信息论基础(MIMO)

合集下载

MIMO-OFDM技术

MIMO-OFDM技术

MIMO-OFDM技术MIMO-OFDM技术1 MIMO技术无线通信的不可靠性主要是由无线衰落信道的时变和多径特性引起的,如何有效地对抗无线信道的衰落是高速移动通信必须要解决的问题。

在无线通信系统中提高信息传输可靠性的一种有效手段是采用分集技术,以多输入多输出(MIMO)技术为代表的空间分集技术是当前的优选方案之一。

MIMO的意思是Multiple Input Multiple Output,其原理为MIMO系统在发射端和接收端均采用多天线(或阵列天线)和多通道。

任何一个无线通信系统,只要其发射端和接收端均采用了多个天线或者天线阵列,就构成了一个无线MIMO 系统。

MIMO技术是现代通信的一大突破,该技术提供了解决未来无线网络传输瓶颈的方法。

MIMO技术的核心思想是信号的空间-时间联合处理,即把数字信号固有的时间维度与多个空间分离天线带来的空间维度联合起来。

在某种意义上,MIMO技术也可以看作是传统智能天线技术的扩展。

概述联合考虑发送分集和接收分集就构成了多输入多输出(MIMO,Multi-Input Multi-Output)系统,该系统能够获得更大的分集增益。

MIMO系统的重要特征是能够利用无线通信的多径传播特性来提高系统的性能,即能够有效地利用无线链路中的随机衰落和延迟扩展特性来成倍地提高传输的速率或可靠性。

分集技术为了保证无线通信的可靠传输,主要用于补偿信道衰落损耗的分集技术是其中一种十分有效的方法。

分集技术,是指在通信的过程中,系统要能够提供发送信号的副本,使得接收机能够获得更加准确的判断。

根据获得独立路径信号的方法的不同可以分为时间分集、频率分集和空间分集等。

其中,空间分集技术没有时延和环境的限制,能够获得更好的系统性能,可以分为接收分集和发射分集。

传统的空间分集主要是接收分集,在这种接收方式中接收机对它收到的多个衰落特性相互独立但携带同一信息的信号进行特定的处理,以降低信号电平的起伏,这样显然会导致接收机的复杂度增加。

信息论基础ppt

信息论基础ppt

X q(X
)
x 1 q(x
1
)
x2 q(x 2 )
xm q(x m )
x为各种长为N的符号序列,x = x1 x2 … xN ,xi { a1 , a2 , … , ak },1 i N,序列集X = {a1a1… a1 , a1a1… a2 , … , akak… ak },共有kN种序列,x X。
X q(
X
)
x1 q(
x1
)
x2 q(x2 )
xI q(xI )
q(xi ):信源输出符号消息xi的先验概率; I 满足:0 q(xi) 1,1 i I q(xi ) 1 i 1
1.3.2 离散无记忆的扩展信源
实际情况下,信源输出的消息往往不是单个符号,而是由
许多不同时刻发出的符号所组成的符号序列。设序列由N个 符号组成,若这N个符号取自同一符号集{ a1 , a2 , … , ak}, 并且先后发出的符号彼此间统计独立,我们将这样的信源称 作离散无记忆的N维扩展信源。其数学模型为N维概率空间:
P
p( p(
y1 y1
x1 ) x2 )
p( y1 xI )
p( y2 x1 ) p(y2 x2 )
p( y2 xI )
p( y J p( yJ
x1 x2
) )
p( yJ xI )
p (yjxi )对应为已知输入符号为xi,当输出符号为yj时的信道
转移概率,满足0 p (yjxi ) 1,且
波形信道 信道的输入和输出都是时间上连续, 并且取值也连续的随机信号。 根据统计特性,即转移概率p (yx )的不同,信道又可分类为:
无记忆信源 X的各时刻取值相互独立。
有记忆信源 X的各时刻取值互相有关联。

《信息论基础》教学大纲

《信息论基础》教学大纲

《信息论基础》教学大纲《信息论基础》教学大纲课程编号:CE6006课程名称:信息论基础英文名称:Foundation of Information Theory学分/学时:2/32 课程性质:选修课适用专业:信息安全,网络工程建议开设学期:6 先修课程:概率论与数理统计开课单位:网络与信息安全学院一、课程的教学目标与任务本课程是信息安全,网络工程专业选修的一门专业基础课。

通过课程学习,使学生能够较深刻地理解信息的表征、存储和传输的基本理论,初步掌握提高信息传输系统可靠性、有效性、保密性和认证性的一般方法,为后续专业课学习打下坚实的理论基础。

本课程的教学目标:本课程对学生达到如下毕业要求有贡献:1.能够将数学、自然科学、工程基础和专业知识用于解决复杂工程问题。

2.能够应用数学、自然科学和工程科学的基本原理,识别、表达,并通过文献研究分析复杂工程问题,以获得有效结论。

完成课程后,学生将具备以下能力:1.能够针对一个复杂系统或者过程选择一种数学模型,并达到适当的精度。

2.能够应用数学、自然科学和工程科学的基本原理分析、识别、表达、处理及扩展信息安全、网络工程专业的复杂问题。

本课程的性质:本课程是一门理论性较强的专业基础课程,在实施过程中以理论为主,共32学时。

二、课程具体内容及基本要求(一)绪论(2学时)1.基本要求(1)掌握消息、信息和信号;噪声和干扰的基本概念(2)掌握通信系统模型(3)明确Shannon信息论要解决的中心问题2.重点与难点(1)重点:掌握通信系统模型的构成及其相应功能(2)难点:理解Shannon信息论要解决的中心问题3.作业及课外学习要求(1)阅读IEEE IT 1998年信息论50年专刊(2)数字化革命进展-纪念shannon信息论诞生50周年http://202.117.112.49/xxl2/dzjiaoan/95shannon50y.ppt(3)信息论与通信、密码、信息隐藏(一)http://202.117.112.49/xxl2/dzjiaoan/信息论与通信、密码、信息隐藏(一).ppt (4)信息论与通信、密码、信息隐藏(二)http://202.117.112.49/xxl2/dzjiaoan/信息论与通信、密码、信息隐藏(二).ppt (5)清华大学朱雪龙“从通信与信号处理观点看信息论研究与应用中的若干问题”http://202.117.112.49/xxl2/dzjiaoan/sponit.mht(二)信息量和熵(8学时)1.基本要求(1)掌握离散随机变量的熵、平均互信息的基本概念及其性质(2)掌握平均互信息的凸性(3)理解信息处理定理2.重点与难点(1)重点:对信息量进行定量描述(2)难点:熵和平均互信息的物理含义及其性质,如何应用熵和平均互信息的基本概念解决实际问题3.作业及课外学习要求熵、平均互信息的计算、信息处理定理等应用(三)离散信源无失真编码(8学时)1.基本要求(1)掌握离散无记忆源等长编码、不等长编码基本概念(2)掌握离散无记忆信源无失真编码定理(3)掌握Huffman编码(4)理解算术编码和LZ编码基本原理2.重点与难点(1)重点:掌握离散无记忆信源无失真编码定理(2)难点:典型序列的概念及其性质、最佳不等长编码3.作业及课外学习要求离散无记忆信源无失真编码定理、无失真信源编码方法(四)信道容量(6学时)1.基本要求(1)掌握信道容量的基本概念(2)掌握离散无记忆信道、组合信道的信道容量计算2.重点与难点(1)重点:掌握信道容量的基本概念及一些特殊信道的容量计算(2)难点:信道的描述方法及信道容量的计算3.作业及课外学习要求信道容量的计算(五)离散信道编码定理(4学时)1.基本要求(1)掌握三种译码准则:最小错误概率译码、最大后验概率译码和最大似然译码(2)了解联合典型序列基本概念(3)理解离散信道编码定理2.重点与难点(1)重点:最大后验概率译码与最大似然译码和离散信道编码定理(2)难点:离散信道编码定理3.作业及课外学习要求译码准则的应用、离散信道编码定理的应用(六)信息论在信息安全中的应用(4学时)1.基本要求(1)了解保密系统模型(2)理解保密、认证的信息理论2.重点与难点(1)重点:完善保密性(2)难点:保密的信息理论3.作业及课外学习要求信息论在信息安全中的应用三、教学安排及方式四、本课程对培养学生能力和素质的贡献点信息论是一门运用概率论与数理统计的方法研究通信系统有效性、可靠性、保密性和认证性等问题的基础课程,也是信息与通信工程、计算机科学与技术、网络空间安全等学科的一门专业基础课程,对毕业要求各指标点的达成主要贡献如下:五、考核及成绩评定方式理论课最终成绩由平时成绩和期末考试成绩组成。

信息论基础

信息论基础

信息论基础
信息论是一门研究信息传输和处理的科学。

它的基础理论主要有以下几个方面:
1. 信息的定义:在信息论中,信息被定义为能够消除不确定性的东西。

当我们获得一条消息时,我们之前关于该消息的不确定性会被消除或减少。

信息的量可以通过其发生的概率来表示,概率越小,信息量越大。

2. 熵:熵是一个表示不确定性的量。

在信息论中,熵被用来衡量一个随机变量的不确定性,即随机变量的平均信息量。

熵越大,表示随机变量的不确定性越高。

3. 信息的传输和编码:信息在传输过程中需要进行编码和解码。

编码是将消息转换为一种合适的信号形式,使其能够通过传输渠道传输。

解码则是将接收到的信号转换回原始消息。

4. 信道容量:信道容量是指一个信道能够传输的最大信息量。

它与信道的带宽、噪声水平等因素相关。

信道容量的
计算可以通过香浓定理来进行。

5. 信息压缩:信息压缩是指将信息表示为更为紧凑的形式,以减少存储或传输空间的使用。

信息压缩的目标是在保持
信息内容的同时,尽可能减少其表示所需的比特数。

信息论还有其他一些重要的概念和理论,如互信息、信道
编码定理等,这些都是信息论的基础。

信息论的研究不仅
在信息科学领域具有重要应用,还在通信、计算机科学、
统计学等领域发挥着重要作用。

信息论基础

信息论基础

信息论基础信息论是研究信息传输和处理的一门科学,它由克劳德·香农在1948年提出。

信息论基础围绕着信息的度量、传输和压缩展开,从而揭示了信息的本质和特性。

信息论的应用领域非常广泛,包括通信系统、数据压缩、密码学、语言学、神经科学等。

信息论的核心概念是信息熵。

信息熵是对不确定性的度量,表示在某个概率分布下,所获得的平均信息量。

如果事件发生的概率越均匀分布,则信息熵越大,表示信息的不确定性程度高。

相反,如果事件发生的概率越集中,则信息熵越小,表示信息的不确定性程度低。

通过信息熵的概念,我们可以衡量信息的含量和重要性。

在信息论中,信息是通过消息来传递的,消息是对事件或数据的描述。

信息熵越大,需要的消息量就越多,信息的含量就越大。

在通信系统中,信息传输是其中一个重要的应用。

信息的传输需要考虑噪声和信号的问题。

噪声是指干扰信号的其他噪音,而信号是携带着信息的载体。

通过信息论的方法,我们可以优化信号的传输和编码方式,从而能够在尽可能少的传输成本和带宽的情况下,达到最高的信息传输效率。

数据压缩是信息论的另一个重要应用。

在现代社会中,我们产生的数据量越来越大,如何高效地存储和传输数据成为了一个迫切的问题。

信息论提供了一种压缩算法,能够在保证信息不丢失的情况下,通过减少冗余和重复数据,从而达到数据压缩的目的。

除了通信系统和数据压缩,信息论还在其他领域得到了广泛的应用。

在密码学中,信息论提供了安全性的度量,并通过信息熵来评估密码强度。

在语言学中,信息论用来研究语言的结构和信息流动。

在神经科学中,信息论提供了一种理解大脑信息处理和编码方式的框架。

总结起来,信息论基础是一门重要的科学,它揭示了信息的本质和特性,为各个领域提供了一种理解和优化信息传输、处理和压缩的方法。

通过对信息的度量和研究,我们能够更好地应用信息技术,提高通信效率、数据存储和传输效率,甚至能够理解和模拟人脑的信息处理过程。

信息论的发展必将在现代社会发挥重要的作用,为我们带来更加便利和高效的信息科技。

多入多出(MIMO)系统的空时处理技术及调制方式

多入多出(MIMO)系统的空时处理技术及调制方式

多入多出(MIMO)系统的空时处理技术及调制方式一.介绍随着实时多媒体通信、高速INTERNET接入等数据业务的发展,提高通信系统的速率和频带利用率已成为急待解决的问题。

在无线通信系统中,提高频带利用率的方法主要有智能天线技术、MIMO技术、多载波调制及自适应编码调制技术等。

其中,MIMO技术由于能有效利用多径衰落,巨大地提高系统容量和频带利用率而成为目前国内外通信研究的热点。

MIMO系统是指在发射端和接收端同时使用多个天线的通信系统。

MIMO系统的系统框图如图1所示。

图1 无线MIMO系统的框图从图1可以看出,比特流在经过编码、调制和空时处理(波束成行或空时编码)后,映射成不同的信息符号,从多个天线同时发射出去;在接收端用多个天线接收,并进行相应的解调、解码及空时处理。

1995年,Emre Telatar提出了加性高斯白噪声信道下,单用户MIMO 系统的系统容量[1]。

这篇文章的公式及仿真结果表明,在信道间衰落相互独立的条件下,多天线系统所能获得的系统容量大大超过单天线系统。

1996年,Foschini指出MIMO系统能通过空间复用提高系统容量,并给出了不同天线个数时的系统容量[2]。

在[3]中,Foschini 提出一种分层空时处理方案(BLAST),这种方案在发射、接收天线个数相等的情况下,在接收端采用干扰抑制的方法逐个提取接受信号,从而去除了不同空间信号间的干扰,使系统容量随着天线个数的增加而线形增加。

Winters在[4]中给出了瑞利衰落信道下采用天线分集时无线通信系统的容量,并讨论了在接收端进行线性或非线性接收对系统容量的影响。

这几篇文章有力地证明了MIMO系统对于提高系统容量的巨大潜力,从而奠定了MIMO系统发展的基础。

近年来,人们已从各个角度对MIMO系统进行了大量的研究。

例如,在各种信道状态下MIMO系统的容量问题[5]-[9],包括相关信道、频率选择性衰落信道、瑞利衰落信道等;MIMO系统的均衡问题[10]-[12];MIMO系统中的空时处理技术[13]-[16];MIMO系统的调制技术等[17]-[19]。

MIMO技术

MIMO技术

有关MIMO技术的标准
3GPP标准(WCDMA系统)
¾ 空时发送分集(Space-Time Transmit Diversity) ¾ 闭环发送分集(Closed Loop Transmit Diversity) ¾分层空时结构(Bell Laboratories Layered
Space-Time) 3GPP2标准(cdma2000系统) ¾ 空时扩频(Space-Time Spreading) ¾ 正交发送分集(Orthogonal Transmit Diversity)
容量为
M
∑ C = log2(1+ ρ* | hi |2) i=1
发送分集(1)
采用多个发送天线,一个接收天线的分集方式, 能够抗衰落 如果和接收分集保持相同的总的发送功率,则 每个发送天线的发送功率为发送分集的 1/M . 分集增益为
(|h1 |2 +| h2 |2 +K+| hM |2)/M
H = [h1, h2 ,K, hM ]
CMN ×MN
¾计算列向量 hNM ×1 = [h1 , h2 ,L , hNM ]T和矩阵
CMN×MN 的乘积,得到列向量 hN′ M ×1
¾将列向量 hN′ M ×1 进行分段,得到矩阵 hN×M ,即 为空间相关的MIMO信道
MIMO信道Shannon容量(1)
基于前面所述的信道模型,根据信息论的结论,此 MIMO系统能达到的系统Shannon容量为
在理想情况下,即MIMO信道可以等效为最大数目的独 立、等增益、并行的子信道时,得到最大的Shannon容 量(为保证系统性能比较是在相同条件下,将发射功率
归一化,每根发送天线的发射功率与 1 M 成比例)当信 道列矢量互相正交时可以达到的容量

mimo基础知识讲解

mimo基础知识讲解
无限宽):
1. 无线信道的特点和MIMO信道的容量-先农定理
由此得到不计带宽代价下实现正确数据传输的信噪比下限:
带宽归一化,W --1, 以星座映射后的复数域来看:
带宽归一化,W --1, 从实数和复数两维来看: W --1/2
1. 无线信道的特点和MIMO信道的容量-先农定理
如果有一天,数学给予今天的“随机分枝”以“确定性模 型”,世界的宗教分枝统一于“数学”,数学在广义上 也是宗教,始作俑者打了个标签“唯物”,成了“科 学”。
1. 无线信道的特点和MIMO信道的容量
1.1.3 无线信道的主要特点和数学模型 信道函数: 信道函数中的相位函数:
多径时延扩展-----频率选择性衰落-----相干带宽:多径 Doppler扩展-----时间选择性衰落-----相干时间: 移动 角度扩展-----空间选择性衰落-----相干距离: 位置角度
由此从容量上限得到效率上限:
1. 无线信道的特点和MIMO信道的容量-先农定理
平均信号功率的计算: k: 每符号的bit数;Eb:每bit能量;T:一个符号持续的时间 R=k/T:传码率;t能量;T:一个符号持续的时间 噪声功率: 由此效率上限写成: 在一定的传输速率下,有限的带宽下,一定的白噪声下: 一定,实现无误码传输的每bit能量下限(香农届):
1. 无线信道的特点和MIMO信道的容量
多种标准面临的共性问题:高速,低误码,移动中的通信质量,便 携性,网络的连通性,其它用户的干扰。( 这些问题有些是共性 的,有些是移动通信所特有的,移动通信发展到如今的历史方位 上,可靠的高数据速率是主流要求,速率,带宽,低功耗;对抗 无线,移动,时变,主要矛盾的载体是无线信道)
无线信道的特点和mimo信道的容量113无线信道的主要特点和数学模型对于时不变信道的主要干扰包括加性干扰和乘性干扰加性的高斯白噪声是通信系统不可避免的所以通常所说的理想信道实际上是包含高斯噪声的信道而乘性干扰是无线信道的主要特点和技术瓶颈信道估计均衡都是对乘性干扰的技术和矫正当然对于多径特点在数学上既可以归并为加性也可以归并到乘性不能拘泥于一种来谈但是需要明确的是只有高斯噪声的信道是视为理想信道来研究的无线通信的核心是对信道传输函数中除高斯外的非理想因素进行矫正改进

浅谈MIMO技术汇总

浅谈MIMO技术汇总

浅谈MIMO技术一、MIMO简介MIMO(Multiple—Input Multiple—Output)即是多输入多输出技术,是指在发射端和接收端分别使用多个发射天线和接收天线,信号通过发射端和接收端的多个天线传送和接收,从而改善每个用户的服务质量(误比特率或数据速率)。

MIMO系统根据收发两端天线数量,相对于普通的SISO(Single—Input Single-Output)系统,MIMO还可以包括MISO(Multiple-Input Single-Output)系统和SIMO(Single-Input Multiple-Output)系统.MISO系统SIMO系统1.MIMO的发展历史实际上多进多出(MIMO)技术由来已久,早在1908年马可尼就提出用它来抗衰落.在70年代有人提出将多入多出技术用于通信系统,但是对无线移动通信系统多入多出技术产生巨大推动的奠基工作则是由AT&TBell实验室学者完成的。

1995年Teladar给出了在衰落情况下的MIMO容量;1996年Foshinia给出了一种多入多出处理算法—-对角—贝尔实验室分层空时(D-BLAST)算法;1998年Tarokh等讨论了用于多入多出的空时码;1998年Wolniansky等人采用垂直-贝尔实验室分层空时(V—BLAST)算法建立了一个MIMO实验系统,在室内试验中达到了20bit/s/Hz以上的频谱利用率,这一频谱利用率在普通系统中极难实现。

这些工作受到各国学者的极大注意,并使得多入多出的研究工作得到了迅速发展。

至2010年年底,IEEE数据库收录该领域的研究论文已达上万篇,从MIMO无线通信技术的理论研究到实验验证,再到商用化的各个方面。

目前,国际上很多科研院校与商业机构都争相对MIMO通信技术进行深入研究。

2.MIMO 技术特点随着无线通信技术的快速发展,频谱资源的严重不足已经日益成为遏制无线通信事业的瓶颈。

多输入多输出系统的研究与设计

多输入多输出系统的研究与设计

摘要无线通信系统为了达到高速率传输,近年来发展了发射端与接收端都使用多单元天线的架构,称之多输入多输出系统(MIMO)。

该技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,是新一代移动通信系统必须采用的关键技术。

在第三代(3G)乃至三代以后(B3G)的移动通信系统中有着广阔的应用前景。

本论文从MIMO无线通信系统的基本概念入手,介绍了MIMO系统发展的必要性,分析了它的结构和工作原理,然后从理论上推导了MIMO系统容量的公式,最后应用MATLAB软件对不同发射天线、不同接收天线、不同信噪比下的MIMO系统容量进行计算机仿真。

仿真结果正如预期所料。

本文的重点是对MIMO系统容量进行分析并对它进行仿真验证。

关键词:MIMO,信道容量,容量仿真AbstractThe need for wireless data and multimedia services promotes the development and applications of many high-speed wireless communication techniques. The Multiple-Input Multiple-Output (MIMO) technology, which has the potential to multiply system capacity and improve spectral efficiency without requiring extra bandwidth and power, is considered as one of the most promising breakthrough technology to improve system performance, enhance the capacity and spectrum efficiency. It becomes an important technical breakthrough and promises to be one of the key technologies for future wireless communication systems, and hence has attracted broad attention and research interests in recent years.The MIMO technology has been already used in such systems as 3G, B3G and broadband wireless access. Although, the high performance promised by MIMO technology is highly dependent on the propagation channels. Meanwhile, we need to establish MIMO radio channel models and corresponding simulations to research key technologies and algorithms in MIMO systems and to evaluate the system performance. Based on such reasons, in this dissertation, MIMO wireless communication system and its capacity simulation channel was done.Keywords:MIMO, Channel capacity,capacity simulation第1章绪论1.1本文研究的背景和意义无线通信是当今世界最活跃的科研领域之一,在过去的几十年里,无线通信技术得到了飞速的发展和广泛的应用。

信息论基础简介

信息论基础简介
信道
我们可以看到此时传输这23个字只需要: (4+3+3)×1+(5×2)×2+3×3=39
个字符。这样就利用信息出现的频率减小了文字的冗 余度,使得传输更有效。
A ·— B — ··· C — ·— · D — ·· E· F ··— · G ——· H ···· I ··
J ·— — — K — ·— L ·— ·· M —— N —· O ——— P ·— — · Q — — ·— R ·— ·
美国则是由一批数学修养很高的工程技术人员 致力于信息有效处理和可靠传输的可实现性
我国数学家和信息科学专家在20世纪 50年代将信息论引进中国。如胡国定、王 寿仁、万哲先、江泽培、蔡长年、章照止、 沈世镒等,为信息论的发展作出了自己的 贡献。
信源 接受者
通讯基本模型
信源 编码器
信道 编码器
噪声
信道 (存储介质)
1948年发表《通信的数学理论》,奠定了信息论的基础。
IEEE在1950年成立了信息论学会,于1973年设立申农讲 座,是国际信息论届的最高荣誉。
前苏联的辛钦(Shiqin)、柯尔莫哥洛夫 (Kolmogorov)、宾斯基(Pinsker)和达布鲁新 (Dabrushin)等一批著名数学家致力于信息论的 公理化体系和更一般的数学模型
只能用低于信道容量的速率来可靠的传输信息, 否则就会出现错误。
• 利用增加的冗信息进行纠错,形成了纠错技术, 如:Hamming码、Golay码、循环码、BCH码等。
消息=
Yes 信道编码: Yes=0
Yes 或 No
No=1
0
噪声
信道
接受者
10
YNeos
信道译码: 0=Yes

信息理论基础总结

信息理论基础总结

1、信息科学是以信息作为主要研究对象、以信息过程的运动规律作为主要研究内容、以信息科学方法论作为主要研究方法、以扩展人的信息功能(全部信息功能形成的有机整体就是智力功能)作为主要研究目标的一门科学2、材料科学、能源科学、信息科学是现代文明的三大支柱3、信息科学的基础是三大论:系统论、控制论、信息理论4、香农狭义信息论上,也就是三大块内容:信息的统计测度、信道容量和信息率失真函数,以及香农的三个重要定理:无失真信源编码定理、有噪信道编码定理和保真度准则下的信源编码定理5、本体论定义事物的信息是该事物运动的状态和状态改变的方式6、认识论的意义上说,信息是认识主体(生物或机器)所感知的事物运动的状态和状态改变的方式,包括运动状态及其变化方式的形式、含义和效用。

7、认识论层次的信息是同时考虑语法信息(外在形式)、语义信息(内在含义)和语用信息(效用价值)的全信息8、信息最重要的是按照性质分类:语法信息、语义信息、语用信息。

语法信息又分成连续信息和离散信息。

信息理论研究的语法信息9、消息是信息的载荷者,信号是消息的载体10、 11、: 概率越小 不确定性越大 确定性越小 信息量越大 概率越大 不确定性越小 确定性越大 信息量越小 概率 = 1 没有不确定性 完全确定 信息量为零 12、自信息量的定义: ()log ()i i I x p x =- 注意:)(i x I 是)(i x p 的函数,而不是i x 的函数,)(i x p 代表信源发出第i 个符号的不确定性也就是它的概率。

13、对数运算的性质:说明自信息量公式}零和负数没有对数不等式换底公式对数恒等式降阶运算 (10)1log (9)01log (8)1n l (7) 1ln 11 (6) log log log (5) (4) log log (3)log log log (2)log log log (1)a a log ==='⎭⎬⎫-≤≤-⎭⎬⎫==⎪⎪⎭⎪⎪⎬⎫=-=+=⋅a xx x x x A B B B A B A B B A B A B A B A C C A B A A14、联合概率和条件概率计算的信息量分别称为联合自信息量和条件自信息量。

MIMO原理

MIMO原理

多天线技术和MIMO原理085010 张伟WiMAX(全球互通微波接入)技术是以IEEE 802.16系列标准为基础的宽带无线接入技术,可以在固定和移动的环境中提供高速的数据、语音和视频等业务,兼具了移动、宽带和IP化的特点,近年来发展迅速,逐渐成为宽带无线接入领域的发展热点之一。

多天线技术在提高频谱效率、支持更高速的数据传输、提高传输信号质量、增加系统覆盖范围和解决热点地区的高容量要求等方面有无可比拟的优势,已经成为目前研究的热点问题,并广泛应用于各种移动通信系统中。

作为解决最后一公里的最佳接入方式的无线宽带接入技术,WiMAX必须采用多天线技术来提高自身的竞争力。

1、多天线技术简介通俗地讲,多天线系统就是收发双方都采用多根天线进行收发。

通过适当的发射信号形式和接收机设计,多天线技术可以在不显著增加无线通信系统成本的同时,提高系统容量。

从技术上讲,采用多天线技术后,可获得下列增益:功率增益(Power Gain)。

采用多天线发射时,由于有n个发射通道,发射的总功率相当于单天线发射的n倍,因此可以获得10log(n)dB的功率增益。

虽然在单天线发射时也可以增加发射功率,但对功放的要求将提高,实现难度增大,从而成本也会相应增加。

阵列增益(Array Gain)。

阵列增益是指在发射总功率相同的前提下,对接收端平均信噪比的改善量。

通过对信号的相干合并,各种多天线系统都可以获得阵列增益。

也就是说,采用多天线技术后,可提高接收信噪比。

空间分集增益(Space Diversity Gain)。

由于无线信道的衰落特性,单天线系统的信号可能存在深衰落。

采用多天线技术后,通常各天线间隔足够远,可保证不同天线的信号衰落相对独立。

因此,合并后的接收信号的信噪比波动将变得平稳,从而改善了接收信号质量,这就是空间分集增益。

干扰抑制增益(Cochannel Interference Reduction Gain)。

在蜂窝移动通信系统中,由于存在频率复用,因此小区间干扰不可忽视。

无线通信工程中的MIMO系统应用与性能分析

无线通信工程中的MIMO系统应用与性能分析

通信网络技术无线通信工程中的MIMO系统应用与性能分析马远航(日海恒联通信技术有限公司,河南郑州文章深入分析多输入多输出(Multiple InputMultiple Output,MIMO)系统在无线通信工程中的应用及其性能,重点探讨其关键技术和应用场景。

MIMO系统通过空间复用和阵列增益提升通信系统的容量和可靠性,尤其在空间复用方面,通过向量偏转传输技术实现在同一时频资源上传输多个独立数据流,从而大幅提高频谱效率。

此MIMO系统可靠性和抗衰落能力上的重要作用,分析了基于最小均方误差(Minimum Mean Square Error,MMSE)算法的信道估计与均衡技术在保证系统性能上的关键应用。

仿真结果显示,系统在信噪比较高时实现了显著的吞吐量提升,验证了其在无线通信领域的优越性。

多输入多输出(MIMO)系统;空间复用;信道编码;信道估计;无线通信Application and Pperformance Analysis of MIMO System in Wireless CommunicationEngineeringMA Yuanhang(Rihai Henglian Communication Technology Co., Ltd., Zhengzhou维度资源,扩大了通信系统容量,提升了通信系统可靠性,成为现代无线通信技术进步的重要支撑力之一。

系统关键技术分析实验室提出的向量偏转传输技术,系统的空间复用,从而获得多径增益[2]。

个天线看作一个发射向量空间,个天线看作一个接收向量空间,通过个正交基矢量,并根据信的奇异值进行分解,得到发射端和接。

经过预编码矩阵V变换个正交的个不同的数据流且不发生的严格要求。

2.3 信道估计与均衡为跟踪间的快速时变信道,需要进行准确可靠的信道估计。

本设计采用基于训练序列的据传输之前,发送已知的训练序列,接收端获得经信道冲激响应的序列。

接收序列为式中:N为提高估计准确性,训练序列之间采用循环移位设计,接收端收集多个传输块的训练序列进行联合信道估计。

信息论基础

信息论基础
2012/2/19
11
1.2 信息论的基本内容
信道编码问题也就是在一定的误差允许范围内, 如何得到最短的编码便是信道编码问题。具 体地讲,这也是两个问题:1)最短的编码 在理论上是否存在?2)最短的编码实际中 怎么去构造,或者能否构造出接近最短的编 码? 目前为止,对于信源和信道编码,第1个问题 都得到了满意的解决,但第2个问题还没有 完全解决。
2012/2/19
15
1.3 信息论的发展简史
近十年来,信息论和信息技术取得了长足的进 展,已经形成了一门综合型的学科。它不仅 直接应用于通信、计算机和自动控制等领域, 而且还广泛渗透到生物学、医学、语言学、 社会学和经济学等领域。特别是通信技术与 微电子、光电子、计算机技术相结合,使现 代通信技术的发展充满了生机和活力。 人们追求的目标是实现宽带综合业务数字信息 网,使人类进入高度发达的信息科学时代。
2012/2/19
16
1.4 控制论、信息论和系统论
信息论的诞生并不是独立的。实际上是控制论和系统 论同时诞生的,三者统称为老三论。由于它们密 切相关,我们也简单地介绍一些控制论、系统论 以及它们之间的关系。 1. 控制论 1948, Wiener 出版了《Control Theroy(控制论)》 一书,诞生了控制论学科。 Wiener将动物(特别 是指人)和机器中的控制和通信问题进行比较研 究,创造一套语言、思想和方法,能够有效分析 一般的控制和通信问题。经过50多年的发展,控 制论已成为一门综合性科学,并被广泛应用到科 学技术。
2012/2/19
7
1.2 信息论的基本内容


信源:产生消息的源泉,即提供消息的人、设备或 事物。消息可以是文字、语言、图象等。而信源 大 致可以分为三类:1)自然信源,包括来自于物理、 化学、天体、地理、生物等方面的自然的信息,主 要通过各种传感器获得。2)社会信源,包括政治、 军事、管理、金融等,通过社会调查、并利用统计 方法加以整理。3)知识信源,古今中外记录下来的 知识和专家经验。 通信中信源:在通信中,信源就具体化为一个符号 集和产生各个符号(或字母)的概率分布:

《信息论基础》课程教学大纲

《信息论基础》课程教学大纲

《信息论基础》课程教学大纲《信息论基础》课程教学大纲一、《信息论基础》课程说明(一)课程代码:14131054(二)课程英文名称:Information Theory(三)开课对象:信息管理与信息系统专业(四)课程性质:信息论是20世纪40年代后期从长期通讯实践中总结出来的一门学科,是研究信息的有效处理和可靠传输的一般规律的科学。

本课程是信息管理与信息系统本科的专业课。

它应用近代数理统计方法研究信息传输、存贮和处理,并在长期通信工程实践中不断发展。

因而它是一门新兴科学,亦称为通信的数学理论。

建立在通信理论的数学知识基础之上的信息论在数据压缩、调制解调器、广播、电视、卫星通信,计算机存储,因特网通讯,密码学等方面有着广泛的用途。

要使学生领会信息论的基本思想,具备解决实际问题的能力。

从而学习信息论基础,是将信息论渗透到并应用于更广泛的各种科学技术领域的必经之路,也有助于进一步发展和深化信息概念与信息理论。

先修课程为概率论与数理统计(五)教学目的:本课程是信息管理与信息系统本科生的专业课,采用概率论与随机过程等数学方法研究信息的测度、信道容量以及信源与信道编码等理论问题;主要目的是让学生了解Shannon信息论的基本内容,掌握其中的基本公式和基本运算,培养利用信息论的基本原理分析和解决实际问题的能力,为进一步学习通信和信息以及其他相关领域的高深技术奠定良好的理论基础。

(六)教学内容:掌握熵与互信息的概念,性质与计算;掌握离散信源熵的计算;掌握离散信源编码定理与Huffman编码方法;掌握特殊离散无记忆信道与高斯信道容量的计算;掌握信道编码定理;理解R(d)函数与有失真的信源编码定理.(七)学时数、学分数及学时数具体分配学时数: 36分数: 2(八)教学方式:采用多媒体教学方式(九)考核方式和成绩记载说明考试方式将结合平时作业、平时考核(40%)、期末考试(60%)的各个环节。

使学生能够注重平时学习的过程,改变学生从应试型到能力型。

信息理论基础知识点总结

信息理论基础知识点总结

信息理论基础知识点总结1.信息量信息量是表示信息的多少的一个概念。

在信息理论中,通常使用二进制对数函数来表示信息的量,这个函数被称为信息自由度函数。

它的表达式是I(x)=-log2P(x),其中x是一种情况,P(x)是x发生的概率。

信息量的单位是比特(bit),它表示传递或存储信息的最小单位。

当一种情况的概率越大,它所携带的信息量就越小;反之,概率越小的情况所携带的信息量就越大。

信息量的概念在通信、数据压缩和密码学等领域有着广泛的应用。

2.信息熵信息熵是表示信息不确定度的一个概念。

在信息理论中,熵被用来度量信息源的不确定性,它的值越大,信息源的不确定性就越大。

信息熵的表达式是H(X)=-∑p(x)log2p(x),其中X 是一个随机变量,p(x)是X的取值x的概率。

信息熵的单位也是比特(bit)。

当信息源的分布是均匀的时候,信息熵达到最大值;当某种情况的概率接近于0或1时,信息熵达到最小值。

信息熵的概念在数据压缩、信道编码和密码学等领域有着重要的作用。

3.信道信道是信息传递的媒介,它可以是有线的、无线的或者光纤的。

在信息理论中,通常使用信道容量来度量信道的传输能力,它的单位是比特每秒(bps)。

信道容量取决于信噪比和带宽,信噪比越大、带宽越宽,信道容量就越大。

在通信系统中,通过对信道进行编码和调制可以提高信道的传输能力,从而提高通信的可靠性和效率。

信息理论还研究了最大化信道容量的编码方法和调制方法,以及如何在有损信道中进行纠错和恢复等问题。

4.编码编码是将信息转换成特定形式的过程,它可以是数字编码、字符编码或者图像编码等形式。

在信息理论中,编码的目的是为了提高信息的传输效率和可靠性。

信息理论研究了各种类型的编码方法,包括线性编码、循环编码、卷积编码和码分多址等方法。

在通信系统中,通过使用合适的编码方法,可以提高信道的传输效率和抗干扰能力,从而提高通信的质量和可靠性。

综上所述,信息量、信息熵、信道和编码是信息理论的基础知识点。

第十一届大唐杯知识点透析

第十一届大唐杯知识点透析

第十一届大唐杯知识点透析一、移动通信技术基础。

1. 通信原理。

- 信号与系统。

- 信号的分类(模拟信号、数字信号等)。

模拟信号是连续变化的信号,例如传统的语音信号在话筒端最初就是模拟信号,其幅度、频率等随时间连续变化。

数字信号则是离散的,它是将模拟信号通过采样、量化和编码等步骤转换而来的。

- 系统的特性(线性、时不变性等)。

线性系统满足叠加原理,即若系统对输入信号x_1(t)的响应为y_1(t),对输入信号x_2(t)的响应为y_2(t),那么对输入信号a x_1(t)+b x_2(t)的响应为a y_1(t)+b y_2(t)。

时不变系统是指当输入信号在时间上有平移时,输出信号也相应平移,而形状不变。

- 调制解调技术。

- 幅度调制(AM):AM信号的表达式为s_AM(t)=A_c[1 + k_a m(t)]cos(ω_c t),其中A_c是载波幅度,k_a是与调制相关的系数,m(t)是基带信号,ω_c是载波角频率。

AM信号的频谱由载波分量和上下边带组成。

- 频率调制(FM)和相位调制(PM):FM信号的瞬时频率ω(t)=ω_c + k_fm(t),其中k_f是频偏常数。

FM信号的频谱比AM信号更复杂,具有无限个边频分量,但能量主要集中在有限的边频分量内。

PM与FM有相似之处,只是调制信号对相位的影响方式不同。

- 数字调制技术(如ASK、FSK、PSK等)。

ASK(幅移键控)是通过改变载波幅度来表示数字信息,例如在二进制ASK中,数字“1”用载波幅度A表示,数字“0”用幅度0表示。

FSK(频移键控)是用不同的频率来表示不同的数字信息,如在二进制FSK中,数字“1”用频率f_1的载波表示,数字“0”用频率f_2的载波表示。

PSK(相移键控)则是利用载波相位的变化来传递数字信息,如BPSK(二进制相移键控)中,数字“1”和“0”分别对应载波的0和π相位变化。

2. 信息论基础。

- 信息量与熵。

- 信息量I(x)的定义为I(x)=-log_2 P(x),其中P(x)是事件x发生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i = 1,2, L , n ~ 2 n ~ h ii PXi ~ C t (H) = n max ∑ B log( 1 + ) ~ PN i ~ ~ ∑ PX =PX i =1
i =1 i
等增益相加——各路径等增益相加
i = 1,2, L, n n ~ 2 n ~ h ii PX ~ C t (H) = B log ∏ (1 + ) ~ nP Ni i =1
opt ~ PX i
i = 1,2,L , n
n ~ C t (H) = ∑ B log( 1 + i =1
~ 2 opt ~ h ii PXi
~ PNi
)
~ H Y = HX + N = UHV X + N
预编码——变换 ~ ~ ~ H H X = V X,Y = U Y,U = U H N
~ H ~ ~~ ~ H U Y = HV X + U N → Y = HX + N
H
去耦MIMO信道——n个并联子信道
n = min{ n t , n r } ~ ~ ~ ~ Yi = h ii X i + N i
k = 1,2,L , n
B log e −λ = 0 ~ PN i ~ PXi + ~ 2 h ii
i = 1,2,L , n
~ PNi B log e ~ PXi + ~ 2 = =µ λ h ii
i = 1,2,L, n
~ ~ PN i PN i µ ≥ ~2 µ − ~ 2 h ii h ii ~ ~ PX i ≥ 0 → PX i = ~ PN i 0 µ< ~2 h ii
MIMO信道的信道容量
一、无线信道及其信道容量 1、无线信道
多径传播 无视线传播条件下,多径衰落系数独立同分布 瑞利衰落信道 X h N Y=hX+N
2、无线信道的信道容量
h 2 PX C t (h ) = B log( 1 + ) PN
h 随机 → C t (h)随机
2
分集——各路径信号相互独立,适当合并——减 小衰落影响
i = 1,2,L , n
注水算法迭代 设p为迭代次数
n − p +1 P ~ 1 Ni (1 + ∑ ~ 2 ) µ= n − p +1 i =1 h ii
~ ~ PN i PN i µ ≥ ~2 µ − ~ 2 h ii h ii = P~ 0 µ < Ni ~2 h ii
Nnr
设多径衰落矩阵
h 11 h 12 h 21 h 22 H= L L 1n r L h 2n r L L L h ntnr
X H N Y=HX+N
2、MIMO信道的信道容量
接收端已知信道条件下 奇异值分解 ~ H H = UHV ~ H为对角矩阵
~ PX i =
~ PX
最佳增益相加——增益与各路径信噪比成正比 相加 ~2 n n h ii P~i x ~ ∑ B log( 1 + P~ )在∑ P~i = PX限制下的条件极值 x i =1 i =1 Ni ~ 2 n n ~ h ii PX i ∂ ~ ~ 令 {∑ B log( 1 + ) − λ[∑ PX i − PX ]} = 0 ~ ~ ∂PX k i =1 PNi i =1
分集方式 空间分集——多天线 频率分析 角度分集——天线指向 极化分集——水平、垂直极化波
合并方式 最佳增益选择——信噪比最大路径增益选择 等增益相加——各路径等增益相加 最佳增益相加——增益与各路径信噪比成正比 相加
二、MIMO信道及其信道容量 1、MIMO信道
空间分集——nt个发射天线, nr个接收天线 X1 X2 h11 h12 h1nr N2 Xnt Ynr=h1nrX1+…+Nnr Y1=h11X1+…+N1 N1 Y2=h12X1+…+N2
相关文档
最新文档