方程与不等式之一元一次方程基础测试题及答案

合集下载

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题一、选择题1.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.2.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.3.某书店推出一种优惠卡,每张卡售价为50元,凭卡购书可享受8折优惠,小明同学到该书店购书,他先买购书卡再凭卡付款,结果省了10元。

若此次小明不买卡直接购书,则他需要付款()A.380元B.360元C.340元D.300元【答案】D【解析】【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解.【详解】解:设小明同学不买卡直接购书需付款是x元,则有:50+0.8x=x-10解得:x=300即:小明同学不凭卡购书要付款300元.故选:D.【点睛】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.若x=-2是方程ax-b=1的解,则代数式4a+2b-3的值为()A.1 B.3-C.1-D.5-【答案】D【解析】【分析】把x=-2代入ax-b=1得到关于a和b的等式,利用等式的性质,得到整式4a+2b-3的值,即可得到答案.【详解】解:把x=-2代入ax-b=1得:-2a-b=1,等式两边同时乘以-2得:4a+2b=-2,等式两边同时减去3得:4a+2b-3=-2-3=-5,故选:D.【点睛】本题考查了一元一次方程的解和代数式求值,正确掌握代入法和等式的性质是解题的关键.6.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4 C.3 D.不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x-2=5且2x-1=7或3x-2=7且2x-1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.8.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x人,则下列方程正确的是()A.50+x=3×30 B.50+x=3×(20+30-x)C .50+x =3×(20-x)D .50+x =3×20【答案】B【解析】【分析】 可设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,依题意有 50+x =3[20+(30﹣x )],故选:B .【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.9.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++=B .6090(30)480x x ++=C .160()904802x x ++=D .16090()4802x x ++= 【答案】D【解析】【分析】【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D .【点睛】本题考查由实际问题抽象出一元一次方程.10.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A .0150250x =⨯B .0251500x ⋅= C .0015025x x-= D .0150250x -= 【答案】C【解析】【分析】等量关系为:成本×(1+利润率)=售价,把相关数值代入即可【详解】解:设这种服装的成本价为x 元,那么根据利润=售价-成本价,可得出方程:150-x=25%x ;15025%x x-= 故应选C11.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( ) A .20B .22C .25D .20或25【答案】D【解析】【分析】本题分票价每张45元和票价每张45元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【详解】①若购买的电影票不超过20张,则其数量为900÷45=20(张);②若购买的电影票超过20张,设购买了x 张电影票,根据题意,得:45×x ×80%=900,解得:x =25;综上,共购买了20张或25张电影票;故选D .【点睛】本题考查了一元一次方程的应用,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系.12.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了( )元.A .300B .260C .240D .220【答案】B【解析】【分析】 根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B .【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.13.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .179x x -= B .179x x += C .7x+9x=1 D .9x-7x=1 【答案】B【解析】【分析】 直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】 解:野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11179x ⎛⎫+= ⎪⎝⎭,即179x x +=, 故选B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.14.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.15.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.16.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【答案】B【解析】【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【详解】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得 17316x y z x y y kz ++=⎧⎪+=⎨⎪=⎩①②③,把③代入①②得(1)17316x k z x kz ++=⎧⎨+=⎩,解得z=3523k +(k 为整数). 又∵z 为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1. 综上所述,小虎足球队所负场数的情况有3种情况.故选B .【点睛】本题考查了二元一次方程组的应用.解答方程组是个难点,用了换元法.19.如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( ) A .3a <B .3a =C .3a >D .3a ≠ 【答案】D【解析】【分析】根据方程有解确定出a 的范围即可.【详解】∵关于x 的方程(a-3)x=2019有解,∴a-3≠0,即a≠3,故选:D .【点睛】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.20.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3【答案】A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.。

最新初中数学方程与不等式之一元一次方程难题汇编含答案

最新初中数学方程与不等式之一元一次方程难题汇编含答案

最新初中数学方程与不等式之一元一次方程难题汇编含答案一、选择题1.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.下列说法正确的是( )A .若a c =b c,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 【答案】A【解析】【分析】按照分式和整式的性质解答即可.【详解】 解:A .因为C 做分母,不能为0,所以a=b ;B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数.故选 :A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.3.若关于x 的方程(m-3)x |m|-2 -m+3=0是一元一次方程,则m 的值为( )A .m=3B .m=-3C .m=3或-3D .m=2或-2【答案】B【解析】【分析】 根据一元一次方程的定义得到|m |-2=1且m-3≠0,解得m的取值范围即可..【详解】解:有题意得:|m |-2=1且m-3≠0,解得m=-3,故答案为B .【点睛】本题考查了一元一次方程的概念和解法.掌握一元一次方程的未知数的指数为1且一次项系数不等于0是解答本题的关键.4.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为( )A .B .4C .3D .不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x -2=5且2x -1=7或3x -2=7且2x -1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质5.下列关于a 、b 的等式,有一个是错误的,其它都是正确的,则错误的是( ) A .3b a =B .0b a -=C .2290b a -=D .26b m a m +=+【答案】B【解析】【分析】观察四个等式可发现都含有一个相同的等式b-3a=0,由此即可判断出错误的选项.【详解】由题意知,选项A 可以化为b-3a=0;选项C 可以化为(b-3a )(b+3a)=0,可以得到b-3a=0;选项D 可以化为2b-6a=0,即b-3a=0,由此可以判断选项A 、C 、D 都是正确的,选项B 中的等式是错误的,故选:B.【点睛】此题考查等式的性质,根据等式的性质正确化简是解题的关键.6.等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.8.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+ B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【解析】【分析】 根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】 根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.9.方程2﹣24736x x --=-去分母得( )A .2﹣2(2x ﹣4)=﹣(x ﹣7)B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣2(2x ﹣4)=﹣(x ﹣7)D .以上答案均不对【答案】C【解析】【分析】两边同时乘以6即可得解.【详解】 解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--. 故选C.【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.10.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2【答案】C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.11.已知方程3x –2y=5,把它变形为用含x 的代数式表示y ,正确的是( )A .y=352x - B .y=352x + C .y=352-+x D .y=352--x 【答案】A【解析】【分析】 根据等式的性质,把x 看做已知数求出y 即可. 【详解】解:方程3x –2y=5解得:y=352x - 故选:A.【点睛】 本题主要考查了等式的性质,解题的关键是将x 看做已知数求出y.12.下列各式属于一元一次方程的是( )A .3x+1B .3x+1>2C .y =2x+1D .3x+1=2【答案】D【分析】直接利用一元一次方程的定义分析得出答案.【详解】A 、3x+1是代数式,故此选项错误;B 、3x+1>2,是不等式,故此选项错误;C 、y=2x+1,是一次函数,故此选项错误;D 、3x+1=2属于一元一次方程,故此选项正确.故选:D .【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.13.下列等式的变形中,正确的有( )①由53x =得53x =;②由a=b 得,-a=-b ;③由a b c c =得a b =;④由m n =得m 1n = A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】本题需先根据等式的性质对每一选项灵活分析,即可得出正确答案.【详解】①若53x =,则35x =故本选项错误 ②若由a=b 得,-a=-b ,则-a=-b 故本选项正确③由a b c c=,说明c ≠0,得a b =故本选项正确 ④若m n =≠0时,则m 1n =故本选项错误 故选:B【点睛】本题考查了等式的基本性质,在已知等式等号两边同时加减或乘除等式是否仍然成立.14.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。

中考数学《方程与不等式》专题知识训练50题(含参考答案)

中考数学《方程与不等式》专题知识训练50题(含参考答案)

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.若3x >﹣3y ,则下列不等式中一定成立的是( ) A .x >yB .x <yC .x ﹣y >0D .x +y >02.如果1x -大于0,那么x 的取值范围是( ) A .1x >B .1x <C .0x <D .0x >3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C .D .4.不等式﹣3x≤9的解集在数轴上表示正确的是( ) A .B .C .D .5.用配方法解方程22990x x --=,配方后得( ) A .2(1)99x -=B .2(1)100x +=C .2(1)98x -=D .2(1)100x -=6.若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A .2B .3C .4D .57.一项工程,A 独做10天完成,B 独做15天完成,若A 先做5天,再A 、B 合做,完成全部工程的23,共需( ) A .8天B .7天C .6天D .5天8.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( ) A .20B .6C .4D .29.不等式组372378x x -≥⎧⎨-<⎩的所有整数解共有( )A .1个B .2个C .3个D .4个10.下列运用等式性质进行的变形中,正确的是( ) A .如果a b =,那么23a b +=+ B .如果a b =,那么23a b -=- C .如果2a a =,那么1a =D .如果a bc c=,那么a b = 11.下列是一元一次方程的是( ) A .231x y +=B .20x -=C .3x +D .11x= 12.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( ) A .30252=+x x B .30252=+x x C .30252=-x x D .30252=-x x13.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x ,那么x 满足的方程为( ) A .B .C .D .14.如图所示两个天平都平衡,则3个球体的质量等于( )个正方体的质量,括号内应填A .2B .3C .4D .515.若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤516.下列变形中,正确的是( ) A .若a b =,则11a b +=-B .若32a b =,则a b =C .若2a b -=,则2a b =-D .若44b a -=-,则a b =17.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=3218.三元一次方程组10318x y z x y x y z ++=⎧⎪+=⎨⎪=+⎩的解是( )A .532x y z =⎧⎪=⎨⎪=⎩B .352x y z =⎧⎪=⎨⎪=⎩C .542x y z =⎧⎪=⎨⎪=⎩D .431x y z =⎧⎪=⎨⎪=⎩19.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A .3瓶B .4瓶C .5瓶D .6瓶20.甲、乙、丙三名打字员承担一项打字任务,已知如下信息:如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( )A .1316小时B .1312小时C .1416小时D .1412小时二、填空题21.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为____克. 22.如果方程23252x x -+=-的解与方程72x b -=的解相同,则b =________. 23.由4x ﹣3y +6=0,可以得到用y 表示x 的式子为x =__.24.已知不等式组212(1)43x x x+>⎧⎨-+>⎩,请写出一个该不等式组的整数解___________.25.已知关于x 的一元二次方程x 2+x+m =0有实数根,则m 的取值范围是_____.26.若关于x 的方程()21410k x x ---=是一元二次方程,则k 的取值范围是______.27.当a =_____时,分式32a a +-的值为-4. 28.三角形的三边长分别为7,1+2x ,13,则x 的取值范围是___ 29.25y x +=用含x 的式子表示y 为________________________.30.若关于x ,y 的二元一次方程组2630x my x y -=⎧⎨-=⎩的解是正整数,则整数m =_______.31.某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,则成本价为______元.32.已知A ∠与的B ∠两边分别平行,且A ∠比B ∠的3倍少20°,则A ∠的大小是__________.33.已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩, (1)代数式224x y +的值是_____. (2)代数式112x y+的值是______.34.已知关于x ,y 的方程组225,234x y m x y m +=-⎧⎨-=-⎩的解满足1x <,2y <,则m 的取值范围为______.35.已知关于x ,y 的不等式组100x x a ->⎧⎨-⎩有以下说法:①若它的解集是1<x ≤4,则a =4;①当a =1时,它无解;①若它的整数解只有2,3,4,则4≤a <5;①若它有解,则a ≥2.其中所有正确说法的序号是_____.36.若关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,则k 的取值范围为__.37.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.38.如果关于x 的方程x2+2ax ﹣b2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a +b=_____.39.某车间 56 名工人,每人每天能生产螺栓 16 个或螺母 24 个,设有 x 名工人生产螺栓, 有 y 名工人生产螺母,每天生产的螺栓和螺母按 1:2 配套,所列方程组是________. 40.若分式方程2211x m x x x x x+-=++有增根,则m 的值是______.三、解答题 41.解下列方程: (1)3x +7=32﹣2x ; (2)121224x x +--=+. 42.解方程:242111x x x++=---. 43.解方程组:(1)32528x y x y +=⎧⎨-=⎩;(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩.44.某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元? 45.当k 为何值时,方程x 2﹣6x+k ﹣1=0, (1)两根相等; (2)有一根为0. 46.解方程组或不等式组:(1)20346x y x y +=⎧⎨+=⎩;(2)53231204x x x +≥⎧⎪⎨--<⎪⎩ 47.已知一个四位自然数N ,它的各个数位上的数字均不为0,且满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“和对称数”,将这个四位自然数N 的千位数字和百位数字互换,十位数字和个位数字互换,得到N ',规定()101N N F N '+=. 例如:4536N =,①4536+=+,①4536是“和对称数”,()45365463453699101F +==.2346N =,①2346+≠+,①2346不是“和对称数”.(1)请判断2451、3972是不是“和对称数”,并说明理由.若是,请求出对应的()F N 的值.(2)已知A ,B 均为“和对称数”,其中100010746A a b =++,1002026B m n =++(其38a ≤≤,05b ≤≤,29m ≤≤,512n ≤≤,且均为整数),令()()32k F A F B =+,当k能被77整除时,求出所有符合条件的A 的值. 48.解决以下问题:(1)221x y ±++,的算术平方根是5,求2318x y -+的立方根; (2)的值互为相反数,求a b c 、、的值. 49.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A 品牌足球共花费2880元,B 品牌足球共花费2400元,且购买A 品牌足球数量是B 品牌数量的1.5倍,每个足球的售价,A 品牌比B 品牌便宜12元. (1)求去年A ,B 两种足球的售价;(2)今年由于参加俱乐部人数增加,需要从该店再购买A ,B 两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A 品牌比去年提高了5%,B 品牌比去年降低了10%,如果今年购买A ,B 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B 品牌足球?50.某生态柑橘园现有柑橘31吨,租用9辆A 和B 两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A 型货车的总费用500元,B 型货车的总费用480元,每辆B型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?参考答案:1.D【分析】利用不等式的性质由已知条件可得到x+y>0,从而得到正确选项.【详解】①3x>﹣3y,①3x+3y>0,①x+y>0.故选D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.Ax->,即可求得x的取值范围.【分析】1x-大于0即10【详解】根据题意得:x->10x>解得:1故选A.【点睛】本题主要考查了一元一次不等式的应用,把判断一个式子的值的取值范围的问题掌握不等式的问题,这是解本题的关键.3.B【分析】求出不等式的解集,表示出数轴上即可.【详解】解:不等式x+1<2,解得:x<1,如图所示:故选B.【点睛】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.A【详解】试题分析:本题考查了在数轴上表示不等式的解集:利用数轴表示不等式的解集体现了数形结合的思想.也考查了解一元一次不等式.先解不等式得到x≥﹣3,在数轴上表示为﹣3的右侧部分且含﹣3,这样易得到正确选项. 考点:在数轴上表示不等式的解集;解一元一次不等式 5.D【分析】把常数项-99移项后,应该在左右两边同时加上一次项系数-2的一半的平方. 【详解】把方程x 2-2x -99=0的常数项移到等号的右边,得到x 2-2x =99 方程两边同时加上一次项系数一半的平方,得到x 2-2x +1=100 配方得(x -1)2=100. 故选D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 6.D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:①分式方程43233m xx x +=+--有增根, ①3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 7.C【分析】此题是工程问题,它的等量关系是A 独做的加上A 、B 合做的是总工程的23,此题可以分段考虑,A 独做了5天,合作了(x -5)天,利用等量关系列方程即可解得. 【详解】设共需x 天. 根据题意得:5112(5)()1010153x +-+= 解得:x =6. 故选C .8.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:①534x kx -=+, ①57x kx -=,即()57k x -=, 当50k -≠时, ①75x k=-, ①关于x 的方程534x kx -=+有整数解,k 为整数, ①51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =, ①()4621220++-+=,①满足条件的所有整数k 的和为20. 故选A .【点睛】本题考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解本题的关键. 9.B【分析】解不等式组,得到关于x 的解集,再找出符合x 取值范围的整数解即可. 【详解】解:解不等式3x −7≥2得:x ≥3, 解不等式3x −7<8得:x <5, 即不等式组的解集为:3≤x <5,符合3≤x <5的x 的整数解为:3,4共2个, 故选:B .【点睛】本题考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的方法. 10.D【分析】根据等式的基本性质进行分析判断即可.【详解】解:A 选项中,“如果a b =,那么23a b +=+”是不成立的,故不能选A ; B 选项中,“如果a b =,那么23a b -=-”是不成立的,故不能选B ;C选项中,“如果2a a=,那么1a=”不一定成立,因为a的值可能为0,故不能选C;D选项中,“如果a bc c=,那么a b=”成立,故选D.故选:D.【点睛】本题考查等式的基本性质,熟记“等式的基本性质:(1)等式的两边都加上或者减去同一个整式,所得结果仍是等式;(2)等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式”是解答本题的关键.11.B【分析】根据一元一次方程的定义逐项分析判断即可求解.【详解】解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、不是等式,即不是一元一次方程,故本选项错误;D、不是整式方程,即不是一元一次方程,故本选项错误.故选B.【点睛】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).12.C【详解】解:设甲每小时骑行x公里,根据题意得:30252=-x x.故选C.13.D【详解】试题分析:一月份获利10万元,二月份获利10(1+x)万元,三月份获利10万元,然后根据一季度的总获利得出方程.考点:一元二次方程的应用14.D【分析】根据等式的性质求解即可.【详解】解:由图可知,2个球体的质量=5个圆柱的质量,2个正方体的质量=3个圆柱的质量,①6个球体的质量=15个圆柱的质量,10个正方体的质量=15个圆柱的质量,①6个球体的质量=10个正方体的质量,①3个球体的质量=5个正方体的质量,故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式. 15.A【分析】先求出方程的解,再根据﹣3<a ≤3的范围,即可求解.【详解】解:由x +a =2,得:x =2-a ,①﹣3<a ≤3,①﹣1≤2-a <5,即:﹣1≤x <5,故选A .【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键.16.D【分析】根据等式的性质逐个判断即可得到答案.【详解】解:由题意可得,若a b =,则111a b b +=+>-,故A 选项错误不符合题意;若32a b =,则23a b =,故B 选项错误不符合题意; 若2a b -=,则2a b =+,故C 选项错误不符合题意;若44b a -=-,则a b =,故D 选项正确符合题意;故选D .【点睛】本题考查等式的性质:等式两边同时加上或减去同一个数等式性质不变,等式两边同时乘以或除以同一个不为0的数等式性质不变.17.C【分析】设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键. 18.A【分析】由①代入①、①消去x,解二元一次方程组得出y、z的数值,再进一步求得x的数值解决问题.【详解】10318x y zx yx y z++=⎧⎪+=⎨⎪=+⎩①②③,把①代入①得:y+z=5①,把①代入①得:4y+3z=18①,①×4–①得:z=2,把z=2代入①得:y=3,把y=3,z=2代入①得:x=5,则方程组的解为532xyz=⎧⎪=⎨⎪=⎩,故选A.【点睛】此题考查三元一次方程组的解法,注意逐步消元是解决问题的关键.19.C【详解】试题分析:因为15÷4=3余3空瓶,所以可换3瓶喝完,还剩3+3=6空瓶,拿出4空瓶换一瓶,还剩3个空瓶子,找人借一个瓶子凑齐四个喝完还剩一个再把这个瓶子还给那个人,故最多可以喝五瓶矿泉水.故选C.考点:命题.20.C【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【详解】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则5x x -解得x =20.经检验x =20是原方程的根,且符合题意.①x =20是所列方程的解.①x -5=15.①甲的工作效率是120,乙的工作效率是115, 则丙的工作效率是110. ①一轮的工作量为:1111320151060++=. ①4轮后剩余的工作量为:52216015-=. ①还需要甲、乙分别工作1小时后,丙需要的工作量为:211115201560--=. ①丙还需要工作16小时. 故一共需要的时间是:3×4+2+16=14 16小时. 故选:C . 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 21.2【分析】根据题意直接列一元一次不等式,并求解即可.【详解】解:设蛋白质的含量至少应为x 克,依题意得:0.4%500x ≥, 解得x ≥2,则蛋白质的含量至少应为2克.【点睛】本题考查了一元一次不等式的应用,根据题意正确列出不等式是解题的关键. 22.7 【分析】先解方程23252x x -+=-,得97x =,因为这个解也是方程72x b -=的解,根据方程的解的定义,把x 代入方程72x b -=中求出b 的值. 【详解】解:由23252x x -+=-,得2420(515),x x -=-+7所以可得97277b =⨯-= 故答案为:7.【点睛】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.23.364y - 【详解】方程4x −3y +6=0,解得:x =364y -, 故答案为364y -. 24.0##1【分析】分别求出两个不等式的解集,再求出两个解集的公共部分,即可得到答案.【详解】()212143x x x +>⎧⎪⎨-+>⎪⎩①② 解不等式①得:1x >-;解不等式①得:2x <;所以不等式组的解集为:12x -<<;则其整数解为0与1.故答案为:0(或1).【点睛】本题考查了求一元一次不等式组的整数解,正确并熟练地解一元一次不等式是解题的关键.25.m≤14【分析】一元二次方程有实数根,则①≥0,建立关于m 的不等式,求出m 的取值范围.【详解】解:由题意知,①=1﹣4m≥0, ①m≤14, 故答案为m≤14. 【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,①≥0. 26.1k ≠【分析】根据一元二次方程的定义列式计算即可得解.【详解】①关于x 的方程()21410k x x ---=是一元二次方程,①10k -≠,①1k ≠,故答案为:1k ≠.【点睛】本题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.27.1【分析】根据题意列出方程即可求出答案. 【详解】解:由题意得:342a a +=--, 去分母得,()342a a +=-- ,解得,1a =,经检验1a =是分式方程的解,故答案为:1【点睛】本题考查分式方程,解题的关键是熟练运用分式方程的解法.28.3<x <6【详解】试题分析:根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,可得13-7< 1+2x <20,解得3<x <6 .考点:三角形三边之间的关系点评:该题考查了三角形三边之间的关系,已知三角形的两边长,可以求第三边的范围,即两边之差<第三边长<两边之和.29.y=-2x+5【分析】把x 看做已知数求出y 即可.【详解】解:方程y+2x=5,解得:y=-2x+5.故答案为:y=-2x+5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .30.0,3,4,5【分析】先解方程组2630x myx y-=⎧⎨-=⎩,用m表示出方程组的解,根据方程组有正整数解得出m的值.【详解】解:2630x myx y-=⎧⎨-=⎩①②由①得:x=3y ①,把①代入①得:6y−my=6,①y=66-m,①x=186-m,①方程组2630x myx y-=⎧⎨-=⎩的解是正整数,①6−m>0,①m<6,并且66-m和186-m是正整数,m是整数,①m的值为:0,3,4,5.故答案是:0,3,4,5.【点睛】本题考查了二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.31.185【分析】设每件服装标价为x元,再根据无论亏本或盈利,其成本价相同,列出方程,求出x的解,最后根据成本价=服装标价×折扣,即可得出答案.【详解】解:设每件服装标价为x元,根据题意得:0.5x+35=0.8x-55,解得:x=300.则每件服装标价为300元,成本价是:300×50%+35=185(元),故答案为:185.【点睛】此题主要考查了一元一次方程的应用,正确找出等量关系是解题的关键.32.10°或130°【分析】根据A ∠与B ∠两边分别平行,由A ∠比B ∠的3倍少20°列方程求解即可得到答案.【详解】①A ∠比B ∠的3倍少20°,①A ∠=3B ∠- 20°,①A ∠与B ∠两边分别平行,①①A 与①B 相等或互补,①当A ∠=B ∠时,得到①A =3①A - 20°,①①A =10°;①当①A +①B =180°时,得到①A =3(180°-①A )-20°,①①A =130°,故答案为:10°或130°.【点睛】此题考查平行线的性质,解一元一次方程,能正确理解两边分别平行的两个角的关系是解题的关键.33. 17 54± 【分析】(1)令224n x y m xy +==,,将原方程组可化为关于m 、n 的二元一次方程组,进行求解即可;(2)先根据完全平方公式求出25x y +=±,再将112x y+通分进行计算即可. 【详解】(1)令224n x y m xy +==,,原方程组可化为3247236m n m n -=⎧⎨+=⎩, 解得172m n =⎧⎨=⎩, 即221724x y xy +==,,故答案为:17;(2)222(2)4178254x y x y xy +=+=+=+,25x y ∴+=±1125224x y x y xy +±∴+==,故答案为:54±. 【点睛】本题考查了解二元一次方程组,完全平方公式的变形,异分母分式相加等,熟练掌握知识点并运用整体代入法是解题的关键.34.823m -<< 【分析】先解出方程组的解,再根据解的情况列出关于m 的不等式组,解不等式组即可求解.【详解】解:225234x y m x y m +=-⎧⎨-=-⎩①② ①+①得:x =-1-m ,将x =-1-m 代入①中,得:y =342m -, ①该方程组的解满足1x <,2y <, ①113422m m --<⎧⎪⎨-<⎪⎩, 解得:823m -<<. 故答案为:823m -<<. 【点睛】本题考查解二元一次方程组的应用、解一元一次不等式组,熟练掌握二元一次方程组、一元一次不等式组的解法,正确解出x 、y 值是解答的关键.35.①①①【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:解不等式x ﹣1>0得,x >1;解不等式x ﹣a ≤0得,x ≤a ,故不等式组的解集为:1<x ≤a .①①它的解集是1<x ≤4,①a =4,故本小题正确;①①a =1,x >1,①不等式组无解,故本小题正确;①①它的整数解只有2,3,4,则4≤a <5,①4≤a <5,故本小题正确;①①它有解,①a >1,故本小题错误.故答案为:①①①.【点睛】本题主要考查了解一元一次不等式组,掌握解一元一次不等式组是解题的关键. 36.13k <<【分析】先求出方程组的解,根据题意得出关于k 的不等式组,再求出不等式组的解集即可.【详解】解:解方程组221x y x y k +=⎧⎨+=+⎩得:13x k y k=-⎧⎨=-⎩, 关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数, ∴1030k k ->⎧⎨->⎩, 解得:13k <<,故答案为:13k <<.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k 的不等式组是解此题的关键.37.22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式①得,x ≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).38.±2.【分析】根据根的判别式求出△=0,求出a 2+b 2=2,根据完全平方公式求出即可.【详解】解:①关于x 的方程x 2+2ax-b 2+2=0有两个相等的实数根,①①=(2a )2-4×1×(-b 2+2)=0,即a 2+b 2=2,①常数a 与b 互为倒数,①ab=1,①(a+b )2=a 2+b 2+2ab=2+2×1=4,①a+b=±2,故答案为±2.【点睛】本题考查了根的判别式和解高次方程,能得出等式a 2+b 2=2和ab=1是解此题的关键.39.5621624x y x y +=⎧⎨⨯=⎩【分析】此题中的等量关系有:①生产螺栓人数+生产螺母人数=56人;①每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量.【详解】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y .列方程组为:5621624x y x y +=⎧⎨⨯=⎩故答案为5621624x y x y +=⎧⎨⨯=⎩【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.40.1-或2【分析】根据增根是化为整式方程后产生的不适合分式方程的根,先把分式方程去分母化为整式方程,再通过使最简公分母不为0确定增根的可能值,将其代入整式方程即可算出m 的值.【详解】解:①2211x m x x x x x+-=++, ①()2221x m x -=+,①221m x x =--. ①2211x m x x x x x+-=++有增根, ①0x =或=1x -.当0x =时,2211m x x =--=-;当=1x -时,2212m x x =--=.①m 的值为1-或2.故答案为:1-或2【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;①化分式方程为整式方程;①把增根代入整式方程即可求得相关字母的值. 41.(1)x =5;(2)x =4.【分析】(1)移项,合并同类项,系数化成1即可;(2)去分母,然后移项,合并同类项,系数化成1即可.【详解】解:(1)移项合并得:5x =25,解得:x =5;(2)去分母得:2x +2﹣4=8+2﹣x ,移项合并得:3x =12,解得:x =4.【点睛】本题考查一元一次方程的解法,掌握一元一次方程的解法是关键.42.13x = 【分析】观察可得最简公分母是(x +1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:242111x x x ++=--- 整理,得:421(1)(1)1x x x x +-=-+-- 方程两边都乘以(x +1)(x ﹣1),得4﹣(x +1)(x +2)=﹣(x 2﹣1),整理,得,3x =1, 解得1x=3. 经检验,1x=3是原方程的根.①原方程的解是1x=3.【点睛】本题考查解分式方程,注意解分式方程,结果要检验.43.(1)32x y =⎧⎨=-⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求出解即可.(2)去分母后,加减法消元解方程.【详解】解:(1)32528x yx y+=⎧⎨-=⎩①②,①×2得,4x﹣2y=16①,①+①得,7x=21,解得x=3,把x=3代入①得,2×3﹣y=8,解得y=﹣2,所以,方程组的解是32xy=⎧⎨=-⎩;(2)方程组可化为4324347x yx y+=⎧⎨-=-⎩①②,①×4得,16x+12y=96①,①×3得,9x﹣12y=﹣21①,①+①得,25x=75,解得x=3,把x=3代入①得,3×3﹣4y=﹣7,解得y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.44.在这两笔生意中,商场共盈利90260元.【分析】盈利=总售价-总进价,应求出某商品的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价-4.【详解】设商场第一次购进某商品x件,则第二次购进某商品2x件,根据题意得:8000017600042x x-=.160000=176000-8x解这个方程得:x=2000.经检验:x=2000是原方程的根.商场利润:(2000+4000-150)×58+58×0.8×150-80000-176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.45.(1)k=10;(2)k=1.【分析】(1)方程由两个相等的根,则△=0;(2)有一个根是0,则两根之积为0.【详解】解:(1)△=36﹣4(k-1)=40-4k,①两根相等,①①=0,即k=10;(2)①有一根为0,①0∆≥,即10k≤,由根与系数的关系可得,k﹣1=0,①k=1.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握是解题的关键.一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.46.(1)63xy=⎧⎨=-⎩;(2)13x-≤<【分析】(1)方程组利用代入消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,表示在数轴上即可.【详解】(1)解:20 346 x yx y+=⎧⎨+=⎩①②方程①可化为2x y=-①把①代入①,得解得y=-3把y=-3代入①,得x=()236-⨯-=所以原方程组的解为:63x y =⎧⎨=-⎩(2)53231204x x x +≥⎧⎪⎨--<⎪⎩①② 解不等式①得1x ≥-解不等式①得3x <所以不等式组的解集为13x -≤<将其在数轴上表示如下:【点睛】本题两个小题分别考查了解二元一次方程组和解一元一次不等式组,根据相关题目要求按步骤求解是解题的关键47.(1)3972不是“和对称数”,2451是“和对称数”,理由见解析,()F N 值为66(2)A 的值为3746,4756,6776,5766,7786,8796【分析】(1)根据“和对称数”的定义,即可求解;(2)根据题意分别表示出()(),F A F B ,再由()()32k F A F B =+,k 能被77整除,并结合a ,m 的取值范围进行分类讨论,即可求解.【详解】(1)解:3972不是“和对称数”,①3924+≠,①3972不是“和对称数”.2451是“和对称数”,①2451+=+,。

八年级数学上册一元一次不等式专题卷(附答案)

八年级数学上册一元一次不等式专题卷(附答案)

八年级数学上册一元一次不等式专题卷(附答案)评卷人得分一、选择题(题型注释)1.如果不等式组无解,那么m 的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤52.不等式组840312xx-⎩≤-⎧⎨>的解集在数轴上表示为()3.如果不等式无解,则b的取值范围是()A.b>﹣2 B.b<﹣2 C.b≥﹣2 D.b≤﹣24.不等式2x﹣6<0的解集是()A.x>3 B.x<3 C.x>﹣3 D.x<﹣35.已知不等式组,其解集在数轴上表示正确的是()6.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2 D.-3≤b<-27.不等式组的解集在数轴上表示为()A. B .C . D.8.在数轴上表示不等式组202(1)1xx x+>⎧⎨-≤+⎩的解集,正确的是()A. B. C . D.9.不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<310.如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤811.已知不等式组1x a x >⎧⎨≥⎩的解集是x ≥1,则a 的取值范围是( ) A .a <1 B .a ≤1 C .a ≥1 D .a >1 评卷人得分二、填空题(题型注释) 12.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表的得分目标为不低于88分,则这个队至少要答对 道题才能达到目标要求.13.不等式组⎩⎨⎧-≤->+x x x 81212的最大整数解是 .14.不等式组的解集为 .15.不等式组10241x x x +⎧⎨+-⎩>≥的解集为 . 16.定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 。

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析1.求不等式组的整数解。

【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.2.不等式x>x-1的非负数解的个数是()A.1B.2C.3D.无数个【答案】B.【解析】移项得:x<1,解得:x<,则不等式x>x-1的非负整数解为1,0,共2个.故选B.【考点】一元一次不等式的整数解.3.下列不等式变形正确的是()A.B.C.D.【答案】D【解析】A、若c<0,则A错误;B、由不等式的基本性质1,可知错误;C、若a<0,则C错误;D、由不等式的基本性质3,可知D正确,故选D【考点】不等式的基本性质4.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解5.如果关于x的不等式组无解,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤1【答案】D.【解析】∵关于x的不等式组无解∴3-m≥m+1解得:m≤1,故选D.【考点】解一元一次不等式组6.如果不等式(m-2)x>2-m的解集是x<-1, 则有()A.m>2B.m<2C.m=2D.m≠2【答案】B.【解析】∵(m-2)x>2-m的解集是x<-1,∴m-2<0,∴m<2.故选:B.【考点】不等式的性质.7.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?【答案】10.【解析】关系式为:4×第一层房间数<48;5×第一层房间数>48;3×第二层房间数<48;4×第二层房间数>48,把相关数值代入求整数解即可.试题解析:设第一层有客房x间,则第二层有(x+5)间,由题可得由①得:,解得:;由②得:,解得:7<x<11.∴原不等式组的解集为.∴整数x的值为x=10.答:一层有客房10间.【考点】一元一次不等式组的应用.8.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.9.已知关于x,y的方程组的解为非负数,求整数m的值.【答案】7,8,9,10.【解析】此题考查了解方程组与解不等式组,根据题意可以先求出方程组的解(解中含有字母m),然后根据x≥0,y≥0,组成关于m的不等式组,解不等式组即可求解.试题解析:解方程组可得.因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.考点: 1一元一次不等式组的整数解;2.解二元一次方程组.10.下列不等式一定成立的是()A.4a>3a B.3-x<4-x C.-a>-3a D.【答案】B.【解析】A、当a=0时,4a=3a,故选项错误;B、正确;C、当a=0时,-a=-3a,故选项错误;D、当a<0时,.故选B【考点】不等式的性质.11.下列不等式变形正确的是()A.由,得B.由,得-2a>-2bC.由,得D.由,得【答案】B【解析】A错误:当c=0时,ac>bc不成立。

初中数学方程与不等式之一元一次方程基础测试题附答案(1)

初中数学方程与不等式之一元一次方程基础测试题附答案(1)

初中数学方程与不等式之一元一次方程基础测试题附答案(1)一、选择题1.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.2.甲、乙两人环湖竞走,环湖一周为400米,乙的速度是80米/分,甲的速度是乙的54倍,且甲在乙前100米处,多少分钟后,两人第一次相遇?设经过x 分钟两人第一次相遇,所列方程为( )A .580100804x x +=⨯ B .580300804x x +=⨯ C .580100804x x -=⨯ D .580300804x x -=⨯ 【答案】B【解析】【分析】根据题意表示出甲的速度为80×54米/分,然后根据题意可得等量关系:甲x 分钟的路程-乙x 分钟的路程=400-100,根据等量关系列出方程即可.【详解】解:设经过x 分钟两人第一次相遇,由题意得:80×54x-80x=400-100, 变形得:80x+300=54×80x , 故选:B .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是正确理解题意,找出题目中等量关系,列出方程.3.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( )A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭ B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭ 【答案】A【解析】【分析】 由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可.【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A.【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.4.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.5.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .2 【答案】B【解析】分析:可设两人相遇的次数为x ,根据每次相遇的时间100254⨯+,总共时间为100s ,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有 100254⨯+x=100, 解得x=4.5,∵x 为整数,∴x 取4.故选B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.6.某商品打七折后价格为a 元,则原价为( )A .a 元B .107a 元C .30%a 元D .710a 元 【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x 元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4 C.3 D.不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x-2=5且2x-1=7或3x-2=7且2x-1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质8.如图所示是边长分别为60cm和80cm的两种正方形地砖,这两种地砖每平方厘米的造价相同,若边长为60cm的地砖的造价为90元,则边长为80cm的正方形地砖的造价为()A.120元B.160元C.180元D.270元【答案】B【解析】【分析】设边长为80cm的正方形地砖的造价为x,根据每平方厘米的造价相同列方程求出x的值即可得答案.【详解】设边长为80cm的正方形地砖的造价为x元,∵两种地砖每平方厘米的造价相同,∴9060608080x=⨯⨯,解得:x=160,故选:B.【点睛】本题考查一元一次方程的应用,正确得出等量关系列出方程是解题关键.9.下列方程中,是一元一次方程的是( )A .x 2﹣4x =3B .x =0C .x +2y =1D .x ﹣1=1x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x 2﹣4x =3,未知数x 的最高次数为2,故A 不是一元一次方程;x =0,符合一元一次方程的定义,故B 是一元一次方程;x +2y =1,方程含有两个未知数,故C 不是一元一次方程; x ﹣1=1x,分母上含有未知数,故D 不是一元一次方程. 故选择B.【点睛】本题考查了一元一次方程的定义.10.对于方程5112232x x -+-=,去分母后,得到方程正确的是( ) A .51212x x --=+ B .()51312x x -=+C .()()2516312x x --=+D .()()25112312x x --=+ 【答案】D【解析】【分析】方程的两边同时乘以各分母的最小公倍数.【详解】解:方程的两边同时乘以6,得2(5x-1)-12=3(1+2x).故选D .【点睛】本题考查了解一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.11.小明和小亮两人在长为50m 的直道AB(A 、B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B点……若小明跑步速度为5m/s ,小亮跑步速度为4m/s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6 【答案】C【解析】【分析】设在60s 内两人相遇x 次,根据每次相遇的时间50254⨯+,一共是60s ,列出方程求解即可. 【详解】设两人起跑后60s 内相遇x 次,依题意得:5026054x ⨯=+, 解得x=5.4,∵x 为整数,∴x 取5,故选:C.【点睛】 此题考查一元一次方程的实际应用,解题的关键一是求出两人每一次相遇间隔的实际,二是找到隐含的等量关系:每一次相遇时间乘以次数等于总时间,由此构建一元一次方程.12.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12D .-16【答案】B【解析】【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加.【详解】 12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k ,解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k ,1+4k≤6+5k ,k≥-5,解关于x的方程kx=2(x-2)-(3x+2)得,x=-61k,因为关于x的方程kx=2(x-2)-(3x+2)有非负整数解,当k=-4时,x=2,当k=-3时,x=3,当k=-2时,x=6,∴-4-3-2=-9;故选B.【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.13.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次B.3次C.2次D.1次【答案】B【解析】【分析】【详解】试题解析:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12-t=36-4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-36,解得t=9.6.∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选:B.考点:平行四边形的判定与性质14.商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x元,下列方程正确的是()A.45%(1+80%)x﹣x=80 B.x+45%﹣80%=80C.80%(1+45%)x﹣x=80 D.(1+80%)(1+45%)x﹣x=80【答案】C【解析】【分析】设这种自行车的进价是每辆x元,根据利润=卖价-进价,列方程即可.【详解】设这种自行车的进价是每辆x元,由题意得,80%(1+45%)x-x=80.故选:C.【点睛】本题考查了一元一次方程的应用-销售问题,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.15.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A.3场B.4场C.5场D.6场【答案】C【解析】【分析】设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.16.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【答案】D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为().A.407 B.406 C.405 D.404【答案】D【解析】【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,由此得出ABn=5(n+1)×5+1,将2026代入求出n即可.【详解】∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,∴AB1=AA1+A1A2+A2B1=5+5+1==2×5+1=11,∴AB2的长为:5+5+6=3×5+1=16,……∴ABn=5(n+1)+15(n+1)+1=2026,解得:n=404,故选D.【点睛】本题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.18.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.19.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由n %提高到(n +6)%,则n 的值为( ).A .10B .12C .14D .17【答案】C【解析】【分析】设原进价为x ,根据等量关系:原进价+原来利润=进价降低后的进价+降价后的利润列方程求解即可.【详解】解:设原进价为x ,则:x+n%•x=95%•x+95%•x•(n+6)%,∴1+n%=95%+95%(n+6)%,∴100+n=95+0.95(n+6),∴0.05n=0.7解得:n=14.故选C .【点睛】本题考查了一元一次方程的应用,此类题常用到得数量关系是:售价=进价+利润,进价×利润率=利润.20.下列等式变形正确的是( )A .如果0.58x =,那么x=4B .如果x y =,那么-2-2x y =C .如果a b =,那么a b c c= D .如果x y =,那么x y = 【答案】B【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时除以一个不为0的数,等式依然成立;两个数的绝对值相等,其本身不一定相等,据此逐一判断即可.【详解】A :如果0.58x =,那么16x =,故选项错误;B :如果x y =,那么22x y -=-,故选项正确;C :如果a b =,当0c ≠时,那么a b c c=,故选项错误; D :如果x y =,那么x y =±,故选项错误;故选:B.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.。

人教版初中数学方程与不等式之一元一次方程技巧及练习题附答案

人教版初中数学方程与不等式之一元一次方程技巧及练习题附答案

人教版初中数学方程与不等式之一元一次方程技巧及练习题附答案一、选择题1.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。

巍巍古寺在山林,不知寺内几多僧;三百六十四只碗,看看用尽不差争;三人共食一碗饭,四人其吃一碗羹;请问先生明算者,算来寺内几多僧?”意思是说:山林中有一个古寺,寺里共有364个碗,平均三个僧人共用一个碗吃饭,四个僧人共用一个碗喝汤,问寺中有多少个僧人?( )A .364B .91C .624D .100【答案】C【解析】【分析】读懂题中的诗句,找出条件,共有364只碗,三人共食一碗饭,四人共吃一碗羹.可以列出方程.【详解】设寺中有x 个僧人,根据题意列方程,得 36434x x +=, 解得624x =,∴寺中有624个僧人.故选:C.【点睛】解决本题的关键是找出人数和碗数之间的关系,从而列出方程求出答案.失分的原因:对题意理解的不准确.2.8×200=x+40解得:x=120答:商品进价为120元.故选:B .【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.3.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100【答案】B【解析】【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x 元,售价为每件0.8×200元,由题意得4.下列说法正确的是( )A .若a c =b c,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 【答案】A【解析】【分析】按照分式和整式的性质解答即可.【详解】 解:A .因为C 做分母,不能为0,所以a=b ;B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数.故选 :A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.5.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程.6.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12D .-16【答案】B【解析】【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加.【详解】12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k ,解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k ,1+4k≤6+5k ,k≥-5,解关于x 的方程kx=2(x-2)-(3x+2)得,x=-61k +, 因为关于x 的方程kx=2(x-2)-(3x+2)有非负整数解,当k=-4时,x=2,当k=-3时,x=3,当k=-2时,x=6,∴-4-3-2=-9;故选B .【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.7.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A .0150250x =⨯B .0251500x ⋅= C .0015025x x-= D .0150250x -= 【答案】C【解析】【分析】 等量关系为:成本×(1+利润率)=售价,把相关数值代入即可【详解】 解:设这种服装的成本价为x 元,那么根据利润=售价-成本价,可得出方程:150-x=25%x ;15025%x x-= 故应选C8.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元【答案】C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.9.一项工程,甲队独做10天完成,乙队独做15天完成,两队合作完成这项工程需要的天数为( )A .25B .12.5C .6D .无法确定 【答案】C【解析】【分析】设两队合作,需要x 天完成,根据甲队独做10天可以完成,一天完成工程的110,乙队独做15天可以完成,一天完成工程的115,列出方程,求出x 的值即可. 【详解】解:设两队合作,需要x 天完成,根据题意得: (111015+)x=1, 解得:x=6,答:两队合作,需要6天完成;故选:C.【点睛】此题考查了一元一次方程在工程问题中的应用,关键是读懂题意,找出之间的数量关系,列出方程,等量关系是工作量=效率和×合作时间.10.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是()A.20岁B.16岁C.15岁D.12岁【答案】A【解析】【分析】设乙今年的年龄是x岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于()A.10分 B.15分 C.20分 D.30分【答案】C【解析】解:根据题意列方程得:260t+800=300t,解得:t=20,故选C.点睛:此题要把握再相遇时甲比已多跑了800米,这是一个追及问题,别把它混为相遇问题就能解决.12.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.13.若代数式x+2的值为1,则x等于( )A.1 B.-1 C.3 D.-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.14.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由n %提高到(n +6)%,则n 的值为( ).A .10B .12C .14D .17【答案】C【解析】【分析】设原进价为x ,根据等量关系:原进价+原来利润=进价降低后的进价+降价后的利润列方程求解即可.【详解】解:设原进价为x ,则:x+n%•x=95%•x+95%•x•(n+6)%,∴1+n%=95%+95%(n+6)%,∴100+n=95+0.95(n+6),∴0.05n=0.7解得:n=14.故选C .【点睛】本题考查了一元一次方程的应用,此类题常用到得数量关系是:售价=进价+利润,进价×利润率=利润.15.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里 【答案】C【解析】【分析】【详解】试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里. 故选C16.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程1ax y +=的解,则a 的值等于( ) A .3 B .1 C .1- D .3-【答案】A【分析】将方程的解代入所给方程,再解关于a 的一元一次方程即可.【详解】解:将12x y =⎧⎨=-⎩代入1ax y +=得,21a -=, 解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =-【答案】B【解析】【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.18.方程|2x+1|=7的解是( )A .x=3B .x=3或x=﹣3C .x=3或x=﹣4D .x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】 解:由绝对值的意义,把方程217x +=变形为: 2x +1=7或2x +1=-7,解得x =3或x =-4【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.19.为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,则该同学家这一年的用水量为()某市居民用水阶梯水价表A.250m3B.270m3C.290m3D.310m3【答案】C【解析】【分析】利用表格中数据得出水费超过1460元时包括第三阶梯水价费用,进而得出等量系求出即可.【详解】解:设该同学这一年的用水量为x,根据表格知,180×5+80×7=1460<1730,则该同学家的用水量包括第三阶梯水价费用,依题意得:180×5+80×7+(x−260)×9=1730,解得x=290.故选C.【点睛】本题考查了一元一次方程的应用.20.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人【答案】A【解析】【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+1003x=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.。

第8章 一元一次不等式 华东师大版七年级数学下册测试题(一)及答案

第8章 一元一次不等式 华东师大版七年级数学下册测试题(一)及答案

第8章 一元一次不等式测试题(一)一、选择题(每小题3分,共30分)1. 语句“x 的18与x 的和不超过5”可以表示为( ) A.8x +x≤5 B. 8x +x≥5 C. 85x +≤5 D. 8x +x=5 2. 已知a <b ,下列不等式中正确的是( ) A.3a >3b B. a -3<b -3 C. a +3>b +3 D. -3a <-3b3. 不等式2x-6>0的解集在数轴上表示正确的是( )A B C D4. 如果关于x 的不等式 (a+2020)x >a+2020的解集为x <1,那么a 的取值范围是( ) A. a >-2020B. a <2020C. a >2020D. a <-20205. 如图1是小芳同学解不等式的过程,其中错误步骤共有( ) A. 1个B. 2个C. 3个D. 4个图16. 某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对 多少道题?如果设小亮答对了x 道题,根据题意列式得( )A. 5x -3(30+x )≥70B. 5x +3(30-x )≤70C. 5x +3(30-x )>70D. 5x -3(30-x )>707. 已知点M (5-m ,m +3)在第一象限,则下列关系式正确的是( ) A. 3<m <5B. -3<m <5C. -5<m <3D. -5<m <-38. (2019•恩施州)已知关于x 的不等式组2113320x x a x -⎧⎪⎨⎪-⎩--≤<,恰有3个整数解,则a 的取值范围为( ) A. 1<a ≤2B. 1<a <2C. 1≤a <2D. 1≤a ≤29.下面是创意机器人大观园中十种类型机器人套装的价目表:类型①②③④⑤⑥⑦⑧⑨⑩价格/元180013501200800675516360300280188“六一”儿童节期间,小明在这里看好了类型④机器人套装,爸爸说:“今天有促销活动,九折优惠呢!你可以再选1套,但两套最终不超过1200元. ”那么小明再买第二套机器人可选择价格最贵的类型是()A. ④B. ⑤C. ⑥D. ⑧10. 如图2是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程. 如果程序运行两次就停止,那么x的取值范围是()A. x≥3B. 3≤x<7C. 3<x≤7D. x≤7图2二、填空题(每小题3分,共18分)11. 若(m-1)x|m|+3>0是关于x的一元一次不等式,则m的值为.12. 若4x-32的值不小于3x+5,则满足条件的x的最小整数是.13. 若关于x,y的二元一次方程组32133x y mx y-=+⎧⎨-+=⎩,的解满足x-y>0,则m的取值范围为.14. 若不等式组2x ab x-⎧⎨-⎩>,>的解集是0<x<2,则(a+b)2019=.15. 小明说不等式a>2a永远不会成立,因为如果在这个不等式两边同时除以a,就会出现1>2这样的错误结论.小明的说法(填写正确或不正确);如果正确请说明理由,不正确请举一个反例说明:.16. 小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图3中给出的信息,量筒中至少放入个小球时有水溢出.图3三、解答题(共52分)17. (每小题4分,共8分)解下列不等式(组):(1)3(x+2)-9≥-2(x-1);(2)12x+-1<x-233x+.18. (6分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组231213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩,的正整数解就是今天数学作业的题号. ”聪明的你知道今天的数学作业是哪几题吗?19.(8分)已知关于y的方程4y+2m+1=2y+5的解是负数.(1)求m的取值范围;(2)当m取最小整数时,解关于x的不等式:x-1>1 2mx+.20. (8分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程①3x-2=0,②2x+1=0,③x-(3x+1)=-5中,其中是不等式组25312x xx x-+-⎧⎨--+⎩>,>的相伴方程的是_____________. (填序号)(2)写出不等式组213133xx x-⎧⎨+-+⎩<,>的一个相伴方程,使得它的解是整数:.(3)若方程x=1,x=2都是关于x的不等式组22x x mx m-⎧⎨-⎩<,≤的相伴方程,求m的取值范围.21. (10分)已知x,y满足3x-4y=5.(1)用含x的式子表示y为;(2)若y满足-1<y≤2,求x的取值范围;(3)若x,y满足x+2y=a,且x>2y,求a的取值范围.22. (12分)某乡镇风力资源丰富,为了实现“低碳环保”,该乡镇决定开展风力发电,打算购买10台风力发电机组. 现有A,B两种型号机组,其中A型机组价格为12万元/台,月均发电量为2.4万kW・h;B型机组价格为10万元/台,月均发电量为2万kW・h. 经预算该乡镇用于购买风力发电机组的资金不高于105万元.(1)请你为该乡镇设计几种购买方案;(2)如果该乡镇每月用电量不低于20.4万KW・h月,为了节省资金,应选择哪种购买方案?附加题(共20分,不计入总分)1. (8分)我们知道,适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解. 同样地,适合二元一次不等式的一对未知数的值叫做这个二元一次不等式的一个解. 对于二元一次不等式2x+3y≤10,它的正整数解有()A. 4个B. 5个C. 6个D. 无数个2. (12分)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x-0|,也就是说,|x1-x2|表示在数轴上数x1 与数x2对应的点之间的距离.例1 解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2 解不等式|x-1|>2,在数轴上找出|x-1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x-1|=2的解为x=-1或x=3,因此不等式|x-1|>2的解集为x<-1或x>3.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)解不等式:|x-2|≤3;(3)解不等式:|x-4|+|x+2|>8.第8章一元一次不等式测试题(一)一、1. A 2. B 3. A 4. D 5. C 6. D 7. B8. A9. C10. B二、11. -1 12. 713. m>1 14. 015. 不正确当a=-2时,2a=-4,-2>-4,所以a>2a 16. 10三、17. 解:(1)去括号,得3x+6-9≥-2x+2.移项,得3x+2x≥2-6+9.合并同类项,得5x≥5.系数化为1,得x≥1.(2)去分母,得3(x+1)-6<6x-2(2x+3). 去括号,得3x+3-6<6x-4x-6.移项、合并同类项,得x<-3.18. 解:231213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩②.,①由①,得x≤2;由②,得x>-2.所以不等式组的解集为-2<x≤2,其正整数解为1,2,所以今天的数学作业是第1,2题.19. 解:(1)解方程4y+2m+1=2y+5,得y=2-m.根据题意,得2-m<0,解得m>2.(2)因为m>2时,m的最小整数解为3,所以将m=3代入x-1>12mx+,得x-1>312x+,解得x<-3.20. 解:(1)③(2)答案不唯一,如x-1=0(3)不等式组的解集为m<x≤m+2.因为x=1,x=2是不等式组的解,所以122mm+⎧⎨⎩<,≥,解得0≤m<1.21. 解:(1)354xy-=(2)根据题意,得-1<354x-≤2.解得13<x≤133.(3)解方程组3452x yx y a-=⎧⎨+=⎩,,得25535.10axay+⎧=⎪⎪⎨-⎪=⎪⎩,因为x>2y,所以255a+>2×3510a-,解得a<10.22. 解:(1)设购买A型发电机x台,则购买B型发电机(10-x)台. 根据题意,得12x+10(10-x)≤105.解得x≤2.5.因为x为非负整数,所以x的值为0,1或2.有三种购买方案:方案一:购买A型发电机0台,B型发电机10台;方案二:购买A型发电机1台,B型发电机9台;方案三:购买A型发电机2台,B型发电机8台.(2)设购买A型发电机x台,则购买B型发电机(10-x)台.根据题意,得2.4x+2(10-x)≥20.4.解得x≥1.由(1),得x≤2.5,且x为非负整数,所以x的值为1或2.当购买A型发电机1台,B型发电机9台时,所需费用为12+10×9=102(万元);当购买A型发电机2台,B型发电机8台时,所需费用为12×2+10×8=104(万元).因为102<104,所以为了节省资金,选择购买A型发电机1台,B型发电机9台这种方案.附加题1. B 提示:由2x+3y≤10,得x≤1032y-=5-32y. 因为x,y是正整数,所以5-32y>0,0<y<103,即y只能取1,2,3,当y=1时,0<x≤3.5,正整数解为11xy=⎧⎨=⎩,,21xy=⎧⎨=⎩,,31xy=⎧⎨=⎩,;当y=2时,0<x≤2,正整数解为12xy=⎧⎨=⎩,,22xy=⎧⎨=⎩,;,当y=3时,0<x≤12,无正整数解;综上,它的正整数解有5个.2. 解:(1)x=2或x=-8(2)因为在数轴上到2对应的点的距离等于3的点对应的数为-1或5,所以方程|x-2|=3的解为x=-1或x=5,所以不等式|x-2|≤3的解集为-1≤x≤5.(3)方程|x-4|+|x+2|=8的解就是在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值.因为在数轴上4和-2对应点的距离为6,所以满足方程的x的对应点在4的右边或-2的左边.若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3,所以方程|x-4|+|x+2|=8的解是x=5或x=-3.所以不等式|x-4|+|x+2|>8的解集为x>5或x<-3.。

专题03 一元一次方程(真题测试)(解析版)

专题03 一元一次方程(真题测试)(解析版)

专题03 一元一次方程(真题测试)一、单选题1.(2019 四川南充)关于x的一元一次方程2x a−2+m=4的解为x=1,则a+m的值为()A. 9B. 8C. 5D. 4【答案】C【考点】一元一次方程的定义,一元一次方程的解【解析】解:因为关于x的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故答案为:C.【分析】先根据一元一次方程的定义求出a的值,再根据一元一次方程的解的定义求出m 的值,即可求出a+m.2.(2019 安徽)已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则()A. b>0,b2-ac≤0B. b<0,b2-ac≤0C. b>0,b2-ac≥0D. b<0,b2-ac≥0【答案】D【考点】等式的性质【解析】∵a-2b+c=0,∵a+c=2b,∵a+2b+c=4b<0,∵b<0,∵a2+2ac+c2=4b2,即b2=a2+2ac+c24∵b2-ac= a2+2ac+c24−ac=a2−2ac+c24=(a−c)24≥0,故答案为:D.【分析】由a-2b+c=0,可得a+c=2b,即得a+2b+c=4b<0,根据等式性质可得a2+2ac+c2=4b2,从而求出b2-ac≥0,据此判断即可.3.(2017 滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A. 22x=16(27﹣x)B. 16x=22(27﹣x)C. 2×16x=22(27﹣x)D. 2×22x=16(27﹣x)【答案】D【考点】一元一次方程的实际应用-配套问题【解析】【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∵可得2×22x=16(27﹣x).故选D.【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.4.(2019 浙江杭州)已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设男生有e人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72D. 3x+2(30-x)=72【答案】D【考点】一元一次方程的其他应用【解析】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.二、填空题5.(2019 内蒙古呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x-2=0如果是一元一次方程,则其解为________.【答案】x=2或x=−2或x=-3【考点】一元一次方程的定义【解析】解:∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,∴2m﹣1=1,即m=1或m=0,方程为x﹣2=0或−x−2=0,解得:x=2或x=−2,当2m-1=0,即m= 12时,方程为12−12x−2=0解得:x=-3,故答案为:x=2或x=-2或x=-3.【分析】一元一次方程:只含有一个未知数,未知数最高次数是1且两边都为整式的等式。

2021全国中考真题:方程与不等式(一元一次方程答案版)

2021全国中考真题:方程与不等式(一元一次方程答案版)

2021全国中考真题分类汇编(方程与不等式)----一次方程(组)一、选择题1.(2021·安徽省)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是()A.a b c>> B.c b a>> C.4()a b b c -=- D.5()a c ab -=-【答案】D 【解析】【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误;B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误;C .4()a b b c -=-整理可得1455b ac =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确;故选:D .2.(2021•甘肃省定西市)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为()A .B .C .D .【分析】设共有x 人,y 辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:设共有x 人,y 辆车,依题意得:.故选:C .3.(2021•湖北省武汉市)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱;每人出7钱,还差4钱.问人数,物价是y 钱,则下列方程正确的是()A .8(x ﹣3)=7(x +4)B .8x +3=7x ﹣4C .=D .=【分析】根据人数=总钱数÷每人所出钱数,得出等式即可.【解答】解:设物价是y 钱,根据题意可得:=.故选:D .4.(2021•株洲市)方程122x-=的解是()A.2x =B.3x = C.5x = D.6x =【答案】D5.(2021•四川省成都市)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为()A .B .C .D .【分析】设甲需持钱x ,乙持钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【解答】解:设甲需持钱x ,乙持钱y ,根据题意,得:,故选:A6(2021•四川省南充市)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为()A .10x +5(x ﹣1)=70B .10x +5(x +1)=70C .10(x ﹣1)+5x =70D .10(x +1)+5x =70【分析】设每个肉粽x 元,则每个素粽(x ﹣1)元,根据总价=单价×数量,结合购买10个肉粽和5个素粽共用去70元,即可得出关于x 的一元一次方程,此题得解.【解答】解:设每个肉粽x 元,则每个素粽(x ﹣1)元,依题意得:10x +5(x ﹣1)=70.故选:A .7.(2021•天津市)方程组234x y x y +=⎧⎨+=⎩的解是()A.02x y =⎧⎨=⎩ B.11x y =⎧⎨=⎩C.22x y =⎧⎨=-⎩ D.33x y =⎧⎨=-⎩【答案】B 【解析】【分析】直接利用加减消元法解该二元一次方程组即可.【详解】234x y x y +=⎧⎨+=⎩①②,②-①得:32x y x y +--=,即22x =,∴1x =.将1x =代入①得:12y +=,∴1y =.故原二元一次方程组的解为11x y =⎧⎨=⎩.故选B .8.(2021•新疆)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是()A.26216x yx y+=⎧⎨+=⎩B.26216x yx y+=⎧⎨+=⎩C.16226x yx y+=⎧⎨+=⎩D.16226x yx y+=⎧⎨+=⎩【答案】D9.(2021•浙江省杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5【分析】依题意可知四月份接待游客25万,则五月份接待游客人次为:25(1+x),进而得出答案.【解答】解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则25(1+x)=60.8.故选:D.10.(2021•浙江省温州市).解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣3x﹣2=x,故选:D.11.(2021•江苏省无锡市)方程组的解是()A.B.C.D.【分析】将两个方程相加,可消去y,得到x的一元一次方程,从而解得x=4,再将x =4代入①解出y的值,即得答案.【解答】解:,①+②得:2x=8,∴x=4,把x=4代入①得:4+y=5,∴y=1,∴方程组的解为.故选:C.12.(2021•黑龙江省龙东地区)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有()A.5种B.6种C.7种D.8种【答案】A【解析】【分析】设购买甲种奖品为x件,乙种奖品为y件,由题意可得15x+10y=180,进而求解即可.【详解】解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:15x+10y=180,3∴y=18-x,2∵x>0,y>0,且x、y都为正整数,∴当x=2时,则y=15;当x=4时,则y=12;当x=6时,则y=9;当x=8时,则y=6;当x=10时,则y=3;∴购买方案有5种;故选A.13.(2021•齐齐哈尔市)周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有()A.3种B.4种C.5种D.6种【答案】B 【解析】【分析】设购买口罩x 包,酒精湿巾y 包,根据总价=单价⨯数量,即可列出关于,x y 的二元一次方程,结合,x y 均为正整数,即可得出购买方案的个数.【详解】解:设购买口罩x 包,酒精湿巾y 包,依据题意得:3230x y +=2103x y ∴=-,x y 均为正整数,83x y =⎧∴⎨=⎩或66x y =⎧⎨=⎩或49x y =⎧⎨=⎩或212x y =⎧⎨=⎩∴小明共有4种购买方案.故选:B .二.填空题1.(2021•江苏省扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.【答案】20【解析】【分析】设良马行x 日追上驽马,根据路程=速度×时间结合两马的路程相等,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设快马行x 天追上慢马,则此时慢马行了(x +12)日,依题意,得:240x =150(x +12),解得:x =20,∴快马20天追上慢马,故答案为:20.2.(2021•山东省泰安市)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.【分析】根据乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50和题目中所设的未知数,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.3.(2021•陕西省).幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+3=0+a﹣4,解得:a=﹣7.故答案为:﹣2.⎧x+2y=2-_________4.(2021•广东省)二元一次方程组⎨的解为.⎩2x+y=2【答案】22x y =⎧⎨=-⎩【解析】2222x y x y +=-⎧⎨+=⎩①②,①+②可得0x y +=③,①-③得,2y =-,把2y =-代入③得2x =因此22x y =⎧⎨=-⎩,考查二元一次方程组的解法5.(2021•四川省凉山州)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为______________.【答案】-1【解析】【分析】根据方程解的定义,将x =1,y =3代入方程2ax y +=,即可求得a 的值.【详解】解:根据题意,将x =1,y =3代入方程2ax y +=,得:32a +=,解得:a =-1,故答案为:-1.6.(2021•浙江省嘉兴市)已知二元一次方程x +3y =14,请写出该方程的一组整数解(答案不唯一).【分析】把y 看做已知数求出x ,确定出整数解即可.【解答】解:x +3y =14,x =14﹣3y ,当y =1时,y =11,则方程的一组整数解为.故答案为:(答案不唯一).7.(2021•浙江省金华市)已知是方程3x +2y =10的一个解,则m 的值是2.【分析】把方程组的解代入到方程中,得到关于m 的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m=10,∴m=2,故答案为:2.8.(2021•浙江省绍兴市)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两;若每人9两,则差8两.银子共有46两.【分析】通过设两个未知数,可以列出银子总数相等的二元一次方程组,本题得以解决.【解答】解:设有x人,银子y两,由题意得:,解得,故答案为46.9.(2021•重庆市B)方程2(x﹣3)=6的解是x=6.【分析】按照去括号,移项,合并同类项的步骤解方程即可.【解答】解:方程两边同除以2得:x﹣3=3.移项,合并同类项得:x=6.故答案为:x=6.【点评】本题主要考查了解一元一次方程.解一元一次方程常见的过程有去分母,去括号、移项、合并同类项,系数化为1等.10.(2021•重庆市A)若关于x的方程442x a-+=的解是2x=,则a的值为__________.【答案】3【解析】【分析】将x=2代入已知方程列出关于a的方程,通过解该方程来求a的值即可.【详解】解:根据题意,知4-2+a=4,2解得a=3.故答案是:3.11.(2021•湖北省江汉油田)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为_______尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.)【答案】20【解析】【分析】设绳索长x 尺,根据两种量竿的方法建立方程,解方程即可得.【详解】解:设绳索长x 尺,由题意得:552xx -=+,解得20x =,即绳索长20尺,故答案为:20.三、解答题1.(2021•四川省广元市)解方程:31423x x --+=.【答案】7x =【解析】【分析】根据整式方程的计算过程,去分母、去括号、移项、合并同类项、系数化为1,就可以得到结果.【详解】解:去分母得:()()332124x x -+-=,去括号得:392224x x -+-=,移项并合并同类项得:535x =,系数化为1得:7x =,故答案为:7x =.2.(2021•浙江省台州)解方程组:241x y x y +=⎧⎨-=-⎩【答案】12x y =⎧⎨=⎩.【解析】【分析】观察方程组中同一未知数的系数特点:x 的系数存在倍数关系,而y 的系数互为相反数,因此将两方程相加,消去y 求出x ,再求出y 的值,可得到方程组的解.【详解】解:①+②得:3x =3,即x =1,把x =1代入①得:y =2,则方程组的解为12x y =⎧⎨=⎩.3.(2021•四川省眉山市)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×15+②×2得:49x =﹣294,解得:x =﹣6,把x =﹣6代入②得:y =1,则方程组的解为4.(2021•呼和浩特市)解方程组1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩解:1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩,化简得210001112810x y x y +=⎧⎨+=⎩①②①×12-②得:133900x =解得300x =把300x =代入①得:400y =∴方程组的解为:300400x y =⎧⎨=⎩5.(2021•江苏省扬州)已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.1【答案】a =2【解析】【分析】求出方程组的解得到x 与y 的值,代入方程计算即可求出a 的值.【详解】解:方程组271x y x y +=⎧⎨=-⎩①②,把②代入①得:()217y y -+=,解得:3y =,代入①中,解得:2x =,把2x =,3y =代入方程4ax y +=得,234a +=,解得:12a =.6.(2021·安徽省)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2;(2)2n +4;(3)1008块【解析】【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;故答案为:2;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有(24n +)块;故答案为:24n +;(3)令242021n +=则1008.5n =当1008n =时,242020n +=此时,剩下一块等腰直角三角形地砖∴需要正方形地砖1008块.7.(2021•湖南省邵阳市)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.【分析】设钢笔购买了x 支,笔记本购买了y 本,篮球个数+钢笔支数+笔记本本数=56,篮球总价+钢笔总价+笔记本总价=1000,利用这两个相等关系列出二元一次方程组,解出即得钢笔和笔记本的数量,乘以各自单价即得各自总价.【解答】解:设钢笔购买了x 支,笔记本购买了y 本.由题意得:,解得:,∴15×15=225(元),35×5=175(元),答:钢笔购买了15支共225元,笔记本购买了35本共175元.8.(2021•陕西省)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【分析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”从而得出等式方程,解方程即可求解;【解答】解:设这种服装每件的标价是x 元,根据题意得,10×0.8x =11(x ﹣30),解得x =110,答:这种服装每件的标价为110元.9.(2021•广西贺州市)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m 时,按一级单价收费;当每户每月用水量超过312m 时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m ,缴纳水费32元.七月份因孩子放假在家,用水量为314m ,缴纳水费51.4元.(1)问该市一级水费,二级大费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【答案】(1)一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m ;(2)316m 【解析】【分析】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,根据题意,列出二元一次方程组,即可求解;(2)先判断水量超过312m ,设用水量为3m a ,列出方程,即可求解.【详解】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,依题意得()103212141251.4x x y =⎧⎨--=⎩,解得 3.26.5x y =⎧⎨=⎩,答:该市一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m .(2)当水费为64.4元,则用水量超过312m ,设用水量为3m a ,得,()12 3.212 6.564.4a ⨯+-⨯=,解得:16a =.答:当缴纳水费为64.4元时,用水量为316m .。

新初中数学方程与不等式之一元一次方程易错题汇编含答案(1)

新初中数学方程与不等式之一元一次方程易错题汇编含答案(1)

新初中数学方程与不等式之一元一次方程易错题汇编含答案(1) 一、选择题1.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.2.关于x的方程1514()2323mx x-=-有负整数解,则所有符合条件的整数m的和为()A.5 B.4 C.1 D.-1【解析】【分析】先解方程,再利用关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,求整数m即可.【详解】解方程1514 2323 mx x⎛⎫-=-⎪⎝⎭去括号得,1512 2323 mx x-=-移项得,1152 2233 mx x-=-,合并同类项得111 22m x⎛⎫-=⎪⎝⎭,系数化为1,2(1)1x mm=≠-,∵关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,∴整数m为0,-1.∴它们的和为:0+(-1)=-1.故选:D.【点睛】本题主要考查了一元一次方程的解,解题的关键是用m表示出x的值.3.如图所示是边长分别为60cm和80cm的两种正方形地砖,这两种地砖每平方厘米的造价相同,若边长为60cm的地砖的造价为90元,则边长为80cm的正方形地砖的造价为()A.120元B.160元C.180元D.270元【答案】B【解析】【分析】设边长为80cm的正方形地砖的造价为x,根据每平方厘米的造价相同列方程求出x的值即可得答案.设边长为80cm 的正方形地砖的造价为x 元,∵两种地砖每平方厘米的造价相同, ∴9060608080x =⨯⨯, 解得:x=160,故选:B .【点睛】 本题考查一元一次方程的应用,正确得出等量关系列出方程是解题关键.4.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a ∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+ B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【分析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.6.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元【答案】C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.7.有一下式子:①0x =;②325+=;③14x=;④29x =;⑤23=x x ;⑥34x -;⑦2(1)2x +=;⑧20x y +=.其中是一元一次方程的个数是( ) A .2B .3C .4D .5 【答案】B【解析】【分析】我们将只含有一个未知数,且未知数的最高次数为1的整式方程称之为一元一次方程,据此进一步判断即可.①0x =,满足定义,是一元一次方程;②325+=,未含有未知数,故不是一元一次方程; ③14x=,分母含有未知数,不是整式方程,故不是一元一次方程; ④29x =,未知数次数为2,故不是一元一次方程;⑤23=x x ,满足定义,故是一元一次方程;⑥34x -,不是等式,故不是一元一次方程;⑦2(1)2x +=,满足定义,故是一元一次方程;⑧20x y +=,含有两个未知数,故不是一元一次方程;综上所述,一共有3个一元一次方程,故选:B.【点睛】本题主要考查了一元一次方程的判断,熟练掌握相关概念是解题关键.8.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( ) A .4B .4-C .8-D .4或8-【答案】D【解析】根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可.【详解】∵a 的相反数为2∴20a +=解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -= 解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.10.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .179x x -= B .179x x += C .7x+9x=1 D .9x-7x=1 【答案】B【解析】【分析】 直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】 解:野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11179x ⎛⎫+= ⎪⎝⎭,即179x x +=, 故选B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.11.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3【答案】D【分析】【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 1-,解得.故选D.12.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B .【点睛】本题考查解一元一次方程,题目简单.13.将方程247236x x ---= 去分母得 ( ) A .2﹣2(2x-4)= - (x-7) B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣4x ﹣8= - (x-7)D .12﹣2(2x ﹣4)= x ﹣7 【答案】D【解析】【分析】根据原方程可知将其两边同时乘以各分母的最小公倍数6即可求得相应的答案.【详解】∵原方程分母的最小公倍数为6,∴原方程两边同时乘以6可得:()122247x x --=-,故选:D.【点睛】本题主要考查了一元一次方程中去分母的运算,熟练掌握相关方法是解题关键14.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里【答案】C【解析】【分析】【详解】 试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里.故选C15.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x =C .由104x =,得4x = D .由45x =-,得54x =--【答案】B【解析】【分析】根据等式的性质依次进行判断即可得到答案.【详解】A. 由25x +=,得x=5-2,故错误;B. 由23x =,得32x =,故正确;C. 由104x =,得x=0,故错误;D. 由45x =-,得x=4+5,故错误,故选:B.【点睛】此题考查等式的性质,熟记性质定理是解题的关键.16.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程1ax y +=的解,则a 的值等于( )A .3B .1C .1-D .3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a 的一元一次方程即可.【详解】解:将12x y =⎧⎨=-⎩代入1ax y +=得,21a -=, 解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.某项工程甲单独完成需要 45 天,乙单独成需要 30 天,若乙先单独干 20 天,剩余的由甲单独完成,问甲、乙一共用几天全部工作.设甲、乙一共用 x 天可以完成全部工作,则符合题意的方程是( )A .202013045x ++= B .202014530x -+= C .202013045x -+= D .202014530x ++= 【答案】B【解析】【分析】根据题意列出符合题意的方程即可.【详解】根据题意可得 202014530x -+= 故答案为:B .【点睛】本题考查了一元一次方程的工程问题,掌握解一元一次方程的方法是解题的关键.18.为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,则该同学家这一年的用水量为( )某市居民用水阶梯水价表A .250m 3B .270m 3C .290m 3D .310m 3【答案】C【解析】【分析】利用表格中数据得出水费超过1460元时包括第三阶梯水价费用,进而得出等量系求出即可.【详解】解:设该同学这一年的用水量为x,根据表格知,180×5+80×7=1460<1730,则该同学家的用水量包括第三阶梯水价费用,依题意得:180×5+80×7+(x−260)×9=1730,解得x=290.故选C.【点睛】本题考查了一元一次方程的应用.19.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于()A.10分 B.15分 C.20分 D.30分【答案】C【解析】解:根据题意列方程得:260t+800=300t,解得:t=20,故选C.点睛:此题要把握再相遇时甲比已多跑了800米,这是一个追及问题,别把它混为相遇问题就能解决.20.某商店把一件商品按标价的九折出售,仍可获利20%,若该商品的进价为每件21元,则该商品的标价为()A.27元B.27.8元C.28元D.28.4元【答案】C【解析】【分析】设该商品的标价是x元,根据按标价的九折出售,仍可获利20%列方程求解即可.【详解】解:设该商品的标价是x元,由题意得:0.9x-21=21×20%,解得:x=28,即该商品的标价为28元,故选:C.【点睛】本题考查一元一次方程的应用,要注意寻找等量关系,列出方程.。

一元一次方程经典40题

一元一次方程经典40题

一元一次方程经典40题一、选择题(1 - 10题)1. 下列方程是一元一次方程的是()A. x^2 - 2x + 3 = 0B. 2x - 5y = 4C. x = 0D. (1)/(x)=3解析:一元一次方程是只含有一个未知数,并且未知数的次数都是1,等号两边都是整式的方程。

A选项未知数的最高次数是2;B选项有两个未知数x和y;D选项(1)/(x)不是整式。

只有C选项符合一元一次方程的定义,所以答案是C。

2. 方程3x + 6 = 0的解是()A. x = 2B. x=-2C. x = 3D. x=-3解析:对于方程3x+6 = 0,首先移项得到3x=-6,然后两边同时除以3,解得x=-2,所以答案是B。

3. 若x = 2是方程ax - 3 = 1的解,则a的值是()A. 2B. -2C. 1D. -1解析:因为x = 2是方程ax-3 = 1的解,将x = 2代入方程得2a-3 = 1,移项可得2a=1 + 3=4,两边同时除以2,解得a = 2,所以答案是A。

4. 方程2(x - 1)=x+2的解是()A. x = 4B. x=-4C. x = 0D. x = 1解析:先去括号得2x-2=x + 2,然后移项2x-x=2 + 2,即x = 4,所以答案是A。

5. 关于x的方程3x+2m = 5 - x的解为x = 1,则m的值为()A. (1)/(2)B. -(1)/(2)C. (3)/(2)D. -(3)/(2)解析:把x = 1代入方程3x+2m=5 - x,得到3×1+2m = 5-1,即3 + 2m=4,移项得2m=4 - 3 = 1,解得m=(1)/(2),所以答案是A。

6. 下列变形正确的是()A. 由3x+5 = 4x得3x - 4x=-5B. 由6x = 3得x = 2C. 由x-1 = 2x+3得x+2x = 3 - 1D. 由2x = 1得x = 2解析:A选项,移项正确,3x+5 = 4x移项后为3x-4x=-5;B选项,由6x = 3,两边同时除以6,得x=(1)/(2);C选项,x - 1=2x + 3移项应该是x-2x = 3+1;D选项,由2x = 1得x=(1)/(2)。

中考数学专题复习《方程与不等式》测试卷-附带答案

中考数学专题复习《方程与不等式》测试卷-附带答案

中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。

一元一次不等式练习习题附答案

一元一次不等式练习习题附答案

一元一次不等式练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,下列结论正确的是( )A .c >a >bB .11b c >C .|a |<|b |D .abc >0【答案】B 【分析】根据数轴可得:101a b c <-<<<<再依次对选项进行判断. 【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大, 即可得:101a b c <-<<<<,A 、由101a b c <-<<<<,得c b a >>,故选项错误,不符合题意;B 、01b c <<<,根据不等式的性质可得:11b c >,故选项正确,符合题意; C 、1,01a b <-<<,可得||||a b >,故选项错误,不符合题意; D 、0,0,0a b c <<<,故0abc <,故选项错误,不符合题意; 故选:B . 【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出101a b c <-<<<<.2.若不等式组4101x m x x m-+<+⎧⎨+>⎩解集是4x >,则( )A .92m ≤B .5m ≤C .92m =D .5m =【答案】C 【分析】首先解出不等式组的解集,然后与x >4比较,即可求出实数m 的取值范围. 【详解】解:由①得2x >4m -10,即x >2m -5; 由②得x >m -1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x>5,x>4,不等式组解集为x>5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.3.下列不等式组,无解的是()A.1030xx->⎧⎨->⎩B.1030xx-<⎧⎨-<⎩C.1030xx->⎧⎨-<⎩D.1030xx-<⎧⎨->⎩【答案】D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.4.海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80 D.5x﹣2(20﹣x)<80【答案】C【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5.不等式组31xx<⎧⎨≥⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】根据不等式组的解集的表示方法即可求解. 【详解】解:∵不等式组的解集为31x x <⎧⎨≥⎩ 故表示如下:故选:C . 【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.如果0b a <<,则下列哪个不等式是正确的( ) A .2b ab < B .2a ab >C .22b a ->-D .22b a >【答案】C 【分析】运用不等式的基本性质逐一判断即可. 【详解】 ∵0b a <<, ∴2b ab > , ∴A 不符合题意; ∵0b a <<, ∴2ab a > , ∴B 不符合题意; ∵0b a <<, ∴22b a ->- , ∴C 符合题意; ∵0b a <<, ∴22b a < , ∴D 不符合题意; 故选C .【点睛】本题考查了不等式的性质,熟练运用基本性质是解题的关键.7.如图,数轴上表示的解集是()A.﹣3<x≤2B.﹣3≤x<2 C.x>﹣3 D.x≤2【答案】A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8.能说明“若x>y,则ax>ay”是假命题的a的值是()A.3 B.2 C.1 D.1-【答案】D【分析】根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可.【详解】解:“若x>y,则ax>ay”是假命题,则0a<,故选:D.【点睛】本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键.二、填空题912x-x的取值范围为_______________.【答案】12x ≤且1x ≠- 【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解. 【详解】解:由题意得:120x -≥,且10x +≠ 解得:12x ≤且1x ≠- 故答案为:12x ≤且1x ≠- 【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键. 10.若m 与3的和是正数,则可列出不等式:___. 【答案】30m +> 【分析】根据题意列出不等式即可 【详解】若m 与3的和是正数,则可列出不等式30m +> 故答案为:30m +> 【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键.11.不等式组21054x x -≤⎧⎨+≥⎩的整数解是__________.【答案】-1、0 【分析】分别求出各不等式的解集,再求出其公共解集即可得出答案. 【详解】解:解不等式210x -≤, 得:12x ≤, 解不等式54x +≥, 得:1x ≥-,则不等式组的解集为112x ≤≤-, ∴不等式组的整数解为-1、0, 故答案为:-1、0. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解题的关键.12.a 、b 、c 表示的数在数轴上如图所示,试填入适当的>”“<”或“=”.(1)3a +______3b +;(2)-a b ________0; (3)35a __________35b ;(4)2a -________2b -;(5)14a -________14b -;(6)a c ⋅_______b c ⋅; (7)a c -________b c -;(8)ab _______2b .【答案】> > > < < > > > 【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变; (2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变; (3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变. 据此可以对不等号的方向进行判断. 【详解】解:由数轴的定义得:a>0,b>0,c <0,a >b >c ,(1)不等式a >b 的两边同加上3,不改变不等号的方向,则3a +>3b +; (2)不等式a >b 的两边同减去b ,不改变不等号的方向,则a -b >b -b ,即a -b >0; (3)不等式a >b 的两边同乘以35,不改变不等号的方向,则35a >35b ;(4)不等式a >b 的两边同乘以-2,改变不等号的方向,则2a -<2b -;(5)不等式a >b 的两边同乘以-4,改变不等号的方向,则-4a <-4b ;不等式-4a <-4b 的两边同加上1,不改变不等号的方向,则14a -<14b -;(6)不等式a >b 的两边同乘以正数c ,不改变不等号的方向,则a c ⋅ > b c ⋅; (7)不等式a >b 的两边同减去c ,不改变不等号的方向,则a c ->b c -; (8)不等式a >b 的两边同乘以正数b ,不改变不等号的方向,则ab >2b .【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点.13.不等式组53xx m<⎧⎨>+⎩有解,m的取值范围是______.【答案】m<2【分析】根据不等式组得到m+3<x<5,【详解】解:解不等式组53xx m<⎧⎨>+⎩,可得,m+3<x<5,∵原不等式组有解∴m+3<5,解得:m<2,故答案为:m<2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.14.如果a>b,那么﹣2﹣a___﹣2﹣b.(填“>”、“<”或“=”)【答案】<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a>b,∴﹣a<﹣b,∴﹣2﹣a<﹣2﹣b,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.三、解答题15.解下列不等式:(1)5132x x -+>-;(2)1515x x -+≤-;(3)112135x x -<-;(4)(31)2x x x --≤+.【答案】(1)3x <;(2)152x ≥;(3)458x <;(4)13x ≥-. 【分析】根据解一元一次不等式的步骤以及不等式的基本性质,解一元一次不等式即可. 【详解】 (1)5132x x -+>- 去分母,5226x x -+>- 移项,合并同类项,3x ->- 化系数为1,3x <; (2)1515x x-+≤- 去分母,315x x -+≤- 移项,合并同类项,215x -≤- 化系数为1, 152x ≥; (3)112135x x -<-去分母,530153x x -<- 移项,合并同类项,845x < 化系数为1,458x <; (4)(31)2x x x --≤+ 去括号,312x x x -+≤+ 移项,合并同类项,31x -≤ 化系数为1,13x ≥-.【点睛】本题考查了解一元一次不等式,正确的计算是解题的关键. 16.解下列不等式组: (1)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ (2)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩【答案】(1)12x -≤<;(2)1x ≥-.【分析】(1)(2)分别先根据一元一次不等式的解法分别求出每个不等式的解集,并将两个不等式的解集表示在同一数轴上,再利用不等式组的解集的确定方法:“同大取大;同小取小;大小小大中间找;大大小小无解”求解即可. 【详解】解:(1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②,解不等式①,得1x ≥-. 解不等式②,得2x <.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为12x -≤<.(2)()2731423133x x x x ⎧-<-⎪⎨+≥-⎪⎩①② 解不等式①,得4x ->. 解不等式②,得1x ≥-.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为1x ≥-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小无解了”的原则是解答此题的关键. 17.已知-x <-y ,用“<”或“>”填空: (1)7-x ________7-y . (2)-2x ________-2y . (3)2x ________2y . (4)23x _______23y .【答案】(1)<(2)<(3)>(4)>【分析】根据不等式的性质求解即可.(1)解:∵x y-<-,∴不等号两边都加7,依据不等式的性质1,得7-x<7-y.(2)解:∵x y-<-,∴不等号两边都乘以2,依据不等式的性质2,得-2x<-2y.(3)解:∵x y-<-,∴不等号两边都乘以-2;依据不等式的性质3,得2x>2y.(4)解:∵x y-<-,∴不等号两边都乘以23-,依据不等式的性质3,得23x>23y.故答案为:(1)<(2)<(3)>(4)>【点睛】本题考查了不等式的性质:1、把不等式的两边都加(或减去)同一个数或式子,不等号的方向不变;2、不等式两边都乘(或除以)同一个正数,不等号的方向不变;3、不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0;(2)2x+3>5;(3)384x<;(4)1x≥2;(5)2x+y≤8【答案】(2)、(3)是一元一次不等式【分析】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可,根据定义逐一判断即可.【详解】解:(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数,所以不是一元一次不等式,所以一元一次不等式有:(2)、(3)【点睛】本题考查的是一元一次不等式的识别,掌握一元一次不等式的定义是解本题的关键. 19.解不等式(组)(1)2151132x x -+-> (2)321125123x x x x -≥+⎧⎪+⎨-<-⎪⎩ 【答案】(1)1x -<;(2)不等式组的解集为83x ≤-. 【分析】(1)先去分母,再去括号,移项合并,系数化1即可;(2)分别解每个不等式,再取它们的公共解集即可.【详解】解:(1)2151132x x -+->, 去分母得()()2213516x x --+> ,去括号得421536x x --->,移项合并得 1111x ->,解得1x -<;(2)321125123x x x x -≥+⎧⎪⎨+-<-⎪⎩①②, 解不等式①得83x ≤-, 解不等式②得45x <, ∴不等式组的解集为83x ≤-. 【点睛】本题考查不等式的解法,不等式组的解法,掌握不等式的解法与步骤,不等式组的解法,特别是不等式组的解集取法,同大取大,同小取小,大小小大取中间,大大小小无解是解题关键.20.解不等式:(1)2(x ﹣1)﹣3(3x +2)>x +5.(2)221235x x +->-. 【答案】(1)138x <-(2)43x < 【分析】(1)去括号,移项合并同类项,求解不等式即可;(2)去分母,去括号,移项合并同类项,求解不等式即可.【详解】解:(1)去括号,得:2x ﹣2﹣9x ﹣6>x +5,移项,得:2x ﹣9x ﹣x >5+2+6,合并,得:﹣8x >13,系数化为1,得:138x <-; (2)去分母,得:5(2+x )>3(2x ﹣1)﹣30,去括号,得:10+5x >6x ﹣3﹣30,移项,得:5x ﹣6x >﹣3﹣30﹣10,合并同类项,得:﹣x >﹣43,系数化为1,得:x <43.【点睛】此题考查了一元一次不等式的求解,解题的关键是掌握一元一次不等式的求解步骤. 21.计算:解下列不等式(组),并把解集在数轴上表示出来.(1)6341213x x x x +≤+⎧⎪+⎨>-⎪⎩ (2)()31511242x x x x ⎧-<+⎪⎨-≥-⎪⎩ 【答案】(1)14x ≤<,数轴见解析;(2)723x -<≤,数轴见解析 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,再将解集表示在数轴上即可.【详解】(1)634 1213x xxx+≤+⎧⎪⎨+>-⎪⎩①②解不等式①,得x≥1.解不等式②,得x<4.因此,原不等式组的解集为1≤x<4.在数轴上表示其解集如下:(2)()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩①②.由①,得x>﹣2.由②,得x≤73.故此不等式组的解集为723x-<≤.在数轴上表示为,【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.22.列一元一次方程解应用题:某校七年级将进行广播操比赛,七年级(1)班准备在网上找商家将班徽制作成胸牌,下列图表是负责这项事务的同学了解到的信息及他们的对话:材料费(元/个)总设计费(元)甲商家10150乙商家12160(1)当制作多少个胸牌时,在甲、乙两个商家购买费用相同?(2)七年级(1)班应该如何根据本班定制胸牌数量选择不同的商家才更省钱?【答案】(1)当制作23个胸牌时,甲乙两个商家购买费用相同;(2)当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当制作23个胸牌时,甲乙两个商家购买费用相同.【分析】(1)根据题意设当制作x 个胸牌时,甲乙两个商家购买费用相同,依据所花费用相同列出方程,求解即可;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,根据题意分三种情况讨论即可.【详解】解:(1)设当制作x 个胸牌时,甲乙两个商家购买费用相同,根据题意可得:100.915015121600.6x x ⨯++=+⨯,解得:23x =,当制作23个胸牌时,甲乙两个商家购买费用相同;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,当100.915015121600.6y y ⨯++>+⨯,解得:23y <,当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当100.915015121600.6y y ⨯++<+⨯,解得:23y >,当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当100.915015121600.6y y ⨯++=+⨯,解得:23y =,当制作23个胸牌时,甲乙两个商家购买费用相同.【点睛】题目主要考查一元一次方程及一元一次不等式的应用,理解题意,列出相应方程是解题关键.23.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,在每辆车都满载的情况下,甲种运输车至少需要安排多少辆.【答案】甲种运输车至少需要安排6辆【分析】设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨,根据两种运输汽车不超过10辆建立不等式求出其解,就可以求出甲种车运输的吨数,从而求出结论.【详解】解:设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨, 根据题意,得:4654x x -+≤10, 去分母得:4x +230-5x ≤200,-x ≤-30,x ≥30,则5x ≥6. 答:甲种运输车至少需要安排6辆.【点睛】本题考查了一元一次不等式的应用,关键是以运输车的总数不超过10辆作为不等量关系列方程求解.24.(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)313123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解. 【答案】(1)x ≥﹣1,数轴见解析;(2)733x -<≤,2 【分析】 (1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x ﹣5x ≤2,合并同类项,得:﹣2x ≤2,系数化为1,得:x ≥﹣1,将不等式的解集表示在数轴上如下:(2)解不等式2(x﹣2)≤3﹣x,得:x≤73,解不等式13123+->+x x,得:x>﹣3,则不等式组的解集为﹣3<x≤73,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.。

初中数学:一元一次方程习题精选(附参考答案)

初中数学:一元一次方程习题精选(附参考答案)

初中数学:一元一次方程习题精选(附参考答案)1.下列式子中,是一元一次方程的是( )A .x +4>2B .x+1xC .x -3=y +5D .y +2=722.已知(m -3)x |m -2|+6=0是关于x 的一元一次方程,则m 的值为( )A .1B .2C .3D .1或33.(2022·海南)若代数式x +1的值为6,则x 等于( )A .5B .-5C .7D .-74.根据等式的性质,下列变形正确的是( )A .由-13x =23y ,得x =2yB .由3x =2x +2,得x =2C .由2x -3=3x ,得x =3D .由3x -5=7,得3x =7-55.方程3x =2x +7的解是( )A .x =4B .x =-4C .x =7D .x =-7 6.下列解方程的步骤中正确的是( )A .由x -5=7,可得x =7-5B .由8-2(3x +1)=x ,可得8-6x -2=xC .由16x =-1,可得x =-16D .由x−12=x 4-3,可得2(x -1)=x -3 7.如果单项式-xy b +1与12x a +2y 3是同类项,那么关于x 的方程ax +b =0的解为( )A .x =1B .x =-1C .x =2D .x =-28.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目,其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问:木长多少尺?设木长x尺,则可列方程为()(x+4.5)=x-1A.12B.1(x+4.5)=x+12(x+1)=x-4.5C.12(x-1)=x+4.5D.129.一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g.设蛋白质、脂肪的含量分别为x g,y g,可列出方程为()A.5x+y=302y=30B.x+52C.3x+y=302D.x+3y=30210.古代中国的数学著作《九章算术》中有一题,其大意是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两),今有干丝12斤,问:原有生丝多少?”则原有生丝为______斤.11.《孙子算经》中有个问题:若三人共车,余两车空;若两人共车,剩九人步.问:人与车各几何?设有x辆车,则根据题意可列出方程为()A.3(x+2)=2x-9B.3(x+2)=2x+9C.3(x-2)=2x-9D.3(x-2)=2x+912.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是() A.x=0B.x=3C.x=2D.x=-313.小丽同学在做作业时,不小心将方程2(x-3)-■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A .4B .3C .2D .1参考答案1.下列式子中,是一元一次方程的是( D )A .x +4>2B .x+1xC .x -3=y +5D .y +2=722.已知(m -3)x |m -2|+6=0是关于x 的一元一次方程,则m 的值为(A )A .1B .2C .3D .1或33.若代数式x +1的值为6,则x 等于( A )A .5B .-5C .7D .-7解析:∵代数式x +1的值为6,∴x +1=6,解得x =5.故选A.4.根据等式的性质,下列变形正确的是( B )A .由-13x =23y ,得x =2yB .由3x =2x +2,得x =2C .由2x -3=3x ,得x =3D .由3x -5=7,得3x =7-55.方程3x =2x +7的解是( C )A .x =4B .x =-4C .x =7D .x =-7解析:3x =2x +7,移项,得3x -2x =7,合并同类项,得x =7.故选C.6.下列解方程的步骤中正确的是( B )A .由x -5=7,可得x =7-5B .由8-2(3x +1)=x ,可得8-6x -2=xC .由16x =-1,可得x =-16D .由x−12=x 4-3,可得2(x -1)=x -37.如果单项式-xy b +1与12x a +2y 3是同类项,那么关于x 的方程ax +b =0的解为( C )A .x =1B .x =-1C .x =2D .x =-28.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目,其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问:木长多少尺?设木长x 尺,则可列方程为( A )A .12(x +4.5)=x -1B .12(x +4.5)=x +1C .12(x +1)=x -4.5D .12(x -1)=x +4.59.一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x g ,y g ,可列出方程为( A )A .52x +y =30B .x +52y =30C .32x +y =30D .x +32y =30 解析:设蛋白质、脂肪的含量分别为x g ,y g ,则碳水化合物的含量为(1.5x )g. 由题意,得x +1.5x +y =30,即52x +y =30.故选A.10. 古代中国的数学著作《九章算术》中有一题,其大意是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两),今有干丝12斤,问:原有生丝多少?”则原有生丝为967斤.解析:设原有生丝x 斤.依题意,得3030−31216=x 12 解得x =967.故答案为967.11.《孙子算经》中有个问题:若三人共车,余两车空;若两人共车,剩九人步.问:人与车各几何?设有x 辆车,则根据题意可列出方程为( )A .3(x +2)=2x -9B .3(x +2)=2x +9C .3(x -2)=2x -9D .3(x -2)=2x +912.若关于x 的方程mx m -2-m +3=0是一元一次方程,则这个方程的解是( A )A .x =0B .x =3C .x =2D .x =-3 13.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是( C )A .4B .3C .2D .1。

初一数学一元一次方程试题答案及解析

初一数学一元一次方程试题答案及解析

初一数学一元一次方程试题答案及解析1.(1)解不等式:5(x-2)+8<7-6(x-1)(2)若(1)中的不等式的最大整数解是方程2x-ax=3的解,求a的值.【答案】(1)x<;(2)a=-1.【解析】(1)根据不等式的解法:先去括号移项,然后合并同类项,系数化为1,求出不等式的解;(2)根据(1)所求的不等式的解,可得方程2x-ax=3的解为1,代入求a的值.试题解析:(1)去括号得:5x-10+8<7-6x+6,移项合并同类项得:11x<15,系数化为1得:x<;(2)由(1)得,方程2x-ax=3的解为1,将x=1代入得:2-a=3,解得:a=-1.【考点】1.解一元一次不等式;2.一元一次方程的解;3.一元一次不等式的整数解.2.初一(19)班有48名同学,其中有男同学名,将他们编成1号、2号、…,号。

在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,号同学给一半同学打过电话,由此可知该班女同学的人数是()A.22B.24C.25D.26【答案】D.【解析】已知初一(19)班有48名同学,则一半学生数为24,根据1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,求解即可.∵初一(19)班有48名同学,∴一半学生数为24,∵1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,∴,则该班女同学的人数是48-22=26人,故选D.【考点】应用类问题.3.的倒数与互为相反数,那么的值是()A.B.C.3D.-3【答案】C【解析】由题意可知,解得,故选C.4.若方程的解为,则的值为( )A.B.C.D.【答案】C【解析】将代入中,得,解得故选C.5.江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多,求粗加工的该种山货质量.【答案】【解析】解:设粗加工的该种山货质量为,根据题意,得,解得.答:粗加工的该种山货质量为.6.右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.【答案】28.8【解析】设出洗发水的现价是x元,直接得出有关原价的一元一次方程,再进行求解.设洗发水的现价为x元,由题意得:0.8×36=x,解得:x=28.8(元).故答案为:28.8元.7.若当时,代数式的值为,那么当时,该代数式的值是_______.【答案】5.【解析】∵代入可得,解得:.把,代入代数式得:=.故答案为:5.【考点】1.解一元一次方程;2.代数式求值.8.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【答案】(1)购买一块A型小黑板需要l00元,购买一块8型小黑板需要l20元;(2)有两种购买方案:方案一:购买A型小黑板21块,购买8型小黑板39块;方案二:购买A型小黑板22块。

一元一次不等式单元检测 (简单)基础巩固 答案

一元一次不等式单元检测 (简单)基础巩固 答案

第三章、一元一次不等式单元测试(难度:简单)参考答案与试题解析一.选择题(共10小题)1.在下列数学表达式:①﹣2<0,②2y﹣5>1,③m=1,④x2﹣x,⑤x≠﹣2,⑥x+1<2x ﹣1中,是不等式的有()A.2个B.3个C.4个D.5个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≠,所以不等式有:①②⑤⑥,等式有:③.故选:C.【点评】本题主要考查对不等式的意义的理解和掌握,能根据不等式的意义进行判断是解此题的关键.2.把不等式组(b<a<0)的解集表示在数轴上,正确的是()A.B.C.D.【分析】先根据b<a<0,在数轴上表示﹣a和﹣b,再把不等式组的解集在数轴上表示出来,找出符合条件的选项即可.【解答】解:∵b<a<0,∴﹣b>﹣a>0,∴不等式组的解集表示在数轴上为.故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.已知a<b,则下列不等式一定成立的是()A.<B.﹣2a<﹣2b C.a﹣1>b﹣1D.a+3>b+3【分析】根据不等式的性质分析判断.【解答】解:A、不等式a<b的两边同时除以3,不等号的方向不变,即,故此选项符合题意;B、不等式a<b的两边同时乘﹣2,不等号的方向改变,即﹣2a>﹣2b,故此选项不符合题意;C、不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,故此选项不符合题意;D、不等式a<b的两边同时加上3,不等号的方向不变,即a+3<b+3,故此选项不符合题意.故选:A.【点评】本题主要考查了不等式的性质.解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.把一些书分给同学,设每个同学分x本.若____;若分给11个同学,则书有剩余.可列不等式8(x+6)>11x,则横线的信息可以是()A.分给8个同学,则剩余6本B.分给6个同学,则剩余8本C.分给8个同学,则每人可多分6本D.分给6个同学,则每人可多分8本【分析】根据不等式表示的意义解答即可.【解答】解:由不等式8(x+6)>11x,可得:把一些书分给几名同学,如果分给8个同学,则每人可多分6本;若每人分11本,则有剩余.故选:C.【点评】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.5.用适当的符号表示“x的2倍加上5不大于x的3倍减去4”,正确的是()A.2(x+5)≤3(x﹣4)B.2(x+5)<3(x﹣4)C.2x+5<3x﹣4D.2x+5≤3x﹣4【分析】根据题意列出不等式即可.【解答】解:“x的2倍加上5不大于x的3倍减去4”表示为:2x+5≤3x﹣4.故选:D.【点评】本题考查了由实际问题抽象出一元一次不等,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.6.每年的6月5日为世界环境日.中国生态环境部将“共建清洁美丽世界”作为今年环境日的主题,旨在促进全社会增强生态环境保护意识,投身生态文明建设.某校学生会积极响应国家号召,组织七年级和八年级共100名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1800个,至少需要多少名八年级学生参加活动?设参加活动的八年级学生x名,由题意得()A.15x+20(100﹣x)≥1800B.15x+20(100﹣x)>1800C.20x+15(100﹣x)≥1800D.20x+15(100﹣x)≤1800【分析】设至少需要x名八年级学生参加活动,则参加活动的七年级学生为(100﹣x)名,由收集塑料瓶总数不少于1800个建立不等式即可.【解答】解:设八年级有x名学生参加活动,则七年级参加活动的人数为(100﹣x)名,根据题意,得:15(100﹣x)+20x≥1800,故选:C.【点评】本题考查了列一元一次不等式解实际问题的运用和解一元一次不等式,解答时由收集塑料瓶总数不少于1800个建立不等式是解题的关键.7.已知关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为()A.﹣6<m≤﹣3或3<m≤6B.﹣6≤m<﹣3或3≤m<6C.﹣6≤m<﹣3D.﹣6<m≤﹣3【分析】分别求出每一个不等式的解集,根据不等式组的整数解的情况列出关于m的不等式,解之即可.【解答】解:由3x﹣m<0,得:x<,又x>﹣4,且不等式组所有整数解的和为﹣5,∴不等式组的整数解为﹣3、﹣2或﹣3、﹣2、﹣1、0、1,∴﹣2<≤﹣1或1<≤2,解得﹣6<m≤﹣3或3<m≤6,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.已知关于x的不等式组的解集中至少有5个整数解,则整数a的最小值为()A.2B.3C.4D.5【分析】表示出不等式组的解集,由解集中至少有5个整数解,确定出a的范围,进而求出整数a的最小值即可.【解答】解:不等式组整理得:,解得:﹣<x<a,∵不等式组解集中至少有5个整数解,即至少5个整数解为﹣1,0,1,2,3,∴a>3,则整数a的最小值为4.故选:C.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.9.若定义一种新的取整符号[],即[x]表示不超过x的最大整数.例如:[2.3]=2,[−1.6]=−2,则下列结论正确个数是()①[﹣2.1]+[0.1]=﹣3;②[x]+[−x]=0;③方程x﹣[x]=的解有无数多个;④若[x+1]=2,则x的取值范围是3≤x<4;A.1B.2C.3D.4【分析】①根据取整函数的定义,直接求出值;②取特殊值验证,证实或证伪;③在0到1的范围内,找到一个特殊值,进而可以找到无数个解;④把方程问题转化为不等式问题;【解答】解:对于①,[﹣2.1]+[0.1]=﹣3+0=﹣3,正确;对于②,由[0.5]+[﹣0.5]=0﹣1=﹣1,不正确;对于③,当x=,1,2,...时,方程均成立,正确;对于④,由[x+1]=2,得2≤x+1<3,即1≤x<2,不正确;故选:B.【点评】本题考查取整函数与一元一次不等式.解题的关键在于能够把取整函数的等式,转化为一元一次不等式问题去解决.10.已知关于x的不等式组有且只有三个整数解,且关于y的一元一次方程ay﹣4=2y有整数解,则所有满足条件的整数a值之和是()A.﹣1B.0C.1D.2【分析】先解出每个不等式的解集,即可得到该不等式组的解集,然后根据不等式组有且只有三个整数解,确定a的取值范围,再解一元一次方程,根据方程有整数解确定满足条件的a的值,从而求和.【解答】解:,解不等式5x﹣4<4﹣a,得:x<,∴不等式组的解集为﹣2<x<,又∵该不等式组有且只有三个整数解,∴1<≤2,解得:﹣2≤a<3,ay﹣4=2y,移项,得:ay﹣2y=4,合并同类项,得:(a﹣2)y=4,系数化1,得:y=,∵该方程有整数解,且a﹣2≠0,∴符合条件的整数a有﹣2、0、1,∴满足条件的整数a值之和是﹣2+0+1=﹣1.故选:A.【点评】本题考查解一元一次不等式组,解一元一次方程,理解解一元一次不等式组和解一元一次方程的步骤,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二.填空题(共6小题)11.不等式2x<﹣12的解集是x<﹣6.【分析】直接把未知数的系数化“1”即可.【解答】解:2x<﹣12,解得:x<﹣6,故答案为:x<﹣6.【点评】本题考查的是一元一次不等式的解法,掌握“解一元一次不等式的步骤”是解本题的关键.12.若a<b,那么﹣2a>﹣2b(填“>”“<”或“=”).【分析】根据不等式的性质3得出答案即可.【解答】解:∵a<b,∴﹣2a>﹣2b,故答案为:>.【点评】本题考查了不等式的性质,能熟记不等式的性质3(不等式的两边都乘同一个负数,不等号的方向改变)是解此题的关键.13.已知(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,则k+1 不是(填“是”或“不是”)不等式x+2<2x﹣1的解.【分析】先根据二元一次方程的定义求出k的值,再求出不等式的解集即可判断.【解答】解:∵(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,∴,解得k=﹣5;解不等式x+2<2x﹣1,得x>3,∵k+1=﹣5+1=﹣4<3,∴k+1不是不等式x+2<2x﹣1的解.故答案为:不是.【点评】本题考查了二元一次方程的定义以及不等式的解集,掌握二元一次方程的定义是解答本题的关键.14.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x的取值范围是2<x≤4.【分析】根据第二次运算结果不大于28,且第三次运算结果要大于28,列出关于x的一元一次不等式组,解之即可得出x的取值范围.【解答】解:依题意得:,解得:2<x≤4,故答案为:2<x≤4.【点评】本题考查一元一次不等式组的应用,解题的关键是理解题意,能列出不等式组.15.我国《劳动法》对劳动者的加班工资作出了明确规定,“五一”长假期间,前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资.小屈由于工作需要,今年5月2日、3日、4日共加班三天,已知小屈的日工资标准为247元,则小屈“五一”长假加班三天的加班工资应不低于1976元.【分析】设小屈“五一”长假加班三天的加班工资应不低于x元,由“前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资”,列出一元一次不等式,解不等式即可.【解答】解:设小屈“五一”长假加班三天的加班工资应不低于x元,由题意得:x≥2×247×300%+247×200%,解得:x≥1976(元),故答案为:1976.【点评】本题考查了一元一次不等式的应用,找准对应关系,列出一元一次不等式是解题的关键.16.已知三个实数a,b,c,满足a+2b+3c=9,2a﹣b﹣4c=﹣2,且a≥0,b≥0,c≥0,则4a+3b+c的最小值为17.【分析】有两个已知等式a+2b+3c=9,2a﹣b﹣4c=﹣2,可用其中一个未知数表示另两个未知数得,然后由条件:a、b、c均是非负数,可求出第一个未知数c的取值范围,代入m=3a+b﹣7c,即可得解.【解答】解:联立,解得,由题意知:a、b、c均是非负数,则,解得﹣1≤c≤2,所以4a+3b+c=4(1+c)+3(4﹣2c)+c=4+4c+12﹣6c+c=16﹣c当c=﹣1时,4a+3b+c有最小值,即4a+3b+c=16﹣(﹣1)=17.故答案为:17.【点评】此题主要考查不等式的性质、解三元一次方程组、代数式求值,涉及的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.三.解答题(共7小题)17.解下列不等式:(1);(2).【分析】根据解一元一次不等式的步骤解不等式即可.【解答】解:(1)两边同时乘以6得:6﹣2(8+x)≥3x,去括号得:6﹣16﹣2x≥3x,移项得:﹣2x﹣3x≥﹣6+16,合并同类项得:﹣5x≥10,把未知数系数化为1得:x≤﹣2;(2)两边同时乘以6得:2(2x+1)﹣(2﹣x)>3(x﹣1),去括号得:4x+2﹣2+x>3x﹣3,移项得:4x+x﹣3x>﹣3﹣2+2,合并同类项得:2x>﹣3,把未知数系数化为1得:x>﹣.【点评】本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的一般步骤.18.解不等式组:,并把解集在数轴上表示出来.【分析】先解出每个不等式的解集,再取公共解集即可.【解答】解:,解不等式①得:x<3,解不等式②得:x≥2,∴2≤x<3,把解集表示在数轴上:【点评】本题考查解一元一次不等式组,解题的关键是掌握取不等式公共解集的方法.19.下面是小虎同学解不等式的过程,请认真阅读并完成相应任务.解:去分母,得3(1+x)﹣2(2x+1)≤6………第一步去括号,得3+3x﹣4x﹣2≤6……………………………第二步移项,得3x﹣4x≤6﹣3+2………………………………第三步合并同类项,得﹣x≤5…………………………………第四步两边都除以﹣1,得x≤﹣5………………………………第五步任务:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)请直接写出该不等式的正确解集.【分析】(1)观察解不等式第二步的步骤即可求解;(2)观察解不等式的步骤,找出出错的步骤,分析其原因即可;(3)写出不等式正确解集即可.【解答】解:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;故答案为:乘法分配律;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);故答案为:五,不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)去分母,得3(1+x)﹣2(2x+1)≤6………第一步,去括号,得3+3x﹣4x﹣2≤6……………………………第二步,移项,得3x﹣4x≤6﹣3+2………………………………第三步,合并同类项,得﹣x≤5…………………………………第四步,两边都除以﹣1,得x≥﹣5………………………………第五步.【点评】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.20.某文教用品商店用1200元购进了甲、乙两种圆珠笔.已知甲种笔进价为每支12元,乙种笔进价为每支10元.文教店在销售时甲种笔售价为每支15元,乙种笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种笔各多少支;(2)若该文教商店以原价再次购进甲、乙两种笔,且购进甲种笔的数量不变,而购进乙种笔的数量是第一次的2倍,乙种笔按原售价销售,而甲种笔降价销售,当两种笔销售完毕时,要使再次购进的笔获利不少于340元,甲种笔最低售价每支应为多少元?【分析】(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,根据其进价和利润建立等量关系列出方程组求出其解即可.(2)设甲种圆珠笔每只的售价为m元,就可以求出甲种圆珠笔每只的利润,表示出甲种圆珠笔的总利润再加上乙种圆珠笔的总利润就是两种圆珠笔销售完后的总利润,由题意就可以建立不等式.从而求出其解.【解答】解:(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,由题意得,,解得.答:这个商店购进甲种圆珠笔50支,乙种圆珠笔60支.(2)设甲种笔每只的最低售价为m元,由题意得,50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.∵m为整数,∴m的最小值为14,故甲种笔每只的最低售价为每支14元.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出等式是解题关键.21.已知方程组的解x为非负数,y为非正数,求a的取值范围.【分析】解方程组得,根据“x为非负数,y为非正数”得出,解之即可.【解答】解:解方程组得,由题意知,,解得a≥3.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.冰墩墩(如图)是2022年北京冬季奥运会的吉祥物.某商店购进冰墩墩手办和冰墩墩装饰扣若干个,已知每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元.(1)冰墩墩装饰扣和冰墩墩手办的进价各多少元?(2)若商店以相同的价格1200元分别购进冰墩墩装饰扣和冰墩墩手办若干个,其中冰墩墩装饰扣的售价要比冰墩墩手办的售价少30元,且销售完毕后获利不低于1100元,问每个冰墩墩手办的售价至少是多少元?【分析】(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,根据“每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用数量=总价÷单价,可求出购进冰墩墩装饰扣及冰墩墩手办的数量,设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,利用总利润=销售单价×销售数量﹣进货总价,结合销售完毕后获利不低于1100元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,依题意得:,解得:.答:冰墩墩装饰扣的进价为40元,冰墩墩手办的进价为60元.(2)购进冰墩墩装饰扣的数量为1200÷40=30(个),购进冰墩墩手办的数量为1200÷60=20(个).设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,依题意得:20m+30(m﹣30)﹣1200﹣1200≥1100,解得:m≥88,∴m的最小值为88.答:每个冰墩墩手办的售价至少为88元.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.若不等式(组)只有n个正整数解(n为自然数),则称这个不等式(组)为n阶不等式(组).我们规定:当n=0时,这个不等式(组)为0阶不等式(组).例如:不等式x+1<6只有4个正整数解,因此称其为4阶不等式.不等式组只有3个正整数解,因此称其为3阶不等式组.请根据定义完成下列问题:(1)x<是0阶不等式;是1阶不等式组;(2)若关于x的不等式组是4阶不等式组,求a的取值范围;(3)关于x的不等式组的正整数解有a1,a2,a3,a4,…其中a1<a2<a3<a4<…如果是(m﹣3)阶不等式组,且关于x的方程2x﹣m=0的解是的正整数解a3,请求出m的值以及p的取值范围.【分析】(1)根据题目中的定义进行分析;(2)根据题目中的定义进行分析,可知整数解为1,2,3,4,从而可得出a的范围;(3)分析题意,可以利用特殊值法,看(m﹣3)是从第几个整数开始的,从而求解.【解答】解:(1)∵x<没有正整数解,∴x<是0阶不等式;由得1<x<3,∴有1个正整数解,∴是1阶不等式组,故答案为:0,1;(2)解不等式组得:1≤x<2a,由题意得:x有4个正整数解,为:1,2,3,4,∴4<2a≤5,解得:2<a≤2.5;(3)由题意得,m是正整数,且p≤x<m有(m﹣3)个正整数解,∴2<p≤3,=5,∴m=10.【点评】本题考查了一元一次不等式组的正整数解,理解题中的新定义是解题的关键.。

一元一次方程练习题及答案

一元一次方程练习题及答案

一元一次方程练习题及答案篇1:一元一次方程练习题及答案一元一次方程练习题及答案一、选择题(每小题3分,共30分)1.下列方程是一元一次方程的是 ( )A.x+2y=5B. =2C.x2=8x-3D.y=12.下列方程中,解是x=2的是 ( )A.2x-2=0B. x=4C.4x=2D. -1=3.将方程5x-1=4x变形为5x-4x=1,这个过程利用的性质是( )A.等式性质1B.等式性质2C.移项D.以上说法都不对4.方程3- =1变形如下,正确的是 ( )A.6-x+1=2B.3-x+1=2C.6-x+1=1D.6-x-1=25.如果x=-8是方程3x+8= -a的解,则a的值为 ( )A.-14B.14C.30D.-306.某工作,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后和乙共同完成余下的工作,甲一共做了 ( )A.2天B.3天C.4天D.5天7.小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款 ( )A.106元B.102元C.111.6元D.101.6元8.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为 ( )A.105元B.100元C.108元D.118元9.某工地调来72人挖土和运土,已知3人挖的±1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工,解决此问题可设x人挖土,其他人运土,列方程(1) =3;(2)72-x= ;(3) =3;(4)x+3x=72,上述所列方程正确的是( )A.1个B.2个C.3个D.4个10.某轮船在两个码头之间航行,顺水航行需4h,逆水航行需6h,水流速度是2km/h,求两个码头之间的距离,我们可以设两个码头之间的距离为xkm,得到方程 ( )A. =B. -2= +2C. - =2D. = -2二、填空题(每小题4分,共24分)11.若2的2倍与3的差等于2的一半,则可列方程为 .12.写出一个以x=- 为解的一元一次方程13.已知5x+3=8x-3和 = 这两个方程的解是互为相反数,则a= .14.小强的速度为5千米/时,小刚的速度为4千米/时.两人同时出发,相向而行.经过x小时相遇,则两地相距千米.15.某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的`7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是元.16.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费低于800元的不纳税;(2)稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元,应缴纳全部稿费的11%的税.某作家缴纳了280元税,那么他获得的稿费是元.三、解答题(共66分)17.(6分)解下列方程:(1)4x-2(x-3)=x; (2)x- -1.18.(6分)当x取何值时,代数式和x-2是互为相反数?19.(6分)若代数式3a3b4-5n“与-6a6-(m+1)bm-1是同类项,求m2-5mn的值.20.(8分)如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?21.(8分)一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,则两队合作,几个月可以完工?22.(10分)某市按以下规定收取每月水费:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费.如果某居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水?23.(10分)小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长.24.(12分)温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台.现在决定给武汉8台,南昌6台.每台机器的运费如下表.设杭州运往南昌的机器为x台.(1)用x的代数式来表示总运费(单位:百元);(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?终点起点南昌武汉温州厂 4 8杭州厂 3 5(3)试问有无可能使总运费是7400元?若有可能,请写出相应的调运方案;若无可能,请说明理由.参考答案:1.D2.D3.A4.A5.B6.B7.D8.C9.B 10.B 11.2x-3= x 12.略 13.24 14.9x 15.30016.2800 17.(1)x=-6 (2)x=- 18.解:由题意,得 +x-2=0 解得x=219.解:由题意解得:m=2,n= . 把m=2,n= 代入m2-5mn得原式=22-5×2× =-2.20.解:设了正方形边长为x厘米,由题意,得4x=5(x-4) 解得x=20所以4×20=80答:每一个长条的面积为80平方厘米.21.解:设两队合作2个月完成,由题意,得x=1解得x=5答:两队合作,5个月可以完工.22.解:(1)∵1.5>1.2 ∴用水量超过20立方米. 设超过了x立方米1.2×20+2x=1.5(20+x) 解得x=12. ∴1.2×10+20=32. 答:这个月他共用了32立方米水.23.解:设火车的长为x米,由题意,得 = 解得x=100.答:这列火车长100米.24.解:(1)总运费为4(6-x)+8.(4+x)+3x+5(4-x)=2x+76.(2)2x+76=84. x=4.答:运往南昌的机器应为4台.(3)若2x+76=74,解得x=-1.∵x不能为负数,∴不存在.答:略.篇2:一元一次方程的练习题及答案一元一次方程的练习题及答案一、填空题.1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).A.0B.1C.-2D.-10.方程│3x│=18的解的情况是( ).A.有一个解是6B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足( ).A.a≠ ,b≠3B.a= ,b=-3C.a≠ ,b=-3D.a= ,b≠-312.把方程的分母化为整数后的方程是( ).13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).A.增加10%B.减少10%C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1B.5C.3D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.A.3B.4C.5D.6三、解答题20.解方程: (x-1)- (3x+2)= - (x-1).21.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的`三位数与原三位数的和是1171,求这个三位数.23.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)24.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).参考答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3. (点拨:解方程 x-1=- ,得x= )4. x+3x=2x-65.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.22.解:(1)由已知可得 =0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元) (2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.篇3:一元一次方程同步练习题及答案一元一次方程同步练习题及答案一、选择题1、方程3x+6=2x-8移项后,正确的是( )A.3x+2x=6-8B.3x-2x=-8+6C.3x-2x=-6-8D.3x-2x=8-62、方程7(2x-1)-3(4x-1)=11去括号后,正确的.是A.14x-7-12x+1=11B.14x-1-12x-3=11C.14x-7-12x+3=11D.14x-1-12x+3=113、如果代数式与的值互为相反数,则的值等于()A.B.C.D.4、如果与是同类项,则是()A.2B.1C.D.05、已知矩形周长为20cm,设长为cm,则宽为()A.B.C.D.二、填空题1、方程2x-0.3=1.2+3x移项得.2、方程12-(2x-4)=-(x-7)去括号得.3、若︱a﹣1︱+(b+2)2=0,则ab=.4、若3x+2与﹣2x+1互为相反数,则x-2的值是.5、若2(4a﹣2)﹣6=3(4a﹣2),则代数式a2﹣3a+4=.三、解答题1、解下列方程(1)3(2x+5)=2(4x+3)-3(2)4y﹣3(20﹣y)=6y﹣7(9﹣y)(3)7(2x-1)-3(4x-1)=4(3x+2)-11、观察方程[(x-4)-6]=2x+1的特点,你有好的解法吗?写出你的解法.【知能升级】1、已知a是整数,且a比0大,比10小.请你设法找出a的一些数值,使关于x的方程1―ax=―5的解是偶数,看看你能找出几个.2、解方程(1)|4x-1|=7(2)2|x-3|+5=13答案一、选择题1、C2、C3、D4、A5、B二、填空题1、2x-3x=1.2+0.32、12-2x+4=-x+73、14、-55、8三、解答题1、(1)x=6(2)y=(3)x=2、x=-9【知能升级】1、a=1,2,3,4,62、(1)x=2,(2)x=7,-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程与不等式之一元一次方程基础测试题及答案一、选择题1.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题: 一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人【答案】A 【解析】 【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可. 【详解】设大和尚有x 人,则小和尚有(100﹣x )人, 根据题意得:3x+1003x-=100, 解得x=25,则100﹣x=100﹣25=75(人), 所以,大和尚25人,小和尚75人, 故选A . 【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.2.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++= B .6090(30)480x x ++= C .160()904802x x ++=D .16090()4802x x ++=【解析】 【分析】 【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D . 【点睛】本题考查由实际问题抽象出一元一次方程.3.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( ) A .4 B .4-C .8-D .4或8-【答案】D 【解析】 【分析】根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可. 【详解】 ∵a 的相反数为2 ∴20a += 解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -= 解得4b =或8- 故答案为:D . 【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.4.如图,有一内部装有水的直圆柱形水桶,桶高20dm ;另有一直圆柱形的实心铁柱,柱高30dm ,直立放置于水桶底面上,水桶内的水面高度为12dm ,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为( )A .4.5dmB .6dmC .8dmD .9dm【答案】D【分析】由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm2),水桶底面积为4a(dm2),于是得到水桶底面扣除铁柱底面部分的环形区域面积为4a-a=3a(dm2),,根据原有的水量为3a×12=36a (dm3),列出方程,即可得到结论.【详解】∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm2),则水桶底面积为4a(dm2),∴水桶底面扣除铁柱底面部分的环形区域面积为4a−a=3a(dm2),∴原有的水量为:3a×12=36a (dm3),设水桶内的水面高度变为xdm,则4ax=36a,解得:x=9,∴水桶内的水面高度变为9dm.故选D.【点睛】本题主要考查用一元一次方程解决圆柱体的等积变形问题,掌握圆柱体的体积公式是解题的关键.5.关于x的方程1514()2323mx x-=-有负整数解,则所有符合条件的整数m的和为()A.5 B.4 C.1 D.-1【答案】D【解析】【分析】先解方程,再利用关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,求整数m即可.【详解】解方程1514 2323 mx x⎛⎫-=-⎪⎝⎭去括号得,1512 2323 mx x-=-移项得,1152 2233 mx x-=-,合并同类项得111 22m x⎛⎫-=⎪⎝⎭,系数化为1,2(1)1x mm=≠-,∵关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,∴整数m为0,-1.∴它们的和为:0+(-1)=-1.故选:D.【点睛】本题主要考查了一元一次方程的解,解题的关键是用m表示出x的值.6.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x人,则下列方程正确的是()A.50+x=3×30 B.50+x=3×(20+30-x)C.50+x=3×(20-x) D.50+x=3×20【答案】B【解析】【分析】可设支援打扫卫生的人数有x人,则支援拉垃圾的人数有(30﹣x)人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x人,则支援拉垃圾的人数有(30﹣x)人,依题意有50+x=3[20+(30﹣x)],故选:B.【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.7.甲、乙两人环湖竞走,环湖一周为 400 米,乙的速度是80 米/分,甲的速度是乙的 11 4倍,且竞走开始时甲在乙前 100 米处,多少分钟后两人第一次相遇?设经过 x 分钟两人第一次相遇,所列方程为()A.80 x+ 100=54⨯ 80 x B.80 x + 300=54⨯ 80 xC.80 x - 100=54⨯ 80 x D.80 x - 300=54⨯ 80 x【答案】B【解析】【分析】根据相遇时乙的路程+300=甲的路程列出方程即可.【详解】 解:甲的速度为:54⨯ 80米/分,相遇时甲比乙多行了400-100=300米,根据题意可得: 80 x + 300=54⨯ 80 x , 故选:B 【点睛】本题考查了一元一次方程的应用,能找出题中的等量关系是解题的关键.8.下列解方程过程中,变形正确的是( ) A .由2x-1=3得2x=3-1 B .由255143x x -=-得6x-5=20x-1 C .由-5x=4得x =−54D .由132x x-=得2x-3x=6 【答案】D 【解析】 【分析】根据等式的基本性质进行判断. 【详解】A 、在2x-1=3的两边同时加上1,等式仍成立,即2x=3+1.故本选项错误;B 、在255143x x -=-的两边同时乘以12,等式仍成立,即6x-60=20x-12,故本选项错误;C 、在由-5x=4的两边同时除以-5,等式仍成立,即x=-45,故本选项错误; D 、在132x x-=的两边同时乘以6,等式仍成立,即2x-3y=6,故本选项正确. 故选D . 【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;9.甲、乙两人环湖竞走,环湖一周为400米,乙的速度是80米/分,甲的速度是乙的54倍,且甲在乙前100米处,多少分钟后,两人第一次相遇?设经过x 分钟两人第一次相遇,所列方程为( )A .580100804x x +=⨯B .580300804x x +=⨯C .580100804x x -=⨯D .580300804x x -=⨯【答案】B 【解析】 【分析】根据题意表示出甲的速度为80×54米/分,然后根据题意可得等量关系:甲x 分钟的路程-乙x 分钟的路程=400-100,根据等量关系列出方程即可. 【详解】解:设经过x 分钟两人第一次相遇,由题意得: 80×54x-80x=400-100, 变形得:80x+300=54×80x , 故选:B . 【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是正确理解题意,找出题目中等量关系,列出方程.10.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12 D .-16【答案】B 【解析】 【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加. 【详解】12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k , 解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k , 1+4k≤6+5k ,k≥-5,解关于x的方程kx=2(x-2)-(3x+2)得,x=-61k,因为关于x的方程kx=2(x-2)-(3x+2)有非负整数解,当k=-4时,x=2,当k=-3时,x=3,当k=-2时,x=6,∴-4-3-2=-9;故选B.【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.11.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是()A.20 B.22 C.25 D.20或25【答案】D【解析】【分析】本题分票价每张45元和票价每张45元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【详解】①若购买的电影票不超过20张,则其数量为900÷45=20(张);②若购买的电影票超过20张,设购买了x张电影票,根据题意,得:45×x×80%=900,解得:x=25;综上,共购买了20张或25张电影票;故选D.【点睛】本题考查了一元一次方程的应用,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系.12.若一个数的平方根为2a+3和a-15,则这个数是()A.-18 B.64 C.121 D.以上结论都不是【答案】C【解析】【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程,从而可求得a 的值,进而求得这个数. 【详解】解:根据题意得:2a+3+(a-15)=0, 解得a=4,则这个数是(2a+3)2=121. 故选:C . 【点睛】本题主要考查了平方根的性质,正数的两个平方根互为相反数,据此把题目转化为解方程的问题,这是考试中经常出现的问题.13.小元步行从家去火车站,走到 6 分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3 分钟.小元离家路程S(米)与时间t(分钟)之间的函数图象如图,从家到火车站路程是( )A .1300 米B .1400 米C .1600 米D .1500 米【答案】C 【解析】 【分析】根据图象求出小元步行的速度和出租车的速度,设家到火车站路程是x 米,然后根据题意,列一元一次方程即可. 【详解】解:由图象可知:小元步行6分钟走了480米 ∴小元步行的速度为480÷6=80(米/分) ∵以同样的速度回家取物品, ∴小元回家也用了6分钟∴小元乘出租车(16-6-6)分钟走了1280米 ∴出租车的速度为1280÷(16-6-6)=320(米/分) 设家到火车站路程是x 米 由题意可知:62380320x x -=⨯+ 解得:x=1600 故选C . 【点睛】此题考查的是函数的图象和一元一次方程的应用,掌握函数图象的意义和实际问题中的等量关系是解决此题的关键.14.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了( )元. A .300 B .260C .240D .220【答案】B 【解析】 【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证. 【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元); 故选:B . 【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.15.一轮船从甲码头到乙码头顺水航行,用了2小时,从乙码头到甲码头逆水航行,用了2.5小时.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,根据题意可列方程为( )A .23 2.53x x +=-B .2(3) 2.5(3)x x +=-C .23 2.53x x -=+D .2(3) 2.5(3)x x -=+【答案】B 【解析】 【分析】顺流:速度=船在静水中的速度+水流的速度;逆流:速度=船在静水中的速度-水流的速度. 【详解】顺流:速度=船在静水中的速度+水流的速度; 逆流:速度=船在静水中的速度-水流的速度.在顺流和逆流航行过程中不变的是路程:路程=速度⨯时间 顺流路程=()23x + 逆流路程=()2.53x - 所以:()23x +=()2.53x -,选B . 【点睛】掌握船在顺流和逆流时的速度计算公式,注意航行过程中不变的是路程建立等量关系即可.16.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。

相关文档
最新文档