环境化学-第三章-水环境化学-第二节-水中无机污染物的迁移转化
环境化学第3章水环境化学-2-无机污染物的迁移转化
随pH值的变化而改变。铝可发生聚合反应,最终生成
[Al(OH)3]∞的无定形沉淀物。 ②铁:铁是丰量元素,水解反应和形态与铝类似。 ③锰:锰与铁类似,其丰度不如铁,但溶解度比铁高。 ④硅:硅酸能生成聚合物,并可生成胶体以至沉淀物。
2Si(OH)4 H6SiO7 + H2O
(SinO2n-m(OH)2m )
属污染物在水环境中迁移转化的基本原理。
思考题
1. 叙述天然水体中存在哪几类颗粒物?
2. 什么是表面吸附作用、离子交换吸附作用和专属吸附
作用?
3. 根据腐殖质在溶液中的溶解度不同划分为哪几类?
4. 叙述水中颗粒物以哪些方式进行聚集?
2.1颗粒物与水之间的迁移
★2.1.1水中颗粒物的类别 矿物微粒和黏土矿物 金属水合氧化物
吸 引
吸 引
(1)水中离子浓度高
天然水环境和水处理过程中所遇到的颗粒聚集方式: (1)压缩双电层凝聚:
由于水中电解质浓度增大而离子强度升高,压缩扩散
层,使颗粒相互吸引结合凝聚。 实质:电解质加入--与反离子同电荷离子↑--压缩双 电层--ξ电位↓--凝聚
对于水中的负电荷胶体,投入的电解质——混凝剂应是正 电荷或聚合离子,如Na+、Ca2+、Al3+等,其作用是压缩 胶体双电层。
2.2水中颗粒物的聚集
凝聚(Coagulation):由电介质促成的聚集; 絮凝(Flocculation):由聚合物促成的聚集
电位离子 反离子
滑动面
胶团边界
胶核
吸附层 扩散层
胶粒
ξ电位
Ψ电位
胶体的双电层结构
– 胶体的结构:
按照以上的描述胶体粒子的结构式可写为:
【环境化学】第3.2章 水环境化学——第二节 水中无机污染物的迁移转化
22
吸附等温线和等温式
吸附等温线: 在固定的温度下,当吸附达到平衡时, 颗粒物表面上的吸附量(G)与溶液中溶质平衡浓度 (C)之间的关系,可用吸附等温线来表示。
吸附等温线类型:
Henry型(H型) Freundlich型(F型) Langmuir型(L型)
腐植质分子与金属络合的机理★
Hum
COO OH
-
+[Fe(OH)(H2O)x-1]2+
低pH
Hum
COO O
Fe
OH (O) x-1
+ H+
在低pH时,从腐植质的酸性基团中置换出一个质子
Hum COOHO-+ [Fe(OH)(H2O)x-1]2+
高pH
[ Hum
COO O
Fe
OOHH(H2O)x-2]-+2H+
23
H型等温式为: G = kc
k: 分配系数;等温线为直线型
F型等温式为:G = kc(1/n)
1)k 是c=1的吸附量,大致表示 吸附能力的强弱; 2)1/n为斜率,表示吸附量随 浓度增长的强度; 3)该等温线不能给出饱和吸附 量。
L型等温式: G = G0c/(A+c)
G0—单位面积上达到饱和时的 最大吸附量; A—常数。
胶体表面的化学反应(见下页胶片)
25
胶体表面的化学反应
是氢氧化物和氧化物的典型行为 与pH值有关
在酸性介质中 M(OH)n (s) + H+ → M(OH)n-1(H2O)+(s) 粒子带净正电荷
在碱性介质中 M(OH)n (s) → MO(OH)n-1-(s) + H+ 粒子带净负电荷
第二节、水中无机污染物的迁移转化
于晶格中离子的同晶替代造成的,例如硅氧四面体中的Si4+被
Al3+所取代,或者铝氢氧八面体中的Al3+被Mg2+所取代等,都会 产生这种永久负电荷。另一部分为可变电荷,主要随着环境pH
的改变而发生改变,原因是 Si-OH中的H+ 在碱性溶液中的离解。
Si-OH+OH-=Si-O-+H2O。
特征:这种吸附是一种可逆反应,能够迅速达到平衡。 不受温度影响,酸碱条件下均可进行,其交换吸附能力 与溶质的性质、浓度及吸附剂性质等有关。对于那些具 有可变电荷表面的胶体,当体系pH高时,也带负电荷并
n
以lgG对lgc作图可得一直线。lgk为截距,因此, k值是c=1时的吸附 1
n 量,它可以大致表示吸附能力的强弱。
浓度增长的强度。
该等温线不能给出饱和吸附量。 L型等温式为:G=G0c/(A+c)
为斜率,它表示吸附量随
式中:G0——单位表面上达到饱和时间的最大吸附量; A——常数。 G对c作图得到一条双曲线,其渐近线为G=G0,即当c→∞时,G→G0。 在等温式中A为吸附量达到时溶液的平衡浓度。 转化为:1/G = 1/G0 + (A/G0)(1/c)
1 以G
1 对 作图,同样得到一直线。 c
等温线在一定程度上反映了吸附剂与吸附物的特性,其形式在许
多情况下与实验所用溶质浓度区段有关。当溶质浓度甚低时,可能在 初始区段中呈现H型,当浓度较高时,曲线可能表现为F型,但统一起 来仍属于L型的不同区段。 影响吸附作用的因素有以下几种: 首先是溶液pH值对吸附作用的影响。在一般情况下,颗粒物对重金 属的吸附量随pH值升高而增大。当溶液pH超过某元素的临界pH值时, 则该元素在溶液中的水解、沉淀起主要作用。吸附量(G)与pH、平衡 浓度(C)之间的关系可用下式表示:G = A· C· 10BpH式中:A、B—常数。
第三章 水环境化学水中无机污染物的迁移转化汇总
20
1. 胶体颗粒凝聚的基本原理和方式
1) 带电胶粒稳定性的经典理论--DLVO理论 带电胶粒的两种相互作用力
双电层重叠时的静电排斥力 粒子间的长程范德华吸引力
DLVO理论认为,当吸引力占优势时,溶胶发生聚 沉; 当排斥力占优势,并大到足以阻碍胶粒由于 布朗运动而发生聚沉时,则胶体处于稳定状态。 颗粒在相互接近时两种力相互作用的总位能随相 隔距离的变化而变化: 总位能 VT=VR+VA 式中:VA——由范德华力所产生的位能; VR——由静电排斥力所产生的位能。
4
一 、 颗粒物与水之间的迁移
2、水环境中颗粒物的吸附作用
专属吸附是指吸附过程中,除了化学键的作
用外,尚有加强的憎水键和范德华力或氢键在 起作用。
专属吸附作用不但可使表面电荷改变符号, 而且可使离子化合物吸附在同号电荷的表面上。
5
表3-8水合氧化物对金属离子的专属吸附 与非专属吸附的区别
项目 非专属吸附 专属吸附 发生吸附的表面净电荷的符号 - -、0、+ 金属离子所起的作用 反离子 配位离子 吸附时发生的反应 阳离子交换 配位体交换 发生吸附时体系的PH值 >零电位点 任意值 吸附发生的位置 扩散层 内层 对表面电荷的影响 无 负电荷减少, 正电荷增多 注:本表摘自陈静生主编,1987。
(4)水体悬浮沉积物
悬浮沉积物是以矿物微粒,特别是粘土矿物 为核心骨架,有机物和金属水合氧化物结合在矿 物微粒表面上,成为各微粒间的粘附架桥物质, 把若干微粒组合成絮状聚集体(聚集体在水体中 的悬浮颗粒粒度一般在数十微米以下),经絮凝 成为较粗颗粒而沉积到水体底部。
(5)其他
3
一、 颗粒物与水之间的迁移
环境化学-第三章-第2节-水中无机污染物的迁移转化概述
G0—单位表面上达到饱和时的最大吸量
A—常数
(p122 图3-4)
2021/3/25
15
4 沉积物中重金属的释放(p125)
沉积物中的重金属可能重新进入水体,这 是产生二次污染的主要原因。
碱金属和碱土金属离子可将吸附在颗粒 物表面的重金属离子置换出来,这是重金属 从颗粒物表面解吸的重要途径之一。
氧化还原条件的变化,使金属以水合离 子解吸。
2021/3/25
16
4 沉积物中重金属的释放(p125)
水环境pH值的降低,导致硫酸盐和氢 氧化物的溶解
废水中配合剂的含量增加,和重金属 形成稳定的可溶性配合物,使重金属 重新进入水体,以上几种途径都有可 能构成环境水体重金属的二次污染
2021/3/25
聚多胺,聚丙烯酰胺,阳离子型 (淀粉-二甲基二烯丙基氯化铵接枝 共聚物), 两性絮凝剂等。
复合型絮凝剂
2021/3/25
24
三、沉淀和溶解
1. 金属氧化物和氢氧化物
M (OH )n (S ) M n nOH
KSP [M n ][OH ]n
[M
n
]
K SP [OH
]n
2021/3/25
25
将[Fe(OH)+] = 1.0×10-7 mol/L代入,
pH = 11.6
(2)
2021/3/25
49
pE – pH 图
Fe(OH)3(S) Fe2+的边界 Fe(OH)3(S) + 3H+ + e = Fe2+ + 3H2O
K
Re d Ox en
3.2水中无机污染物的迁移转化(3)
第三章:水环境化学——污染物存在形态第二节、水中无机污染物的迁移转化一、颗粒物与水之间的迁移、二、水中胶体颗粒物聚集的基本原理和方式 三、溶解和沉淀 四、氧化—还原1、概述2、天然环境中的氧化剂和还原剂3、氧化还反应概念回顾4、电子活度和氧化还原电位5、天然水体的pE-pH 关系图● 在氧化还原体系中,往往有H +或OH -离子参与转移,因此,pE 除了与氧化态和还原态浓度有关外,还受到体系pH 的影响,这种关系可以用pE-pH 图来表示。
该图显示了水中各形态的稳定范围及边界线。
● 由于水中可能存在物类状态繁多,于是会使这种图变得非常复杂。
例如一个金属,可以有不同的金属氧化态、羟基配合物、金属氢氧化物、金属碳酸盐、金属硫酸盐、金属硫化物等。
(1)水的氧化-还原限度绘制pE —pH 图时,必须考虑几个边界情况。
首先是水的氧化还原反应限定图中的区域边界。
选作水氧化限度的边界条件是1.0130×105Pa 的氧分压,水还原限度的边界条件是1.0130×105Pa 的氢分压(此时P H2=1,P O2=1),这些条件可获得把水的稳定边界与pH 联系起来方程。
天然水中本身可能发生的氧化还原反应分别是: 水的还原限度(还原反应):221H e H ↔++ pE 0=0.00 pE = pE 0 – lg((P H2)1/2/[H +])pE = –pH水的氧化限度(氧化反应):O H e H O 222141↔+++ pE 0 = +20.75]}[lg{4120++=H po pE pEpE=20.75—pH(2)pE—PH图假定溶液中溶解性铁的最大浓度为1.0×10-7mol/L,没有考虑Fe(OH)2+及FeCO3等形态的生成,根据上面的讨论,Fe的pE—pH图必须落在水的氧化还原限度内。
下面将根据各组分间的平衡方程把pE—pH的边界逐一推导。
①Fe(OH)3(s)和Fe(OH)2(s)的边界。
第三章 第二节 水中无机污染物的迁移转化要点
常见的吸附等温线
G G
n是一个经验 值,不是由一个 过程控制,一般 适用于有机物 lgG
lgK
H型
G0/2
单分子吸附 适用于金属
L型 c
L型 1/c
0 A
当溶质浓度甚低时,可能在初始阶段呈现 H 型,当浓度较 高时,可能表现为 F 型,但统一起来仍属于 L 型的不同区段。
2、异体凝聚理论
(1)适用条件:适用于物质本性不同、粒径不等、电荷符
号不同、电位高低不等的分散体系。 (2)主要论点: A、电荷符号相异的胶体微粒接近时,吸引力总是占优势; B、电荷符号相同但电性强弱不等,则位能曲线上的能峰高 度总是决定于荷电较弱而电位较低的一方。
因此异体凝聚时,只要有一种胶体的稳定性甚低而电位
纯饱和溶液中 [S2-]= Ksp/ [H+]2 = 1.16×10-23 / 8.9×10-9 = 1.3×10-15mol/L 任意水体中 [S2-]= 1.16×10-23 / [H+]2 [Me2+] [S2-]=Ksp 因此,在 H2S 和硫化物均达到饱和的溶液中,溶液重金属离子
的饱和浓度为:
2、硫化物
H2S H++ HSK1 = 8.9×10-8 HSH++ S2K2 = 1.3×10-15 两者相加可得: H2S 2H+ + S2K12 = K1·K2 = 1.16×10-22
在饱和水溶液中,H2S 浓度总是保持在 0.1mol/L,因此可认
为饱和溶液中 H2S 分子浓度也保持在 0.1mol/L,得: [H+]2[S2-] =1.16×10-22×0.1 = 1.16×10-23 = Ksp´
环境化学教案 第三节水中无机污染物的迁移转化(氧化还原2)
由此反应可知,当有机物进入天然水后,水体中溶解氧的含量会迅速降低。如果有机物的数量非常多的话,可以使水体中溶解氧全部被消耗掉,甚至可以使水体转换成为沼泽。在水中,NH4+只有被氧化成NO3-后,氮才能被藻类利用。
例2求被大气氧所饱合的中性天然水的pE值。
解:该体系溶解氧起决定电势作用,溶解氧的氧化还原反应为:
pE=pE0+ [H+]
已知:pE0=20.75
pH=7 [H+]=10-7
将已知条件代入pE的表达式,得:pE=13.58。该体系pE值较高,是一个氧化性体系。
例3求微生物作用产生甲烷的中性厌氧水的pE值及溶解氧的分压
天然水是一个非常复杂的混合体系,其中存在着众多的氧化剂和还原剂。其中常见的氧化剂包括溶解氧、Mn(IV)、Fe(III)、和S(VI),常见的还原剂包括有机物、Mn(II)、Fe(II)、S(-II)。当我们要求得某种天然水的pE值时,首先需要确定哪种物质起决定电势作用,然后根据起决定电势作用物质的氧化还原反应,求得体系的pE值。一般的天然水体中起决定电势作用的物质是溶解氧,当有机物含量非常高时,则有机物起决定电势作用。铁和锰起决定电势作用的情况则比较少见。下面我们来看两种极端情况下体系的pE值。
pE=-4.13
将已知条件代入pE的表达式,得: =3.0×10-72atm。
由此可见该体系中溶解氧的分压非常低,一般水体中的溶解氧的分压均超过此值。由于天然水的pE值随水中溶解氧的减少而降低,因此表层水pE值较高,底层水pE值较低。
例3:从湖水中取出深层水,其PH=7.0,含溶解氧浓度0.32mg/L,请计算PE和Eh。(KH=1.26*10-8[mol/(L·Pa)]
第11讲_水中有机污染物的迁移转化
憎水有机物的Koc与辛醇-水分配系数的关系
Koc =0.63 Kow Kow—辛醇-水分配系数,即化学物质在辛醇中和水中的 浓度比
❖ Kow和溶解度的关系
lgKow=5.00-0.670lg(Sw×103/M) 式中:Sw—有机物在水中的溶解度,mg/L;
M—有机物的分子量。
二、挥发作用
挥发作用是有机物质从溶解态转入气相的一种重要迁移 过程。挥发速率依赖于有毒物质的性质和水体的特征。
种类
有机卤化物 环氧化物 脂肪酸酯 芳香酸酯
酰胺 氨基甲酸酯
磷酸酯
酸催化
无 3.8① 1.2—3.1 3.9—5.2① 4.9—7① ﹤2 2.8—3.6
❖ KA、KB和KN根据下式计算
图3-18 水解速率常数与pH的关系
吸附作用对有机物水解速率的影响
Kh K N (K A[H ] KB[OH ])
α:有机化合物溶解态的分数; KA:中性水解速率常数; KN:中性水解速率常数; KB:中性水解速率常数。
表3-4 对有机官能团的酸碱催化作用显著的pH范围
有机物挥发速率的预测
V dc kS c p KH
dt
dc dt
k
1 VS
c
p
KH
dc dt
Kv Z
(c
p KH
)
K
' v
(c
p KH
)
式中:c—溶解相中有机物的浓度;
KV—挥发速率常数; KV’—单位深度混合水体的挥发速率常数; Z—水体的混合深度; p—水体上面有机物在大气中的分压; KH——亨利定律常数。
三、水解反应速度 ❖ 通常有机物的水解是一级反应
d[RX dt
第三章水环境化学
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO42-
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
CO2、CO32-、HCO3-、H2CO3
第三章 水环境化学
(Water Environmental Chemistry)
本章重点
1、无机污染物在水体中进行沉淀-溶解、氧化-还原、 配合作用、吸附-解吸、絮凝-沉淀的基本原理;
2、计算水体中金属存在形态;
3、pE计算;
4、有机污染物在水体中的迁移转化过程和分配系数、 挥发速率、水解速率、光解速率和生物降解速率的 计算方法。
农药
有机氯 有机磷
多氯联苯 (PCBS) 卤代脂肪烃 醚
单环芳香族化合物 苯酚类和甲酚类 酞酸酯类 多环芳烃(PAH) 亚硝胺和其他化合物
2、金属污染物 (Metal Pollutant)
Cd、 Hg、 Pb、 As、 Cr、 Cu、 Zn、 Tl、 Ni、 Be
第二节 水中无机污染物的迁移转化
强酸 弱酸 强酸弱碱盐
总酸度= [H+]+ [ HCO3-] +2[H2CO3*] - [ OH-] CO2酸度= [H+]+ [H2CO3*] - [CO32-] - [ OH-] 无机酸度= [H+]- [ HCO3-]-2 [CO32-] - [ OH-]
二、水中污染物的分布及存在形态
1、有机污染物 (Organic Pollutant)
水中无机物的迁移转化part
静电位能
范德华力位能
第一最小值 (发生永久性凝聚)
第二最小值 (发生可逆凝聚)
图3-1 总位能曲线
影响位能曲线的因素
①不同溶液离子强度有不同VR曲线,颗粒间的距离 ↑→VR按指数律↓;
②VA与溶液中离子强度无关, 颗粒间的距离↑→ VA↑(绝对值变小);
③不同溶液离子强度有不同的VT曲线。
在溶液离子强度较小时,总位能曲线上出现较大位能峰 (Vmax)。此时,排斥作用占较大优势,颗粒借助于热运 动能量不能超越此位能峰,彼此无法接近,体系保持分 散稳定状态。
(2)氧化还原条件的变化 水环境中有较多耗氧物质,使一定深度下的沉积 物中的氧化还原电位↓→Fe(Ⅲ)、Mn(Ⅳ)等被还 原成Fe(Ⅱ)、Mn(Ⅱ)从而释放出来。
❖ 诱发释放的主要因素
(1)盐浓度升高 (2)氧化还原条件的变化 (3)降低pH值
pH降低,导致碳酸盐和氢氧化物的溶解,H+的竞争作用 增加了金属离子的解吸量。
第二节 水中无机污染物的迁移转化
一、颗粒物与水之间的迁移
1.水中颗粒物的类别 2.水环境中颗粒物的吸附作用 3.沉积物中金属的释放
二、水中颗粒物的聚集
1.胶体颗粒凝聚的基本原理和方式 2.胶体颗粒絮凝动力学
三、溶解和沉淀
1.氧化物和氢氧化物 2.硫化物 3.碳酸盐
四、氧化-还原 五、配合作用
第二节 水中无机污染物的迁移转化
❖ 吸附:指溶液中的溶质自动附着在固体表面的现象, 或者,溶质在固液两相界面层浓度升高的现象
❖ 固体表面具有多余的表面能,通常表面能减小的过 程是通过颗粒物的聚集或对溶质的吸附来完成的
❖ 吸附过程的分类 ①物理吸附:由分子间力引起,无选择性 ②化学吸附:由化学键引起,有选择性
第二节水中无机污染物的迁移转化
2. pH对水解速率的影响 水解速率: RH = Kh [C]= {KA[H+] + KN + KB[OH-]} [C]
式中: KA、KN 、KB ——分别为酸性、碱性和中性催化过 程的二级反应水解速率常数
Kh = KA[H+] + KN + KBKw/[H+]
c溶解相中有机毒物的浓度kv挥发速率常数kv单位时间混合水体的挥发速率常数z水体的混合深度p在所研究的水体上面有机毒物在大气中的分压kh亨利定律常数?第三节水中有机污染物的迁移转化二挥发作用kvcpkhzkvcpkhtc??kvctc??有机物可溶解相分数w
第三章
第三节
水环境化学
有机污染物的迁移转化
第三节 水中有机污染物的迁移转化 水解速率常数:Kh = KA[H+] + KN + KBKw/[H+]
第三节 水中有机污染物的迁移转化 对于IAN点应满足于: lgKh = lg KA – pH = lg KN 三条切线得到三个交点, IAN IAB 和K INB / K ) pH= lg KN –lg KA = -、 lg ( N A 对于IAB点应满足于: lgKh = lg KA – pH = lgKBKw + pH pH = -1/2 lg(KBKw/KA) 对于INB点应满足于: lgKh = lgKBKw + pH = lg KN pH = - lg(KBKw/ KN)
水体中,若悬浮物中85%为细颗粒,有机碳含量为
5%,其余粗颗粒有机碳含量为1%,已知该有机物 在水中溶解度为0.05mg/L,那么,其分配系数(Kp)
就可根据公式计算出:
解: lgKow = 5.00-0.670lg(0.05×103/192)=5.39 则 Kow =2.46×105 Koc=0.63 Kow=1.55×105 Kp = 1.55×105[0.2(1-0.85)(0.01) + 0.85×0.05] = 6.63×103
优选环境化学第三章水中无机污染物的迁移转化
2020/9/4
21
水处理中新型絮凝剂
无机高分子絮凝剂 以三氯化铁、硫酸铝和碱式氯化铝等 为基体制备 如:聚合硫酸铁(poly ferric sulfate, PFS)、含硼聚硅硫酸铁、聚合硅铝酸铁 等Al2(SO4)3- CPAM(阳离子聚丙烯胺)
2020/9/4
22
水处理中新型絮凝剂
有机高分子絮凝剂
2020/9/4
18
天然水环境和水处理条件下主要的颗 粒物聚集方式
1.压缩双电层的聚集
水中电解质浓度增大而离子强度增大, 压缩扩散层,颗粒物吸引而聚集
2. 专属吸附凝聚
胶体颗粒专属吸附异电的离子化合态, 降低表面电位,产生电中和现象,使颗粒 物聚集
2020/9/4
19
天然水环境和水处理条件下主要的颗 粒物聚集方式
2020/9/4
7
一、颗粒物与水之间的迁移
悬浮沉积物
各种环境胶体物质的聚集物,组成不固定
其他
湖泊中的藻类、污水中的细菌、病毒、废 水中的表面活性剂或油滴。
2020/9/4
8
2.水环境中颗粒物的吸附作用
表面吸附—物理吸附,与胶体的比表面 积有关。
离子交换吸附—物理化学吸附,水环境中 一部分胶体带负电荷,吸附一部份阳离子, 同时释放等量其它阴离子。
属可逆反应,不受温度影响,交换吸附能力 与溶质的性质、浓度、吸附剂性质有关
2020/9/4
9
2.水环境中颗粒物的吸附作用
专属吸附—受化学键作用外,还受加强 的憎水键、 范德华力、氢键等的作用。 在水环境中:配合离子、无机高分子、有 机离子、 有机高分子专属吸附强烈,水 合氧化物胶体对金属离子有较强的专属吸 附。 氧化物表面配位吸附模式(p124)
环境化学(袁加程)第三章-水环境化学
3. 水体污染及水体污染源
主要的水环境污染物
悬浮物 植物性营养物 酸碱污染 难降解有机物 热污染
总碱度 = [HCO3-] + 2[CO32-] + [OH-] – [H+]
2. 天然水体中的化学平衡
酸度是指水中能与强碱发生中和作用的全部物质,亦即放 出H+或经水解能产生H+的物质总量。包括强酸、弱酸、强酸弱 碱盐等。
总酸度 = [H+] + [HCO3-] + 2[H2CO3] – [OH-]
第三章 水环境化学
第一节 水环境化学基础
天然水的基本特性 天然水体中的化学平衡 水体污染及水体污染源 水体的自净作用与水环境容量
1. 天然水的基本特性
1.1 天然水的组成
(1) 天然水的主要离子组成: K+, Na+, Ca2+, Mg2+, HCO3-, NO3-, Cl-, SO42- 为天然水中常 见的八大离子,占天然水离子总量的95-99%。
[HCO
3
]
K1[H2CO3 ] [H ]
[CO32- ]
K1K2[H2CO3 ] [H ]2
0
[H2CO3 ]
[H2CO3 ]
K1[H 2 CO 3 [H ]
]
K1K2[H2CO3 ] [H ]2
(1
K1 [H
]
K1 K 2 [H ]2
) 1
2. 天然水体中的化学平衡
环境化学-第三章-水环境化学-第二节-水中无机污染物的迁移转化
三、溶解和沉淀
溶解与迁移 实际溶解沉淀过程的复杂性 1、氧化物和氢氧化物:氧化物可以视作氢氧化物的脱水产物 Me(OH)n (s) Men+ + n OH根据溶度积: Ksp= [ Men+ ] [ OH- ]n 可转化为: [ Men+ ] = Ksp / [ OH- ]n = Ksp[ H+] / Kwn -lg [ Men+ ] = -lgKsp – n lg [ H+ ] + n lgKw pc = pKsp- n pKw + n pH = pKsp – n pOH 可以做 pc-pH 图,斜率等于 n,即金属离子价; 截距是 pH = 14 - (1/n)pKsp。
[Me2+]=Ksp/[S2-]=Ksp [H+]2/Ksp´ =Ksp [H+]2/(0.1K1K2)
3、碳酸盐
——多相平衡,pH通过控制碳酸根浓度影响沉淀平衡
封闭体系: 只考虑固相和液相,把 H2CO3* 当作不挥发酸类处理。 ①CT为常数时,
CaCO3(s) Ca2+ + CO32[Ca2+]=Ksp/(CTα2)
Aquatic Environmental Chemistry
主编 戴树桂
第二节 水中无机污染物的迁移转化
无机污染物,特别是重金属和准金属等
污染物,一旦进入水环境,均不能被生物降
解,主要通过沉淀-溶解、氧化-还原、配合
作用、胶体形成、吸附-解吸等一系列物理
化学作用进行迁移转化,参与和干扰各种环
境化学过程和物质循环过程。
吸附:指溶液中的溶质在界面层浓度升高的现象。
常见的吸附等温线
水中无机污染物的迁移转化
二、水中颗粒物的聚集 聚集 分散
凝聚——利用电解质促成。
[SiO2] + Al(Ⅲ) → [AlO2- ] + Si(Ⅳ)
第二节 水中无机污染物的迁移转化
3、水环境中颗粒物的吸附作用 吸附:指溶液中的溶质在界面层浓度升高的 现象。 表面吸附:由于颗粒物具有巨大的比表面和 表面能,产生表面吸附;物理吸附。
第二节 水中无机污染物的迁移转化
离子交换吸附:胶体颗粒大部分带负电荷,容 易吸附各种阳离子;物理化学吸附。
例如:去离子水的制备。
第二节 水中无机污染物的迁移转化 专属吸附:有化学键、憎水键、范德华力、氢
键等作用。
pH 水锰矿对Co、Cu、Ni、 K和Na离子的吸附及其随pH的变化
第二节 水中无机污染物的迁移转化
表3-8 水合氧化物对金属离子的专属吸附与非专属吸附的区别 项 目 非专属吸附 反离子 阳离子交换 >零电位点 扩散层 无 专属吸附 -、0、+ 配位离子 配位体交换 任意值 内层 负电荷减少,正电 荷增加
临界pH 最大吸附量 (mg/g)
(b) 颗粒物的粒度和浓度的影响
第二节 水中无机污染物的迁移转化 (2) 氧化物表面吸附的配合模式:
由于表面离子配位不饱和,金属氧化物与水
配位,水发生离解吸附而生成羟基化表面。 ≡MeOH2+ ≡MeOH + H+
Ks a1 = {≡MeOH }[ H+] / {≡MeOH2+ }
发生吸附的表面净电荷的符号 金属离子所起的作用 吸附时所发生的反应 发生吸附时要求体系的pH值 吸附发生的位置 对表面电荷的影响
第二节 水中无机污染物的迁移转化
(1)吸附等温式和吸附等温线
第3章:水环境化学2-1
一、颗粒物与水之间的迁移
1、水中颗粒物的类别
天然水中颗粒物主要包括五大类:矿物、金属水合氧 化物、腐殖质、悬浮物、其他泡沫、表面活性剂等半胶体 以及藻类、细菌、病毒等生物胶体。
(1)非粘土矿物和粘土矿物:都是原生岩石在风化过程 中形成的。
非 粘 土 矿 物 : 天 然 水 中 常 见 为 石 英 (SiO2) 、 长 石 (KalSi3O8)等,晶体交错,结实、颗粒粗,不易碎裂,缺 乏粘结性(例如沙子主要成分为:SiO2)。
第二节、水中无机污染物的迁移转化
一、颗粒物与水之间的迁移 二、水中胶体颗粒物聚集的基本原理和方式 三、溶解和沉淀 四、氧化—还原
五、配合作用
无机污染物,特别是重金属和准金属等污染物,一旦进入 水环境,不能被生物降解;
主要通过吸附—解吸、沉淀—溶解、氧化—还原、配合作 用、胶体形成等一系列物理化学作用进行迁移转化,参与和 干扰各种环境化学过程和物质循环过程; 最终以一种或多种形式长期存留在环境中,造成永久性的 潜在危害。 重点介绍重金属污染物在水环境中迁移转化的基本原理。
在水环境中,配合离子、有机离子、有机高分子和无机高 分子的专属吸附作用特别强烈。例如,简单的Al3+、Fe3+高 价离子并不能使胶体电荷因吸附而变号,但其水解产物却 可达到这种效果,这就是发生专属吸附的结果。 水合氧化物胶体对重金属离子有较强的专属吸附作用,这 种吸附作用发生在胶体双电层的 Stern层中,被吸附的金属 离子进入Stern层后。不能被通常提取交换性阳离子的提取 剂提取,只能被亲和力更强的金属离子取代,或在强酸性 条件下解吸。
粘土矿物:天然水中常见为云母、蒙脱石、高 岭石,层状结构,易于碎裂,颗粒较细,具有粘 结性,可以生成稳定的聚集体。
第11讲_水中有机污染物的迁移转化
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成 。21.7.1521.7.1500:37:3000:37:30Jul y 15, 2021
❖
14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。2021年7月 15日星 期四上 午12时 37分30秒00:37:3021.7.15
(2) 光量子产率与直接光解速率
❖ 一个分子被活化是由体系吸收光子进行的。 ❖ 分子被活化后,它可能进行光反应,也可能通过光辐射
的形式进行“去活化”再回到基态
(2) 光量子产率与直接光解速率
❖ 进行光化学反应的光子占吸收总光子数之比,称 为光量子产率(Φ)。
生成或破坏给定物种的摩尔数 体系吸收光子的摩尔数
❖ 当污染物在水中的浓度很低时,光被污染物吸收的平均 速率( I’αλ)为:
已知I Id (110Ld ) Is (110Ls ) j —单位转换系数,当I 的单
I ' I
E c
j( Ec)
I
E c
j
位为光子/cm2·s分子,C 的单位为mol/L时,
既, I ' K c,
K
E I
j
j=6.02×10-20
ci
KLc K g pc KL KHKg
Fz
KL (c ci )
KL (c
KLc K g pc KL KHKg
)
1
c pc KH Kg
KH 1 KL
KV
(c
c*)
其中, 1 1 1 , KV KL K g KH
c* Pc KH
图 双膜理论示意图
【环境化学】第3.2章 水环境化学——水中无机污染物的溶解和沉淀
水体中常见无机化合物的溶解性
氢氧化物
氨、碱金属、Ba(OH)2可溶; Ca(OH)2 、 Sr(OH)2微溶;其余难溶
(注: Ca 、 Sr 、 Ba是碱土金属)
硫化物
(NH4)2S 、碱金属、碱土金属可溶;其余难溶
碳酸盐
(NH4)2CO3 、碱金属(Li除外)可溶;其余难溶
4
第三章/第二节/2.3 溶解和沉淀
lg*Ks0=12.7 [Pb2+]=*Ks0× [H+]2 lg*Ks1=5.0 [Pb(OH)+]=*Ks1×[H+] lg*Ks2=-4.4 [Pb(OH)2]=*Ks2 lg*Ks3=-15.4 [Pb(OH)3]=*Ks3×[H+]-1
PbO的溶解度 [Pb(Ⅱ)T]=*Ks0[H+]2+*Ks1[H+]+*Ks2+*Ks3[H+]-1
HCO3- ⇌ CO32- + H+
K2 = [CO32-][H+]/[HCO3- ]
α2 = [CO32-]/cT = {1 + [H+]/K2 + [H+]2/(K1K2)}-1
[Me2+] = (Ksp/CT){1 + [H+]/K2 + [H+]2/(K1K2)}
17
第三章/第二节/2.3 溶解和沉淀
2.3.4 碳酸盐
二、碳酸盐在碳酸(盐)封闭体系的溶解度(二价金属)
pH>pK2
CT ≈ [CO32-]; [CO32-] ≈ CT; [Me2+] ≈ (Ksp/CT);lg[CO32-]-pH和lg[Me2+]-pH斜率为0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专属吸附:指在吸附过程中,除了化学键作用外,尚有加
强的憎水键和范德华力或氢键作用。该作用不单可以使表 面点荷改变符号,还可以使离子化合物吸附在同号电荷的 表面上。 项目 作用 电性 表面电荷 动力学 离子交换吸附 离子交换作用 同种电性不发生 不变 快速可逆 专属吸附 范德化力、化学键、氢键、 增水键 同种电性发生 可变 不可逆慢过程
以溶解态形态存在,使重金属从固体颗粒上解吸下来。
二、水中颗粒物的聚集
1、物理凝聚理论
凝聚 coagulation 电介质促成的聚集(卤水点豆腐)
絮凝 flocculation 聚合物促成的聚集 (1)前提:①颗粒粒度均等、球体 ②范德化引力和静电排斥力是仅有的作用因素 ③没有化学专属吸附作用
颗粒在水溶液中进行热运动,其平均动能为3/2 kT
专属吸附特点:
1、这种吸附作用发生在胶体双电层的stern层中,被吸附的 金属离子进入Stern层后,不能被通常提取交换性阳离子的提 取剂提取,只能被亲和力更强的金属离子取代,或是在强酸 性条件下解吸。 2、它在中性表面甚至在与吸附离子带相同电荷符号的表面 也能进行吸附作用。
水合氧化物对金属离子(+)的专属吸附与非专属吸附的区别 项目 非专属吸附 专属吸附 -、0、+ 配位离子
(c)之间的关系可用吸附等温线表达。
Henry 型等温线为直线型 G = k ·c k:分配系数 Freundlich 型等温线 G = k ·c ·exp(1/n) lgG = lgk + 1/n lgc Langmuir 型等温线 G = G0· c /(A+c) 1/G = 1/G0 + (A/ G0)(1/c) G0——单位表面上达到饱和时间的最大吸附量; A——常数。
影响吸附的因素 溶液的pH值: 一般情况下颗粒物对重金属的吸附量随pH值升高而增 大。当溶液pH超过某元素的临界pH值时,则该元素在溶 液中的水解、沉淀起主要作用。 颗粒物的粒度和浓度: 吸附量随粒度增大而减少,并且当溶质浓度范围固定 时,吸附量随颗粒物浓度增大而减少。 温度变化、几种离子共存(竞争作用)等。
(2)理论描述 总的综合作用位能:VT = VR + VA VA——由范德华力产生的位能 VR——由静电排斥力所产生的位能
V VR VT
Vmax
d
VA
两个离子靠得 很近时,要考 虑水化膜阻力
①不同离子强度有不同VR曲线,呈指数下降; ②VA与粒子强度无关,只随颗粒间的距离变化; ③不同离子强度有不同的VT曲线;离子强度较小时,综合位能曲 线上出现较大位能峰,排斥力占优势,体系保持分散稳定状态; 离子强度较大时,双电层被压缩,Vmax 降低,一部分颗粒可能超 越该位能峰。
吸附:指溶液中的溶质在界面层浓度升高的现象。
常见的吸附等温线
G G
n是一个经验 值,不是由一个 过程控制,一般 适用于有机物 lgG
lgK
H型 c F型 c
1/G
F型
lgc
G
G0/2
单分子吸附 适用于金属
L型 c
L型 1/c
0 A
当溶质浓度甚低时,可能在初始阶段呈现 H 型,当浓度较 高时,可能表现为 F 型,但统一起来仍属于 L 型的不同区段。
境化学过程和物质循环过程。
一、水-颗粒物间迁移
1、 水中颗粒物的类别
(1)金属水合氧化物
Al, Fe, Mn, Si等在天然水中以无机高分子及溶胶等形式存在。
Al 在水中的主要形态是Al3+、Al(OH)2+、Al2(OH)24+、Al(OH)2+、 Al(OH)3、Al(OH)4-等无机高分子。 Fe 在水中的主要形态是 Fe3+、Fe(OH)2+、Fe2(OH)24+、Fe(OH)2+、 Fe(OH)3、等无机高分子。
2、水环境中颗粒物的吸附作用
(1)几种吸附作用概念
表面吸附:胶体表面具有巨大的比表面和表面能,胶体
表面积越大,吸附作用越强。 离子交换吸附:环境中大部分胶体带负电荷,容易吸附 各种阳离子。胶体每吸附一部分阳离子,同时也放出等 量的其他阳离子,这种作用称为离子交换吸附作用,属
于物理化学吸附。该反应是可逆反应,不受温度影响,
发生吸附的表面净电荷的符号 - 金属离子所起的作用 吸附时所发生的反应 发生吸附时要求体系的pH值 吸附发生的位置 对表面电荷的影响 反离子
阳离子交换 配位体交换 >零电位点 任意值 扩散层 无 内层 负电荷减少 正电荷增加
(2)吸附等温线和等温式:在固定温度下,当吸附达到平 衡时,颗粒物表面的吸附量(G)与溶液中溶质平衡浓度
3、沉积物中重金属的释放——属于二次污染问题
诱发释放的主要因素有: (1)盐浓度升高:碱金属和碱土金属阳离子可将被吸附在固体颗 粒上的金属离子交换出来。 (2)氧化还原条件的变化:有机物增多,产生厌氧环境、铁锰氧
化物还原溶解,使结合在其中的金属释放出来。
(3)pH值降低:①H+离子的竞争吸附作用;②金属在低pH值条件 下致使金属难溶盐类以及配合物的溶解。 (4)增加水中配合剂的含量:天然或合成的配合剂使用量增加, 能和重金属形成可溶性配合物,有时这种配合物稳定度较大,可
H 4SiO4 聚合成无机高分子:SinO2n-m(OH)2m。
(2)矿物微粒和粘土矿物:主要为石英(SiO2 )、长石
(KAlSi3O8 )、云母及粘土矿物等硅酸盐矿物。 粘土矿物:具有胶体性质、片层结构 (3)腐殖质:带负电的高分子弱电介质,富里酸、腐殖酸和 腐黑物。在不同 pH 下,展现不同立体结构。 (4)水体悬浮沉积物:粘土为核心骨架,金属氧化物及有机 质结合在表面。 (5)其他:藻类、细菌、病毒和表面活性剂、油滴等。
2、异体凝聚理论
(1)适用条件:适用于物质本性不同、粒径不等、电荷符
第三章 水环境化学
Aquatic Environmental Chemistry
主编 戴树桂
第二节 水中无机污染物的迁移转化
无机污染物,特别是重金属和准金属等
污染物,一旦进入水环境,均不能被生物降、胶体形成、吸附-解吸等一系列物理
化学作用进行迁移转化,参与和干扰各种环