最新现代控制理论复习题级
现代控制理论试卷及答案
现代控制理论试卷一、简答题(对或错,10分)(1)描述系统的状态方程不是唯一的。
(2)用独立变量描述的系统状态向量的维数不是唯一的。
(3)对单输入单输出系统,如果1()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。
(4)对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。
(5)李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。
(6)李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。
(8)线性定常系统经过非奇异线性变换后,系统的可控性不变。
(9)用状态反馈进行系统极点配置可能会改变系统的可观测性。
(10)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测。
对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H 的参数能任意配置系统的闭环极点。
二、试求下述系统的状态转移矩阵()t Φ和系统状态方程的解x 1(t)和x 2(t)。
(15分)1122()()012()()()230x t x t u t x t x t ⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12(0)0,(),0(0)1tx u t e t x -⎡⎤⎡⎤==≥⎢⎥⎢⎥⎣⎦⎣⎦ 三、设系统的传递函数为()10()(1)(2)y s u s s s s =++。
试用状态反馈方法,将闭环极点配置在-2,-1+j ,-1-j 处,并写出闭环系统的动态方程和传递函数。
(15分) 四、已知系统传递函数2()2()43Y s s U s s s +=++,试求系统可观标准型和对角标准型,并画出系统可观标准型的状态变量图。
(15分)五、已知系统的动态方程为[]211010a x x uy b x ⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎨⎣⎦⎣⎦⎪=⎩,试确定a ,b 值,使系统完全可控、完全可观。
现代控制理论考试题及答案
答案及评分标准一,填空(3分每空,共15分)1.输出变量 2.变量的个数最少 3.⎥⎦⎤⎢⎣⎡2001 4. 其状态空间最小实现为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100001100010 ; u x y 2102121+⎥⎦⎤⎢⎣⎡= 5. 0,021==x x二,选择题(3分每题,共12分) 1.B 2.D 3.B 4.C三,判断题(3分每题,共12分)1.2. √3.4. √四,简答题(共23分)1.(5分) 解 判定系统11221223x x x x x x =-+⎧⎨=--⎩在原点的稳定性。
解 2114523I A λλλλλ+--==+++,两个特征根均具有负实部,(3分) 系统大范围一致渐近稳定。
(2分) 无大范围扣一分,无一致渐近扣一分。
2. (5分)11b ab b -⎛⎫⎪--⎝⎭能控性矩阵为 (2分)1 rank 211det 1b ab b b ab b -⎛⎫= ⎪--⎝⎭-⎛⎫⇔ ⎪--⎝⎭210b ab =-+-≠ (5分)3.(8分)在零初始条件下进行拉式变换得:)()(2)()()(2)(3)(223S U S SU S U S S Y S SY S Y S S Y S ++=+++12312)()()(232+++++==∴S S S S S S U S Y S G (4分)[]XY U X X 121100321100010.=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∴ (8分)4.(5分)解:[]B CS G A SI --=1)( (2分)2342+--=S S S (5分) 五,计算题1. 1210c u ⎡⎤=⎢⎥⎣⎦,1112201c u -⎡⎤=⎢⎥-⎣⎦能控性矩阵满秩,所以系统能化成能控标准型。
(2分)[][][]1111221122010101c p u -⎡⎤===-⎢⎥-⎣⎦[][]11112122221100p p A ⎡⎤==-=⎢⎥⎣⎦11221112211,11P P --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦(10分) 能控标准型为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010..(12分) 2. 解:11][)(---==A SI L e t At φ (2分)⎥⎦⎤⎢⎣⎡+-+---=-==----------t t tt t t tt Ate e ee e e e e A SI L e t 3232323211326623][)(φ (8分) ∴系统零初态响应为 X(t)=0,34121)(32320)(≥⎥⎦⎤⎢⎣⎡-+-+-=-----⎰t e e e e d Bu et t t t t t A τττ (12分) 3. 解:因为能观性矩阵满秩,所以系统可观,可以设计状态观测器。
(完整word版)现代控制理论复习题库
一、选择题1.下面关于建模和模型说法错误的是( C )。
A.无论是何种系统,其模型均可用来提示规律或因果关系。
B.建模实际上是通过数据、图表、数学表达式、程序、逻辑关系或各种方式的组合表示状态变量、输入变量、输出变量、参数之间的关系。
C.为设计控制器为目的建立模型只需要简练就可以了。
D.工程系统模型建模有两种途径,一是机理建模,二是系统辨识。
2.系统()3()10()++=的类型是( B ) 。
y t y t u tA.集中参数、线性、动态系统。
B.集中参数、非线性、动态系统。
C.非集中参数、线性、动态系统。
D.集中参数、非线性、静态系统。
3.下面关于控制与控制系统说法错误的是( B )。
A.反馈闭环控制可以在一定程度上克服不确定性。
B.反馈闭环控制不可能克服系统参数摄动。
C.反馈闭环控制可在一定程度上克服外界扰动的影响。
D.控制系统在达到控制目的的同时,强调稳、快、准、鲁棒、资源少省。
x Pz说法错误的是( D )。
4.下面关于线性非奇异变换=A.非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。
B.对于线性定常系统,线性非奇异变换不改变系统的特征值。
C.对于线性定常系统,线性非奇异变换不改变系统的传递函数。
D.对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。
5.下面关于稳定线性系统的响应说法正确的是( A )。
A.线性系统的响应包含两部分,一部是零状态响应,一部分是零输入响应。
B.线性系统的零状态响应是稳态响应的一部分。
C.线性系统暂态响应是零输入响应的一部分。
D.离零点最近的极点在输出响应中所表征的运动模态权值越大。
6.下面关于连续线性时不变系统的能控性与能观性说法正确的是( A ) 。
A.能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。
B.能控性是指存在受限控制使系统由任意初态转移到零状态的能力。
C.能观性表征的是状态反映输出的能力。
D.对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。
现代控制理论复习题库
现代控制理论复习题库一、填空题1. 对任意传递函数00()mnjj j j j j G s b sa s ===∑∑,其物理实现存在的条件是 。
2. 系统的状态方程为齐次微分方程=x Ax ,若初始时刻为0,x (0)=x 0则其解为___)()(0x x e t x t A =________。
其中, ___t e A __称为系统状态转移矩阵。
3. 对线性连续定常系统,渐近稳定等价于大范围渐近稳定,原因是___整个状态空间中只有一个平衡状态______________。
4. 系统1111(,,)∑=A B C 和2222(,,)∑=A B C 是互为对偶的两个系统,若1∑使完全能控的,则2∑是___完全能控_______的。
5. 能控性与能观性的概念是由__卡尔曼kalman ________提出的,基于能量的稳定性理论是由___lyapunov_______构建的6. 线性定常连续系统=+x Ax Bu ,系统矩阵是_____A______,控制矩阵是_____B_____。
7. 系统状态的可观测性表征的是状态可由 输出反映初始状态 完全反映的能力。
8. 线性系统的状态观测器有两个输入,即_________和__________。
9. 状态空间描述包括两部分,一部分是_状态_方程_______,另一部分是____输出方程______。
10. 系统状态的可控性表征的是状态可由 任意初始状态到零状态 完全控制的能力。
11. 由系统的输入-输出的动态关系建立系统的____传递函数___________,这样的问题叫实现问题。
12.某系统有两个平衡点,在其中一个平衡点稳定,另一个平衡点不稳定,这样的系统是否存在?___不存在_______。
13. 对线性定常系统,状态观测器的设计和状态反馈控制器的设计可以分开进行,互不影响,称为___分离___原理。
14. 对线性定常系统基于观测器构成的状态反馈系统和状态直接反馈系统,它们的传递函数矩阵是否相同?__不相同___。
现代控制理论复习题
现代控制理论复习题一 判断题 (10分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。
(×)对一个系统,只能选取一组状态变量;(√)由一个状态空间模型可以确定惟一一个传递函数。
(×) 一个传递函数只能有唯一的状态空间表达式。
(×)若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。
(×)若一个对象的连续状态空间模型是能观测的,则其离散化状态空间模型也一定是能观测的。
(×)对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
(√)对线性定常系统,其Lyapunov 意义下的渐近稳定性和矩阵的特征值都具有负实部是一致的。
(√)由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性; (×)若传递函数存在零极相消,则对应的状态空间模型描述的系统是不能控不能观的; (×)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的; (√)状态反馈不改变系统的能控性。
(√)线性定常系统的最小实现不是惟一的,但最小实现的维数是惟一的。
(×)一个系统的传递函数若有零极点对消现象,则其状态空间表达式必定是既能控又能观测的。
(√)由一个状态空间模型可以确定惟一一个传递函数。
(×)若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。
(×)对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
(√)对线性定常系统,其Lyapunov 意义下的渐近稳定性和矩阵的特征值都具有负实部是一致的。
(√)由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性; (×)若传递函数存在零极相消,则对应的状态空间模型描述的系统是不能控不能观的; (×)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的; 二 填空题(共10分,每空一分)1、同一系统,由于系统状态变量的选择不唯一,故建立的系统状态表达式 不唯一;但同一系统的传递函数阵却是 唯一 的,但 状态变量 个数等于系统中独立储能元件的个数。
现代控制理论考试试题
现代控制理论考试试题(正文开始)一、选择题1.控制系统的目标是()。
A. 提高系统的可靠性B. 提高系统的速度C. 提高系统的稳定性D. 提高系统的精度2.在控制系统中,遥感技术主要用于()。
A. 信号传输B. 参数估计C. 故障检测D. 软件设计3.传感器的作用是()。
A. 测量和检测B. 控制和调节C. 存储和处理D. 传输和接收4.反馈控制系统的特点是()。
A. 没有可靠性要求B. 没有精度要求C. 具有稳定性要求D. 具有高速响应要求5.频率响应函数是指()。
A. 系统的输出响应B. 系统的传输函数C. 系统的幅度特性D. 系统的无穷小响应二、简答题1.请解释什么是控制系统的稳定性,并给出判断系统稳定性的方法。
控制系统的稳定性是指系统在一定刺激下,输出保持有界或有限的范围内,不发生持续增长或不发散的性质。
判断系统稳定性的方法有两种:一种是通过系统的特征方程判断,如果特征方程的所有根的实部都小于零,则系统稳定;另一种是通过系统的频率响应函数判断,如果系统的幅频特性在一定频率范围内有界,则系统稳定。
2.什么是控制系统的鲁棒性?鲁棒性的提高可以通过哪些方法实现?控制系统的鲁棒性是指系统对于参数变化、扰动和不确定性的抵抗能力。
在实际应用中,由于系统中存在参数误差、外部扰动等因素,控制系统往往无法精确满足设计的要求,此时需要考虑鲁棒性。
提高鲁棒性的方法包括:采用更加鲁棒的控制器设计方法,如H∞控制、μ合成控制等;通过系统自适应、鲁棒估计等方法,对系统的参数变化进行实时估计和校正;对系统的扰动进行补偿等。
三、分析题考虑一个反馈控制系统,其开环传递函数为G(s),闭环传递函数为T(s),控制器的传递函数为C(s)。
1.给出控制系统的传递函数表达式。
控制系统的传递函数表达式为T(s) = G(s) / (1 + G(s)C(s))。
2.当G(s) = (s+1) / (s^2+3s+2),C(s) = K,求控制系统的闭环传递函数表达式。
现代控制理论复习资料
一卷一、选择题:1.非奇异状态变换不改变系统的:A.极点B.控制矩阵C.系统矩阵D.输出矩阵 2.两个系统()()12,W s W s 并联后,系统的传递函数为: A.()()()()1121W s W s I W s -+ B.()()12W s W s C.()()21W s W s D.()()12W s W s ± 3.()0,t t Φ为线性时变系统的状态转移矩阵,则:A.()()00,t t t t Φ=Φ-B.()()()211020,,,t t t t t t ΦΦ=ΦC.()()()211020,,t t t t t t ΦΦ=Φ-D.()()()211021,,,t t t t t t ΦΦ=Φ 4.线性系统,x Ax Bu y Cx =+=的完全能观性:A.与u 有关B.与B 有关C.与B 和u 都无关D.与B 和u 都有关5.()()1W s C sI A b -=-,一个单输入单输出系统(),,A B C 完全能控能观的充分必要条件是:A.()()1W s C sI A b -=-的分子分母不能相消B.()W s 只有稳定的零极点相消C.()W s 只有不稳定的零极点相消D.与()W s 零极点相消没关系 6.若系统x Ax =是渐近稳定的,则: A.存在()0V x >使()0V x >B.不一定存在二次型Lyapunov 函数C.一定存在二次型Lyapunov 函数()V x 使()V x 正定,()V x 负定D.存在()0V x < 使 ()0V x <7.若传递函数()W s 的分母的根都在左半复平面,则: A.()W s 的所有实现都是稳定的系统 B.最小实现可能是稳定的也可能是不稳定的系统 C.()W s 的所有实现都是不稳定的系统 D.()W s 的实现不一定是稳定的系统 8.若使系统的闭环极点能任意配置,则:A.(),,A b c 完全能控B.(),,A b c 完全能观C.(),,A b c 反馈能镇定D.(),,A b c 必须同时能控能观 9.被控系统(),,A B C 的状态反馈:A.不改变极点B.不改变零点C.极点和零点都改变D.极点和零点都不改变 10.若()1111,,A B C ∑=与()2222,,A B C ∑=互为对偶的,则:A.若1∑能观,则2∑能观B.若1∑能控,则2∑能控C.1∑与2∑的特征根相同D.1∑与2∑的传递函数矩阵相同二、计算题 1.已知系统[]001110310130102x x uy x-⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=- 判断系统是否是完全能控的,若不完全能控,将系统进行能控性结构分解,并判断这个系统是否可反馈镇定.2.已知系统[]10100111x x u y x⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭=- ① 设计状态观测器使其极点为-3,-2.② 取反馈控制律为()[]12ˆcos 11ˆxu t x ⎡⎤=-⎢⎥⎣⎦,求整个闭环系统方程.三、证明题1.对线性时不变系统,n x Ax Bu x R =+∈,若1,,...n M b Ab A b -⎡⎤=⎣⎦且rankM n =试证明系统是完全能控的.2.试证明系统 31211221x x x x x x x ⎧=-+⎨=--⎩的平衡点()0,0是渐近稳定的.一卷答案一、选择题:1.A,2.D,3.B,4.C,5.A,6.C,7.D,8.A,9.B, 10.C.二.计算题 1. 解:1)2101113012M bAbA b -⎡⎤⎢⎥⎡⎤==-⎣⎦⎢⎥⎢⎥-⎣⎦,()23rank M =< 系统是不完全能控的。
《现代控制理论》复习题
《现代控制理论》复习题一、填空题1.动态系统的状态是一个可以确定该系统 的信息集合。
这些信息对于确定系统 的行为是充分且必要的。
2.以所选择的一组状态变量为坐标轴而构成的正交 空间,称之为 。
3. 定义: 线性定常系统的状态方程为()()()x t Ax t Bu t =+&,给定系统一个初始状态00()x t x =,如果在10t t >的有限时间区间10[,]t t 内,存在容许控制()u t ,使1()0x t =,则称系统状态在0t时刻是的;如果系统对任意一个初始状态都 , 称系统是状态完全 的。
4.系统的状态方程和输出方程联立,写为⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x &,称为系统的 ,或称为系统动态方程,或称系统方程。
5.当系统用状态方程Bu Ax x+=&表示时,系统的特征多项式为 。
6.设有如下两个线性定常系统7002()05000019I x x u -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦&则系统(I ),(II )70001()0504000175II x x u -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦&的能控性为,系统(I ) ,系统(II ) 。
7.非线性系统()xf x =&在平衡状态e x 处一次近似的线性化方程为x Ax =&,若A 的所有特征值 ,那么非线性系统()x f x =&在平衡状态e x 处是一致渐近稳定的。
8.状态反馈可以改善系统性能,但有时不便于检测。
解决这个问题的方法是: 一个系统,用这个系统的状态来实现状态反馈。
9.线性定常系统齐次状态方程解)()(0)(0t x e t x t t A -=是在没有输入向量作用下,由系统初始状态0)(x t x =激励下产生的状态响应,因而称为 运动。
10.系统方程()()()()()x t Ax t bu ty t cx t=+⎧⎨=⎩&为传递函数()G s的一个最小实现的充分必要条件是系统。
操控理论考试题及答案
操控理论考试题及答案一、单项选择题(每题2分,共10分)1. 控制理论中,系统稳定性的判定通常使用哪种方法?A. 奈奎斯特准则B. 根轨迹法C. 李雅普诺夫函数D. 频域分析答案:A2. 下列哪个不是控制系统的组成部分?A. 被控对象B. 执行机构C. 传感器D. 反馈回路答案:D3. 控制系统中的开环增益K值增大,系统响应的稳态误差会如何变化?A. 增大B. 减小C. 不变D. 无法确定答案:B4. 一个控制系统的开环传递函数为G(s) = 1/(s^2 + 2s + 1),其闭环传递函数为多少?A. 1/(s^2 + 2s + 1)B. 1/(s + 1)C. 1/(s^2 + 2s + 2)D. 1/(s^2 + 2s)答案:C5. 在PID控制器中,P代表什么?A. 比例B. 积分C. 微分D. 以上都不是答案:A二、多项选择题(每题3分,共15分)1. 下列哪些是控制系统的性能指标?A. 稳定性B. 快速性C. 准确性D. 经济性答案:ABC2. 控制系统设计时需要考虑的因素包括哪些?A. 系统稳定性B. 系统响应速度C. 系统成本D. 系统复杂度答案:ABC3. 下列哪些方法可以用来提高控制系统的稳定性?A. 增加开环增益B. 引入反馈C. 引入前馈D. 引入滞后答案:BC4. PID控制器的三个参数分别对应哪些作用?A. 比例作用B. 积分作用C. 微分作用D. 延迟作用答案:ABC5. 在控制系统中,哪些因素可能会导致系统不稳定?A. 过大的开环增益B. 不适当的反馈C. 系统内部的非线性D. 外部干扰答案:ABCD三、填空题(每题2分,共10分)1. 控制系统的稳定性可以通过______准则来判定。
答案:奈奎斯特2. 在控制系统中,______环节是实现控制目标的关键。
答案:控制器3. 控制系统的开环传递函数G(s) = 1/(s^2 + 2s + 1),其闭环传递函数为______。
《现代控制理论》复习资料
《现代控制理论》复习资料《现代控制理论》复习资料题型一:已知系统传函,求①能控标准型、能观标准型②约旦标准型例题:P155 3-4、3-9解题步骤:1)根据传函→能控能观标准型传函:0122111012211)(a s a s a s a s s s s s W n n n n n n n n n +++++++++=--------- ββββ① 根据传函有无零极点对消判断是否能观能控② 写出能控标准Ⅰ型(以三阶为例)---=210100010a a a A=100b ][210βββ=c③ 写出能观标准Ⅱ型(以三阶为例)---=210100100a a a A =210βββb ]100[=c2)根据能控标准型→约旦标准型① 求λi ,Pi0||=-A I λ,求得λiλi 互异时,λiPi=APiλi 有重根时,λ1P 1-AP 1=0λ2P 2-AP 2=-P 1λ3P 3-AP 3=-P 2② 求T,T -1T=(P 1,P 2...P n )③ 求T -1AT,T -1B,CTBu T ATz T Z 11--?+=Du CTz y +=题型二:已知状态空间表达式,求①画模拟结构图②判断能控性、能观性③系统传函例题:P56 1-7解题步骤:1)状态空间表达式→模拟结构图P152)状态空间表达式→判断能控、能观性见题型四3)状态空间表达式→传函方法一:根据模拟结构图直接写出传函 (见P23 图)方法二:① 先求1)()(---A sI A sI 、② D b A sI C s W +-=-1)()(题型三:已知状态空间表达式,①求At e t =)(φ②u(t),求x(t)例题:P69 例2-8 P87 例2-6,2-4解题步骤:1)求)(t φ方法一:化为约旦标准型1-=T Te e At At① 求λi ,Pi② 求T,T -1③ 1-=T Te e At At方法二:拉氏反变换])[(11---=A sI L e At① 求1)()(---A sI A sI 、② ])[(11---=A sI L e At方法三:用凯莱-哈密顿定理① 求λi② 求αi (t)③ 两个特征值:I t A t e At )()(01αα+=三个特征值:I t A t A t e At )()()(012ααα++=2)求x(t)τττφφd Bu t x t t x t)()()0()()(0?-+=题型四:已知状态空间表达式(含参数),判断能控性、能观性(三阶) 例题:P154 3-1解题步骤:方法一:化为约旦表达式A 的特征值互异部分,B 中各行不全为0,则能控;C 中各列不全为0,则能观;A 的特征值相同部分,B 中每个约旦块最后一行不全为0,则能控;C 中每个约旦块第一行不全为0 ,则能观。
现代控制理论基础试题
现代控制理论基础试题一、选择题:1. 什么是现代控制理论的核心概念?A. 反馈原理B. 开环控制C. 传感器D. 控制算法2. 当系统的输出信号与期望的参考信号之间存在差异时,现代控制理论会采取以下哪种策略进行调节?A. 开环控制B. 闭环控制C. 反馈控制D. 前馈控制3. 现代控制系统通常包括哪些基本组成部分?A. 传感器、执行器、控制器B. 输入信号、输出信号、执行器C. 控制器、执行器、参考信号D. 反馈信号、执行器、控制器4. 现代控制理论的主要目标是什么?A. 降低系统效应B. 提高系统稳定性C. 增加系统响应速度D. 最小化系统误差5. 在现代控制系统中,传感器的作用是什么?A. 通过收集系统的反馈信息B. 将输入信号转化为输出信号C. 控制执行器的动作D. 校准控制器的参数二、填空题:6. 现代控制理论中,PID控制器中的比例、积分和微分项分别代表什么?比例项:_______积分项:_______微分项:_______7. 现代控制理论中,系统的稳定性通常通过计算系统的_________来判断。
8. 现代控制理论中,增益裕度是衡量系统稳定性的一个指标,它表示系统输出响应对增益变化的___________。
三、简答题:9. 请简述开环控制和闭环控制的区别。
10. 现代控制系统常用的传感器有哪些?请简要介绍一个传感器的工作原理。
四、分析题:11. 现代控制系统中的反馈环节起到了重要的作用,请你用一个简单的图示来说明反馈控制系统的基本结构。
12. 现代控制理论中,经典PID控制器在某些系统中可能存在不足之处。
请你简要分析当系统存在非线性或时变特性时,经典PID控制器可能出现的问题,并提出解决方案。
结束语:通过本试题,我们回顾了现代控制理论的核心概念、基本组成部分以及控制策略。
掌握现代控制理论对于工程实践具有重要的意义,它可以帮助我们设计和优化各种控制系统,提高系统的性能和稳定性。
希望通过这些试题的训练,您能够对现代控制理论有更深入的理解,并能够在实际应用中灵活运用。
现代控制理论考试复习题
现代控制理论考试复习题⼀、填空题(每空1分)1. 状态空间模型由描述系统的动态特性⾏为的状态⽅程和描述系统输出变量与状态变量间变换关系的输出⽅程组成。
2. 若线性系统的状态空间模型中各系数矩阵不显含时间t,则为线性定常系统的状态空间模型。
3. 线性定常系统的特征值两两相异,则经⾮奇异线性变换后,系统可转化为对⾓规范型。
4. 在现代控制理论中,定性分析主要研究系统的能控性、能观性、稳定性的结构性质。
5. 线性定常系统的状态解是由系统⾃由运动解和强迫运动解的线性迭加。
6. 系统能控性是指控制作⽤对被控对象的状态和输出进⾏控制的可能性。
7. 设线性定常连续系统和互为对偶,则系统的状态能控(能观)性等价于系统的状态能观(能控)性。
8. 若线性定常连续系统状态不完全能观测,则存在⾮奇异线性变换,系统可分解为状态完全能观⼦空间和状态完全不能观⼦空间。
9. 当系统受到外界⼲扰时它的平衡被破坏,但在外界⼲扰去掉后,它仍有能⼒⾃动地恢复在平衡状态下继续⼯作,称为稳定性。
10. 若状态⽅程描述的系统对于任意给定的实数和任意给定的初始时刻,都对应存在⼀个实数,使得对于从任意位于平衡态的球域的初始状态出发的状态⽅程解的都位于球域内,则称系统的平衡态是李雅普诺夫意义下稳定的。
11. 传递函数描述了系统的输⼊与输出间的传递关系。
12. 线性系统的状态空间模型中各系数矩阵的各元素为时间变量t的时变函数,则为线性时变系统的状态空间模型。
13. 线性定常系统的特征值有重根,则经⾮奇异线性变换后,系统可转化为约旦规范型。
14. 状态空间模型的定量分析主要研究系统对给定输⼊信号的响应问题,也就是描述系统的状态⽅程和输出⽅程的求解问题。
15. 系统的状态响应⼀是由 _______ 引起的状态响应,⼆是由初16.17.各矩阵之间的关系为输⼊端与输出端互换、信号传递⽅向相反、信号引出点和相加点的互换,对应矩阵的转置,以及时间的倒转。
18. 若线性定常连续系统状态不完全能观控,则存在⾮奇异线性变换,系统可分解为状态完全能控⼦空间和状态完全不能控⼦空间。
《现代控制理论》期末复习试题4套含答案(大学期末复习试题)
第 1 页 共 1 页西 安 科 技 大 学2004—2005 学 年 第2 学 期 期 末 考 试 试 题(卷)电控 院系: 班级: 姓名: 学号:装 订 线 装 订 线 以 内 不 准 作 任 何 标 记 装 订 线第 2 页 共 1 页现代控制理论A 卷答案 1. 解:系统的特征多项式为2221()21(1)1s f s s s s s+-==++=+其特征根为-1(二重),从定理知系统是渐近稳定的。
2 解:Bode 图略解得:开环截止频率:)/(1.2s rad c =ω; 相角裕量:)(40rad r ≈3 解:1)系统的传递函数阵为:2231231))((1))()((1][)(du a s a s a s a s a s Du B A sI C s G +⎥⎦⎤⎢⎣⎡-----=+-=-第 3 页 共 1 页2)系统的状态结构图,现以图中标记的321,,x x x 为u 2u 14解:1)列写电枢电压u 为输入,以电流i 和旋转速度n 为输出的状态空间表达式。
由于ω.πωn 559260==,可得dtdn J dt d J55.9=ω, 22)2(Dg G mR J ==式中, m 为一个旋转体上的一个质点的质量,质量m 为该质量的重量G 和重力加速度g 之比,R 和D 分别为旋转体的半径和直径,综合上两式可推得dtdn GD dt dn D G dt d J 37548.955.922=⨯⨯⨯=ω 2)从而可得到电机电枢回路电压平衡和电机运动平衡的一组微分方程式第 4 页 共 1 页⎪⎪⎩⎪⎪⎨⎧=+=++i C n K dtdn GD u n C Ri dtdiL m b e 3752式中,摩擦系数55.9/B K b =。
选择状态变量n x i x ==21,,则系统得状态空间表达式为u L x x GD K GD C L C L R x x b me ⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡01375375212221 ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=211001x x y5 略西 安 科 技 大 学2004—2005学 年 第 2 学 期 2 期 末 考 试 试 题(卷)院系: 班级: 姓名: 学号:装 订 线 装 订 线 以 内 不 准 作 任 何 标 记 装 订 线第 6 页 共 1 页现代控制理论B 卷答案:2 解:所给系统为能控标准形,特征多项式为32()det()1f s sI A s s =-=-+ 所希望的闭环系统特征多项式32()(1)(1)(1)342d f s s s j s j s s s =++-++=+++ 从而可得321134,044,121k k k =--=-=-=-=-=-故反馈增益阵k 为[][]123144k k k k ==--- 所求的状态反馈为[]144u kx v x v =+=---+该闭环系统状态方程为()v x v x bk A x +⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=++=342100010对应的结构图如题.2图所示。
现代控制理论试题(详细答案)
现代控制理论试题B 卷及答案2 1cvcvx ,一、 1 系统 x2xu, y 0 1 x 能控的状态变量个数是 0 1能观测的状态变量个数是cvcvx 。
2 试从高阶微分方程 y3y 8 y 5u 求得系统的状态方程和输出方程(4 分/ 个)解 1 . 能控的状态变量个数是 2,能观测的状态变量个数是 1。
状态变量个数是 2。
⋯ .. (4 分)2.选取状态变量 x 1y , x 2y , x 3y ,可得⋯ .. ⋯ . ⋯⋯ .(1 分)x 1 x 2x 2 x 3⋯.. ⋯. ⋯⋯ . (1 分)x 3 8x 1 3x 35uy x 1写成 0 1 0 0x0 0 1 x 0 u ⋯.. ⋯. ⋯⋯ . (1 分)8 035y 1 0 0 x ⋯.. ⋯. ⋯⋯ . (1 分)二、 1 给出线性定常系统 x( k 1) Ax( k) Bu( k), y(k) Cx (k) 能控的定义。
(3 分)2 1 0 2 已知系统 x0 2 0 x, y 0 1 1 x ,判定该系统是否完0 03全能观? (5 分)解 1 .答:若存在控制向量序列 u (k ), u(k 1), , u(k N 1) ,时系统从第k 步的状态 x(k) 开始,在第 N 步达到零状态,即 x( N ) 0 ,其中 N 是大于0 的有限数,那么就称此系统在第k 步上是能控的。
若对每一个 k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
⋯ .. ⋯. ⋯⋯ . (3 分)2.2 1 0CA 0110 2 0 0 2 3⋯⋯⋯.. ⋯⋯⋯.0 0 3(1 分)2 1 0CA20230 2 0 0 4 9 ⋯⋯.. ⋯⋯⋯.(1分)0 0 3C 0 1 1U O CA 0 2 3 ⋯⋯⋯⋯⋯⋯ .. ⋯⋯⋯ . (1 分)CA20 4 9rankU O 2 n ,所以该系统不完全能观⋯⋯ .. ⋯. ⋯⋯ .(2 分)三、已知系统 1、 2 的传递函数分别为g1 (s)s2 1 ,g2s 1 3s 2( s)3s 2 s2s2求两系统串联后系统的最小实现。
现控试题及答案
现控试题及答案一、选择题(每题2分,共10分)1. 现控系统的核心组成部分是什么?A. 传感器B. 执行器C. 微处理器D. 以上都是答案:D2. 下列哪项不是控制系统的分类?A. 开环控制系统B. 闭环控制系统C. 线性控制系统D. 非线性控制系统答案:C3. 控制系统的稳定性是指什么?A. 系统能够快速响应输入变化B. 系统在受到干扰后能够恢复到原状态C. 系统能够持续运行D. 系统能够准确执行命令答案:B4. PID控制器中的“P”代表什么?A. 比例B. 积分C. 微分D. 以上都不是答案:A5. 现控系统中的“现”指的是什么?A. 现代B. 现场C. 现实D. 现有答案:B二、填空题(每题2分,共10分)1. 在控制系统中,______控制是最基本的控制方式。
答案:开环2. 控制系统的输出与输入之间的比值称为______。
答案:增益3. 一个典型的闭环控制系统包括______、控制器、执行器和被控对象。
答案:传感器4. PID控制器中的“D”代表______控制。
答案:微分5. 在控制系统中,______是系统性能好坏的一个重要指标。
答案:稳定性三、简答题(每题10分,共20分)1. 请简述开环控制系统与闭环控制系统的主要区别。
答案:开环控制系统没有反馈环节,控制器的输出只依赖于输入信号,而闭环控制系统有反馈环节,控制器的输出不仅依赖于输入信号,还依赖于系统的输出。
2. 请解释什么是控制系统的超调量。
答案:超调量是指系统响应超过稳态值的幅度,通常用来衡量系统响应的过度程度。
四、计算题(每题15分,共30分)1. 已知一个控制系统的开环传递函数为G(s) = 1/(s+1),试求其单位阶跃响应的稳态值。
答案:稳态值是1,因为单位阶跃响应的稳态值等于开环传递函数的直流增益。
2. 给定一个控制系统的闭环传递函数为T(s) = 1/(s^2 + 3s + 2),试求其临界阻尼比。
答案:临界阻尼比为1,因为闭环传递函数的分母多项式的系数满足临界阻尼的条件,即a = 2b = 3。
现代控制理论期末考试复习题
现代控制理论期末考试复习题uy现代控制理论复习题1.自然界存在两类系统:静态系统和动态系统。
2.系统的数学描述可分为外部描述和内部描述两种类型。
3.线性定常连续系统在输入为零时,由初始状态引起的运动称为自由运动。
4.稳定性、能控性、能观测性均是系统的重要结构性质。
5.互为对偶系统的特征方程和特征值相同。
6.任何状态不完全能控的线性定常连续系统,总可以分解成完全能控子系统和完全不能控子系统两部分。
7.任何状态不完全能观的线性定常连续系统,总可以分解成完全能观测子系统和完全不能观测子系统两部分。
8.对状态不完全能控又不完全能观的线性定常连续系统,总可以将系统分解成能控又能观测、能控但不能观测、不能控但能观测、不能控又不能观测四个子系统。
9.对SISO系统,状态完全能控能观的充要条件是系统的传递函数没有零极点对消。
10.李氏稳定性理论讨论的是动态系统各平衡态附近的局部稳定性问题。
11.经典控制理论讨论的是在有界输入下,是否产生有界输出的输入输出稳定性问题,李氏方法讨论的是动态系统各平衡态附近的局部稳定性问题。
12.状态反馈和输出反馈是控制系统设计中两种主要的反馈策略。
13.综合问题的性能指标可分为优化型和非优化型性能指标。
14.状态反馈不改变被控系统的能控性;输出反馈不改变被控系统的能控性和能观测性实对称矩阵P为正定的充要条件是P的各阶顺序主子式均大于零。
15.静态系统:对于任意时刻t,系统的输出唯一地却绝育同一时刻的输入,这类系统称为静态系统。
16.动态系统:对于任意时刻t,系统的输出不仅和t有关,而且与t时刻以前的累积有关,这类系统称为动态系统。
17.状态;状态方程:状态:系统运动信息的合集。
状态方程:系统的状态变量与输入之间的关系用一组一阶微分方程来描述的数学模型称之为状态方程。
18.状态变量:指能完全表征系统运动状态的最小一组变量。
状态向量:若一个系统有n个彼此独立的状态变量x1(t),x2(t)…xn(t),用它们作为分量所构成的向量x(t),就称为状态向量。
现代控制理论期末试题及答案
现代控制理论期末试题及答案一、选择题1. 以下哪项不是现代控制理论的基本特征?A. 多变量控制B. 非线性控制C. 自适应控制D. 单变量控制答案:D. 单变量控制2. PID控制器中,P代表的是什么?A. 比例B. 积分C. 微分D. 参数答案:A. 比例3. 动态系统的状态方程通常是以什么形式表示的?A. 微分方程B. 代数方程C. 积分方程D. 线性方程答案:A. 微分方程4. 控制系统的稳定性可以通过什么分析方法来判断?A. 傅里叶变换B. 拉普拉斯变换C. 巴特沃斯准则D. 极点分布答案:C. 巴特沃斯准则5. 控制系统的性能可以通过什么指标来评估?A. 驰豫时间B. 超调量C. 峰值时间D. 准确度答案:A. 驰豫时间二、问答题1. 说明PID控制器的原理和作用。
答:PID控制器是一种常用的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)组成。
比例环节根据控制误差的大小来产生控制量,积分环节用于累积控制误差并增加控制量,微分环节用于预测控制误差的变化趋势并调整控制量。
PID控制器的作用是通过调整上述三个环节的权重和参数,使得控制系统能够尽可能快速地响应控制信号,并且保持控制精度和稳定性。
2. 什么是状态空间法?简要描述其主要思想。
答:状态空间法是用于描述动态系统的一种方法。
其主要思想是将系统的状态表示为一组变量的集合,通过对这些变量的微分方程建模来描述系统的动态行为。
状态空间模型包括状态方程和输出方程,其中状态方程描述了系统状态的变化规律,输出方程描述了系统输出与状态之间的关系。
通过求解状态方程和输出方程,可以得到系统的状态响应和输出响应,进而对系统进行分析和设计。
三、计算题1. 给定一个具有状态方程和输出方程如下的系统,求解其状态和输出的完整响应。
状态方程:\[\dot{x} = Ax + Bu\]\[y = Cx + Du\]其中,矩阵A为\[A = \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix}\]矩阵B为\[B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\]矩阵C为\[C = \begin{bmatrix} 1 & -1 \end{bmatrix}\]矩阵D为\[D = \begin{bmatrix} 0 \end{bmatrix}\]初值条件为:\[x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\]输入信号为:\[u(t) = 2 \sin(t)\]答:首先,根据给定的状态方程和初值条件,可以求解出系统的状态响应。
现代控制理论考试题
现代控制理论考试题
1. 简答题(共10小题,每题2分)
1.1 什么是控制理论?
1.2 简述闭环控制系统的基本原理。
1.3 PID控制器中的P、I、D分别代表什么意义?
1.4 什么是系统的稳定性?如何判断一个系统是否稳定?
1.5 什么是系统的可控性和可观测性?
1.6 什么是反馈控制系统?
1.7 请简述Laplace变换的定义和性质。
1.8 什么是传递函数?如何从系统的微分方程中获得传递函数?
1.9 什么是状态空间表示?与传递函数表示有何区别?
1.10 请简述根轨迹法在控制系统设计中的应用。
2. 计算题(共3小题,每题15分)
2.1 给定一个控制系统的传递函数为$G(s)=\frac{10}{s^2+2s}$,请计算系统的阶跃响应。
2.2 如果一个系统的传递函数为$G(s)=\frac{K}{s(s+1)(s+2)}$,试设计一个PID控制器使得系统的阶跃响应的超调量小于5%。
2.3 将以下微分方程转化为状态空间表示:
$$\frac{d^2y}{dt^2}+3\frac{dy}{dt}+2y=u$$
3. 应用题(共2小题,每题20分)
3.1 设计一个控制系统,使得给定系统的开环传递函数为
$G(s)=\frac{K}{s(s+2)}$,并满足以下要求:
- 峰值超调小于10%
- 上升时间小于1秒
- 稳态误差小于0.1
3.2 你了解的现代控制理论中的一种方法(例如状态反馈、最优控制、自适应控制、鲁棒控制等)在工业自动化中的应用。
4. 论述题(共1题,40分)
4.1 以你的理解,简要论述现代控制理论对工业自动化的重要性。
最新现代控制理论复习题[1]
《现代控制理论》复习题1一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。
( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。
( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。
( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
( √ )4. 对系统Ax x= ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。
( √ )5. 根据线性二次型最优控制问题设计的最优控制系统一定是渐近稳定的。
二、(15分)考虑由下式确定的系统: 233)(2+++=s s s s G 试求其状态空间实现的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。
解: 能控标准形为[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21212113103210x x y u x x x x能观测标准形为[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21212110133120x x y u x x x x对角标准形为[]⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21212112112001x x y u x x x x三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。
对系统x x ⎥⎦⎤⎢⎣⎡--=3210求其状态转移矩阵。
解:解法1。
容易得到系统状态矩阵A 的两个特征值是2,121-=-=λλ,它们是不相同的,故系统的矩阵A 可以对角化。
矩阵A 对应于特征值2,121-=-=λλ的特征向量是 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=21,1121νν取变换矩阵 []⎥⎦⎤⎢⎣⎡--==-1112121ννT , 则 ⎥⎦⎤⎢⎣⎡--=-21111T 因此, ⎥⎦⎤⎢⎣⎡--==-20011TAT D从而,⎥⎦⎤⎢⎣⎡+-+---=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-------------t t tt t t t t t t t t Ate e ee e e e e e e T e e T e22222212222111200211100解法2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代控制理论复习题一、选择题( )1、下列叙述正确的是A 、 若系统矩阵A 的特征值有相同的,则系统能控性充要条件是控制矩阵T -1B 的各行元 素没有全为0的。
B 、 若系统矩阵A 的特征值互异,则系统能控性充要条件是控制矩阵TB 的各行元素没 有全为0的。
C 、 系统的线性交换会改变系统的能控性条件。
D 、 若系统矩阵A 的特征值互异,则其对应的特征矢量必然互异。
( )2、下列叙述不正确的是A 、 若系统矩阵A 的特征值有相同的,则系统能控性充要条件是控制矩阵T -1B 的各行元 素没有全为0的。
B 、若系统矩阵A 的特征值互异,则系统能控性充要条件是控制矩阵T -1B 的各行元素没 有全为0的。
C 、系统的线性交换不改变系统的能控性条件。
D 、若系统矩阵A 的特征值互异,则其对应的特征矢量必然互异。
( )3、线性连续定常单输入系统:bu Ax x+= ,其完全能控的充分必要条件是由A 、b 构成的能控性矩阵的秩为A 、 大于nB 、等于nC 、小于nD 、以上叙述均不正确( )4、线性时不变系统的状态空间表达式为:Cx y x t x Ax x===,)(,00 ,其完全能 观的充分必要条件是由A 、C 构成的能观性矩阵的秩为A 、大于nB 、等于nC 、小于nD 、以上叙述均不正确( )5、系统Σ1=(A 1,B 1,C 1)和Σ2=(A 2,B 2,C 2)是互为对偶的两个系统,下列 叙述正确的是A 、Σ1的能控性等价于Σ2的能控性B 、Σ1的能观性等价于Σ2的能观性C 、Σ1的能控性等价于Σ2的能观性D 、上述观点均不正确( )6、系统Σ1=(A 1,B 1,C 1)和Σ2=(A 2,B 2,C 2)是互为对偶的两个系统,下列 叙述正确的是A 、Σ1的能控性等价于Σ2的能控性B 、Σ1的能观性等价于Σ2的能观性C 、Σ1的能控性等价于Σ2的能观性D 、上述观点均不正确( )7、传递函数W(s)=c(sI-A)-1b 的分子分母间没有零极点对消是一个单输入单输出系 统Σ(A ,b ,c )欲使其是能控并能观的A 、充分条件B 、必要条件C 、充分必要条件D 、上述全不正确( )8、传递函数W(s)=c(sI-A)-1b 的分子分母间没有零极点对消是一个单输入单输出系 统Σ(A ,b ,c )欲使其是能控并能观的A 、充分条件B 、必要条件C 、充分必要条件D 、上述全不正确( )9、设P 为n n ⨯实对称方阵,Px x x V T=)(为由P 所决定的二次型函数,若V (x )正定,则称P 为A 、正定B 、负定C 、非正定D 、非负定( )10、设P 为n n ⨯实对称方阵,Px x x V T =)(为由P 所决定的二次型函数,若V (x )负定,则称P 为A 、正定B 、负定C 、非正定D 、非负定( )11、下述状态转移矩阵的基本性质中,错误的是( )A 、)t ()()t τΦτΦΦ+=(B 、I )t t (=-ΦC 、[])t ()t (ΦΦ=-1D 、A )t ()t (A )t (ΦΦΦ== ( )12、下述状态转移矩阵的基本性质中,错误的是( )A 、)t ()()t τΦτΦΦ-=(B 、I )t t (=-ΦC 、[])t ()t (-=-ΦΦ1D 、A )t ()t (A )t (ΦΦΦ== ( )13、线性连续定常单输入单输出系统:Cx y bu Ax x =+= ,其能观的充分必要条件是其能观性矩阵N 满秩,即rankN=n 。
其能观性矩阵N=( )A 、)b A ,,b A ,Ab ,b (N n 12-=B 、T n )b A ,,b A ,Ab ,b (N 12-=C 、)CA ,,CA ,CA ,C (N n 12-=D 、T n )CA ,,CA ,CA ,C (N 12-=( )14、线性连续定常单输入单输出系统:Cx y bu Ax x =+= ,其能观的充分必要条件是其能控性矩阵M 满秩,即rankM=n 。
其能控性矩阵M=( )A 、T n )CA ,,CA ,CA ,C (M 12-=B 、T n )b A ,,b A ,Ab ,b (M 12-=C 、)CA ,,CA ,CA ,C (M n 12-=D 、)b A ,,b A ,Ab ,b (M n 12-=( )15、线性定常系统Σ:(A,b,c )输出稳定的充要条件是( )A 、其传递函数:b )A sI (c )s (W 1--=的极点全部位于s 的左半平面;B 、矩阵A 的所有特征值均具有负实部;C 、其传递函数:b )A sI (c )s (W 1--=的分子分母间没有零极点对消。
( )16、线性定常系统Σ:(A,b,c )平衡状态x e =0渐近稳定的充要条件是( )A 、其传递函数:b )A sI (c )s (W 1--=的极点全部位于s 的左半平面;B 、矩阵A 的所有特征值均具有负实部;C 、其传递函数:b )A sI (c )s (W 1--=的分子分母间没有零极点对消。
( )17、采用下述( )反馈对系统Σ0=(A,b,c )任意配置极点的充要条件是Σ0完全能控。
A 、状态反馈B 、输出反馈C 、从输出到x反馈 ( )18、采用下述( )反馈对系统Σ0=(A,b,c )实现闭环极点任意配置的充要条件是Σ0完全能观。
A 、状态反馈B 、输出反馈C 、从输出到x反馈 ( )19、对系统Σ0=(A,B,C ),采用( )反馈能镇定的充要条件是其不能控子系统为渐近稳定。
A 、状态反馈B 、输出反馈C 、从输出到x反馈 ( )20、对系统Σ0=(A,B,C ),采用( )反馈能镇定的充要条件是其不能观子系统为渐近稳定。
A 、状态反馈B 、输出反馈C 、从输出到x反馈 二、判断题(√)1. 相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计。
(√)2. 传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一。
(×)3. 状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义。
(×)4. 输出变量是状态变量的部分信息,因此一个系统状态能控意味着系统输出能控。
(√)5. 等价的状态空间模型具有相同的传递函数。
(×)6. 互为对偶的状态空间模型具有相同的能控性。
(×)7. 一个系统的平衡状态可能有多个,因此系统的李雅普诺夫稳定性与系统受扰前所处的平衡位置无关。
(√)8. 若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。
(×)9. 反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。
(×)10. 如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定。
(×)11. 具有对角型状态矩阵的状态空间模型描述的系统可以看成是由多个一阶环节串联组成的系统。
(×)12. 要使得观测器估计的状态尽可能快地逼近系统的实际状态,观测器的极点应该比系统极点快10倍以上。
(×)13. 若传递函数G(s)=C(sI-A)-1B存在零极相消,则对应状态空间模型描述的系统是不能控的。
(√)14. 若线性系统是李雅普诺夫意义下稳定的,则它是大范围渐近稳定的。
(×)15. 对一个系统,只能选取一组状态变量。
(√)16. 由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性。
(×)17. 若传递函数G(s)=C(sI-A)-1B存在零极相消,则对应的状态空间模型描述的系统是不能控不能观的。
(×)18. 若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。
;(√)19. 状态反馈不改变系统的能控性。
(√)20. 由一个状态空间模型可以确定惟一一个传递函数。
(×)21. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
三、分析、计算题1、介绍两种求解线性定常系统状态转移矩阵的方法。
2、解释系统状态能控性的含义;给出能控性的判别条件。
(1)对一个能控的状态,总存在一个控制律,使得在该控制律作用下,系统从此状态出发,经有限时间后转移到零状态。
(2)通过检验能控性判别矩阵[]BB n1-AAB是否行满秩来判别线性时不变系统的能控性。
若能控性判别矩阵是行满秩的,则系统是能控的。
3、定常系统状态能观性的判别方法有几种;给出根据能观性矩阵判别系统能观性的判别条件。
(1)定常系统能观性的判别有两种方法:一是对系统进行坐标变换,将系统的状态空间表达式变换为约旦标准型,然后根据标准型下的C阵,判别系统的能观性;二是直接根据A阵和C 阵进行判别。
(2)通过检验能观性判别矩阵T n )CA ,,CA ,CA ,C (N 12-= 是否行满秩来判别线性时不变系统的能观性。
若能观性判别矩阵是行满秩的,则系统是能控的。
4、对于一个连续时间线性定常系统,试叙述Lyapunov 稳定性定理,并举一个二阶系统例子 说明该定理的应用。
解:连续时间线性时不变系统的李雅普诺夫稳定性定理;线性时不变系统在平衡点处 渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q ,存在一个对称正定矩阵P ,使得矩阵方程A T P+PA=-Q 成立。
考虑二阶线性时不变系统:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21211110x x x x 原点是系统的惟一平衡状态 。
求解以下的李雅普诺夫方程A T P+PA=-I其中的未知对称矩阵⎥⎦⎤⎢⎣⎡=22121211p p p p P 将矩阵A 和P 的表示式代入李雅普诺夫方程中,可得⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--1001111011102212121122121211p p p p p p p p进一步将以上矩阵方程展开,可得联立方程组122012221222121112-=-=---=-p p p p p p应用线性方程组的求解方法,可从上式解出p 11、p 12和p 22,从而可得矩阵P : ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡121212322121211p p p p 根据矩阵正定性判别的塞尔维斯特方法,可得0231>=∆ ,012121232>⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=det ∆ 故矩阵P 是正定的。
因此,系统在原点处的平衡状态是大范围渐近稳定的。
5、叙述线性时不变连续系统的李雅普诺夫稳定性定理6、试介绍求解线性定常系统状态转移矩阵的方法(列举二个就可以),并以一种方法和一个数值例子为例,求解线性定常系统的状态转移矩阵。