第三章 随机变量的数字特征答案

合集下载

第3章 随机变量的数字特征(答案)

第3章 随机变量的数字特征(答案)

第3章 随机变量的数字特征 一.填空题1.(90-1-2)已知随机变量X 服从参数为2的泊松分布22{},0,1,2...!k P X k e k k −===则随机变量3Z X 2=−的数学期望E (Z)= (4)()()()()~(2),2,32323224X P E X E Z E X E X ==−=−=×−=解: 2.设随机变量X 的密度函数为 ⎩⎨⎧+=0)(B Ax x f 则且其它,127)(,10=≤≤X E x A =_____,B =______. (1,1/2)解:1()112f x dx A B +∞−∞=⇒+=∫, 7117()123212EX xf x dx A B +∞−∞==⇒+∫=, 11,2A B ∴==3.(95-1-3)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2x 的数学期望 ()2E X= (18.4)解:()()()()()()222~(10,0.4), 100.44,(1)100.410.4 2.4, 2.4418.4X B E X D X np p E XD XE X =×==−=×−==+=+=4. (99-4-3)设~(),X P λ已知,则[(1)(2)]1E X X −−=λ= (1) 解:()()()()()22~(),,,X P E X D X E XD XE X 2λλλλ===+=λ+−0,222[(1)(2)][132)]()3()2211E X X E X X E X E X λλλ−−=−+=+=−+=⇒= 5. (95-4-3)设X 是随机变量,其概率密度为1, 1()1, 010,x x f x x x +−≤≤⎧⎪=−<≤⎨⎪⎩,则方差为 DX (1/6)解:()()011123231100101111(1)(1)02323E X xf x dx x x dx x x dx x x x x +∞−−−∞−==⋅++⋅−=++−∫∫∫=()()0111222234341100101111(1)(1)3434E X x f x dx x x dx x x dx x x x x +∞−−−∞−==⋅++⋅−=++−∫∫∫16=()()()221/601/6D X E X E X =−=−=6.(90-4-3)设随机变量X 和Y 独立,,则~(3,1),~(2,1)X N Y N −27, Z ~Z X Y =−+ (0,5)N 解:()()2()732270,()()4()145~(0,5)E Z E X E Y D Z D X D Y Z N =−+=−−×+==+=+=∴7.设两个相互独立的随机变量和Y均服从,若随机变量X (1,1/5)N X aY −满足条件, 2()[(D X aY E X aY −=−)]则a = . (1) 解:()0,()()0110E X aY E X aE Y a a ⇒−=⇒−=⇒−⋅=⇒=18.(03-3-4) 随机变量 X 与Y 的相关系数为0.9,若0.4Z X =−则Y 与Z 的相关系数为 (0.9)解:()()0.4,,cov(,)cov(,0.4)cov()cov(),Z X D Z D X Y Z Y X Y X X Y =−==−==,,0.9YZ ρ===9.(03-4-4)设随机变量X 和Y 的相关系数为0.5,2202EX EY EX EY ===,=2,试求E X Y +()= (6) 解: 2202EX EY EX EY ====∵,,()()()222,D X E X E X ∴=−= ()()()222D Y E Y E Y =−=0.5,0 ()0.51XY XY EX EY E XY ρρ====⇒===26222222)2()()22E X Y E X XY Y E X E XY E Y +=++=++=++=()()(二.选择题1.(91-3-3)若随机变量X 与Y 的协方差()()()E XY E X E Y =,则下列结论必正确的是( ). 解B (A ) ; (B ) ; (C ) X 与Y 独立; (D ) X 与Y 不独立 ()()(D XY D X D Y =))()D X Y DX DY +=+2.若随机变量X 与Y 的协方差,则下列结论必正确的是( ). 解C (,)0Cov x y =(A ) X 与Y 独立; (B ); (C )()()(D XY D X D Y =()D X Y DX DY +=+; (D ). ()D X Y DX DY −=−3.(90-4-3)已知()()~(,), 2.4, 1.44X B n p E X D X ==则的值( ). 解B ,n p (A ); (B ) ; (C ) 4,0.6n p ==6,0.4n p ==8,0.3n p ==; (D ) . 24,0.1n p ==解:()()1.44, 2.4,1 1.44/2.40.60.4,6D X npq E X np q p p n =====−==⇒==4.(97-1-3)设两个相互独立的随机变量X 和Y 的方差为4和2,则随机变量32X Y −的方差是( ) 解D (A) 8; (B)16; (C)28; (D)44 分析:()329()4()944244D X Y D X D Y −=+=×+×=5.(95-3-3)设随机变量X,Y 独立同分布,记,则U 和V 必然( ) 解D ,U X Y V X Y =−=+(A )独立; (B)不独立; (C ) 相关系数不为0; (D )相关系数为0. 分析: X,Y 独立同分布,()(),D X D Y =cov(,)cov(,)cov(,)cov(,)cov(,)cov(,)()()00U V X Y X Y X X X Y Y X Y Y D X D Y ρ=−+=+−−=−=⇒=6.(08-1,3,4-4) (0,1),(1,4),1XY X N Y N ρ=∼∼,则( ). 解D (A). (B). (C)(21)P Y X =−−=111(21)P Y X =−=(21)P Y X =−+=. (D).(21)P Y X =+=10分析:,1,XY Y aX b a ρ=+=∴>,排除A,C,()0,()1,()101E X E Y EY aE X b a b b ===+⇒=⋅+⇒=∵,选D三.计算题 1. 设随机变量X 的分布函数()0, 10.2, 100.5, 011, 1x x F x x x <−−≤<=≤<≥⎧⎪⎪⎨⎪⎪⎩,求EX , (0.3,0.61)DX X -1 0 1解:分析,由()F x 是离散型的分布函数,先求分布律1/3 0.2 0.3 0.5(直接计算分段点的跳跃度(值差)即可)()10.210.50.3EX =−×+×=,,()22210.210.50.7EX =−×+×=2220.70.30.61DX EX E X =−=−=2. 若已知是分布函数,求()0, 10, 011, 1x F x x x x −≤<⎧⎪=≤<⎨⎪≥⎩EX , (1/2,1/12)DX (思考:如何判别分布函数()F x 是离散型还是连续型?)解:分析,由()F x 是连续型的分布函数,先求导数,,()1, 01'()0, x F x f x ≤<⎧==⎨⎩其他1120 011122EX x dx x =⋅==∫, 112230 011133EX x dx x =⋅==∫,222111321DX EX E X ⎛⎞=−=−=⎜⎟⎝⎠23.(89-4-3)设随机变量2123~(0,6),~(0,2),~(3)X U X N X P 相互独立,令32132X X X X +−=,求EX , (12, 46) DX 解:12306()()2()3()2033122E X E X E X E X +=−+=−×+×= 22123(60)()()4()9()42934612D X D X D X D X −=++=+×+×=4、设[]~2,6X U ,对进行20次独立观测,Y 表示20次观测值中事件X {}5X >发生的次数,求()2Y E (115/4).解:[]~2,6X U ,()1, [2,6]40, x f x ⎧∈⎪=⎨⎪⎩其他,{} 6 511544P X dx >==∫.,据题意 ,(,)Y B n p ∼120,4n p ==13154205,544EY np DY npq ==×===×=(),222153528E Y DY E Y =+=+=5.(02-4-3) 已知随机向量(X ,Y )的联合分布律为,求,,(,),EX DX Cov X Y xy ρ (0.6,0.24,0,0)解:0.6,EX =20.6,EX =220.60.360.24DX EX E X =−=−=,()10.1510.350.2EY =−×+×=(1,1)(1,1)()0.080.20.12E XY xy xy −=×+×=, (,)0,0xy Cov X Y ρ=∴=6、已知随机变量服从区域),(Y X ()}{,01,D x y x x y x =<<−<<上的均匀分布,求(),,,EX DX Cov X Y .解:依题意,()11, (,),0, x y Df x y d ⎧=∈⎪=⎨⎪⎩其他(注意,函数区间利用二重积分计算)2222(,((,EX xf x EX x f DX EX E X EY yf x y +∞+∞−∞−∞+∞+∞−∞−∞+∞−−∞===−==∫∫∫∫∫()(,EXY xyf Cov X Y EXY +∞∞+∞+∞−∞−∞==−∫∫∫7. (05-1,3,4-9)设二维随机变量 (X,Y) 的密度函数为()1,01,02,0,x y xf x y <<<<⎧=⎨⎩其他1)求边缘概率密度()X f x ,()Y f y . 2)判断X,Y 的独立性(补). 3)判断X,Y 的相关性(补解: 1) 01x <<,()()20,12xX f x f x y dy dy x +∞−∞==∫∫=2, 01()0, Xx x f x <<⎧∴=⎨⎩其他 02y <<,()()1/2,112Y y y f y f x y dx dx +∞−∞===−∫∫,1, 02()20, Y yy f y ⎧−<<⎪∴=⎨⎪⎩其他2) 显然(,)()()X Y f x y f x f y ≠⋅,X Y ∴,不独立.3) 121122002()(,)23xxE X xf x y dxdy xdxdy x y dx x dx +∞+∞−∞−∞====∫∫∫∫∫∫=, 1211222000012()(,)223xx E Y yf x y dxdy ydxdy y dx x dx +∞+∞−∞−∞====∫∫∫∫∫∫=1211223000011()(,)222xx E XY xyf x y dxdy xydxdy x y dx x dx +∞+∞−∞−∞====∫∫∫∫∫∫=1显然相关.(,)()()()0Cov X Y E XY E X E Y =−≠∴Y X ,8. (07-1,3,4-11)设二维随机变量 (X,Y) 的密度函数为()2,01,0,0,x y x y f x y −−<<<⎧=⎨⎩其他<}1) 求, 2)判断X,Y 的独立性(补), 3)判断X,Y 的相关性(补) (7/24, 不独立.相关) {2P X Y >解1) ()1/21/220001{2}2(2)2x x P X Y x y dxdy y xy y dx >=−−=−−∫∫∫120515()822424x x dx =−=−=∫7112001301()(,)(2)(2)22X x f x f x y dy x y dy y xy y x +∞−∞≤≤==−−=−−=−∫∫,3/2, 01()0, X x x f x −≤⎧≤2),∴=⎨⎩其他112001301,()(,)(2)(2)22Y y f y f x y dx x y dx x x xy y +∞−∞≤≤==−−=−−=−∫∫3/2, 01()Y y y f y −≤⎧≤∴=⎨显然(,)()()X Y f x y f x f y ≠⋅, X Y ∴,不独立3)112300331()()()()243X E X xf x dx x x dx x x +∞−∞==−=−∫∫512=,112300331()()()()2435Y E Y yf y dy y y dy y y +∞−∞==−=−=∫∫121111122232000001121()(,)(2)()()2332E XY xyf x y dxdy xy x y dxdy xy x y xy dx x x dx +∞+∞−∞−∞==−−=−−=−∫∫∫∫∫∫16= (,)()()()0Cov X Y E XY E X E Y =−≠X Y ∴,相关. 9.(94-1-6)设且22~(1,3),~(0,4)X N Y N ,1,2XY ρ=−设32X YZ =+, 1)求(),().E Z D Z 2)求XZ ρ,(1/3,3, 0)解:1) 22~(1,3),~(0,4),X N Y N 1,2XY ρ=−32X Y Z =+11()()()32E Z E X E Y ⇒=+=13 1(,)3462XY Cov X Y ρ==−××=−,111111()(,)916(6)3943943D Z DX DY Cov X Y ∴=++=×+×+−=2)111111(,)(,)(,)()(,)9(6)032323232X Y Cov X Cov X X Cov X Y D X Cov X Y +=+=+=⋅+−=cov ,0XZ X Z ρ∴==。

(完整版)概率论习题答案随机变量的数字特征

(完整版)概率论习题答案随机变量的数字特征

(完整版)概率论习题答案随机变量的数字特征第3章随机变量的数字特征1,在下列句⼦中随机地取⼀单词,以X 表⽰取到的单词所包含的字母个数,试写出X 的分布律并求)(X E .“They found Peking greatly changed ”解:根据题意,有1/5的可能性取到5个单词中的任意⼀个。

它们的字母数分别为4,5,6,7,7。

所以分布律为5/29)77654(51)(=++++=X E .2,在上述句⼦的29个字母中随机地取⼀个字母,以Y 表⽰取到的字母所在的单词所包含的字母数,写出Y 的分布律并求)(Y E 。

解:5个单词字母数还是4,5,6,7,7。

这时,字母数更多的单词更有可能被取到。

分布律为29/175)147665544(291)(=?+?+?+?=Y E .3,在⼀批12台电视机中有2台是次品,若在其中随即地取3台,求取到的电视机中包含的次品数的数学期望。

解:根据古典概率公式,取到的电视机中包含的次品数分别为0,1,2台的概率分别为1163123100==C C p , 229312210121==C C C p , 221312110222==C C C p 。

所以取到的电视机中包含的次品数的数学期望为)(21222112290116台=?+?+?=E 。

4,抛⼀颗骰⼦,若得6点则可抛第⼆次,此时得分为6+(第⼆次所抛的点数),否则得分就是第⼀次所抛的点数,不能再抛。

求所得分数的分布律,并求得分的数学期望。

解:根据题意,有1/6的概率得分超过6,⽽且得分为7的概率为两个1/6的乘积(第⼀次6点,第2次1点),其余类似;有5/6的概率得分⼩于6。

分布律为得分的数学期望为)(1249)121110987(361)54321(61点=++++++++++=E 。

5,(1)已知)(~X λπ,}6{}5{===X P X P ,求)(X E 。

(2)设随机变量X 的分布律为Λ,4,3,2,1,6}{22--===k k k X P π,问X 的数学期望是否存在?解:(1)根据)(~X λπ,可得}6{!6!5}5{65=====--X P e e X P λλλλ,因此计算得到6=λ,即)6(~X π。

随机数据处理方法 石油大学出版社 王清河 课后题答案 第三章

随机数据处理方法 石油大学出版社 王清河 课后题答案 第三章

协方差阵为
⎜⎜⎝⎛
0.21 − 0.02
−00.2.042⎟⎟⎠⎞ ,
相关阵为
⎜⎜⎝⎛

1 0.089
− 01.089⎟⎟⎠⎞ 。
18.设随机变量(X,Y)的概率密度为
f
(x,
y)
=
⎪⎧1 ⎨8
(x
+
y),
0

x

2,0 ≤
y

2
⎪⎩
0,
其它
求相关系数 ρ XY 。 答案与提示:欲求相关系数,需先求 DX、DY、EX、EY 、Cov ( X,Y ) 。
4
4
12.设 X、Y 的概率分布分别为
f
(x)
=
⎧2e −2 x,
⎨ ⎩
0,
x x
> ≤
0 0
求: E( X + Y ) 和 E(2X − 3Y 2 ) 。
f
( y)
=
⎧4e−4 y,
⎨ ⎩
0,
y y
> ≤
0 0
答案与提示:可利用由数学期望性质及常用分布随机变量的数学期望和方差来
计算 E( X + Y ) 和 E(2X − 3Y 2 ) ,关键是计算 EX 、 EY 、 EY 2 。
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分
布 B(n, p) ,当然在一次试验中发生的次数应服从 B(1, p) ,即为(0-1)分布。
可令
X
=
⎧1,事件A在试验中发生, ⎨⎩0,事件A在试验中不发生.
得 DX ≤ 1 ,即事件在一次试验中发生的次数的方差不超过 1 。

概率论第三章习题及答案

概率论第三章习题及答案

02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。

随机数据处理方法 第三版 课后答案(王清河 著) 中国石油大学出版社

随机数据处理方法 第三版 课后答案(王清河 著) 中国石油大学出版社

(2) P( A3 | A) = 0.4 。 19.某专门化医院平均接待 K 型病患者 50%,L 型病患者 30%,M 型病患 者 20%,而治愈率分别为 7/10、8/10、9/10。今有一患者已治愈,问此患者是 K 型病的概率是多少?
提示与答案:依题意,这是一全概率公式及贝叶斯公式的应用问的事件是互逆的。
2.如果 x 表示一个沿着数轴随机运动的质点位置,试说明下列事件的包含、
互不相容等关系:
A = {x | x ≤ 20}
B = {x | x > 3}
C = {x | x < 9}
D = {x | x < −5} E = {x | x ≥ 9}
解:(1)包含关系: D ⊂ C ⊂ A 、 E ⊂ B 。
P( AB) = P( A ∩ B ) = P( A ∪ B) = 1 − P( A ∪ B)
=1 − 1 − P(B) + P( AB) 3
从而得 2 − P(B) = 0 ,即 3 P(B) = 2 3
7.一个袋中有 5 个红球 2 个白球,从中任取一球,看过颜色后就放回袋中, 然后再从袋中任取一球。求:(1)第一次和第二次都取到红球的概率;
球,也可能是黑球),并且也只有这两种可能。因此若把这两种可能看成两个事
件,这两个事件的和事件便构成了一个必然事件。
若设 A 表示:“由甲袋取出的球是白球”; B 表示:“由甲袋取出的球是黑 球”; C 表示:“从乙袋取出的球是白球”。则 P(C) = 5 /12 。
18.设有一箱同类产品是由三家工厂生产的,其中 1 是第一家工厂生产的, 2
17.有两个口袋,甲袋中盛有 2 个白球 1 个黑球;乙袋中盛有 1 个白球 2 个黑球。由甲袋任取一球放入乙袋,再从乙袋中取出一球,求取到白球的概率。

随机变量的数字特征

随机变量的数字特征

第三章、随机变量的数字特征一、选择题:1.设随机变量X 的分布函数为40,1(),011,1x F x x x x <⎧⎪=≤≤⎨⎪>⎩,则EX= ( C )A .140x dx ⎰ B .15014x dx ⎰ C .1404x dx ⎰ D .1401x dx xdx +∞+⎰⎰2.设X 是随机变量,0x 是任意实数,EX 是X 的数学期望,则 ( B )A .220()()E X x E X EX -=-B .220()()E X x E X EX -≥-C .220()()E X x E X EX -<-D .20()0E X x -=3.已知~(,)X B n p ,且EX=2.4,EX=1.44,则参数,n p 的值为 ( B )A .n = 4,p = 0.6B .n = 6,p = 0.4C .n = 8,p = 0.3D .n = 24,p = 0.14.设X 是随机变量,且EX a =,2EX b =,c 为常数,则D (CX )=( C )A .2()c a b -B .2()c b a -C .22()c a b -D .22()c b a -5.设随机变量X 在[a ,b ]上服从均匀分布,且EX=3,DX=4/3,则参数a ,b 的值为 ( B )A .a = 0,b = 6B .a = 1,b = 5C .a = 2,b = 4D .a = -3,b = 36.设ξ服从指数分布()e λ,且D ξ=0.25,则λ的值为 ( A )A .2B .1/2C .4D .1/47.设随机变量ξ~N (0,1),η=2ξ+1 ,则 η~ ( A )A .N (1,4)B .N (0,1)C .N (1,1)D .N (1,2)8.设随机变量X 的方 差DX =2σ,则()D aX b += ( D )A .2a b σ+B .22a b σ+C .2a σD .22a σ9.若随机变量X 的数学期望EX 存在,则[()]E E EX = ( B )A .0B .EXC .2()EXD .3()EX10.若随机变量X 的方差DX 存在,则[()]D D DX = ( A )A .0B .DXC .2()DXD .3()DX11.设随机变量X 满足D (10X )=10,则DX= ( A )A .0.1B .1C .10D .10012.已知1X ,2X ,3X 都在[0,2]上服从均匀分布,则123(32)E X X X -+= ( D )A .1B .2C .3D .413.若1X 与2X 都服从参数为1泊松分布P (1),则12()E X X += ( B )A .1B .2C .3D .414.若随机变量X 的数学期望与方差均存在,则 ( B )A .0EX ≥B .0DX ≥C .2()EX DX ≤D .2()EX DX ≥15.若随机变量2~(2,2)X N ,则1()2D X = ( A )A .1B .2C .1/2D .316.若X 与Y 独立,且DX=6,DY=3,则D(2X-Y )= ( D )A .9B .15C .21D .2717.设DX = 4,DY = 1,XY ρ= 0.6,则D(2X-2Y) = ( C )A .40B .34C .25.6D .17.618.设X 与Y 分别表示抛掷一枚硬币n 次时,出现正面与出现反面的次数,则XY ρ为( B )A .1B .-1C .0D .无法确定19.如果X 与Y 满足D(X+Y) = D(X-Y), 则 ( B )A .X 与Y 独立B .XY ρ= 0C .DX-DY = 0D .D X DY=020.若随机变量X 与Y 的相关数XY ρ=0,则下列选项错误的是 ( A )A .X 与Y 必独立B .X 与Y 必不相关C .E (XY ) = E(X) EYD .D (X+Y ) = DX+DY二、填空题:1. 设X 表示10次独立重复射击命中的次数,每次射击命中目标的概率为0.4,则2EX = 18.4 .2. 若随机变量X ~ B (n, p ),已知EX = 1.6,DX = 1.28,则参数n = 8 ,P = 0.2 .3. 若随机变量X 服从参数为p 的“0—1”分布,且DX = 2/9,21,92DX EX =<,则EX = 1/3 .4. 若随机变量X 在区间 [a , b]服从均匀分布,EX = 3,DX = 1/3,则a = 2 ,b = 4 .5. 若随机变量X 的数学期望与方差分别为EX = 2,DX = 4,则2EX = 8 .6. 若随机变量X 服从参数为λ泊松分布 ~()X P λ,且EX = 1,则DX = 1 .7. 若随机变量X 服从参数为λ指数分布~()X e λ,且EX = 1,则DX = 1 .8. 若随机变量X 服从参数为2与2σ的正态分布2~(2,)X N σ,且P{2 < X < 4} = 0.3, 则P{X<0} = 0.2 .9. 若X 是一随机变量,EX = 1,DX = 1,则D (2X - 3)= 4 .10. 若X 是一随机变量,D (10X )= 10,则DX = 0.1 .11. 若X 是一随机变量,2(1)2X E -= 2,1(1)22X D -=,则EX = 2或—2 . 12. 若随机变量X 服从参数为n 与p 的二项分布X ~ B (n, p ),EX = 2.4,DX = 1.44,则{1}p X < = .13. 若随机变量X 服从参数为2与22的正态分布X ~ 2(2,2)N ,则1()2D X = . 14. 若随机变量X 服从参数为2指数分布X ~e (2),则2()E X X += 1 .15. 若随机变量X 的概率密度为 2,01()0,x x f x ≤≤⎧=⎨⎩其他,则EX = 2/3 ,DX = 1/18 . 16. 若随机变量X 的分布函数为300(),011,1y F x y y y <⎧⎪=<<⎨⎪>⎩, ,则EX = 3/4 .17. 若随机变量1X 与2X 都在区间 [0 ,2]上服从均匀分布,则12()E X X += 2 .18. 人的体重是随机变量X ,EX = a, DX = b, 10个人的平均重量记为Y ,则EY = a .19. 若X 与Y 独立,且DX = 6,DY = 3,则D (2X-Y )= 21 .20. 若随机变量X 与Y 独立,则X 与Y 的相关系数为R (X ,Y )= 0 。

【高等数学】概率论与数理统计-随机变量的数字特征专项试卷及答案解析

【高等数学】概率论与数理统计-随机变量的数字特征专项试卷及答案解析

CA)P{Y=-2X-1} = 1.
+ (C)P{Y =-ZX 1} = 1.
(B)P{Y = 2X-1} = 1. (D)P{Y = 2X+l} = 1.
(5)将长度为lm的木棒随机地截成两段,则两;段长度的相关系数为
CA)l.
ω÷
(C) 一 ÷
CD) -1.
ω 已知随机变量 X,Y 均服从分布BCl,f),且仰 = ÷,则P{X+Y ζl}等于
P(B) + P(AB)
= 4P(AB) -2P(A) -2P(B)十1.
因此 E(XY) - EXEY = 4P(AB) -2P(A) - 2PCB) + 1 一 [2P(A) -1][2PCB) - l]
= 4P(AB) - 4P(A)P(B),
所以X与Y不相关等价子 P(AB) = P(A)P(B) ,即 A,B 相互独立.
专 =1-d=
(旧,Y均服从B(2,÷)分布
Cov(X,Y) E(XY)-EX • EY
ρXl' = ft5X" ./f5V =
� ./f5V
。XY
1
试验只重复2次, XY 的分布为 p
7 9
2 9
f f EX= EY= ,DX=DY= t,E(XY)= ,1.!iJ.pxy = 一 ÷
【 i平注】 本题也可用对称性求解:
I I (3)£Y =
E[max(I
X
1,1)]
=
J IXl>l
Ix I
f(x)dx+ J
1
IXI运l

f(x)dx
>. 士 = 2f
dx+
[1 1

ch3 随机变量的数字特征

ch3 随机变量的数字特征
二.众数
定义:(1)设离散随机变量X的分布律为 .
若存在实数 ,使得对每个 ,有 ,则称 为X(或X服从的分布)的众数.
(2)设连续随机变量X的概率密度为 ,若存在实数 ,使得对一切 有 ,则称 为X(或X服从的分布)的众数.
例如:(1)某鞋厂生产一种青年女子凉鞋,用X表示市场上对此种鞋的需求量的尺码大小,设X的分布律为
第3章 随机变量的数字特征
分布函数全面地描述了随机变量的统计规律性.但是在实际问题中,有时并不要求全面了解随机变量的变化情况,而只要求知道随机变量的某些数字特征.
例:(1)X—— 考试成绩,要了解平均成绩 ;
(2)考察一批水泥板的质量,每块水泥板的承受力 .既要知道这批水泥板的平均承受力 ,又要了解每块水泥板与平均承受力的偏差 ,平均承受力较大、偏离程度较小,质量就较好.
解:X的分布函数 .
用随机变量Y表示工厂生产一台电视机的获利,则Y的可能取值为 和150,且



于是得 (元).
即工厂每生产一台电视机平均获利61.71元.
数学期望的性质:
(1)设c是常数,则 .
(2)设 是常数,X是随机变量,则 .
证:(1)是显然的.对于(2),设 是连续随机变量,概率密度为 .若 ,则等式显然成立.若 ,则 的反函数是 ,根据定理 的概率密度为 .所以
例4.某种品牌的电视机按规定实行“三包”,若寿命不足30天,顾客可以退换,工厂则要亏损500元;若寿命在30~365天,顾客可以要求免费维修,工厂则要亏损100元;若寿命超过365天,电视机超过保修期,工厂获利150元.假设电视机的寿命X(单位:天)的概率密度函数为 试求工厂每生产一台电视机平均获利多少元?
若用X的概率密度 来表达,则有 .

【概率论习题答案】第3章_随机变量的数字特征

【概率论习题答案】第3章_随机变量的数字特征

第3章 随机变量的数字特征1,在下列句子中随机地取一单词,以X 表示取到的单词所包含的字母个数,试写出X 的分布律并求)(X E .“They found Peking greatly changed ”解:根据题意,有1/5的可能性取到5个单词中的任意一个。

它们的字母数分别为4,5,6,7,7。

所以分布律为5/29)77654(51)(=++++=X E .2,在上述句子的29个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所包含的字母数,写出Y 的分布律并求)(Y E 。

解:5个单词字母数还是4,5,6,7,7。

这时,字母数更多的单词更有可能被取到。

分布律为29/175)147665544(291)(=⨯+⨯+⨯+⨯=Y E .3,在一批12台电视机中有2台是次品,若在其中随即地取3台,求取到的电视机中包含的次品数的数学期望。

解:根据古典概率公式,取到的电视机中包含的次品数分别为0,1,2台的概率分别为1163123100==CC p ,229312210121==CC C p ,221312110222==CC C p 。

所以取到的电视机中包含的次品数的数学期望为)(21222112290116台=⨯+⨯+⨯=E 。

4,抛一颗骰子,若得6点则可抛第二次,此时得分为6+(第二次所抛的点数),否则得分就是第一次所抛的点数,不能再抛。

求所得分数的分布律,并求得分的数学期望。

解:根据题意,有1/6的概率得分超过6,而且得分为7的概率为两个1/6的乘积(第一次6点,第2次1点),其余类似;有5/6的概率得分小于6。

分布律为得分的数学期望为)(1249)121110987(361)54321(61点=++++++++++=E 。

5,(1)已知)(~Xλπ,}6{}5{===X P X P ,求)(X E 。

(2)设随机变量X 的分布律为,4,3,2,1,6}{22--===k kk X P π,问X 的数学期望是否存在? 解:(1)根据)(~Xλπ,可得}6{!6!5}5{65=====--X P eeX P λλλλ,因此计算得到6=λ,即)6(~X π。

第三章03二维随机变量数字特征

第三章03二维随机变量数字特征

解 方法一: 求出边缘密度,再求期望
7 方法二: EX xf ( x, y )dxdy x( x y )dxdy 0 0 12 1 1 7 EY yf ( x, y )dxdy y( x y )dxdy 0 0 12
E 则: [a1 X 1 a 2 X 2 ... a n X n ] a1 E[ X 1 ] a 2 E[ X 2 ] ... a n E[ X n ]
注:一般情况下,E[ g( X ,Y )] g( E[ X ], E[Y ]) (3)、 X和Y的期望
EX
例: E[ XY ] E[ X ]E[Y ]
1、二维离散型随机变量函数的期望
(1)设(X,Y)是二维离散型随机变量,联合分布列为 pij P ( X x i ,Y y j )
二元函数Z=g(X,Y)可以确定一个新的随机变量,期望为:
E[ Z ] E[ g( X , Y )] g( x i , y j ) P ( X x i , Y y j ) g( x i , y j ) pij

Y X 0 1
0 0.3 0.1 0.4
1 0.2 0.1 0.3
2 0 0.3 0.3
PX
0.5 0.5 1
PY
x y ,0 x 1, 0 y 1 f ( x, y) 例设(X,Y)的密度函数为 0 , 其他
求Cov(X,Y).
7 解 EX 0 0 12 1 1 7 EY yf ( x, y )dxdy y( x y )dxdy 0 0 12 1 1 1 E(XY) xyf ( x, y )dxdy xy( x y )dxdy 0 0 3 1 7 7 1 ∴Cov(X,Y)=E(XY)-EXEY= 3 12 12 144

第3章 随机变量的数字特征

第3章 随机变量的数字特征
4 0.1 1 0.2 0 0.3 1 0.4 1 .
21
例 设随机变量 X 的概率密度为拉普拉斯分布
f ( x) 1 e|x| , x
2
求 E( X ) , EX 2 。

E(X)
x f ( x)dx
x
1
e|x|
dx
2
1 x ex dx 1 0 x ex dx 1 (1 1) 0 .
先介绍随机变量的数学期望。
2
§1 数学期望 (Mathematical Expectation)
对于一个随机变量 X,有时希望知道 X 的取值集中在
哪里,即要确定 X 的平均值。由于其取值是随机的,如 P{X 1} 0.1 , P{ X 2} 0.9 , 1 和 2 的算术平均值 1.5
并不能真实体现 X 取值的平均水平,这是由于 X 取 1 与取 2 的概率不等所致,实际上 X 取 2 比取 1 的概率大得多。 因此,要真正体现 X 取值的平均,不能用简单算术平均方 法来确定,还应考虑到它取各不同值的概率大小,即采用 概率权方法,用数学期望来表示随机变量 X 的平均值。
绝对收敛,
x f ( x)dx
则称之为 X 的数学期望,记为 E(X),即
16
例 设随机变量 X 的概率密度函数为
3x2 , 0 x 1
f (x) 0 ,
其他
求 X 的数学期望。

E( X ) x f ( x)dx
1 x 3 x2 dx 3 .
0
4
17
例 设随机变量 X 的概率密度函数为
k 0,1, 2, ,若已知E( X ) a (a 0) ,求常数A, B 。
解 因为 P{ X k} 1 ,所以

《概率论与数理统计答案》第三章

《概率论与数理统计答案》第三章
第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为


D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—

若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网

ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α

4.2.4随机变量的数字特征(人教B版2019选择性必修第二册)

4.2.4随机变量的数字特征(人教B版2019选择性必修第二册)
5000 p (3000)(1 p) 0,
即 p 0.375 时,就应该对创业项目进行资助.
一、离散型随机变量的均值
思考:一家投资公司在决定是否对某创业项目进行资助时,经过评
估后发现:如果项目成功,将获利5000万元;如果项目失败,将损
失3000万元.设这个项目成功的概率为 p ,而你是投资公司的负责
甲的环数X1
8
9
10
乙的环数X2
8
9
10
P
0.2 0.6 0.2
P
0.4 0.2 0.4
不难算出E(X1)=E(X2)=9, 这就是说,如果仅从平均水平的角度考虑,是不能决定选谁参加的.
怎样来衡量他们的发挥稳定性呢?
二、离散型随机变量的方差
甲的环数X1 P
8
9
10
0.2 0.6 0.2
乙的环数X2 P
处于平衡位置.
学生笔记
4.2.4随机变量的数字特征
1.离散型随机变量的均值 一般地,如果离散型随机变量 X 的分布列如下表所示.
X
x1
x2
xk
xn
P
p1
p2
pk
pn
则称
n
E( X ) x1 p1 x2 p2 xn pn x1 p1.
i 1
为离散型随机变量 X 的均值或数学期望(简称为期望).
a(x1 p1 x2 p2 xn pn ) b( p1 p2 pn ) aE(x) b.
学生笔记
4.2.4随机变量的数字特征
1.离散型随机变量的均值
(1)若 X 服从参数为n , p的二项分布,即X ~ B(n, p) ,则
E(X ) np; (2)若X服从参数为N,n,M的超几何分布,即 X ~ H (N, n, M ),

概率论与数理统计第三章随机变量的数字特征3-2

概率论与数理统计第三章随机变量的数字特征3-2

解:由于EX p
所以
EX 2 12 p 0 (1 p) p
DX EX 2 (EX )2
p p2 p(1 p) ˆ pq
(2)Binomial Distribution X ~ B(n,p)
解:由于 X ~ B(n,p),故
P{X k} Cnk pk qnk (k 0,1,2,, n)
(4)设X 与Y 相互独立,则
D( X Y ) DX DY
证明: D( X Y) E[( X Y) E( X Y)]2
E[( X EX ) (Y EY )]2 E( X EX )2 2E( X EX )(Y EY ) E(Y EY )2 DX DY
其中 E( X EX )(Y EY ) E[ XY XEY YEX EXEY ]
EXY EXEY EXEY EXEY EXY EXEY EXEY EXEY 0
对于有限个相互独立的随机变量 X1, X 2,, X n 有 D( X1 X 2 X n ) DX1 DX 2 DX n
二.几种常见分布的r v 的方差
(1)(0-1)分布 X ~ B(1,p)
Standard Deviation
对于离散型随机变量X ,若其概率分布为
P{X xk } pk(k 1,2,)则有
DX
( xk
EX )2 pk
k 1
(3-9)
对于连续型r v X ,若其概率分布为 f ( x) ,则有
DX (x EX )2 f (x)dx
(3-10)
计算方差的一个重要公式:
由定义 3-1 及(p75)可得 EX np,DX npq。
现介绍一种简单方法:令
X i 0,1,第第i次i次试试验验事事件件AA不发发生生(i 1,2,,n)

概率论与数理统计讲义第三章随机变量的数字特征

概率论与数理统计讲义第三章随机变量的数字特征

概率论与数理统计讲义第三章随机变量的数字特征第三章随机变量的数字特征【授课对象】理工类本科二年级【授课时数】4学时【授课方法】课堂讲授与提问相结合【基本要求】1、理解数学期望、方差的概念,并掌握它们的性质。

2、会计算随机变量函数的数学期望。

3、了解协方差、相关系数的概念。

【本章重点】对数学期望、方差、相关系数等数字特征概念的理解与计算。

【本章难点】对不相关与相互独立间关系的理解。

【授课内容及学时分配】§3.0 前言从上一章我们可以看出,分布函数(或密度函数、分布列)给出了随机变量的一种最完全的描述。

因此,原则上讲,全面认识和分析随机现象就应当求出随机变量的分布,但是对许多实际问题来讲,要想精确地求出其分布是很困难的。

其实,通过对现实问题的分析,人们发现对某些随机现象的认识并不要求了解它的确切分布,而只要求掌握他们的某些重要特征,这些特征往往更能集中地反映随机现象的特点。

例如要评价两个不同厂家生产的灯泡的质量,人们最关心的是谁家的灯泡使用的平均寿命更长些,而不需要知道其寿命的完全分布,同时还要考虑其寿命与平均寿命的偏离程度等,这些数据反映了它在某些方面的重要特征。

我们把刻划随机变量(或其分布)某些特征的确定的数值称为随机变量的数字特征。

本章主要介绍反应随机变量取值的集中位置、分散程度以及随机变量之间的线性相依程度的数字特征——数学期望、方差与相关系数(矩)。

§3.1 随机变量的数学期望一、离散型随机变量的数学期望引例:甲、乙二人进行射击比赛,以、分别表示他们命中的环数,其分布列分别为~~试问谁的技术好些?解:这个问题的答案并不是一眼看得出的。

这说明了分布列虽然完整地描述了离散型随机变量的概率特征,但是却不够“集中”地反映出它的变化情况,因此我们有必要找出一些量来更集中、更概括地描述随机变量,这些量多是某种平均值。

若在上述问题中,使两个射手各射N枪,则他们打中靶的总环数大约是:甲 8N+90.1N+100.6N=9.3N乙 80.2N+90.5N+100.3N=9.1N平均起来甲每枪射中9.3环,乙每枪射中9.1环,因此可以认为甲射手的本领要好些。

离散型随机变量的数字特征有答案

离散型随机变量的数字特征有答案

高二数学离散型随机变量的数字特征1.随机变量X 的分布列为 则X 的均值为( ) A.2 B.2.1C. 2.3D.随m 的变化而变化 答案:B2.已知离散型随机变量X 的概率分布列为 则其方差D (X )= A .1 B .0.6C .2.44D .2.4【答案】C【详解】解:∵分布列中出现的所有的概率之和等于1, ∴0.5+m +0.2=1解得m =0.3所以E (x )=1×0.5+3×0.3+5×0.2=2.4, 所以222D(x)(1 2.4)0.5(3 2.4)0.3(5 2.4)0.2 2.44=-⨯+-⨯+-⨯=. 故选:C .3.已知随机变量,X Y 满足Y aX b =+,且,a b 为正数,若()2,()8D X D Y ==,则( )A .2b =B .4a =C .2a =D .4b =【答案】C【分析】根据题中条件,由方差的性质列出方程求解,即可得出结果. 【详解】由方差的性质可得,2()()()D Y D X b X a a D +==, 因为()2,()8D X D Y ==,所以282a =, 又a 为正数,所以2a =. 故选:C.A .6B .9C .3D .47.袋中有10个大小相同得小球,其中记为0号的有4个,记为n 号的有n 个(321,,=n ),现从袋中任取一球,X 表示所取到的球的标号,则)(X E 等于( ) A. 2 B.23 C. 54 D. 57答案:D解析:X 所有可能的取值是:0,1,2,352)0(==X P ,101)1(==X P ,51)2(==X P ,103)3(==X P 5710335121011520)(=⨯+⨯+⨯+⨯=∴X E8.已知随机变量X 的分布列如表所示,且.(1)求的值;(2)若,求的值; (3)若,求的值.【解题思路】(1)利用离散型随机变量的分布列的性质以及期望和方差的计算公式即可求解; (2)利用方差的性质求解即可; (3)利用方差的性质求解即可. 【解答过程】(1)由题意可知,解得,又∵,解得.∴. (2)∵, ∴. (3)∵,∴. 9.在课外体育活动中,甲、乙两名同学进行投篮游戏,每人投3次,每投进一次得2分,否则得0分.已知甲每次投进的概率为,且每次投篮相互独立;乙第一次投篮,投进的概率为,从第二次投篮开始,若前一次投进,则该次投进的概率为,若前一次没有投进,则该次投进的概率为.X 0 1 x Pp(1)求甲3次投篮得4分的概率;(2)若乙3次投篮得分为,求的分布列和数学期望.【解题思路】(1)甲3次投篮得4分即2次中1次不中,根据每次中的概率即可求解;(2)由题意得,的所有可能取值为依次求出每种取值的概率,然后写出分布列,求出期望.【解答过程】(1)由题意得,甲3次投篮得4分即2次中1次不中,其概率.(2)由题意得,的所有可能取值为则,,,的分布列为0 2 4 6.。

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)

目录第一章随机变量及其概率. (2)第二章随机变量及其分布. (13)第三章随机变量的数字特征. (30)第四章正态分布. (39)第五章样本及抽样分布. (49)第六章参数估计. (55)第七章假设检验. (68)第一章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4)抛一枚硬币,若出现H则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。

解:(1)S {2,345,6,7} ;(2)S {2,3,4, } ;(3)S{H ,TH ,TTH ,TTTH , };(4)S {HH , HT,T1,T2,T3,T4,T5,T6} o2,设A,B 是两个事件,已知P(A) 0.25,P(B) 0.5,P(AB) 0.125,,求P(A B), P(AB), P(AB), P[( A B)(AB)]。

解:P(A B) P(A) P(B) P(AB) 0.625,P(AB) P[(S A)B] P(B) P(AB) 0.375,P(AB) 1 P(AB) 0.875,P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)( AB)] 0.625 P(AB) 0.53,在100, 101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100, 101,…,999这900个3位数中不包含数字1的3位数 的个数为8 9 9 648,所以所求得概率为4, 在仅由数字0,1, 2, 3, 4, 5组成且每个数字至多出现一次的全 体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该 数大于330的概率。

解:仅由数字0, 1, 2, 3, 4, 5组成且每个数字之多出现一次的全 体三位数的个数有 5 5 4 100个。

概率论3

概率论3

第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅ (i = 1, 2, …, n) 又设∑==ni iXX 1, 则27)()()(11nX E X E X E ni in i i===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P 于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x ,⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2,x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E ∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=. 222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222c o s 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +.解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ ⎰⎰⎰⎰-+-=l yl xdy dx x y l dx dy y x l 022])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ =⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41s i n 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设Y 为该企业的利润, Y 的分布律为E(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T 所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档