灰色系统分析方法共30页文档

合集下载

第七章灰色系统综合评价方法

第七章灰色系统综合评价方法
对于多指标分类综合评价而言, 当按单项指标对评价对象的价值水平进行分类时,通常是将各指标按其实际取值情况划分为若干个不同的区间段,不同区间段属于不同的“灰类”。显然,每一区间段实际上就是一个“信息不完全明确”的灰数。例如,一个地区的人均GDP低于3000美元时,属于“竞争力弱”(记为灰类1);当人均GDP介于3000美元至5000美元之间时,属于“竞争力一般”(记为灰类2),当人均GDP介于5000美元至8000美元时,属于“竞争力较强”(记为灰类3);当人均GDP超过8000美元以上时,属于“竞争力很强”(记为灰类4)。相应于这四个灰类,就有四个灰数: 、 、 、 。对于特定的被评价对象(地区),其人均GDP指标的具体取值实际上就是灰类上灰数的一个白化值。计算该白化值的“权”,便可以确定该地区“单项竞争力”偏好于特定灰类的“程度”。通过综合这些程度,便可以判断被评价对象区域竞争力强弱的类型。因此,灰色系统中的灰类划分(或灰色聚类),为多指标综合评价提供了一条新的思路。也就是说,把灰色系统理论与方法应用于多指标综合评价是可行的。
( )
于是,灰色聚类系数(即加权合成值)为:
( )
第五步:进行灰色系统聚类评价。
记 ,则与模糊聚类评价类似,可以根据“最大隶属原则”进行聚类。若
则该单位被判别为“c灰类”。但当“最大隶属原则”失效时,采用点值进行灰类识别更加合理。
第六步:若需要进行综合评价排序,则将B转化为点值y,即
式中,tj为第j灰类的“灰水平”赋值。根据每个单位的y值大小就可以进行综合评价排序,其赋值原则与模糊综合评价类似。
第四步:计算聚类系数bj,确定聚类向量。
第j类的聚类系数定义为:
( )
即为第j灰类各指标的白化权函数值的加权算术平均。
若将各指标在各灰类之下的白化权函数值用矩阵表示,记为R,即

灰色关联分析(算法步骤)

灰色关联分析(算法步骤)

灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度——曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。

灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1> 曲线越接近,相应序列之间的关联度就越大,反之就越小 2> 灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。

灰色系统关联分析的具体计算步骤如下 1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列——影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1) 初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2) 均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3) 区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi) 参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ?(0,1),常取0.5.实数第二级最小差,记为Δmin。

两级最大差,记为Δmax。

为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。

记为Δoi(k)。

所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。

因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。

灰色关联分析法讲解

灰色关联分析法讲解
(1)系统因素不完全明确 (2)因素关系不完全清楚 (3)系统的结构不完全知道 (4)系统的作用原理不完全明了。
“非唯一性”
目标非唯一 灰靶思想
目标可约束
目标可接近 信息可扩充 方案可改善 关系可协调 思维可多向 认识可深化 途径可优化
灰色系统理论研究灰元、灰数、灰关系 灰数——指信息不完全的数。
灰关联分析法
(一)什么是灰色系统
灰色系统理论是1982年由邓聚龙创立的一门边缘性学科 (interdisciplinary)
灰色系统用颜色深浅反映信息量的多少。说一个系统是黑色的, 就是说这个系统是黑洞洞的,信息量太少;说一个系统是白色的, 就是说这个系统是清楚的,信息量充足。
这种处于黑白之间的系统,就是灰色系统,或说信息不完全的系 统,成为灰色系统或简称会系统(grey system)。
如“这个人的年龄18岁左右” “今天的气温10 - 15度之间” 灰元——指信息不完全的元素。如“货币”是灰元。
货币的两种功能:流通手段和价值尺度 灰关系——指信息不完全的关系。例:多种经济成份并存、一国两制
换轨思维
例1:小司马光灵机一动,换个角度处置眼前的危急场面。其实, 他砸碎的不完全是一口现实生活中看得见摸得着的缸,同时也打破 了一种旧的思维模式。当我们打破旧思维,再将我们的思路重新组 装的时候,结果一定是一幅好风光。 爱迪生是美国的大发明家。他的一切发明都是和他的思维活跃分不 开的。
例2:一天,爱迪生在实验室里工作,急需知道一个灯泡容量的数 据。由于手头忙不开,他便递给助手一个没有上灯口的玻璃灯泡, 吩咐助手把灯泡的容量数据量出来。过了很久,爱迪生手头的活早 已干完,助手仍未将数据送来。爱迪生只好亲自去找助手,一进门, 就看到助手正忙于计算,桌上演算纸已经推了一大迭。爱迪生忙问: “还需多长时间?”助手说:“一半还没完呢。”爱迪生明白了。 原来,他的助手用软尺测量灯泡的周长、斜度,正在用复杂的公式 计算呢!小伙子还把程序说给爱迪生听,证明自己的思路没错。爱 迪生不等他说完,便拍拍他的肩膀说:“别白忙了,小伙子,瞧我 这么干。”说着,他往灯泡里面注满了水,交给助手:“把这里的 水倒在量杯里,马上告诉我它的容量。”助手听到后,脸马上就红 了。

第三节灰色综合评价法

第三节灰色综合评价法
劣进行分析比较 (二)基于灰色关联度分析的灰色综合评价法的步骤
二、灰色综合评价法的模型和步骤
对事物的综合评价,多数情况是研究多对象的排序问题,即在各个评价对象之间排出优选 顺序
灰色综合评判主要是依据以下模型:R=E×W
式中:R=[r,r2,…,rm]'为m个被评对 象的综合评判结果向量;W=[w,W2,…, Wm]为n个评价指标的权重分配向量,其中 ∑w=1;E为各指标的评判矩阵 (k)为第i种方案的第k个指标与第k个最优指 标的关联系数 根据R的数值,进行排序
三、灰色综合评价法的实例分析
若k为指标或观测对象序号, 而且X也为单项,对于X项目的 运动员来说,应以X为最重要
的辅助训练项目
而对于学生来说,在X项目成 绩比较好的情况下,为提高其 身体素质的全面发展,应抓住 弱势,积极进行X和X项目的锻

灰色关联分析主要着重研究" 外延明确、内涵不明确"的对 象,解决"小样本、贫信息、 不确定"问题,是一种解决不
三、灰色综合评价法的实例分析
某个体或某群体的行为数据如下(表12-5) (二)计算步骤 第
一步:求初值像(或均值像) 第二步:求差序列 第三步:求两极差 第四步:求关联系数(表12-6) 第五步:计算关联度(表12-7) (三)结果与分析 若k为时间序号,X与X(总分)的关联度最 大,为0.717,它们关联度程度的大小顺 序依次为X>X>X,这说明三个项目成绩的 好差排序也应如此,体育工作者在教学 或运动训练中,应根据具体情况进行针 对性教学或训练
第三节灰色综合 评价法
第三节灰色综合评价法
目录
二、灰色综合评价法的模型和步骤 三、灰色综合评价法的实例分析

灰色关联分析法及其应用案例

灰色关联分析法及其应用案例

灰色关联分析方法
关联分析概述 关联系数与关联度 应用实例
精品课件
一、关联分析概述
社会系统、经济系统、农业系统、生态系统等抽象系统包 含有多种因素,这些因素哪些是主要的,哪些是次要的,哪 些影响大,哪些影响小,那些需要抑制,那些需要发展,那 些事潜在的,哪些是明显的,这些都是因素分析的内容。
使 数列无量纲又可得到公共交点 即第1点。
精品课件
[例] 关联系数的计算
给出已出初值化的序列如下:
x0(1,1.1,2,2.25,3,4)
x 1 ( 1 ,1 .1 6 6 ,1 .8 3 4 ,2 ,2 .3 1 4 ,3 )
x 2 ( 1 ,1 .1 2 5 ,1 .0 7 5 ,1 .3 7 5 ,1 .6 2 5 ,1 .7 5 ) x3(1 ,1 ,0 .7 ,0 .8 ,0 .9 ,1 .2 )
精品课件
二、关联系数与关联度
数据列的表示方式 关联系数计算公式 关联系数计算 关联度 无量纲化 数列的增值性
精品课件
精品课件
关联系数计算公式
对于一个参考数据列x 0 ,有几个比较数列x1,x2, ,xn 的情况。
可以用下述关系表示各比较曲线与参考曲线在各点(时刻) 的
差。 i(k)m xi0 in (k ( ) i(m xi( in k))) 0 0 ..5 5m m a ia ix x ( ( ii( (m m a ax x ) )) )
的 值的百分比。经济序列中常用此法处理。均值化处理则是用
平 均值去除所有数据,以得到一个占平均值百分比的数列。
精品课件
数列的增值性
数列的增值性是指原来两数列发展态势相同,经初值化后, 初值大的发展态势变慢了,初值小的发展态势相对增大。所 谓增值性是指:

灰色系统基本方法

灰色系统基本方法

由于关联度的分析方法是按发展趋势作分析,因此对样本 量的多少没有过分要求,也不需要典型的分布规律,计算量小, 且不致出现关联度的量化结果与定性分析不一至的现象。 关联度分析的应用情况:农业经济,水利,材料科学,宏 观经济等.对抽象系统,社会现象等进行关联度分析,首先要 找准数据序列,而用什么数据才能反映系统的行为特征,是首 先要研究的.用某种数据来间接地表征系统行为,称为找映射 量.即找系统行为的映射量。
灰色系统认为:尽管客观系统表象复杂,数据离散,但它们总是有整体功能 的,总是有序的.因此,它必然潜藏着某种内在规律.关键在于要用适当方式去挖 掘它,然后利用它。
由于生成数据列有了较强的规律,有可能对变化过程做较 长时间的描述,因此,有可能建立微分方程.建立微分方程模型, 还要利用到灰色理论的其他成果,如:关联空间的知识,离散函 数的收敛,根据,离散函数的光滑度,灰导数,灰微分方程,平蛇等 概念。 以例说明灰色过程如何通过生成数来寻找规律 例:记x(0)(1) ,x(0)(2) ,x(0)(3), x(0)(4)其值如下: 序号 数据 1 1 x(0)(1) 2 2 x(0)(2) 3 1.5 x(0)(3) 4 3 x(0)(4)
对系统行为特征值大小的发展变化进行预测,称为系 统行为数据列的变化预测,简称数列预测。例如 ◆粮食产量的预测 ◆商品销售量发展变化的预测 ◆年平均降水量发展变化的预测 ◆人口的预测 ◆货运量的预测 ◆外贸额发展变化的预测 这种预测的特点是:对行为特征量等时距地观测。 预测的任务是:了解这些行为特征量在下一个时刻有多 大。 ②灾变预测 对系统行为特征量超出某个阈值(界限值)的异常值 将在何时出现的预测称为灾变预测。所以说,灾变预测 即对异常值出现时刻的预测。由于异常值往往会使人们 的生活、生态环境、农业生产等的正常活动带来异常结 果,造成灾害,所以也称为这种预测为灾变预测。如

灰色系统与神经网络分析方法及其应用研究

灰色系统与神经网络分析方法及其应用研究

灰色系统与神经网络分析方法及其应用研究灰色系统与神经网络分析方法及其应用研究引言灰色系统理论作为一种非统计性的系统分析与预测方法,具有应用广泛、数据要求低、适用于小样本与非线性系统等优点。

然而,随着大数据时代的到来和信息量的不断增加,灰色系统理论在某些场景下的应用面临一定的局限性。

与此同时,神经网络作为一种强大的模式识别和机器学习工具,其应用范围也逐渐扩展,并在某些领域取得了重要的研究成果。

本文将探讨灰色系统与神经网络在分析和预测方面的方法,并且介绍了它们在不同领域的应用研究进展。

一、灰色系统分析方法灰色系统理论是由我国学者黄东南提出的一种系统分析方法,其核心思想是将不完全信息转化为完全信息,并通过构建相应的数学模型进行分析和预测。

常用的灰色系统分析方法包括灰色关联分析、灰色预测模型、灰色关联预测模型等。

1. 灰色关联分析灰色关联分析是灰色系统的基本方法之一,它主要用于确定变量之间的关联程度。

通过计算得到的灰色关联系数,可以评估不同变量之间的相互关联程度,并进一步分析其影响因素。

2. 灰色预测模型灰色预测模型是灰色系统理论的核心内容之一,其目的是根据已知的历史数据,对未来变量进行预测。

其中,最常用的模型是GM(1,1)模型,它是一阶线性微分方程模型,适用于短期时间序列数据的预测。

3. 灰色关联预测模型灰色关联预测模型是将灰色关联分析与灰色预测模型相结合的方法,通过计算得到的灰色关联系数和预测值,进行综合预测。

它可以综合考虑不同变量之间的关联程度,并得出更准确的预测结果。

二、神经网络分析方法神经网络是一种模拟人脑神经元网络结构和工作原理的计算模型,具有良好的非线性映射能力和自适应学习能力。

在数据分析和预测方面,神经网络通常通过训练的方式从大量样本数据中学习,建立相应的模型,并用于未知数据的预测。

1. 前馈神经网络前馈神经网络是最常用的神经网络类型之一,其结构由输入层、隐藏层和输出层组成,信息在网络中单向传递,不具备反馈机制。

灰色关联分析法(灰色综合评价法)

灰色关联分析法(灰色综合评价法)

灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。

因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。

设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。

(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。

因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。

设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。

(3) 确定各指标值对应的权重。

可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。

(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。

灰色系统聚类分析

灰色系统聚类分析

灰色变权聚类适用于指标的意义、量纲皆相同的情形,当指标的意义、量纲
不同,且指标的样本值在数量上悬殊较大时,不宜采用灰色变权聚类。
5.3 灰色定权聚类
解决上述问题有两条途径:1、采用初值化算子或均值化算子将指标样本
值化为无量纲数据,然后进行聚类。这种方式不能反映不同指标在聚类过
程中的差异性。2、对各聚类指标事先赋权。即定权聚类。
f
k j
(
)
为适中测度白化权函数,记为 fjk[xkj(1),xkj(2),,xkj(4)]
3、若
f
k j
(
)
无第三和第四个转折点,则称
f
k j
()
为上限测度白
化权函数,记为 fjk[xk j(1),xk j(2),,]
f
k j
1
5 .2 .3
f
k j
1
5 .2 .4
0
x
k j
(1
)
x
算出灰色定权聚类系数
m
ik
f
k j
(xij
)
j
j1
5.4 基于三角白化权函数的灰色评估
设有 m 个对象,n 个评估指标, s 个不同的灰类,对象 i 关于指标 j 的样
本观测值为 x ij( i 1 ,2 , ,n ;j 1 ,2 , ,m )我们要根据 x i j 的值对相应
若对任意的 j1,2,
,m , 总有
j

1 m
则称
k i
m
fjk(xij)
j1
j
m 1jm 1fjk(xij)
为对象 i 属于k 灰类的灰色等权聚类系数。
定义 5.3.3 1、根据灰色定权聚类系数的值对聚类对象进行归类,称为灰

灰色系统基本方法

灰色系统基本方法

灰色系统基本方法灰色系统是一种新兴的系统科学方法,它是通过对系统中的不确定性进行分析和研究,从而得出系统的规律性和趋势性。

灰色系统的基本方法包括灰色模型、灰色关联分析、灰色预测等。

灰色模型是灰色系统的核心方法之一,它是通过对系统中的数据进行处理和分析,得出系统的规律性和趋势性。

灰色模型的基本思想是将系统中的数据分为两部分,即灰色数据和白色数据。

灰色数据是指系统中的不确定性因素,白色数据是指系统中的确定性因素。

通过对灰色数据进行处理和分析,得出系统的规律性和趋势性,从而对系统进行预测和控制。

灰色关联分析是灰色系统的另一种方法,它是通过对系统中的数据进行关联分析,得出系统中各因素之间的关联程度和影响程度。

灰色关联分析的基本思想是将系统中的数据进行标准化处理,然后通过计算各因素之间的关联度,得出系统中各因素之间的关联程度和影响程度。

通过对系统中各因素之间的关联程度和影响程度进行分析,得出系统的规律性和趋势性,从而对系统进行预测和控制。

灰色预测是灰色系统的另一种方法,它是通过对系统中的数据进行处理和分析,得出系统的规律性和趋势性,从而对系统进行预测和控制。

灰色预测的基本思想是将系统中的数据分为灰色数据和白色数据,然后通过对灰色数据进行处理和分析,得出系统的规律性和趋势性,从而对系统进行预测和控制。

总之,灰色系统是一种新兴的系统科学方法,它是通过对系统中的不确定性进行分析和研究,从而得出系统的规律性和趋势性。

灰色系统的基本方法包括灰色模型、灰色关联分析、灰色预测等,这些方法可以应用于各种领域,如经济、环境、医疗等,具有广泛的应用前景。

灰色关联分析模型

灰色关联分析模型

模型优化
01
改进灰色关联分析模型的计算方 法,提高模型的准确性和稳定性 。
02
引入人工智能和机器学习技术, 实现灰色关联分析模型的自适应 和智能化。
应用拓展
将灰色关联分析模型应用于更多领域 ,如金融、能源、环境等,挖掘各领 域数据之间的关联关系。
结合其他数据分析方法,形成更为综 合和全面的数据分析体系。
THANKS
感谢观看
通过灰色关联分析,可以挖掘出数据之间的内在联系,为决策提供依据,有助于提 高决策的科学性和准确性。
灰色关联分析模型的基本概念
灰色关联分析
灰色关联分析是一种基于因素之间发 展趋势相似或相异程度的分析方法, 用于衡量因素之间的关联程度。
灰色关联序
灰色关联序是根据灰色关联度的大小 对因素进行排序,从而找出主要影响 因素和次要影响因素。
灰色关联分析模型
• 引言 • 灰色关联分析模型的理论基础 • 灰色关联分析模型的实例应用 • 灰色关联分析模型的优缺点 • 灰色关联分析模型的发展趋势和展望
01
引言
灰色关联分析模型的背景和意义
灰色关联分析模型是一种用于处理不完全信息或不确定信息的数学方法,广泛应用 于经济、社会、工程等领域。
在实际应用中,由于数据的不完全性和不确定性,许多问题难以得到准确的分析和 预测。灰色关联分析模型的出现,为这类问题提供了有效的解决方案。
灰色关联度
灰色关联度是灰色关联分析中的核心 概念,表示因素之间的关联程度。通 过计算灰色关联度,可以判断各因素 之间的相似或相异程度。
灰色关联矩阵
灰色关联矩阵是表示因素之间关联程 度的矩阵,通过矩阵可以直观地看出 各因素之间的关联程度。
02
灰色关联分析模型的理论基础

灰色关联分析(算法步骤)

灰色关联分析(算法步骤)

灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。

灰色关联度分析法

灰色关联度分析法

灰色关联度分析法
灰色关联度分析法(Grey Relational Analysis,GRA)是一种多属性
决策分析的统计方法,是一个在变量未知情况下实现系统模型和控制
不确定性的有用工具。

灰色关联度分析法主要用于研究和分析影响多
维度多属性数据测量结果的各种因素之间的相关关系。

它对模糊数据
进行综合处理,可以把多维评价分解成基本的准则来实现。

灰色关联度分析法的原理是利用灰色关联度的基本定义来衡量某种系
统的相关程度,灰色关联度通过确定系统的相似度和差异度来计算相
关程度,以此作为最终判断结果。

首先,将所有系统样本的信息表示
成一维度序列,并计算各时间点的灰色关联度。

其次,将灰色关联度
转化成定量指标,以此确定每一种系统的相关程度。

最后,根据定量
指标的值,把每一种系统分成几个类,以便于进一步分析和研究。

灰色关联度分析法可以应用于多种领域,例如工程设计、产品设计、
资源调配等。

例如,当进行工程设计时,可以利用灰色关联度分析法,通过灰色关联度来考虑多种参数和因素,以便最大限度地满足工程项
目的要求。

总之,灰色关联度分析法是一种有效的多属性决策分析方法,在许多
领域得到了广泛的应用,对于多维度和多属性问题具有显著优势。


效地利用灰色关联度分析法,能够更好地实现系统模型和控制不确定性,有助于优化效率和提高决策水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档