《函数的单调性》-课件ppt
合集下载
函数的单调性(共22张PPT)
y
f(x) -5 -2 -1 o 1 3 5
x
解:函数y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5] ,其中y=f(x)在区间[-5,-2), [1,3)上是减函数,在区间 [-2,1), [3,5]上是增函数。
例2、 证明函数f(x)=3x+2在R上是增函数。
设值 证明: 设x1,x2是R上的任意两个实数x1<x2 , 作差变形
作业:
P39 1、2
于是 f(x1)-f( x2)<0,
判断符号 结论
即 f(x1)<f(x2) 所以,函数f(x)=3x+2在R上是增函数。
用定义证明函数单调性的步骤: • • • • 一、取值 二、作差变形 三、定号 四、下结论
课堂小结:
(1)函数单调性的概念;
(2)判断函数单调区间的方法; (3)证明函数单调区间的步骤.
y
y
y x 1
1
1
y 2x 2
2
1
x
o
y
O
x x
o o
O
y x 2x
2
y
O
1 y x
O
1
2
x
x
y
yx
2
f (x1 )
x1
O
x
y
yx
2
f (x1 )
x1
O
x
y
yx
2
f (x1 )
x1 O
y
yx
2
f (x1 )
x1O
x
y
yx
2
f (x1 )
O x1
x
y
函数的单调性ppt课件
在[0, ) 上,任取 x1, x2 ,只要 x1 x2 ,就有 f ( x1 ) f ( x2 ) .
问题:你能归纳以上两个函数单调性的刻画方法,给出函数 =
()在区间I上单调性的符号表述吗?
二、新课讲解
1、函数的单调性的定义:
(1)一般地,设函数f(x)的定义域为D,区间 ⊆D:
• 思考1:根据图象,当自变量x的值增大时,相应函数值是如何变化的呢?
4
当x≤ 0时,y随x的增大而减小
当x≥0时,y随x的增大而增大
1
-2 -1
O
x
1 2
0.001和0.002差着
0.001,0.001和0却
差着一切。
二、新课讲解
• 以函数图像y=f(x)= 2 为例:
思考2:我们知道当x≤0时,y随x的增大而减小。那“x增大了”如何用符号语言
表示?“对应函数值y减小”又该如何表示?观察下表,你能给出具体描述吗?
x
...
-5
-4
-3
-2
-1
...
f(x)=x2
...
25
16
9
4
1
...
当x从-5增大到-4,函数值f(x)从25减小到16;当x从-4增大到-3,函数值f(x)从
16减小到9;当x从-3增大到-2,函数值f(x)从9减小到4;
即f (x1)<f (x2).这时,f (x)=kx+b是增函数.
②当k<0时,k(x1-x2)>0.于是f (x1)-f (x2)>0,
即f (x1)>f (x2).这时,f (x)=kx+b是减函数.
变形
判号
定论
三、题目训练
问题:你能归纳以上两个函数单调性的刻画方法,给出函数 =
()在区间I上单调性的符号表述吗?
二、新课讲解
1、函数的单调性的定义:
(1)一般地,设函数f(x)的定义域为D,区间 ⊆D:
• 思考1:根据图象,当自变量x的值增大时,相应函数值是如何变化的呢?
4
当x≤ 0时,y随x的增大而减小
当x≥0时,y随x的增大而增大
1
-2 -1
O
x
1 2
0.001和0.002差着
0.001,0.001和0却
差着一切。
二、新课讲解
• 以函数图像y=f(x)= 2 为例:
思考2:我们知道当x≤0时,y随x的增大而减小。那“x增大了”如何用符号语言
表示?“对应函数值y减小”又该如何表示?观察下表,你能给出具体描述吗?
x
...
-5
-4
-3
-2
-1
...
f(x)=x2
...
25
16
9
4
1
...
当x从-5增大到-4,函数值f(x)从25减小到16;当x从-4增大到-3,函数值f(x)从
16减小到9;当x从-3增大到-2,函数值f(x)从9减小到4;
即f (x1)<f (x2).这时,f (x)=kx+b是增函数.
②当k<0时,k(x1-x2)>0.于是f (x1)-f (x2)>0,
即f (x1)>f (x2).这时,f (x)=kx+b是减函数.
变形
判号
定论
三、题目训练
函数的单调性课件(共17张PPT)
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则 不难看出,图3-7中,y是的函数,记这个函数为y =f(x).
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性
2024版《函数的单调性》全市一等奖完整版PPT课件
利用单调性证明不等式
1 2
构造函数 根据不等式的特点,构造一个与不等式相关的函 数。
判断函数单调性 通过求导或差分等方法判断所构造函数的单调性。
3
利用单调性证明不等式 根据函数的单调性,结合不等式的性质,证明不 等式成立。
2024/1/29
18
利用单调性解决实际应用问题
要点一
建立数学模型
要点二
判断函数单调性
2024/1/29
21
导数与微分在函数单调性研究中的应用
导数大于零的区间内函数单调 增加,导数小于零的区间内函 数单调减少。
2024/1/29
导数等于零的点为函数的驻点, 需要进一步判断其左右两侧导 数的符号来确定该点的单调性。
微分的概念可以应用于函数单 调性的研究,通过微分可以分 析函数的局部变化率,进而判 断函数的单调性。
14
指数函数与对数函数
对数函数 $y = log_a x$($a > 0, a neq 1$)的单调 性
当 $0 < a < 1$ 时,函数在 $(0, +infty)$ 上单调递减。
当 $a > 1$ 时,函数在 $(0, +infty)$ 上单调递增。
指数函数与对数函数的图像关于直线 $y = x$ 对称,即 互为反函数。
2024/1/29
19
05
函数单调性与其他知识点关联
2024/1/29
20
函数奇偶性与周期性对单调性影响
奇函数在对称区间上的单调性相 同,偶函数在对称区间上的单调
性相反。
周期函数在一个周期内的单调性 与整体单调性一致,可以通过研 究一个周期内的单调性推断整体
的单调性。
第1课时 函数的单调性 课件(42张)
点拨:二次函数的单调性与对称轴有关.
与二次函数单调性相关的参数问题 (1)若已知函数的单调区间,则对称轴即区间的端点; (2)若已知函数在某区间上的单调性,则该区间是函数相关区间的子区间,利用端 点关系求范围.
பைடு நூலகம் 【加固训练】
函数 f(x)=x2+(2a+1)x+1 在区间[1,2]上单调,则实数 a 的取值范围是( )
创新思维 抽象函数的单调性(逻辑推理) 【典例】已知函数 f(x)对任意的 a,b∈R,都有 f(a+b)=f(a)+f(b)-1,且当 x>0 时,f(x)>1. 求证:f(x)是 R 上的增函数; 【证明】设 x1,x2∈R,且 x1<x2, 则 x2-x1>0,即 f(x2-x1)>1, 所以 f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)= f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0. 所以 f(x1)<f(x2),所以 f(x)是 R 上的增函数.
范围为-32,+∞ ∪-∞,-25 .
解不等式
【典例】(2020·昆明高一检测)已知 f(x)是定义在 R 上的减函数,则关于 x 的不等
式 f(x2-x)-f(x)>0 的解集为( )
A.(-∞,0)∪(2,+∞)
B.(0,2)
C.(-∞,2)
D.(2,+∞)
【解析】选 B.因为 f(x)是定义在 R 上的减函数,则 f(x2-x)-f(x)>0.所以 f(x2- x)>f(x),所以 x2-x<x.即 x2-2x<0,解可得 0<x<2.即不等式的解集为(0,2).
基础类型二 利用定义证明函数的单调性(逻辑推理) 【典例】证明:函数 f(x)=x2-x 1 在区间(-1,1)上单调递减.
函数单调性课件(公开课)ppt
函数单调性课件(公开课)
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。
函数的单调性PPT课件
0
y=f(x)
f(x1)
x1
f(x2)
x
x2
注意:
(1)函数是增函数还是减函数,是对定义域内某个区间而言的。假如 函数y=f(x)在某个区间上是增函数或减函数,那么就说函数y=f (x) 在这一区间具有(严格的)单调性,这一区间叫做y=f (x)的单调区间.
(2)在单调区间上增函数的图像从左向右是上升的,减函数的图像从 左向右是下降的.
一般地,设函数y=f(x)的定义域为I,如果实数 M满足: (1)对于任意的的x∈I,都有f(x) ≥M;
(2)存在 x0 I,使得 f(x0 ) = M ,
那么我们称M是函数y=f(x)的最小值
❖函数的最值
The End
谢谢您的聆听!
期待您的指正!
函数的单调性PPT课件
定义:
一般地,设函数的定义域为I :
y y=f(x)
如果对于属于定义域I内某个区间上的任意两个自
f(x1)
变量的值 x1, x2 ,当 x1< x2 时,都有f(x1 )<f( x2) ,那么 就说f(x)在这个区间上是增函数.
0
x1
y
f(x2)
x
x2
如果对于属于定义域I内某个区间上的任意两个自 变量的值 x1 , x2 ,当 x1< x2 时,都有f( x1)>f( x2) ,那么 就说f(x)在这个区间上是减函数.
(, 0), (0, )
3〔、1y〕当axa[2>在0b时b,,xf(x)c)在(a(上0,为) 2b增a]函上数为。减函数。
〔2〕当a<02时a ,f(x) 在 (, b ] 上为增函数。
[ b , )
2a
y=f(x)
f(x1)
x1
f(x2)
x
x2
注意:
(1)函数是增函数还是减函数,是对定义域内某个区间而言的。假如 函数y=f(x)在某个区间上是增函数或减函数,那么就说函数y=f (x) 在这一区间具有(严格的)单调性,这一区间叫做y=f (x)的单调区间.
(2)在单调区间上增函数的图像从左向右是上升的,减函数的图像从 左向右是下降的.
一般地,设函数y=f(x)的定义域为I,如果实数 M满足: (1)对于任意的的x∈I,都有f(x) ≥M;
(2)存在 x0 I,使得 f(x0 ) = M ,
那么我们称M是函数y=f(x)的最小值
❖函数的最值
The End
谢谢您的聆听!
期待您的指正!
函数的单调性PPT课件
定义:
一般地,设函数的定义域为I :
y y=f(x)
如果对于属于定义域I内某个区间上的任意两个自
f(x1)
变量的值 x1, x2 ,当 x1< x2 时,都有f(x1 )<f( x2) ,那么 就说f(x)在这个区间上是增函数.
0
x1
y
f(x2)
x
x2
如果对于属于定义域I内某个区间上的任意两个自 变量的值 x1 , x2 ,当 x1< x2 时,都有f( x1)>f( x2) ,那么 就说f(x)在这个区间上是减函数.
(, 0), (0, )
3〔、1y〕当axa[2>在0b时b,,xf(x)c)在(a(上0,为) 2b增a]函上数为。减函数。
〔2〕当a<02时a ,f(x) 在 (, b ] 上为增函数。
[ b , )
2a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(x2)
N
?
对区间I内 任意 x1,x2 ,
f(x1) O
M
I x1 x2
当x1<x2时, 有f(x1)<f(x2)
x
y
图象在区间I逐渐上升
区间I内随着x的增大,y也增大
N
f(x2)
对区间I内 任意 x1,x2 ,
f(x1) O
M
I x1 x2
当x1<x2时,都 有f(x1)<f(x2)
x
设函数y=f(x)的定义域为A,区间I A. 如果对于区间I上的任意
(2).函数 f(x)=-x2+ 2ax-1+a2在(-∞,2] 上 是增函数,在 [2,+∞] 上是减函数,则 f(2)= ()
A.-1; B.7; C.3; D. 4a+5
f (x) 是定义在R上的单调函数,且 f (x) 的图
象过点A(0,2)和B(3,0)
(1)解方程 f (x) f (1 x) (2)解不等式 f (2x) f (1 x) (3)求适合 f (x) 2或f (x) 0 的 x 的
讨论2: y=ax2+bx+c (a≠0) 的单调性
成果交流
y ax2 bx c(a 0)的对称轴为 x b
2a
y ax2 bx c 单调增区间
单调减区间
a>0 a<0
b 2a
,
,
b 2a
,
b 2a
b 2a
,
返回
例题、 证明函数f(x)=3x+2在R上是增函数。
证明:
(一)设值
设x1,x2是R上(的二任)意作两差个变实形数,x1<x2 ,
则f (x1) f (x2) (3 x1 2) (3 x2 2)
3(x1 x2)
(三)判断符号
由x1 x2,得 x1 x2 0
于是 f(x1)-f( x2)<0, 即 f(x1)<f(x2)
(四)结论
所以,函数f(x)=3x+2在R上是增函数。
⑷下结论:根据定义得出其单调性.
试用定义法证明函数 f(x)= - 在1区间
x
上是单调增函数。
0,
小结
函数单调性及相关概念 函数单调性的判断(图象法)与证明(定
义 法)的方法与步骤(取值,作差与变 形,判断,结论)
学会数形结合的思想以及从具体到抽 象的研究问题的方法。
习题
(1).设函数f(x)=(a-1)x + b是R上的减函数, 求a的范围。
函数的单调性
上升
y y x 1
下降
y
y x 1
局部上升或下降 y
o
x
o
x
y x2
o
x
能函用数图的象这上种动性点质P称(为x,函y数)的的单横调、性纵坐标
关在系某一来区说间明内上,升或下降趋势吗?
当x的值增大时,函数值y也增大——图像在该区间内逐渐上升;
当x的值增大时,函数值y反而减小——图像在该区间内逐渐下降。
取值范围
返回
谢谢
O
x1
x2
x
设函数y=f(x)的定义域为A,区间I A.
如果对于属于定义域A内某个区间I上 如果对于属于定义域A内某个区间I上
的任意两个自变量的值x1,x2,
的任意两个自变量的值x1,x2,
当x1<x2时,都有f (x1 )< f (x2 ), 当x1<x2时,都有 f (x1 ) > f(x2 ),
那么就说在f(x)这个区间上是单调增 那么就说在f(x)这个区间上是单调
函数,I称为f(x)的单调 增 区间.
减函数,I称为f(x)的单调 减 区间.
单调区间
(1)如果函数 y =f (x)在区间I是单调增函数或单调减函数,那 么就说函数 y =f (x)在区间I上具有单调性。
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
(2)函数单调性是针对某个区间而言的,是一个局部性质;
判断1:函数 f (x)= x2 在 ,
上是单调增函数;
y
y x2
o
x
(1)如果函数 y =f (x)在区间I是单调增函数或单调减函数,那 么就说函数 y =f(x)在区间I上具有单调性。
在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
单调减区间是: [5, 2] ,[1,3]
例2.画出下列函数图像,并写出单调区间:
(1) y 1 (x 0);
y
y1
x
x
?
x
y
1 x
的单调减区间是_(___,_0_)_U_, _(0_,___ )
讨论1:根据函数单调性的定义,
试讨论 f (x) k (k 0) 在,0和0, 上的单调性?
x
y
10
8
ห้องสมุดไป่ตู้
6
4
2
I
O
2 4 6 8 10 12 14 16 18 20 22 24 x
-2
y
图象在区间I逐渐上升
区间I内随着x的增大,y也增大
f(x2)
N
?
对区间I内
x1,x2 ,
f(x1) O
M
I x1 x2
当x1<x2时, 有f(x1)<f(x2)
x
y
图象在区间I逐渐上升
区间I内随着x的增大,y也增大
(2)函数单调性是针对某个区间而言的,是一个局部性质;
(3) x 1 ,x 2 取值的任意性
判断2:定义在R上的函数 f (x)满足 f (2)> f(1),则
函数 f (x)在R上是增函数;
y
f(2)
f(1)
O 1 2x
例题1:根据图像指出y f (x) 单调增区间和单调减区间
单调增区间是: [2,1] ,[3,5]
定 两个自变量的值x1,x2,当x1<x2时,都有f(x1 ) < f(x2 ), 义 那么就说 f (x)在区间I上是单调增函数,I 称为 f (x)的单调
增区间.
类比单调增函数的研究方法定义单调减函数.
y
y
f(x2) f(x1)
f(x1) f(x2)
O
x1
x2
x
设函数y=f(x)的定义域为A,区间I A.
结论
证明函数单调性的一般步骤: ⑴取值:设x1 ,x2是给定区间内的两个任意 值,且x1< x 2 (或x1 >x 2); ⑵作差:作差f (x1)-f (x2),并将此差式变 形(要注意变形到能判断整个差式符号为止);
⑶定号:判断f (x1)-f (x2)的正负(要注意 说理的充分性),必要时要讨论;