(完整版)高考指数函数和对数函数专题复习
高考数学专题指数函数、对数函数、幂函数
![高考数学专题指数函数、对数函数、幂函数](https://img.taocdn.com/s3/m/5541ecec0b1c59eef8c7b4fe.png)
高考数学专题 指数函数、对数函数、幂函数【要点】考点1:指数函数 定义:函数)1,0(≠>=a a a y x且称指数函数。
考点2:对数函数 定义:函数)1,0(log ≠>=a a x y a 且称对数函数。
1>a 10<<a1>a 10<<a图 象性 质定义域: R 值域:(0,+∞)①过点(0,1),图象都在第一、二象限; ②指数函数都以x 轴为渐近线; ③对于相同的)1,0(≠>a a a 且,函数xxay a y -==与的图象关于y 轴对称。
(,0)x ∈-∞时y ∈(0,1); ),0(+∞∈x 时 y ∈(1,+∞)。
(,0)x ∈-∞时 y ∈(1,+∞); ),0(+∞∈x 时y ∈(0,1)。
在R 上是增函数。
在R 上是减函数。
考点3:幂函数 1.幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象。
2.观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点 ;在(0,)+∞上是 函数; (2)当0α<时,图象过定点 ;在(0,)+∞上是 函数; 在第一象限内,图象向上及向右都与坐标轴无限趋近。
【课堂精练】 1.=3log 9log 28( )A .32 B . 1 C .23D .2 2.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使幂函数αx y =的定义域为R 且为奇函数的所有α的值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,3 3.函数2x y =-的图象( )A .与2x y =的图象关于y 轴对称B .与2x y =的图象关于坐标原点对称C .与2x y -=的图象关于y 轴对称D .与2x y -=的图象关于坐标原点对称 4.(2010年重庆卷)函数164x y =-的值域是( )(A )[0,)+∞ (B )[0,4] (C )[0,4) (D )(0,4) 5.已知函数xxx f +-=11lg)(,若b a f =)(,则)(a f -=( ) A .b B .b - C .b 1D .1b-6.已知10<<a ,1-<b ,则函数b a y x+=的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 7.设02log 2log <<b a ,则( )(A )10<<<b a (B )10<<<a b (C )a b <<1 (D )b a <<1 8.函数lg y x =( )A .是偶函数,在区间(,0)-∞ 上单调递增B .是偶函数,在区间(,0)-∞上单调递减C .是奇函数,在区间(0,)+∞ 上单调递增D .是奇函数,在区间(0,)+∞上单调递减 8.(06天津卷)设2log 3P =,3log 2Q =,23log (log 2)R =,则( ) A .R Q P << B .P R Q <<C .Q R P <<D .R P Q <<9.(2010年全国卷)设a=3log 2,b=In2,c=125-,则( )A .a<b<cB .b<c<aC .c<a<bD .c<b<a10.(2009宁夏海南卷)用min{a ,b ,c}表示a ,b ,c 三个数中的最小值,设{})0(10,2,2m in )(≥-+=x x x x f x ,则)(x f 的最大值为( )(A )4 (B )5 (C )6 (D )711.(2008年山东卷文)已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101ba -<<<- D .1101ab --<<<12.(2010年全国卷)已知函数x x f lg )(=,若b a <<0且)()(b f a f =,则b a 2+的取值范围是( )(A))+∞(B))+∞ (C)(3,)+∞ (D)[3,)+∞13.幂函数()y f x =的图象经过点1(2,)8--,则满足()f x =27的x 的值是 。
(指对幂函数)专题复习
![(指对幂函数)专题复习](https://img.taocdn.com/s3/m/c2e748fa3169a4517623a38f.png)
(指对幂函数)专题复习-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN指对幂函数一、 指对数运算 【知识点】 1、指数计算公式:()Q s r a ∈>,,0_____=⋅s r a a _____)(=s r a ______)(=r ab)1,,0_______(>∈>=*n N n m a anm ,2、 对数计算公式:)0,0,10(>>≠>M N a a 且(1) 指对数互化:N a x =_______⇔(2) _____1log =a _____log =a a ______log =n a a ______log =n a a (3) _____log log =+N M a a _____log =n a M_____log log =-N M a a _____log =M m a(4) 换底公式:_____log =b a (常用:a bb a lg lg log = a b ba log 1log =)【练习一】 指对数的运算 1、计算下列各式的值 (1)3log 9log 28 (2))]81(log [log log 345(3)2log 4log 3log 432⋅⋅ (4))31()3)((656131212132b a b a b a ÷-(5)74log 217+14log 501log 2log 235log 55215--+2、解下列方程(1)2327log x = (2)0)(log log 25=x3、若2log 2,log 3,m n a a m n a +===二、 指数函数和对数函数的图像和性质 【知识点】注意:指数函数a =y 与对数函数x y a log =互为反函数,则它们的图象关于_____________对称 【练习二】指对数函数的图像与性质题型一、求函数经过的定点1、2)(f 1-=+x a x )10(≠>a a 且过定点______________2、3)2(log )(f ++=x x a )10(≠>a a 且过定点_____________ 题型二、指对数函数的图像 1.函数)1(log 21-=x y 的图象是( )2.在同一坐标系中画出函数y =l og a x ,y =a x ,y =x +a 的图象,可能正确的是( ).题型3 、函数的性质(定义域、值域、单调性、奇偶性) 1、x 6log 21y -=函数的定义域为_____________2、若指数函数x a y )12(+=在R 上是增函数,则实数a 的取值范围为3、函数23)(+=x x f 在区间[1-,2]上的值域为________________4、函数y =xx+-22log 2的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称5、已知函数⎩⎨⎧≤>=)0(3)0(log )(f 3x x x x x ,则f(f(91))=_________6、已知函数)1(log )(f +=x x a ,)1(log )(x x g a -=)10(≠>a a 且 (1)请判断函数)()(f x g x +的奇偶性并证明 (2)求使0)(f >x 成立的x 的取值范围7、已知函数2()131x f x =-+.(1)求函数()f x 的定义域,并证明函数f (x )在其定义域上都是增函数. (2)判断)(x f 的奇偶性(3)解不等式()2(31)230f m m f m -++-<.【练习三】利用单调性解不等式(注意定义域)1.不等式1622<-+x x 的解集是 .2.若2log 13a <,则a 的取值范围是__________________________________3.不等式)65(log )32(log 22->+x x 的解集是____________________________ 【练习四】比较大小(借助中间量0和1)1.三个数60.70.70.76log 6,,的大小关系为( ) A. 60.70.70.7log 66<< B. 60.70.70.76log 6<< C .0.760.7log 660.7<< D. 60.70.7log 60.76<< 三、幂函数的图像与性质 【知识点】函数y x α=叫做幂函数,其中x 为自变量,α是常数.图像和规律如下:(1)图像都过定点___________(2)单调性: 如果0α>,则幂函数的图象过原点,并且在[0,)+∞上单调递____.如果0α<,则幂函数的图象在(0,)+∞上单调递_____.( 3)奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.(如果指数是分数,需写成根式去判断)【练习五】幂函数的图象与性质1、函数25)(f x x =的定义域为________. 从奇偶性上看,它是一个___________函数.2、如果幂函数f(x)的图象经过(2,81),则f(3)=____________3、已知函数12+=m x y 在区间()+∞,0上是增函数,实数m 范围为 .参考答案练习一 1、(1)32(2)0 (3)1 (4)-9a (5)42、(1)x=9 (2)x=23、34练习二 题型1 1、(1,-1) 2、(-1,3) 题型2 1、D 2、D题型3 1、),(60 2、{a|a>0} 3、]11,37[ 4、A 5、916、解:)1(log )1(log )(g )()(F 1x x x x f x a a -++=+=)令( 函数为奇函数而关于原点对称,的定义域为故函数得则由∴=-++=+++-=--<<-⎩⎨⎧>->+)()1(log )1(log )1(log )1(log )(F ),11()(F ,110101x x F x x x x x x x x a a a a }01|x {,1a 0}0|x {x ,1a }01|x {,1101x 1,a 0}0|x {1101x 0a 1log 0)1(log 0)(f 2<<-<<>><<-⎩⎨⎧<+>+<<>⎩⎨⎧>+>+>=>+∴>x x x x x x x x x a a 的取值范围为;当的取值范围为综上,当求得则②若求得则①若∵)()23(f )32(f )13(f )(f )(f 0)32(f )13(f 3),(f )(f 13131321)(f 313113113113131321)(f R )(f 2R )(f )(f )(f 0)(f )(f 013013033x )13)(13()33(2132132)1321()1321()(f )(f ,x x ,x x R R,)(f 17222121x x 21212121212121211221m m m m x x m m m x x x x x x x x x x x x x x x x x xxx x xxx x x x x x x x x x x -=--<+-∴-=-<-++--=-∴+-=+-=+-=+-=+-=+-=-∴<<-∴>+>+<-∴<++-=+-+=+--+-=-<---且)(原函数为奇函数而关于原点对称,的定义域为∵)(上递增在即,而∵则并设和上任取在定义域的定义域为)、解( 32求得-1<m<-m+1<3-2m,在R上递增,3m∵2)(f x练习三 1、{x|-2<x<1} 2、{a|a>1或0<a<32} 3、{x|356<<x } 练习四 1、D练习五 1、[)+∞,0 非奇非偶 2、271 3、}21|{->m m。
指数对数幂函数知识点汇总
![指数对数幂函数知识点汇总](https://img.taocdn.com/s3/m/96dc39ff6edb6f1afe001fde.png)
指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。
高考数学 指数函数、对数函数 讲解
![高考数学 指数函数、对数函数 讲解](https://img.taocdn.com/s3/m/1ef9624115791711cc7931b765ce050877327513.png)
logbN= loga N (a,b均大于0且不等于1,N>0)
logab
相关结论:logab= 1 ;logab·logbc·logcd=logad
logba
(a,b,c均大于0且不等于1,d>0)
条件
a>0且a≠1,M>0,N>0
结论
loga(MN)=logaM+logaN
M
loga N =logaM-logaN logaMn=nlogaM(n∈R)
1
1
+m=-
2
1 x
1
+m+1,因为函数y=2x+1为R上的
增函数,所以y=- 1 为R上的增函数,所以f(x)在R上单调递减是不正确
2x 1
的,所以C不正确;
对于D,当m=0时,f(x)= 2x =1- 1 ,
2x 1 2x 1
由2x+1>1,可得-1<- 1 <0,所以1- 1 ∈(0,1),即函数f(x)的值域为(0,1),
a>1 图象
0<a<1
定义域 值域 性质
过定点(1,0),即当x=1时,y=0 当x>1时,y>0; 当0<x<1时,y<0 在(0,+∞)上是增函数
(0,+∞) R
当x>1时,y<0; 当0<x<1时,y>0 在(0,+∞)上是减函数
3.反函数 一般地,指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反 函数,它们的定义域与值域正好互换,图象关于直线y=x对称.
故a的取值范围为[36,+∞).
(完整版)指数函数与对数函数高考题(含答案)
![(完整版)指数函数与对数函数高考题(含答案)](https://img.taocdn.com/s3/m/52da5392ed3a87c24028915f804d2b160b4e86be.png)
指数函数与对数函数高考题1、(2009湖南文)2log 2的值为()A .2B .2C .12D .122、(2012安徽文)23log 9log 4()A .14B .12C .D .3、(2009全国Ⅱ文)设2lg ,(lg ),lg ,ae be ce 则() A.abc B.acb C.c a b D.cba4、(2009广东理)若函数()yf x 是函数(0,1)xy a aa且的反函数,其图像经过点(,)a a ,则()f x ()A. 2log xB. 12log xC. 12xD. 2x5、(2009四川文)函数)(21R xyx 的反函数是()A. )0(log 12x x yB. )1)(1(log 2x x yC. )0(log 12xx yD. )1)(1(log 2xx y6、(2009全国Ⅱ理)设323log ,log 3,log 2a bc ,则()A. abcB. a cbC. bacD. bca7、(2009天津文)设3.02131)21(,3log ,2log cba,则()A.c baB.b c a C.a cb D .ca b 8、(2009湖南理) 若2log a <0,1()2b>1,则()A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b<09、(2009江苏)已知集合2log 2,(,)Ax xB a ,若A B 则实数a 的取值范围是(,)c ,其中c =10、(2010辽宁文)设25abm ,且112ab,则m ()A.10B.10C.20D.10011、(2010全国文)函数)1)(1ln(1xx y的反函数是( )A.y=1x e -1(x>0)B. y=1x e+1(x>0) C. y=1x e-1(x R) D.y=1x e+1 (xR)12、(2012上海文)方程03241x x的解是_________ .13、(2011四川理)计算21100)25lg 41(lg _______ .14、(2011江苏)函数)12(log )(5x x f 的单调增区间是__________。
指数函数与对数函数例题和知识点总结
![指数函数与对数函数例题和知识点总结](https://img.taocdn.com/s3/m/93f7c96e5b8102d276a20029bd64783e09127dbf.png)
指数函数与对数函数例题和知识点总结一、指数函数的定义与性质指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。
其中,底数$a$决定了函数的性质。
当$a > 1$时,函数单调递增;当$0 < a < 1$时,函数单调递减。
指数函数的定义域为$R$,值域为$(0, +\infty)$。
例如,函数$y = 2^x$是一个底数为$2$(大于$1$)的指数函数,它在$R$上单调递增。
二、对数函数的定义与性质对数函数是指数函数的反函数,一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。
其中,对数的底数$a$同样决定了函数的性质。
当$a > 1$时,函数在$(0, +\infty)$上单调递增;当$0 < a <1$时,函数在$(0, +\infty)$上单调递减。
对数函数的定义域为$(0, +\infty)$,值域为$R$。
例如,函数$y =\log_2 x$是一个底数为$2$(大于$1$)的对数函数,它在$(0, +\infty)$上单调递增。
三、指数函数与对数函数的图象指数函数$y = a^x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(0, 1)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(0, 1)$,从左到右逐渐下降。
对数函数$y =\log_a x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(1, 0)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(1, 0)$,从左到右逐渐下降。
四、指数运算与对数运算的性质指数运算性质:1、$a^m \times a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)对数运算性质:1、$\log_a (MN) =\log_a M +\log_a N$2、$\log_a \frac{M}{N} =\log_a M \log_a N$3、$\log_a M^n = n \log_a M$4、$\log_a a = 1$5、$\log_a 1 = 0$五、例题分析例 1:比较大小比较$2^{03}$和$03^2$的大小。
指数函数和对数函数公式(全)
![指数函数和对数函数公式(全)](https://img.taocdn.com/s3/m/98eacde0482fb4daa48d4b76.png)
指数函数和对数函数重点、难点:重点:指数函数和对数函数的概念、图象和性质。
难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a x ,y log a x 在a 1及 0 a 1两种不同情况。
1、指数函数:yx且a叫指数函数。
定义:函数aa0 1定义域为 R ,底数是常数,指数是自变量。
为什么要求函数 ya x 中的 a 必须 a0且a1 。
因为若 a0时, y4 x ,当 x1时,函数值不存在。
4a0 , y 0x ,当 x0 ,函数值不存在。
a 时, y1 xx 虽有意义,函数值恒为1,但1对一切 y1x 的反函数不存在,因 为 要 求 函 数 ya x 中 的a0且 a 1 。
x1、对三个指数函数y2 x , y1 ,y10x 的图象的2认识。
图象特征与函数性质:图象特征函数性质( 1)图象都位于x 轴上方;( 1) x 取任何实数值时,都有 ax0 ;20 1 ); ( 2)无论 a 取任何正数, x 0时, y 1 ;( )图象都经过点( ,( 3) y2x , y 10 x 在第一象限内的纵坐( 3)当 ax 0,则 a x 11 时,0,则 a x1标都大于 1,在第二象限内的纵坐标都小于1,x1 y2xx 0,则 a x1当 0的图象正好相反;a 1时,0,则 a x 1x( 4) y2x , y 10 x 的图象自左到右逐渐( 4)当 a 1 时, ya x 是增函数,上升, y 12x a 1时,y a x是减函数。
当 0的图象逐渐下降。
对图象的进一步认识,(通过三个函数相互关系的比较):①所有指数函数的图象交叉相交于点( 0,1),如y2x和 y10 x相交于(0,1),当x0 时,y 10x 的图象在 y 2 x的图象的上方,当x 0,刚好相反,故有 10222及102 2 2。
1x② y 2 x与y的图象关于 y 轴对称。
2③通过 y 2x,y10 x,y12x三个函数图象,可以画出任意一个函数y a x(a0且a 1 )的示意图,如y 3x的图象,一定位于 y 2 x和 y 10 x两个图象的中间,且过点(0,1) ,从而 y 13x也由1关于 y 轴的对称性,可得y32、对数:x的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。
高考数学复习专题知识梳理总结—指数函数与对数函数
![高考数学复习专题知识梳理总结—指数函数与对数函数](https://img.taocdn.com/s3/m/7191664edcccda38376baf1ffc4ffe473368fdb1.png)
高考数学复习专题知识梳理总结—指数函数与对数函数一.根式及相关概念(1)a的n次方根定义如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.(2)a的n次方根的表示n的奇偶性a的n次方根的表示符号a的取值范围n为奇数n a Rn为偶数±n a[0,+∞)(3)根式式子na叫做根式,这里n叫做根指数,a叫做被开方数.二.根式的性质(n>1,且n∈N*)(1)n为奇数时,na n=a.(2)n为偶数时,na n=|a|=≥0,a<0.(3)n0=0.(4)负数没有偶次方根.思考:(na)n中实数a的取值范围是任意实数吗?提示:不一定,当n为大于1的奇数时,a∈R;当n为大于1的偶数时,a≥0.三.分数指数幂的意义分数指数幂正分数指数幂规定:amn=na m(a>0,m,n∈N*,且n>1)负分数指数幂规定:a-mn=1amn=1na m(a >0,m ,n ∈N *,且n >1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义思考:在分数指数幂与根式的互化公式a m n =na m 中,为什么必须规定a >0?提示:①若a =0,0的正分数指数幂恒等于0,即na m=a mn =0,无研究价值.②若a <0,a m n =n a m不一定成立,如(-2)32=2(-2)3无意义,故为了避免上述情况规定了a >0.四.有理数指数幂的运算性质(1)a r a s =a r +s (a >0,r ,s ∈Q ).(2)(a r )s =a rs (a >0,r ,s ∈Q ).(3)(ab )r =a r b r (a >0,b >0,r ∈Q ).五.无理数指数幂一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.六.指数函数的概念一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R .七.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域R 值域(0,+∞)过定点(0,1),即当x =0时,y =1单调性在R上是增函数在R上是减函数奇偶性非奇非偶函数对称性函数y=a x与y=a-x的图象关于y轴对称思考1:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于什么?提示:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于字母a.当a>1时,图象具有上升趋势;当0<a<1时,图象具有下降趋势.思考2::指数函数值随自变量有怎样的变化规律?提示:指数函数值随自变量的变化规律.八.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.九.常用对数与自然对数十.对数的基本性质(1)负数和零没有对数.(2)log a1=0(a>0,且a≠1).(3)log a a=1(a>0,且a≠1).思考:为什么零和负数没有对数?提示:由对数的定义:a x=N(a>0且a≠1),则总有N>0,所以转化为对数式x=log a N时,不存在N≤0的情况.十一.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(MN)=log a M+log a N;(2)log a MN=log aM-log a N;(3)log a M n=n log a M(n∈R).思考:当M>0,N>0时,log a(M+N)=log a M+log a N,log a(MN)=log a M·log a N是否成立?提示:不一定.十二.对数的换底公式若a>0且a≠1;c>0且c≠1;b>0,则有log a b=log c b log c a.十三.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).思考1:函数y=2log3x,y=log3(2x)是对数函数吗?提示:不是,其不符合对数函数的形式.十四.对数函数的图象及性质a的范围0<a<1a>1图象定义域(0,+∞)值域R性定点(1,0),即x=1时,y=0质单调性在(0,+∞)上是减函数在(0,+∞)上是增函数思考2:对数函数的“上升”或“下降”与谁有关?提示:底数a与1的关系决定了对数函数的升降.当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.十五.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.十六、三种函数模型的性质十七.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.思考1:函数的零点是函数与x轴的交点吗?提示:不是.函数的零点不是个点,而是一个数,该数是函数图象与x轴交点的横坐标.十八.方程、函数、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.十九.函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.思考2:该定理具备哪些条件?提示:定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0.二十.二分法的定义对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考:若函数y=f(x)在定义域内有零点,该零点是否一定能用二分法求解?提示:二分法只适用于函数的变号零点(即函数在零点两侧符号相反),因此函数在零点两侧同号的零点不能用二分法求解,如f(x)=(x-1)2的零点就不能用二分法求解.二十一.二分法求函数零点近似值的步骤(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点c.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则c就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).二十二.常用函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模型y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)(4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a>0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)二十三.建立函数模型解决问题的基本过程思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:<解题方法与技巧>1.带条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.典例1:(1)若x <0,则x +|x |+x 2x=________.(2)若-3<x <3,求x 2-2x +1-x 2+6x +9的值.[思路点拨](1)由x <0,先计算|x |及x 2,再化简.(2)结合-3<x <3,开方、化简,再求值.(1)-1[∵x <0,∴|x |=-x ,x 2=|x |=-x ,∴x +|x |+x 2x=x -x -1=-1.](2)[解]x 2-2x +1-x 2+6x +9=(x -1)2-(x +3)2=|x -1|-|x +3|,当-3<x ≤1时,原式=1-x -(x +3)=-2x -2.当1<x <3时,原式=x -1-(x +3)=-4.2x -2,-3<x ≤1,4,1<x <3.2.根式与分数指数幂互化的规律(1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.典例2:将下列根式化成分数指数幂的形式:(1)a a (a >0);(2)13x (5x 2)2;-23(b >0).[解](1)原式=a ·a 12=a 32=a 34.(2)原式=13x ·(x 25)2=13x ·x 45=13x 95=11x 35=x -35.(3)-23=b -23×14×=b 19.3.指数幂运算的常用技巧(1)有括号先算括号里的,无括号先进行指数运算.(2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.典例3:化简求值:4.解决条件求值的思路(1)在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形,沟通所求式子与条件等式的联系,以便用整体代入法求值.(2)在利用整体代入的方法求值时,要注意完全平方公式的应用.典例4:已知a 12+a -12=4,求下列各式的值:(1)a +a -1;(2)a 2+a -2.[思路点拨]a 12+a -12=4――――→两边平方得a +a -1的值――――→两边平方得a 2+a -2的值[解](1)将a 12+a -12=4两边平方,得a +a -1+2=16,故a +a -1=14.(2)将a +a -1=14两边平方,得a 2+a -2+2=196,故a 2+a -2=194.5.判断一个函数是否为指数函数,要牢牢抓住三点:(1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上;(3)a x 的系数必须为1.典例5:(1)下列函数中,是指数函数的个数是()①y =(-8)x ;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0(2)已知函数f (x )为指数函数,且=39,则f (-2)=________.(1)D(2)19[(1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数;④中3x 前的系数是2,而不是1,所以不是指数函数,故选D.(2)设f (x )=a x (a >0且a ≠1),由=39得a -32=39,所以a =3,又f (-2)=a -2,所以f(-2)=3-2=1 9 .]6.指数函数图象问题的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.典例6:(1)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)函数y=a x-3+3(a>0,且a≠1)的图象过定点________.(1)D(2)(3,4)[(1)由于f(x)的图象单调递减,所以0<a<1,又0<f(0)<1,所以0<a-b<1=0,即-b>0,b<0,故选D.(2)令x-3=0得x=3,此时y=4.故函数y=a x-3+3(a>0,且a≠1)的图象过定点(3,4).]7.比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a>1和0<a<1两种情况分类讨论.典例7:比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a 1.1与a 0.3(a >0且a ≠1).[解](1)1.52.5,1.53.2可看作函数y =1.5x 的两个函数值,由于底数1.5>1,所以函数y =1.5x 在R 上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.(2)0.6-1.2,0.6-1.5可看作函数y =0.6x 的两个函数值,因为函数y =0.6x 在R 上是减函数,且-1.2>-1.5,所以0.6-1.2<0.6-1.5.(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,所以1.70.2>0.92.1.(4)当a >1时,y =a x 在R 上是增函数,故a 1.1>a 0.3;当0<a <1时,y =a x 在R 上是减函数,故a 1.1<a 0.3.8.利用指数函数的单调性解不等式(1)利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.(2)解不等式a f (x )>a g (x )(a >0a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即a f (x )>a g (x )x )>g (x ),a >1,x )<g (x ),0<a <1.典例8:(1)解不等式x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,a ≠1),求x 的取值范围.[解](1)∵21,∴原不等式可以转化为x -11.∵y 在R 上是减函数,∴3x -1≥-1,∴x ≥0,故原不等式的解集是{x |x ≥0}.(2)分情况讨论:①当0<a<1时,函数f(x)=a x(a>0,a≠1)在R上是减函数,∴x2-3x+1>x+6,∴x2-4x-5>0,根据相应二次函数的图象可得x<-1或x>5;②当a>1时,函数f(x)=a x(a>0,a≠1)在R上是增函数,∴x2-3x+1<x+6,∴x2-4x-5<0,根据相应二次函数的图象可得-1<x<5.综上所述,当0<a<1时,x<-1或x>5;当a>1时,-1<x<5.9.函数y=a f(x)(a>0,a≠1)的单调性的处理技巧(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考查f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.典例9:判断f(x)2-2x的单调性,并求其值域.[思路点拨]令u=x2-2x―→函数u(x)的单调性―→――→函数f(x)的单调性[解]令u=x2-2x,则原函数变为y.∵u=x2-2x=(x-1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y在(-∞,+∞)上递减,∴y 2-2x在(-∞,1]上递增,在[1,+∞)上递减.∵u=x2-2x=(x-1)2-1≥-1,∴y ,u ∈[-1,+∞),∴1=3,∴原函数的值域为(0,3].10.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.典例10:将下列对数形式化为指数形式或将指数形式化为对数形式:(1)2-7=1128;(2)log 1232=-5;(3)lg 1000=3;(4)ln x =2.[解](1)由2-7=1128,可得log 21128=-7.(2)由log 1232=-55=32.(3)由lg 1000=3,可得103=1(4)由ln x =2,可得e 2=x .11.求对数式log a N (a >0,且a ≠1,N >0)的值的步骤(1)设log a N =m ;(2)将log a N =m 写成指数式a m =N ;(3)将N 写成以a 为底的指数幂N =a b ,则m =b ,即log a N =b .典例11:求下列各式中的x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x;(4)-ln e 2=x .[解](1)x =(64)-23=(43)-23=4-2=116.(2)x 6=8,所以x =(x 6)16=816=(23)16=212= 2.(3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2,所以x =-2.12.应用换底公式应注意的两个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.典例12:已知3a =5b =c ,且1a +1b=2,求c 的值.[思路点拨]3a =5b =c ――――→指对互化求1a ,1b ――――→1a +1b=2求c 的值[解]∵3a =5b =c ,∴a =log 3c ,b =log 5c ,∴1a =log c 3,1b=log c 5,∴1a +1b=log c 15.由log c 15=2得c 2=15,即c =15.13.求对数型函数的定义域时应遵循的原则(1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.典例13:求下列函数的定义域:(1)f (x )=1log 12x +1;(2)f (x )=12-x +ln(x +1);(3)f (x )=log (2x -1)(-4x +8).[解](1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).(2)+1>0,-x >0,>-1,<2,解得-1<x <2,故函数的定义域为(-1,2).(3)4x +8>0,x -1>0,x -1≠1,<2,>12,≠1.故函数y =log (2x -1)(-4x +8)的定义域为|12<x <2,且x ≠114.函数图象的变换规律(1)一般地,函数y =f (x ±a )+b a b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.典例14:(1)当a >1时,在同一坐标系中,函数y=a -x 与y =log a x 的图象为()A B C D(2)已知f (x )=log a |x |,满足f (-5)=1,试画出函数f (x )的图象.[思路点拨](1)结合a >1时y =a -x及y =log a x 的图象求解.(2)由f (-5)=1求得a ,然后借助函数的奇偶性作图.(1)C[∵a >1,∴0<1a <1,∴y =a -x 是减函数,y =log a x 是增函数,故选C.](2)[解]∵f (x )=log a |x |,∴f (-5)=log a 5=1,即a =5,∴f (x )=log 5|x |,∴f (x )是偶函数,其图象如图所示.15.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.典例15:比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.[解](1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,所以0>log 213>log 215,所以1log 213<1log 215log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54.16.常见的对数不等式的三种类型(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解;(3)形如log a x >log b x 的不等式,可利用图象求解.典例16:已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1).(1)求函数φ(x )=f (x )+g (x )的定义域;(2)试确定不等式f (x )≤g (x )中x 的取值范围.[思路点拨](1)直接由对数式的真数大于0联立不等式组求解x 的取值集合.(2)分a >1和0<a <1求解不等式得答案.[解](1)-1>0,-2x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ),①当a>1x<3,-1≤6-2x,解得1<x≤7 3;②当0<a<1x<3,-1≥6-2x,解得73≤x<3.综上可得,当a>1,7 3;当0<a<1时,不等式的解集为7 3,17.常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.典例17:(1)下列函数中,增长速度最快的是()A.y=2019x B.y=2019C.y=log2019x D.y=2019x(2)下面对函数f(x)=log12x,g(x)与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是()A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快(1)A(2)C[(1)指数函数y=a x,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.(2)观察函数f(x)=log1x,g(x)与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:2函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.]18.由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.典例18:函数f(x)=2x和g(x)2x的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图象,判断f f(2019)与g(2019)的大小.[解](1)C1对应的函数为g(x)=2x,C2对应的函数为f(x)=2x.(2)∵f(1)=g(1),f(2)=g(2)从图象上可以看出,当1<x<2时,f(x)<g(x),∴当x>2时,f(x)>g(x),∴f(2019)>g(2019).19.函数零点的求法(1)代数法:求方程f(x)=0的实数根.(2)几何法:对于不能用求根公式的方程f(x)=0,可以将它与函数y=f(x)的图象联系起来.图象与x轴的交点的横坐标即为函数的零点.典例19:(1)求函数f(x)2+2x-3,x≤0,2+ln x,x>0的零点;(2)已知函数f(x)=ax-b(a≠0)的零点为3,求函数g(x)=bx2+ax的零点.[解](1)当x≤0时,令x2+2x-3=0,解得x=-3;当x>0时,令-2+ln x=0,解得x=e2.所以函数f(x)2+2x-3,x≤02+ln x,x>0的零点为-3和e2.(2)由已知得f(3)=0即3a-b=0,即b=3a.故g(x)=3ax2+ax=ax(3x+1).令g(x)=0,即ax(3x+1)=0,解得x=0或x=-1 3 .所以函数g(x)的零点为0和-1 3 .20.判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.典例20:(1)函数f(x)=ln(x+1)-2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)(2)根据表格内的数据,可以断定方程e x-x-3=0的一个根所在区间是()x-10123e x0.371 2.727.3920.08x+323456A.(-1,0)B.(0,1)C.(1,2)D.(2,3)(1)C(2)C[(1)因为f(1)=ln2-21<0,f(2)=ln3-1>0,且函数f(x)在(0,+∞)上单调递增,所以函数的零点所在区间为(1,2).故选C.(2)构造函数f(x)=e x-x-3,由上表可得f(-1)=0.37-2=-1.63<0,f(0)=1-3=-2<0,f(1)=2.72-4=-1.28<0,f(2)=7.39-5=2.39>0,f(3)=20.08-6=14.08>0,f(1)·f(2)<0,所以方程的一个根所在区间为(1,2),故选C.]21.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.典例21:已知函数f(x)的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为()A .4,4B .3,4C .5,4D .4,3D[图象与x 轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.]22.函数拟合与预测的一般步骤:(1)根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出拟合直线或拟合曲线.(3)求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.典例22:某企业常年生产一种出口产品,自2015年以来,每年在正常情况下,该产品产量平稳增长.已知2015年为第1年,前4年年产量f (x )(万件)如下表所示:x 1234f (x )4.005.587.008.44(1)画出2015~2018年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2019年(即x =5)因受到某国对我国该产品反倾销的影响,年产量减少30%,试根据所建立的函数模型,确定2019年的年产量为多少?[思路点拨]描点――→依散点图选模――→待定系数法求模――→误差验模→用模[解](1)画出散点图,如图所示.(2)由散点图知,可选用一次函数模型.设f (x )=ax +b (a ≠0).由已知得a +b =4,3a +b =7,解得a =1.5,b =2.5,∴f (x )=1.5x +2.5.检验:f(2)=5.5,且|5.58-5.5|=0.08<0.1,f(4)=8.5,且|8.44-8.5|=0.06<0.1.∴一次函数模型f(x)=1.5x+2.5能基本反映年产量的变化.(3)根据所建的函数模型,预计2019年的年产量为f(5)=1.5×5+2.5=10万件,又年产量减少30%,即10×70%=7万件,即2019年的年产量为7万件.。
(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)
![(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)](https://img.taocdn.com/s3/m/54376d80cd22bcd126fff705cc17552707225ebc.png)
指数函数与对数函数总结与练习一、指数的性质(一)整数指数幂n 1.整数指数幂概念:a =a ⋅Λ⋅a (n ∈N )a 0=1(a ≠0)1⋅4a 243*n 个aa-n=1a ≠0,n ∈N *)n(a 2.整数指数幂的运算性质:(1)a m ⋅a n =a m +n (m ,n ∈Z )(2)a (3)(ab )=a ⋅b n n n ()mn=a mn(m ,n ∈Z )(n ∈Z )其中a ÷a =a ⋅a m n m -n =a m -n a n ⎛a ⎫-1nn -n , ⎪=(a ⋅b)=a ⋅b =n .b ⎝b ⎭n 3.a 的n 次方根的概念即:若x n 一般地,如果一个数的n 次方等于a n >1,n ∈N ),那么这个数叫做a 的n 次方根,=a ,则x 叫做a 的n 次方根,(n >1,n ∈N )**(说明:①若n 是奇数,则a 的n 次方根记作n a ;若a >0则n a >0,若a <o 则n a <0;②若n 是偶数,且a >0则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:-n a ;(例如:8的平方根±8=±2216的4次方根±416=±2)③若n 是偶数,且a <0则n a 没意义,即负数没有偶次方根;④Θ0=0n >1,n ∈N nn (*)∴n 0=0;⑤式子a 叫根式,n 叫根指数,a 叫被开方数。
∴(a )nn=a ..4.a 的n 次方根的性质一般地,若n 是奇数,则n a n =a ;若n 是偶数,则n a n =a =⎨5.例题分析:例1.求下列各式的值:(1)3-8⎧a⎩-aa ≥0a <0.(3)(2)(-10)*2(3)4(3-π)(4)4例2.已知a <b <0,n >1,n ∈N ,化简:n (a -b )+n (a +b ).n n (二)分数指数幂1051231.分数指数幂:5a =a =a102(a >0)3a =a =a124(a >0)即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)a 3()kn=akn 对分数指数幂也适用,442255⨯3⨯4⎛2⎫⎛⎫2532例如:若a >0,则 a 3⎪=a 3=a , a 4⎪=a 4=a ,∴a =a 3⎝⎭⎝⎭a =a .545即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
(完整版)指数函数、对数函数和幂函数知识点归纳
![(完整版)指数函数、对数函数和幂函数知识点归纳](https://img.taocdn.com/s3/m/bd79e130f121dd36a32d82e9.png)
一、幂函数1、幂的有关概念正整数指数幂:...()nna a a a n N=∈零指数幂:01(0)a a=≠负整数指数幂:1(0,)ppa a p Na-=≠∈分数指数幂:正分数指数幂的意义是:(0,,,1)mn mna a a m n N n=>∈>且负分数指数幂的意义是:11(0,,,1) mnm n mna a m n N naa-==>∈>且2、幂函数的定义一般地,函数ay x=叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况).3、幂函数的图象幂函数ay x=当11,,1,2,332a=时的图象见左图;当12,1,2a=---时的图象见上图:由图象可知,对于幂函数而言,它们都具有下列性质:a y x =有下列性质: (1)0a >时:①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时:①图象都通过点(1,1);②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点.二、指数函数①定义:函数)1,0(≠>=a a a y x且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞;3)当10<<a 时函数为减函数,当1>a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a .5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=⋅-=三、对数函数如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b =log b a a N N b =⇔=(0a >,1a ≠,0N >). 1.对数的性质()log log log a a a MN M N =+. log log log aa a MM N N=-.log log n a a M n M =.(00M N >>,,0a >,1a ≠)( a, b > 0且均不为1)2.换底公式:log log log m a m NN a=( a > 0 , a ≠ 1 ;0,1m m >≠) 常用的推论:(1)log log 1a b b a ⨯= ; .(2)log log m na a nb b m=(a 、0b >且均不为1).1log log 1N N a a mn n m==. (3), (4)对数恒等式.一、对数函数的图像及性质① 函数log a y x =(0a >,1a ≠)叫做对数函数② 对数函数的性质:定义域:(0,)+∞; 值域:R ; 过点(1,0),即当1x =时,0y =.当0a >时,在(0,+∞)上是增函数;当01a <<时,在(0,+∞)上是减函数.二、对数函数与指数函数的关系对数函数log a y x =与指数函数x y a =图像关于直线y x =对称. 指数方程和对数方程主要有以下几种类型:()()log ,log ()()f x b a a a b f x b f x b f x a =⇔==⇔=(定义法)b mnb a n am log log =1log log log =⋅⋅a c b c b a 01log =a 1log =a a N a N a =log()()()(),log ()log ()()()0f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>(转化法) ()()()log ()log f x g x m m a b f x a g x b =⇔= (取对数法)。
高中数学第四章指数函数与对数函数知识点总结归纳完整版(带答案)
![高中数学第四章指数函数与对数函数知识点总结归纳完整版(带答案)](https://img.taocdn.com/s3/m/86509e8a77eeaeaad1f34693daef5ef7bb0d1257.png)
高中数学第四章指数函数与对数函数知识点总结归纳完整版单选题1、青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.6 答案:C分析:根据L,V 关系,当L =4.9时,求出lgV ,再用指数表示V ,即可求解. 由L =5+lgV ,当L =4.9时,lgV =−0.1, 则V =10−0.1=10−110=√1010≈11.259≈0.8.故选:C.2、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b =(2a )2(23b )2=5232=259.故选:C.3、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t 分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e −kt ,其中k 是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1) A .3B .3.6C .4D .4.8 答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅lne−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.4、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.5、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN).它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至4000,则C 大约增加了( )附:lg2≈0.3010A .10%B .20%C .50%D .100% 答案:B分析:根据题意,计算出log 24000log 21000的值即可;当SN=1000时,C =Wlog 21000,当SN=4000时,C =Wlog 24000,因为log 24000log 21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C 大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用. 6、指数函数 y =a x 的图象经过点(3,18),则a 的值是( )A .14B .12C .2D .4 答案:B分析:将已知点的坐标代入指数函数的表达式,求得a 的值. 因为y =a x 的图象经过点(3,18),所以a 3=18,解得a =12,故选:B.7、用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( ) A .0.9B .0.7C .0.5D .0.4 答案:B分析:利用二分法求函数零点的近似值的条件及方法分析判断即得.依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.7∈(0.68,0.72),且满足|0.72-0.68|<0.1, 所以所求的符合条件的近似值为0.7.故选:B8、若ln2=a ,ln3=b ,则log 818=( ) A .a+3b a 3B .a+2b 3aC .a+2b a 3D .a+3b 3a答案:B分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B 多选题9、(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg3≈0.477) A .6B .9C .8D .7 答案:BC分析:因为每过滤一次杂质含量减少13,所以每过滤一次杂志剩余量为原来的23,由此列式可解得.设经过n 次过滤,产品达到市场要求,则 2100×(23)n⩽11000,即(23)n⩽120,由 nlg 23⩽−lg20,即 n(lg2−lg3)⩽−(1+lg2),得 n ⩾1+lg2lg3−lg2≈7.4, 故选BC .小提示:本题考查了指数不等式的解法,属于基础题. 10、已知a =log 3e,b =log 23,c =ln3,则( ) A .a <b <c B .a <c <b C .D .a +c <b 答案:BC分析:由对数函数的单调性结合换底公式比较a,b,c 的大小,计算出a +c ,利用基本不等式得a +c >2,而b <2,从而可比较大小.a cb +>由题意可知,对于选项AB ,因为b =log 23=ln3ln2>ln3lne =ln3=c ,所以b >c ,又因为a =log 3e <log 33=1,且c =ln3>lne =1,所以,则b >c >a ,所以选项A 错误,选项B 正确;对于选项CD ,a +c =log 3e +ln3=lne ln3+ln3=1ln3+ln3>2√1ln3⋅ln3=2,且b =log 23<b =log 24=2,所以,故选项C 正确,选项D 错误; 故选:BC.小提示:关键点点睛:本题考查对数函数的单调性,利用单调性比较对数的大小,对于不同底的对数,可利用换底公式化为同底,再由用函数的单调性及不等式的性质比较大小,也可结合中间值如0或1或2等比较后得出结论.11、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y (个)与加工时间x (分)之间的函数关系,A 点横坐标为12,B 点坐标为(20,0),C 点横坐标为128.则下面说法中正确的是( )A .甲每分钟加工的零件数量是5个B .在60分钟时,甲比乙多加工了120个零件C .D 点的横坐标是200D .y 的最大值是216 答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A 正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误;设D 的坐标为(t,0),由题得△AOB ∽△CBD ,则有1220=128−20t−20,解可得t =200,所以选项C 正确;当x =128时,y =216,所以y 的最大值是216.所以选项D 正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,c a >a c b +>一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A正确,设D的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB和CD的斜率相等,则有∠ABO=∠CDB,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB=∠CBD,则△AOB∽△CBD,则有1220=128−20t−20,解可得t=200;即点D的坐标是(200,0),所以选项C正确;由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;当x=128时,y=(128−20)×2=216,所以y的最大值是216.所以选项D正确. 故选:ACD12、已知函数f(x)=a x(a>1),g(x)=f(x)−f(−x),若x1≠x2,则()A.f(x1)f(x2)=f(x1+x2)B.f(x1)+f(x2)=f(x1x2)C.x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)D.g(x1+x22)⩽g(x1)+g(x2)2答案:AC分析:对选项A、B,利用指数幂的运算性质即可判断选项A正确,选项B错误;对选项C、利用g(x)=f(x)−f(−x)=a x−a−x(a>1)在R上单调递增即可判断,选项C正确;对选项D、根据f(x)=a x(a>1),且x1≠x2,由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1 a )x(a>1),由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)]即可判断选项D错误;解:对选项A:因为a x1⋅a x2=a x1+x2,所以f(x1)f(x2)=f(x1+x2),故选项A正确;对选项B:因为a x1+a x2≠a x1x2,所以f(x1)+f(x2)≠f(x1x2),故选项B错误;对选项C:由题意,因为a>1,所以g(x)=f(x)−f(−x)=a x−a−x在R上单调递增,不妨设x1>x2,则g(x1)>g(x2),所以(x1−x2)g(x1)>(x1−x2)g(x2),即x1g(x1)+x2g(x2)>x1g(x2)+ x2g(x1),故选项C正确;对选项D:因为f(x)=a x(a>1),且x1≠x2,所以由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1a )x(a>1),所以由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)],所以有f(x1+x22)+12[f(−x1)+f(−x2)]<f(−x1−x22)+12[f(x1)+f(x2)],即f(x1+x22)−f(−x1−x22)<12[f(x1)+f(x2)]−12[f(−x1)+f(−x2)],即g(x1+x22)<g(x1)+g(x2)2,故选项D错误;故选:AC.13、已知函数f(x)={lnx,x>0,−x2−4x,x≤0.关于x的方程f(x)−t=0的实数解个数,下列说法正确的是()A.当t≤0时,方程有两个实数解B.当t>4时,方程无实数解C.当0<t<4时,方程有三个实数解D.当t=4时,方程有两个实数解答案:CD分析:方程f(x)−t=0即f(x)=t,作出函数f(x)的简图,数形结合可得结果.方程f(x)−t=0即f(x)=t,作出函数f(x)的简图,由图可知:当t<0时,函数y=f(x)的图象与直线y=t有2个交点,即方程f(x)−t=0有2个实数解;当t=0时,函数y=f(x)的图象与直线y=t有3个交点,即方程f(x)−t=0有3个实数解,故A错误;当t>4时,函数y=f(x)的图象与直线y=t有1个交点,即方程f(x)−t=0有1个实数解,故B错误;当0<t<4时,函数y=f(x)的图象与直线y=t有3个交点,即方程f(x)−t=0有3个实数解,故C正确;当t=4时,函数y=f(x)的图象与直线y=t有2个交点,即方程f(x)−t=0有2个实数解,故D正确.故选:CD.填空题14、已知函数f(x)=1+log a(x−1)(a>0且a≠1)的图像恒过定点P,又点P的坐标满足方程mx+ny=1,则mn的最大值为_____.答案:18##0.125分析:根据对数型函数的过定点(2,1),代入方程中可得2m+n=1,根据基本不等式即可求解.f(x)=1+log a(x−1)(a>0且a≠1)过定点(2,1),所以P(2,1),所以2m+n=1故2m⋅n≤(2m+n2)2⇒m⋅n≤18,当且仅当m=14,n=12时等号成立.所以答案是:1815、已知f(x)是奇函数,且当x<0时,f(x)=−e ax.若f(ln2)=8,则a=__________.答案:-3分析:当x>0时−x<0,f(x)=−f(−x)=e−ax代入条件即可得解.因为f(x)是奇函数,且当x>0时−x<0,f(x)=−f(−x)=e−ax.又因为ln2∈(0,1),f(ln2)=8,所以e−aln2=8,两边取以e为底的对数得−aln2=3ln2,所以−a=3,即a=−3.小提示:本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案.16、函数y=log12(3x−1)的单调递减区间为_____答案:(13,+∞)分析:根据复合函数单调性规律即可求解 函数y =log 12(3x −1)的定义域为(13,+∞)又y =log 12(3x −1)是由y =log 12u 与u =3x −1复合而成,因为外层函数y =log 12u 单调递减,所以求函数y =log 12(3x −1)的单调递减区间即是求内层函数u =3x −1的增区间,而内层函数u =3x −1在(13,+∞)上单调递增,所以函数y =log 12(3x −1)的减区间为(13,+∞)所以答案是:(13,+∞)解答题17、已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+mx ,函数f (x )在y 轴左侧的图象如图所示.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )−a =0有4个不相等的实数根,求实数a 的取值范围. 答案:(1)f (x )={x 2+2x,x ≤0x 2−2x,x >0(2)(−1,0)分析:(1)利用f (−2)=0可求x ≤0时f (x )的解析式,当x >0时,利用奇偶性f (x )=f (−x )可求得x >0时的f (x )的解析式,由此可得结果;(2)作出f (x )图象,将问题转化为f (x )与y =a 有4个交点,数形结合可得结果.(1)由图象知:f (−2)=0,即4−2m =0,解得:m =2,∴当x ≤0时,f (x )=x 2+2x ; 当x >0时,−x <0,∴f (−x )=(−x )2−2x =x 2−2x ,∵f (x )为R 上的偶函数,∴当x >0时,f (x )=f (−x )=x 2−2x ; 综上所述:f (x )={x 2+2x,x ≤0x 2−2x,x >0;(2)∵f (x )为偶函数,∴f (x )图象关于y 轴对称,可得f (x )图象如下图所示,f (x )−a =0有4个不相等的实数根,等价于f (x )与y =a 有4个不同的交点, 由图象可知:−1<a <0,即实数a 的取值范围为(−1,0).18、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本ℎ(x )万元,当产量小于或等于50万盒时ℎ(x )=180x +100;当产量大于50万盒时ℎ(x )=x 2+60x +3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式; (2)当产量为多少万盒时,该企业在生产中所获利润最大? 答案:(1)y ={20x −300,0≤x ≤50−x 2+140x −3700,x >50,x ∈N(2)70万盒分析:(1)根据题意分0≤x ≤50和x >50两种情况求解即可; (2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y =200x −200−180x −100=20x −300, 当产量大于50万盒时,y =200x −200−x 2−60x −3500=−x 2+140x −3700, 故销售利润y (万元)关于产量x (万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=1402=70时,y=−x2+140x−3700取到最大值,为1200.因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。
高三数学总复习对数和指数函数
![高三数学总复习对数和指数函数](https://img.taocdn.com/s3/m/09aafb0aa7c30c22590102020740be1e650ecc91.png)
高中数学总复习对数和指数函数复习内容:高中数学第三章【复习目标】1. 理解对数的意义,会熟练的将指数式与对数式互化,掌握积、商、幂的对数运算性质换底公式; 2. 理解反函数的概念,会求已知函数的反函数,掌握函数与它的反函数在定义域、值域及图像上的关系;3. 理解指数函数和对数函数的要领,掌握指数函数和对数函数的图像和性质,掌握指数函数和对数函数互为反函数的结论;4. 理解指数方程和对数方程的意义,会解简单的指数方程和对数方程. 5. 掌握数学方法:分类讨论,数形结合,换元法,等价转换.【重点难点】对数的意义与运算性质,反函数的概念及性质,指数函数和对数函数的图像和性质. 【课前预习】1.函数()(2)x f x =-、2()3x f x -=、1()2()3x f x =⋅、3()f x x =中,指数函数是2.(1)函数1()()2x f x =的值域是 (2)函数212()log (25)f x x x =-+的值域是3.(1)函数()f x =(2)函数()f x =4.(1)函数()y f x =的图像与函数()2x f x =的图像关于x 轴对称,则()y f x == (2)函数lg(2)(2)y x x =->的图像关于x 轴对称的函数()y f x ==5. 函数2()(1)x f x a =-是R 上的减函数,则实数a 的取值X 围是6. 已知0<a<1,b<-1,则函数()x f x a b =+的图像不经过 ( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 7.函数213()log (232)f x x x =--的单调递增区间是8. 使log 2(-x)<x+1成立的x 的取值X 围是 9.不论a 为何值时,函数y=(a-1)2x -2a 的图像过一定点,这个定点的坐标是(-1,-12)10.已知函数f(x)是定义在R 上的奇函数,当x<0时,f(x)=1()3x ,则f(12)11.已知函数y=4x -32x +3的值域为[1,7],则实数x 的取值X 围是(-∞,0]∪[1,2]12.函数()2x f x =,x 1,x 2∈R 且x 1≠x 2,则 ( ) A.12121[()()]()22x x f x f x f ++= B.12121[()()]()22x x f x f x f ++> C.12121[()()]()22x x f x f x f ++< D.以上答案都不对【基础知识】1.幂的有关概念(1)正整数指数幂()nna a a a a n N *=⋅⋅⋅⋅∈ (2)零指数幂)0(10≠=a a(3)负整数指数幂()10,nn aa n N a-*=≠∈ (4)正分数指数幂()0,,,1mn m n a a a m n N n *=>∈>; (5)负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>(6)0(0)a a >,没有意义.2.有理数指数幂的性质()()10,,rsr sa a aa r s Q +=>∈()()()20,,sr rs a a a r s Q =>∈()()()30,0,rr r ab a b a b r Q =>>∈3.根式的内容(1)根式的定义:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中()*∈>N n n ,1,na 叫做根式,n 叫做根指数,a 叫被开方数。
(完整版)指数函数与对数函数知识点总结
![(完整版)指数函数与对数函数知识点总结](https://img.taocdn.com/s3/m/93fc3e8cb7360b4c2e3f6498.png)
(一)指数与指数幂的运算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ *.
当 是奇数时, ,当 是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
3.实数指数幂的运算性质
(1) · ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R.
(2) =__________
4、设 ,求 的值__________。
5、若 ,则 等于。
6、已知函数 在 上为增函数,则 的取值范围是。
7、设函数 ,若 ,则
8、函数 且 恒过定点。
9、已知函数 在 上的最大值比最小值多 ,求实数 的值。
幂函数(第15份)
1、下列函数中,是幂函数的是( )
A、 B、 C、 D、
(3) =__________
(4) =__________
(5) =__________
(6) =__________
(7) =__________
(8) =__________
2、已知 ,试用 表示下列各对数。
(1) =__________(2) =__________
3、(1)求 的值__________;
f(1.5625)=0.003
f(1.5562)=-0.029
f(1.5500)=-0.060
据此数据,可得方程 的一个近似解(精确到0.01)为
(1) (2) (3)
5、函数 在区间[ ,2]上的最大值为,最小值为。
函数 在区间[ ,2]上的最大值为,最小值为。
高三一轮复习-指数函数与对数函数(带答案)
![高三一轮复习-指数函数与对数函数(带答案)](https://img.taocdn.com/s3/m/8e0e0c44fc4ffe473368abc4.png)
个性化辅导授课教案指数函数与对数函数一、指数函数【考情解读】1.考查指数函数的求值、指数函数的图象和性质;2.讨论与指数函数有关的复合函数的性质;3.将指数函数与对数函数、抽象函数相结合,综合考查指数函数知识的应用. 【重点知识梳理】 1.根式的性质 (1)(na )n =a .(2)当n 为奇数时na n =a . 当n 为偶数时na n ={ a a ≥0-aa <0.2.有理数指数幂 (1)幂的有关概念①正整数指数幂:a n =a ·a ·…·a n 个 (n ∈N *). ②零指数幂:a 0=1(a ≠0).③负整数指数幂:a -p =1ap (a ≠0,p ∈N *).④正分数指数幂:a m n =na m (a >0,m 、n ∈N *,且n >1).⑤负分数指数幂:a -m n =1a m n =1na m (a >0,m 、n ∈N *,且n >1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质①a r a s =a r +s (a >0,r 、s ∈Q ); ②(a r )s =a rs (a >0,r 、s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y =a xa >10<a <1图象定义域 (1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1;x <0时,0<y <1(5)当x >0时,0<y <1; x <0时,y >1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数【高频考点突破】 考点一 指数幂的运算例1、 (1)计算:(124+223)12-2716+1634-2×(8-23)-1;(2)已知x 12+x -12=3,求x 2+x -2-2x 32+x -32-3的值.【探究提高】根式运算或根式与指数式混合运算时,将根式化为指数式计算较为方便,对于计算的结果,不强求统一用什么形式来表示,如果有特殊要求,要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有分母又有负指数.【变式探究】计算下列各式的值:(1)⎝⎛⎭⎫-278-23+(0.002)-12-10(5-2)-1+(2-3)0; (2)15+2-(3-1)0-9-45; (3)a 3b 23ab 2a 14b 124a -13b 13(a >0,b >0).考点二 指数函数的图象、性质的应用 例2、 (1)函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是 ( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 【答案】 (1) D 【解析】由f (x )=a x-b的图象可以观察出函数f (x )=a x-b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.(2)求函数f (x )=3x 2-5x +4的定义域、值域及其单调区间. 【解析】依题意x 2-5x +4≥0,解得x ≥4或x ≤1, ∴f (x )的定义域是(-∞,1]∪[4,+∞).【探究提高】(1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. (2)对复合函数的性质进行讨论时,要搞清复合而成的两个函数,然后对其中的参数进行讨论. 【变式探究】 (1)函数y =e x +e -xe x -e-x 的图象大致为( )【答案】A【解析】y =e x +e -x e x -e -x =1+2e 2x -1,当x >0时,e 2x -1>0,且随着x 的增大而增大,故y =1+2e 2x -1>1且随着x的增大而减小,即函数y 在(0,+∞)上恒大于1且单调递减.又函数y 是奇函数,故只有A 正确.(2)若函数f (x )=e -(x -μ)2 (e 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +μ=________. 【答案】1【解析】由于f (x )是偶函数,所以f (-x )=f (x ),即e -(-x -μ)2=e -(x -μ)2,∴(x +μ)2=(x -μ)2,∴μ=0, ∴f (x )=e -x 2.又y =e x 是R 上的增函数,而-x 2≤0, ∴f (x )的最大值为e 0=1=m ,∴m +μ=1. 考点三 指数函数的综合应用例3、(1)k 为何值时,方程|3x -1|=k 无解?有一解?有两解? (2)已知定义在R 上的函数f (x )=2x -12|x |.①若f (x )=32,求x 的值;②若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.【解析】(1)函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x -1|的图象无交点,即方程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的图象有唯一的交点,所 以方程有一解;当0<k <1时,直线y =k 与函数y =|3x -1|的图象有两个不同的交点,所以方程有两解.【探究提高】对指数函数的图象进行变换是利用图象的前提,方程f (x )=g (x )解的个数即为函数y =f (x )和y =g (x )图象交点的个数;复合函数问题的关键是通过换元得到两个新的函数,搞清复合函数的结构.【变式探究】已知f(x)=aa2-1(a x-a-x) (a>0且a≠1).(1)判断f(x)的奇偶性;(2)讨论f(x)的单调性;(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.【解析】(1)因为函数的定义域为R,所以关于原点对称.又因为f(-x)=aa2-1(a-x-a x)=-f(x),所以f(x)为奇函数.二、对数函数【考情解读】1.考查对数函数的图象、性质;2.考查对数方程或不等式的求解;3.考查和对数函数有关的复合函数问题.【重点知识梳理】1.对数的概念一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”.2.对数的性质与运算法则(1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M .(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质a >1 0<a <1图 象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0 当0<x <1时,y <0 (5)当x >1时,y <0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【高频考点突破】 考点一 对数式的运算 例1、计算下列各式: (1)lg 25+lg 2·lg 50+(lg 2)2; (2)lg 32-lg 9+1·lg 27+lg 8-lg 1 000lg 0.3·lg 1.2;(3)(log 32+log 92)·(log 43+log 83).【探究提高】(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧. 【变式探究】 求值:(1)log 89log 23;(2)(lg 5)2+lg 50·lg 2;(3)12lg 3249-43lg 8+lg 245. 【解析】(1)原式=log 2332log 23=23.(2)原式=(lg 5)2+lg(10×5)lg 105=(lg 5)2+(1+lg 5)(1-lg 5) =(lg 5)2+1-(lg 5)2=1. (3)原式=lg 427-lg 4+lg(75) =lg42×757×4=lg 10=12. 考点二 对数函数的图象与性质例2、已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c=f (0.2-0.6),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c【答案】B【探究提高】(1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等;(2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想. 【变式探究】 (1)已知a =21.2,b =⎝⎛⎭⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <bC .b <a <cD .b <c <a【答案】A【解析】b =⎝⎛⎭⎫12-0.8=20.8<21.2=a , c =2log 52=log 522<log 55=1<20.8=b , 故c <b <a .(2)已知函数f (x )=log a (x +b ) (a >0且a ≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________. 【答案】2 2【解析】f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1,∴⎩⎪⎨⎪⎧ b -1=1b =a ,即⎩⎪⎨⎪⎧b =2a =2. 考点三 对数函数的综合应用 例3、已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【探究提高】解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质(1)要分清函数的底数a∈(0,1),还是a∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行;(3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.【变式探究】已知函数f(x)=log a(8-2x) (a>0且a≠1).(1)若f(2)=2,求a的值;(2)当a>1时,求函数y=f(x)+f(-x)的最大值.。
备战2024年高考数学一轮复习13、指数函数与对数函数
![备战2024年高考数学一轮复习13、指数函数与对数函数](https://img.taocdn.com/s3/m/aa67ac1390c69ec3d5bb75f5.png)
指数函数与对数函数知识回顾:1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a xy a 的图象与性质2、指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a xy a 互为 ,其图象关于直线 对称 典型例题分析:一、指对函数的图象及性质应用例1、已知实数,a b 满足等式11()()23ab=,下列五个关系式(1)0b a <<(2)0a b <<(3)0a b <<(4)0b a <<(5)a b = 其中不可能成立的关系式有A 、4个B 、1个C 、2个D 、3个 例2、对于函数()f x 定义域中任意1212,,()x x x x ≠,有如下结论 (1)1212()()()f x x f x f x += (2)1212()()()f x x f x f x =+ (3)1212()()0f x f x x x ->- (4)1212()()22x x f x x f ++<当()lg f x x =时,上述结论中正确结论的序号是 。
例3、如图,是指数函数(1)x y a =,(2)x y b =,(3)x y c =, (1) (2) (3) (4) (4)x y d =的图象,则,,,a b c d 与1的大小关系是 A 、1a b c d <<<<0 B 、1b a d c <<<< C 、1a b c d <<<< 2 D 、1a b d c <<<< 3例4、若函数log ()(0,1)a y x b a a =+>≠的图象过两点(1,0)-和(0,1),则A 、2,2a b ==B 、2a b ==C 、 2,1a b ==D 、a b ==例5、方程log 2(01)a x x a =-<<的实数解的个数是 A 、0 B 、1 C 、2 D 、3 例6、函数2xy -=的单调递增区间是A 、(-∞,+∞)B 、(-∞, 0)C 、(0, +∞)D 、不存在例7、当a >1时,函数x y a -=与log a y x =的图像是 ( )例8、设01a <<,函数2()log (22)x x a f x a a =--,则使()0f x <的x 取值范围是 A 、(-∞,0) B 、(0, +∞) C 、(-∞,log 3a ) D 、(log 3a , +∞) 例9、函数x y a =在[]0,1上的最大值与最小值的和为3,则a 的值为 A 、12 B 、2 C 、4 D 、14例10、已知不等式2log (21)log (3)0x x x x +<<成立,则实数x 的取值范围是 A 、1(0,)3 B 、1(0,)2 C 、1(,1)3 D 、11(,)32二、比较大小例1、若92log 3a =, 8log b =14c =,则这三个数的大小关系是 A 、a c b << B 、a b c << C 、c a b << D 、c b a <<例2、若60a =︒, 2log sin30b =︒, 3log 45c tg =︒,则,,a b c 的大小关系是( )。
函数的奇偶性、指数函数、对数函数-高考数学专题复习
![函数的奇偶性、指数函数、对数函数-高考数学专题复习](https://img.taocdn.com/s3/m/672b3d9733687e21ae45a930.png)
函数的奇偶性、指数函数、对数函数知识精要一、函数的奇偶性一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x ,都有f(-x)=f(x)那么函数f(x)就叫做偶函数。
(2)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(3)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x)和f(-x)=f(x),(x∈D,且D 关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x ,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义。
④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
奇偶函数图像的特征定理 奇函数的图像关于原点成中心对称图形,偶函数的图像关于y 轴的轴对称图形。
f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y ) f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y ) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
指数函数与对数函数(复习)
![指数函数与对数函数(复习)](https://img.taocdn.com/s3/m/dc51127f5acfa1c7aa00cc25.png)
y
y=x
y=a
x
y
y=a
x
y=x
(0,1)
y=logax
(1, 0)
(0,1)
o
o
x
(1, 0)
y=logax 0<a<1时
x
a>1时
二.例题和练习
1. 下列图象正确的是 ( )
y
y=10x 0 (A)
(0,1)
y
(0,1)
y=10-x
x
y=lg x
0 (B)
x
y
0 (1,0) (C)
y
y=lg x 0 (D)
x
x>1 则 y<0
3.对照比较,指数函数与对数函数的图象: 指数函数 y 图 象
y=a
(0,1)
x
对数函数 y
0
(1,0)
y=logax
0
x
x
性质
(1) 过(0,1)点 (2)a>1时 增函数 0<a<1 减函数
(1) 过(1,0)点 (2)a>1时 增函数 0<a<1 减函数
指数函数与对数函数 是互为反函数
(1,0)
x
x
2. 下列函数在
(0,+∞ )内是减函数的是(
(B) y=4x
x
3.5
)
(A) y=x2+2 (C) y=log 3. 比较大小
(D) y=log 1 x
3
(1) log 1 6 和 log 1 7
3 3
(2) 3.7
-2.3
和 3.7
-2.2
4. 求函数的定义域 (1) y=log 1
指数函数和对数函数复习(有详细知识点和习题详解)
![指数函数和对数函数复习(有详细知识点和习题详解)](https://img.taocdn.com/s3/m/330056250a4e767f5acfa1c7aa00b52acfc79cd0.png)
指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。
另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。
整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。
其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。
例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。
二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。
例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。
例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。
二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。
当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。
规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。
(完整版)指数函数与对数函数高考题(含答案)
![(完整版)指数函数与对数函数高考题(含答案)](https://img.taocdn.com/s3/m/fbff9dfe7fd5360cba1adbeb.png)
指数函数与对数函数高考题1、(2009湖南文)2log )A .BC .12-D . 122、(2012安徽文)23log 9log 4⨯=( )A .14B .12C .2D .43、(2009全国Ⅱ文)设2lg ,(lg ),lg a e b e c === ( )A.a b c >>B.a c b >>C.c a b >>D.c b a >>4、(2009广东理)若函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,其图像经过点)a ,则()f x =( )A. 2log xB. 12log x C.12xD. 2x 5、(2009四川文)函数)(21R x y x ∈=+的反函数是( )A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x yC. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y6、(2009全国Ⅱ理)设323log ,log log a b c π=== )A. a b c >>B. a c b >>C. b a c >>D. b c a >>7、(2009天津文)设3.02131)21(,3log ,2log ===c b a ,则( )A.c b a <<B. b c a <<C. a c b << D .c a b <<8、(2009湖南理) 若2log a <0,1()2b >1,则 ( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <09、(2009江苏)已知集合{}2log 2,(,)A x x B a =≤=-∞,若A B ⊆则实数a 的取值范围是(,)c +∞,其中c =10、(2010辽宁文)设25a b m ==,且112a b+=,则m =( )11、(2010全国文)函数)1)(1ln(1>-+=x x y 的反函数是( )A.y=1x e +-1(x>0)B. y=1x e -+1(x>0)C. y=1x e +-1(x ∈R)D.y=1x e -+1 (x∈R)12、(2012上海文)方程03241=--+x x 的解是_________ .13、(2011四川理)计算21100)25lg 41(lg -÷-_______ .14、(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数与对数函数专项练习 例1.设a >0, f (x)=x x eaa e -是R 上的奇函数.(1) 求a 的值;(2) 试判断f (x )的反函数f-1 (x)的奇偶性与单调性.解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a10)0(f >=⇒=-⇒=,(2) =-⇒∈++=--)x (f )R x (24x x ln)x (f 121-=++-24x x ln 2=++24x x ln 2)x (f 1--, ∴)x (f 1-为奇函数.用定义法可证)x (f 1-为单调增函数.例2. 是否存在实数a, 使函数f (x )=)x ax (log 2a -在区间]4 ,2[上是增函数? 如果存在,说明a 可以取哪些值; 如果不存在, 请说明理由.解:设x ax )x (u 2-=, 对称轴a21x =.(1) 当1a >时, 1a 0)2(u 2a 21>⇒⎪⎩⎪⎨⎧>≤;(2) 当1a 0<<时, 81a 00)4(u 4a 21≤<⇒⎪⎩⎪⎨⎧>≥. 综上所述: 1a >1.(安徽卷文7)设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a【答案】A 【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。
2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是【答案】D【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-ba <1得-1<b a <0,矛盾,对于C 、D 两图,0<|b a |<1,在C 图中两根之和-b a <-1,即b a >1矛盾,选D 。
3.(辽宁卷文10)设525bm ==,且112a b +=,则m =【答案】D(A(B )10 (C )20 (D )100解析:选A.211log 2log 5log 102,10,m m m m a b +=+==∴=又0,m m >∴=Q4.(全国Ⅰ卷理8文10)设a=3log2,b=In2,c=125-,则【答案】CA. a<b<cB. b<c<aC. c<a<b D . c<b<a 【解析】 a=3log 2=21log 3, b=In2=21log e ,而22log 3log 1e >>,所以a<b,c=125-222log 4log 3>=>,所以c<a,综上c<a<b.5.(全国Ⅰ卷理10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是【答案】A(A))+∞(B))+∞ (C)(3,)+∞ (D)[3,)+∞【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b2a a =+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a +又0<a<b,所以0<a<1<b ,令2()f a a a =+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是(A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a +≥,从而错选D,这也是命题者的用苦良心之处. 7.(山东卷文3)函数()()2log 31x f x =+的值域为【答案】AA. ()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。
【命题意图】本题考查对数函数的单调性、函数值域的求法等基础知识。
8.(陕西卷文7)下列四类函数中,个有性质“对任意的x>0,y>0,函数f(x)满足f (x +y )=f (x )f (y )”的是 [ C ](A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 【解析】因为x yx y aa a +=所以f (x +y )=f (x )f (y )。
9.(上海卷文17)若x 是方程式 lg 2x x +=的解,则x 属于区间 [答]( )(A )(0,1). (B )(1,1.25). (C )(1.25,1.75) (D )(1.75,2)解析:04147lg )47()75.1(,2lg )(<-==-+=f f x x x f 由构造函数10.(四川卷文2)函数y=log2x 的图象大致是高^考#资*源^网(C)(A) (B) (C) (D) 11.(天津卷文6)设554a log 4b log c log ===25,(3),,则【答案】D(A)a<c<b (B) b<c<a (C) a<b<c (D) b<a<c 【解析】因为55a log 4log 5=1,=<2255(log 3)(log 5)=1,b =<544c log log 41=>=,所以c 最大,排除A 、B ;又因为a 、b (0,1)∈,所以a b >,故选D 。
12.(浙江卷文2)已知函数1()log (1),f x x =+若()1,f α= α=(A)0 (B)1 (C)2 (D)3解析:α+1=2,故α=1,选B ,本题主要考察了对数函数概念及其运算性质,属容易题13.(重庆卷文4)函数y =的值域是【答案】C(A )[0,+∞) (B) [0,4] (C) [0,4) (D) (0,4)【解析】[)40,0164160,4x x >∴≤-<Q .14.(北京卷文2)若372log πlog 6log 0.8a b c ===,,,则( A ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>【解析】利用中间值0和1来比较: 372log π>1log 61log 0.80a b c =<=<=<,0, 15.(湖南卷文6)下面不等式成立的是( A )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 【解析】由322log 21log 3log 5<<< , 故选A. 16(江西卷文4)若01x y <<<,则( C )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y <【解析】C 函数4()log f x x =为增函数17.(辽宁卷文4)已知01a <<,log log a a x =,1log 52a y =,log log a a z =,则( ) A .x y z >>B .z y x >>C .y x z >>D .z x y >>【解析】本小题主要考查对数的运算。
log a x =Q log a y =log a z =由01a <<知其为减函数, y x z ∴>>答案:C18.(全国Ⅱ卷理4文5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <c B .c <a <b C . b <a <c D . b <c <a【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 【答案】C19.(山东卷文12)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<< B .101b a -<<< C .101b a -<<<-D .1101a b --<<<【解析】本小题主要考查正确利用对数函数的图象来比较大小。
由图易得1,a >101;a -∴<<取特殊点01log 0,a x y b =⇒-<=< 11log log log 10,aa ab a⇒-=<<=101a b -∴<<<.选A. 20.(天津卷文10)设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为( )A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,【解析】易得3a y x =,在[,2]a a 上单调递减,所以22[,]2y a a ∈,故2122a aa a ⎧⎪⇒⎨⎪⎩≥≥>,选B .21.(山东卷文15)已知2(3)4log 3233x f x =+,则8(2)(4)(8)(2)f f f f ++++L 的值等于 .【解析】本小题主要考查对数函数问题。
22(3)4log 32334log 3233,x x f x =+=+Q2()4log 233,f x x ⇒=+8(2)(4)(8)(2)f f f f ∴++++=L222282334(log 22log 23log 28log 2)186********.⨯+++++=+=L22.(重庆卷文14)若0,x >则1311142422-(2x +3)(2x -3)-4x = .【解析】本小题主要考查指数的运算。