

3.计算节点电压。

利用牛拉法迭代求解非线性方程组。

首先,根据电压相角和幅值的变化情况,更新节点电压;然后,利用更新的节点电压计算各发电机节点的功率注入,以及从节点注入到节点之间的功率传输;最后,根据功率平衡方程计算支路的功率。

4.判断迭代是否收敛。

判断迭代是否收敛的常用方法有两个:一是通过计算节点电压变化量来判断,如果变化量小于一定阈值,则认为计算收敛;二是通过计算功率平衡误差来判断,如果误差小于一定阈值,则认为计算收敛。

5.如果迭代未收敛,返回步骤3;如果迭代收敛,计算结束,得到系统的潮流分布情况。

牛拉法潮流计算的优点是能够处理复杂的非线性方程组,收敛速度快,并且适用于大规模电力系统的计算。

但是,牛拉法潮流计算也存在一些问题,比如可能出现发散情况,需要进行故障处理。

牛拉法潮流计算在电力系统调度和运行中起着重要的作用。

通过潮流计算,可以确保电力系统的稳定运行,优化电力系统的运行方式,提高系统的可靠性和经济性。

总结起来,牛拉法潮流计算是电力系统潮流计算的一种重要方法,通过迭代求解非线性方程组,可以得到电力系统各节点的电压和功率的分布情况。

它在电力系统调度和运行中具有重要的应用价值,可以帮助优化电力系统的运行方式,提高系统的稳定性和经济性。

7复杂电力系统潮流计算的数学模型

7复杂电力系统潮流计算的数学模型

7复杂电力系统潮流计算的数学模型随着电力系统的不断发展和扩大规模,复杂的电力网络和高度交互的电力设备之间的相互作用也越来越复杂。

因此,对电力系统进行准确的潮流计算变得至关重要。

潮流计算是指计算电力系统中各个节点的电压和功率的过程。

虽然潮流计算可以通过传统的牛顿拉夫逊法或高斯赛德尔法等迭代算法来求解,但计算精度和计算速度往往成为问题。

为了解决这个问题,研究人员提出了各种数学模型和算法,以提高潮流计算的精度和效率。

复杂电力系统潮流计算的数学模型可以分为两种类型:直流潮流模型和交流潮流模型。

直流潮流模型是最简单的潮流计算模型。

它基于直流电路分析方法,忽略了电力系统中的变动量和非线性元件。

在直流潮流模型中,电力网络被表示为一个节点-支路矩阵,其中节点表示电力系统中的发电机、负荷和开关等设备,支路表示电力系统中的输电线路和变压器等设备。

直流潮流模型的优点是简单且易于求解,计算速度快。

然而,它的缺点是在计算电力系统中存在大量的变动量和非线性元件时,精度会下降。

交流潮流模型是复杂电力系统潮流计算的主要数学模型。

它基于交流电路分析方法,考虑了电力系统中的变动量和非线性元件。

在交流潮流模型中,电力网络被表示为一组非线性方程。

这些方程描述了电力系统中各个节点的电压和功率之间的复杂关系。

为了求解这组非线性方程,研究人员提出了各种迭代算法,如牛顿拉夫逊法、高斯赛德尔法和快速潮流法等。

这些算法使用雅可比矩阵和导纳矩阵来近似电力系统中的非线性关系,以加快计算速度。

除了直流潮流模型和交流潮流模型之外,人们还提出了很多其他的数学模型来改善潮流计算的精度和效率。

例如,人们提出了随机潮流模型来处理电力系统中的随机性和不确定性。

这些模型使用概率论和统计学的方法来描述电力系统中各个节点的电压和功率之间的随机关系。

此外,人们还提出了优化潮流模型来解决电力系统中的优化问题,如电压稳定控制、电力负荷分配和输电线路规划等。

这些模型使用优化理论和算法来最小化或最大化电力系统中的一些性能指标,以提高电力系统的性能和可靠性。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算简介潮流计算是电力系统运行与规划的重要工具之一,通过计算电力系统的节点电压、电流及功率等参数,可以帮助分析系统运行情况、评估电力系统稳定性和负荷承载能力,为电力系统的优化调度和规划提供依据。

本文将介绍电力系统潮流计算的基本原理和常用的数学模型,以及潮流计算的算法和应用。

潮流计算原理电力系统潮流计算是基于电力系统的等值模型进行的。

等值模型是对电力系统的复杂网络结构进行简化,将电力系统视为一组节点和支路的连接图,其中节点表示发电机、变电站和负荷,支路表示输电线路和变压器。

潮流计算的基本原理是基于电力系统的基尔霍夫电流定律和基尔霍夫电压定律,通过建立节点电压和支路功率的方程组,求解方程组得到电力系统中各节点的电压、电流和功率等参数。

潮流计算可以分为直流潮流计算和交流潮流计算两种。

直流潮流计算直流潮流计算是将电力系统视为直流电路进行计算的一种简化方法。

在直流潮流计算中,各节点的电压都假设为恒定值,即不考虑电力系统中的电压相位差。

直流潮流计算可以较准确地求解直流电力系统的电压、电流和功率等参数,常用于电力系统的初始计算和短期稳定计算。

交流潮流计算交流潮流计算是对电力系统的交流特性进行全面分析和计算的方法。

交流潮流计算考虑电力系统中的电压相位差和电流谐波等复杂情况,可以求解电力系统中各节点的电压、电流和功率的精确值。

交流潮流计算常用于电力系统长期稳定计算、电力系统规划和扩容的分析等。

潮流计算数学模型潮流计算的节点电压方程假设电力系统有n个节点,节点的电压记为V i,支路的电流记为I ij。

根据基尔霍夫电流定律和基尔霍夫电压定律,可以得到潮流计算中节点电压方程的数学表达式:$$ \\begin{align*} \\sum_{j=1}^n Y_{ij}V_j &= I_{i}^g - I_{i}^l \\\\ I_{ij} &= Y_{ij} (V_i - V_j) \\end{align*} $$其中,Y ij是节点i和节点j之间的支路导纳,I i g和I i l分别是节点i的总注入电流和总负荷电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
图 电力线路的Π形等值电 路
(2)电力线路导纳支路上的功率损耗 线路导纳支路末端单相功率损耗
1 GU 2 2 2 1 Q y2 BU 2 2 2 Py2
线路导纳支路首端单相功率损耗
1 2 GU 1 2 1 2 Q y2 BU1 2 Py2
电力系统分析 (3)电力线路中的功率计算 电力线路阻抗支路末端流出的功率为
P 3UIcos
Q 3UIsin
S 3UI
电力系统分析
第7章 电力系统的潮流计算
7.1.2 网络元件的功率损耗
1 .电力线路的功率损耗 (1)电力线路阻抗支路上的功率损耗
S2 (P22 Q 2 2) S2 I 2 Z Z (R jX) 2 U U 2 2 P jQ P — 电力线路电阻上的有功 功率损耗(MW)。 Q — 电力线路电感上的无功 功率损耗(Mar)。
P2 X U 2 ( U 2 U 2 )
电力系统分析 结论
第7章 电力系统的潮流计算
电压降落的纵分量取决于所输送的无功功率的大小; 电压降落的横分量主要取决于所输送的有功功率的大小。 纵分量主要影响电压的大小, 横分量主要影响电压的相角。 (2)电压损耗:电力线路首末端或电力网任意两节点间电压的代数差。 电压损耗近似等于电压的纵分量大小
(1)功率分点 求出了功率分布之后,有的负荷功率是由两个方向流入的,如图7.4.2中的C 点,这样的点叫功率分点,并用 △标出。
(2)两端供电网络的最终潮流分布计算 如果已知功率分点电压,由功率分点将电网解开为两个开式网络。从功率 分点分别由两侧逐段向电源端推算电压降落和功率损耗。。 当出现有功功率分点和无功功率分点不一致时,一般可从无功功率分点为 计算的起点。 如果已知电源电压,此时仍由功率分点将电网解开为两个开式网络。此时 与已知末端负荷和首端电压的开式网络的潮流计算相同。
S 2 S2 Sy2 P2 j(Q2 Qy2 )
第7章 电力系统的潮流计算
电力线路阻抗支路首端流入的功率为
S2 S2 P2 ) j(Q S1 (P2 2 Q2 )
电力线路首端流入功率为
Sy1 P1 (Q1 Qy1 ) S1 S1
Sa 1 Sb 2
( Z12 Z b 2 )S1 Z b 2 S2 Za 2 Z12 Z b 2 Za1 S1 ( Za1 Z12 )S2 Za 2 Z12 Z b 2
* * * * * * * * *
*
*
*

(U a U b )U N Z a 2 Z12 Z b 2
第7章 电力系统的潮流计算
7.1 电力网中功率损耗的计算 7.2 电力网中电压降落及电压损耗的计算 7.3 开式网络的潮流计算 7.4 简单闭式网络的潮流计算 7.5电力网络的数学模型 7.6 功率方程
电力系统分析
第7章 电力系统的潮流计算
7.1 电力网中功率损耗的计算
7.1.1负荷功率的表示法 电力系统负荷多以有功功率P和无功功率Q来表示,并以复数表示为
2.变压器的功率损耗
Sy1 P0 I % j 0 SN (MV A) 1000 100
电力系统分析
第7章 电力系统的潮流计算
7.2 电力网中电压降落及电压损耗的计算
7.2.1电力线路的电压降落及电压损耗 (1) 电压降落:电力线路的首末端、或电力网任意两节点间电压的向量差。
U U (S /U )2 Z dU 2 1 2 2 2 P jQ2 2 (R jX) U 2 R Q2 X 电压降落的 X Q2 R P2 P2 j横分量 U U 2 2
G
2
3
SD3
3
S3 jQC3 SD3
(a)三母线系统
(b)等值电路
电力系统分析
第7章 电力系统的潮流计算
y4
1
y5 y1 y3
3
y6 y2
2
各母线的节点功率为
S1 SG1 SD1 PG1 PD1 j(QG1 QD1 ) S2 SG 2 PG 2 jQG 2 S3 jQG 3 SD3 PD3 j(QG 3 QD3 )
电力系统分析
第7章 电力系统的潮流计算
7.5.2 节点导纳矩阵的形成和特点
(1)节点导纳矩阵是稀疏矩阵。 (2)节点导纳矩阵是方阵,结束等于除参考点外的节点数。
(3)节点导纳矩阵的某对角元素等于该节点所连接的导纳的总和。
(4)节点导纳矩阵的非对角元素Yij等于连接节点i、j支路导纳的负值。 (5)节点导纳矩阵一般是对称矩阵。
电力系统分析
第7章 电力系统的潮流计算
7.2.2 变压器的电压降落和电压损耗 例7-1
有一降压变电所,等值电路及参数如图所示,变压器变比为110/11kv ,末端负 荷为(20+j10)MVA,首端电压为108kv,试计算变压器首端功率及末端电压。
108kV
(2.04+j3.18)Ω
(20+j10)MVA
4.运算功率 发电厂的等值电源功率减去发电厂输出母线上所有相连线路的充电功率 的一半称为发电厂的运算电源功率,简称运算功率。
电力系统分析 7.3.2开式网络的潮流计算方法
第7章 电力系统的潮流计算
计算步骤:
1、计算电力网各元件参数,作电力网等值电路。 2、计算变电所的运算负荷和发电厂的运算功率,并将它们接在相应的节点上, 从而组成了只包括运算负荷和运算功率及网络参数的等值网络。 3、如果已知电源电压和末端负荷,由末端向首端逐段计算功率损耗,这种情况 由于各点电压未知,可用电网额定电压代替实际电压,求取电力网的功率分布。 求得电源功率后,再运用已知电源电压和求得的首端功率向末端逐段求电压降 落,计算出各点电压。此过程不必重新计算功率损耗,在110kv的高压电网中也 可忽略电压降落的横分量。 4如果已知末端电压和负荷,从末端开始逐段交替计算电压降落和功率损耗。向 电源端推算功率分布和各节点电压。如果有变压器,还应进行电压归算。
* * *
*
*
Sa1,LD Scir Sb 2,LD Scir

(U a U b )U N Z a 2 Z12 Z b 2
* * *
*
*
每个电源送出的功率=供载功率+循环功率
图7-8 两端供电网络的等值网络
电力系统分析
第7章 电力系统的潮流计算
如果沿两端供电线路上接有N个负荷,则上式简化为
电压降落 的纵分量
U jU
图7-2 U1、U2 和dU2三者之间的相量关系
U1 ( U 2 U ) 2 (U 2 ) 2
当 X R ,可忽略电阻,上述公式可化简为
U Q2 X U 2
Q2X U2
2 U U2
PX
U1 U 2
arctan
电力系统分析
第7章 电力系统的潮流计算
1.变电所的运算负荷 指变电所的二次负荷功率加上变压器的功率损耗称为变电所的等值负荷功 率。 2.运算负荷 变电所的等值电负荷功率加上变电所所有相连线路的充电功率的一半称为 变电所的运算负荷功率,简称运算负荷。 3.发电厂的运算功率 发电厂的输出功率减去升压变压器的功率损耗称为发电厂的等值电源功率。
Y U I1 Y11U 1 12 2 Y 13 U 3 Y U Y U I Y U
23
3
Y U I3 Y31U 1 32 2 Y33 U 3
写成矩阵形式
I1 Y11 I 2 Y21 Y ) U I1 ( y1 y 4 y5 ) U 1 4 2 6 3 ( y y y )U ( y ) U I ( y ) U
2 4 1 2 4 6 2 5
3
( y ) U ( y y y )U I3 ( y 5 ) U 1 5 2 3 5 6 3
电力系统分析
第7章 电力系统的潮流计算
7.4 简单闭式网络的潮流计算
A
A1 b c
b
c
A2
Sb
(a)环式网络
Sc
Sb
Sc
(b)两端供电网络
图 简单的闭式网络
电力系统分析 7.4.1两端供电网络的初步功率分布计算
第7章 电力系统的潮流计算
a、b为两个供电电源,设U1≠U2。忽略网络中功率损耗,都用相同的电压计算功 U 0 率,令 U N N
列出节点电压方程
y (U U ) y (U ( b)等值电路 I1 U U 1 1 1 2 4 1 2 ) y6 y (U U ) y (U U )y I U
2 2 2 2 1 4 2 3 6
y (U U ) y (U U )y I3 U 3 3 3 1 5 3 2 6
电力系统分析 若令 Y11 y1 y 4 y 5
Y12 Y21 y 4 Y22 y 2 y 4 y 6 Y23 Y32 y 5 Y33 y 3 y 5 y 6 Y13 Y31 y 6
2 21 1 22 2
第7章 电力系统的潮流计算
i 1 *
k
*

k
i 1
Si li l
k
k

i 1
Pi li l
k
i 1 l
Q i li
k
Sb 2
Si l i l
k

i 1
Pi l i l

i 1
Q i l i l
电力系统分析 7.4.2两端供电网络的最终潮流分布计算
相关文档
最新文档