《应用数理统计》吴翊李永乐第三章 假设检验课后作业
《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案

第三章 假设检验课后作业参考答案某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H ,(2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u u u u u V(4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平下确定这批元件是否合格。
解:{}01001:1000, H :1000950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高 解:(1)提出假设0100::μμμμ>=H H ,(2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
00907701《应用数理统计》教学大纲

《运用数理统计》教学大纲课程名称:运用数理统计英文名称:ApplicationofMathematicalStatistics课程编号:00907701课程学时:32课程学分:2课程性质:学位课有用专业:全校各专业预修课程:初等数学,线性代数〔大年夜学工科〕,概率论与数理统计〔大年夜学工科〕大纲执笔人:周大年夜勇一、课程目的与恳求本课程讨论基础数理统计的数学实践跟方法,包括数理统计的全然不雅念,抽样分布,参数估计,假设检验,方差分析,回归分析,正交试验跟质量把持末尾,为众多学科专业需要较多统计货色的研究生,供应随机数学方面的训练,打下扎实的基础。
数理统计是关于数据资料的收集﹑拾掇﹑分析跟揣摸的学科,通过对本课程的深造,使老师在本科工程数学的基础上,进一步较收入地把持数理统计的全然实践跟方法,培养运用数理统计的方法分析跟处置有关理论征询题的才干,并为当前深造后继课程打下需要的基础。
二、教学内容及学时安排第一章抽样跟抽样分布4学时一、母体跟子样二、一些常用的抽样分布第二章参数估计8学时一、点估计跟估计量的求法二、估计量的好坏标准三、区间估计第三章假设检验8学时一、假设检验初述,二类差错二、检验母体平均数三、检验母体方差四、单侧假设检验五、分布假设检验第四章方差分析、正交试验方案6学时一、一元方差分析二、二元方差分析三、正交试验方案第五章回归分析6学时一、一元线性回归中的参数估计二、一元线性回归中的假设检验跟猜想三、可线性化的意愿非线性回归三、讲义及要紧参考书1、杨虎,刘琼荪,钟波《数理统计》初等教诲出版社,20042、汪荣鑫《数理统计》西安交通大年夜学出版社,19863、吴翊,李永乐,胡庆军《运用数理统计》国防科大年夜出版社,19954、朱勇华,邰淑彩,孙韫玉《运用数理统计》武汉大年夜学出版社,20005、茆诗松、王静龙《数理统计》华东师范大年夜学出版社,1990。
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考标准答案

《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案————————————————————————————————作者:————————————————————————————————日期:第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图9080706050xi360340320300280y i由散点图不能够确定y 与x 之间是否存在线性关系,先建立线性回归方程然后看其是否能通过检验线性回归分析的系数模型 非标准化系数标准化系数T 值 P 值95% 系数的置信区间β值 学生残差 β值下限上限 1 常数项 193.951 46.796 4.145 0.003 86.039 301.862x1.8010.6850.6812.629 0.030 0.2213.381由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
应用数理统计作业题及参考答案(第三章)

第三章 假设检验P1313.2 一种元件,要求其使用寿命不得低于1000(小时)。
现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知该种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:本题需检验0H :0μμ≥,1H :0μμ<.元件寿命服从正态分布,0σ已知,∴当0H成立时,选取统计量X u μ-=,其拒绝域为{}V u u α=<.其中950X =,01000μ=,25n =,0100σ=.则 2.5u ==-.查表得0.05 1.645u =-,得0.05u u <,落在拒绝域中,拒绝0H ,即认为这批元件不合格。
3.3 某厂生产的某种钢索的断裂强度服从正态分布()2N μσ,,其中40σ=(kg / cm 2)。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(kg / cm 2)。
设总体方差不变,问在0.01α=下能否认为这批钢索质量有显著提高?解:本题需检验0H :0μμ=,1H :0μμ>.钢索的断裂强度服从正态分布,0σ已知,∴当0H成立时,选取统计量u =,其拒绝域为{}1V u u α-=>.其中040σ=,9n =,020X μ-=,0.01α=.则 1.5u ==.查表得10.990.01 2.33u u u u αα-==-=-=,得0.99u u <,未落在拒绝域中,接受0H ,即认为这批钢索质量没有显著提高。
3.5 测定某种溶液中的水分。
它的10个测定值给出0.452%X =,0.035%S =。
设总体为正态分布()2N μσ,,试在水平5%检验假设:(i )0H :0.5%μ>; 1H :0.5%μ<. (ii )0H :0.04%σ≥; 1H :0.04%σ<. 解:(i )总体服从正态分布,0σ未知,当0H成立时,选取统计量t =(){}1V t t n α=<-.查表得()()0.050.9599 1.8331t t =-=-.而()4.114 1.83311t t n α==-<-=-.落在拒绝域中,拒绝0H .(ii )总体服从正态分布,μ未知, 当0H 成立时,选取统计量222nSχσ=,其拒绝域为(){}221V n αχχ=<-.查表得()20.059 3.325χ=.而()()()2222100.035%7.65610.04%n αχχ⨯==>-.未落在拒绝域中,接受0H .3.6 使用A (电学法)与B (混合法)两种方法来研究冰的潜热,样品都是-0.72℃的冰块,下列数据是每克冰从-0.72℃变成0℃水的过程中的吸热量(卡 / 克):方法A :79.98,80.04,80.02,80.04,80.03,80.03,80.04,79.97,80.05,80.03,80.02,80.00,80.02方法B :80.02,79.94,79.97,79.98,79.97,80.03,79.95,79.97假定用每种方法测得的数据都服从正态分布,且它们的方差相等。
数理统计教程课后重要答案习题

第一章:统计量及其分布19.设母体ξ服从正态分布N(),,2σμξ和2n S 分别为子样均值和子样方差,又设()21,~σμξN n +且与n ξξξ,,,21 独立, 试求统计量111+--+n n S nn ξξ的抽样分布. 解: 因为ξξ-+1n 服从⎪⎭⎫⎝⎛+21,0σn n N 分布. 所以()1,0~121N nn n σξξ+-+ 而()1~222-n nS nχσ且2n S 与ξξ-+1n 独立,, 所以()1~1111--÷+--+n t S n n n n S nnn σξξ分布. 即111+--+n n S nn εε服从()1-n t 分布. 20.(),,,1,,n i i i =ηξ是取自二元正态分布N()ρσσμμ222121,,,的子样,设()∑∑∑===-===n i i i ni n i i n S n n 12111,1,1ξξηηξξξ2,()2121∑=-=n i i n S ηηη和 ()()()()∑∑∑===----=ni i ni ii ni ir 12211ηηξξηηξξ试求统计量()122221--+---n S rS S S ηξηξμμηξ的分布.解: 由于().21μμηξ-=-E ()()=-+=-ηξηξηξ,c o v 2D D D nn nn2122212σσρσσ-+.所以()()n 212221212σρσσσμμηξ-+---服从()1,0N 分布 .()()()()()()()[]211212121222122ηξηξηηξξηηξξ---=----+-=-+∑∑∑∑====i ini i i ni i ni i ni S rS S S ni i ηξ-是正态变量,类似于一维正态变量的情况,可证ηξηξS rS S S 222-+与ηξ-相互独立.()()1~22221222122--+-+n S rS S S n χσρσσσηξηξ, 所以 统计量()122221--+---n S rS S S ηξηξμμηξ()()()()1)2(222122212221222121--+-+-+---=n S rS S S n nσρσσσσρσσσμμηξηξηξ服从()1-n t 分布.第二章:估计量1. 设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 3. 对容量为n 的子样,求密度函数()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量. 解: ()322adx x a ax E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i i x ∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫⎝⎛⋅++=∏=n i i x n L ααα令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα, 得 ∑=--=ni iL xn1ln 1ˆα。
《应用数理统计》吴翊李永乐第五章方差分析课后作业参考答案

第五章 方差分析课后习题参考答案5、1 下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数:设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显著差异?(01.0=α)解:(1)手工计算解答过程 提出原假设:()3,2,10:0==i H i μ记167.2081211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====r i n j ij ri n j ij T i iX n X S467.7011211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri n j ij iA ii X n X n S7.137=-=A T e S S S当H 成立时,()()()r n r F r nS r S F e A ----=,1~/1/本题中r=3经过计算,得方差分析表如下:查表得()()35.327,2,195.01==---F r n r F α且F=6、909>3、35,在95%的置信度下,拒绝原假设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显著影响。
(2)软件计算解答过程组建效应检验Depend ent Variable: 存活日数a70.429235.215 6.903.004137.73727 5.101208.16729方差来源菌型误差总和平方和自由度均值F 值P 值R Squared = .338 (Adjusted R Squared = .289)a.从上表可以瞧出,菌种不同这个因素的检验统计量F 的观测值为6、903,对应的检验概率p 值为0、004,小于0、05,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显著影响。
5、2 现有某种型号的电池三批,她们分别就是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6工厂 寿命(小时) 甲 40 48 38 42 45 乙 26 34 30 28 32 丙39 40 43 50 50试在显著水平0.05α=下,检验电池的平均寿命有无显著性差异?并求121323,μμμμμμ---及的95%置信区间。
《应用数理统计》第三章假设检验课后作业参考答案

第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
《应用数理统计》吴翊李永乐第三章假设检验课后作业

《应⽤数理统计》吴翊李永乐第三章假设检验课后作业第三章假设检验课后作业参考答案3.1 某电器元件平均电阻值⼀直保持2.64Ω,今测得采⽤新⼯艺⽣产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,⽽且新⼯艺不改变电阻值的标准偏差。
已知改变⼯艺前的标准差为0.06Ω,问新⼯艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=µµH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σµ(3)否定域>=><=--21212αααu u uu u u V (4)给定显著性⽔平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落⼊否定域,故拒绝原假设,认为新⼯艺对电阻值有显著性影响。
3.2 ⼀种元件,要求其使⽤寿命不低于1000(⼩时),现在从⼀批这种元件中随机抽取25件,测得其寿命平均值为950(⼩时)。
已知这种元件寿命服从标准差100σ=(⼩时)的正态分布,试在显著⽔平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αµµσµα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故⽤统计量:此题中:代⼊上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信⽔平5下这批元件不合格。
3.3某⼚⽣产的某种钢索的断裂强度服从正态分布()2,σµN ,其中()2/40cm kg =σ。
现从⼀批这种钢索的容量为9的⼀个⼦样测得断裂强度平均值为X ,与以往正常⽣产时的µ相⽐,X 较µ⼤20(2/cm kg )。
应用数理统计--第三章习题及答案

习题三2.设总体的分布密度为:(1),01(;)0,x x f x ααα+<<=⎧⎨⎩其它1(,,)n X X 为其样本,求参数α的矩估计量1ˆα和极大似然估计量2ˆα .现测得样本观测值为:0.1,0.2,0.9,0.8,0.7,0.7,求参数α的估计值 .解 计算其最大似然估计:()()11111(,)11ln (,)ln(1)ln nnnn i i i i nn ii L x x x x L x x n x αααααααα===⎡⎤=+=+⎣⎦=++∏∏∑1121ln (,)ln 01ˆ10.2112ln nn i i n ii d n L x x x d nx ααααα====+=+=--=∑∑ 其矩估计为:()1 3.40.10.20.90.80.70.766X =+++++= 3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以:12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑, 12ˆˆ0.3077,0.2112αα≈≈.3. 设元件无故障工作时间X 具有指数分布,取1000个元件工作时间的记录数据,经分组后得到它的频数分布为:如果各组中数据都取为组中值,试用最大似然法求参数的点估计. .解 最大似然估计:11(,),ln ln i nx n nx n i L x x e e L n nx λλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05X λ==.4. 已知某种灯泡寿命服从正态分布,在某星期所生产的该种灯泡中随机抽取10只,测得其寿命(单位:小时)为:1067,919,1196,785,1126,936,918,1156,920,948 设总体参数都未知,试用极大似然法估计这个星期中生产的灯泡能使用1300小时以上的概率.解 设灯泡的寿命为x ,2~(,)x N μσ,极大似然估计为:2211ˆˆ,()ni i x x x n μσ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.81μσ== . 经计算得,这个星期生产的灯泡能使用1300小时的概率为0.0075.5. 为检验某种自来水消毒设备的效果,现从消毒后的水中随机抽取50升,化验每升水中大肠杆 菌的个数(假定一升水中大肠杆菌个数服从Poisson 分布),其化验结果如下:试问平均每升水中大肠杆菌个数为多少时,才能使上述情况的概率为最大? 解 设x 为每升水中大肠杆菌个数,~()x P λ,Ex λ=,由3题(2)问知,λ的最大似然估计为x ,所以().150/1*42*310*220*117*0ˆ=++++==X L λ所以平均每升氺中大肠杆菌个数为1时,出现上述情况的概率最大 .8. 设1,...,n X X 是来自总体X 的样本,并且EX =μ,DX = 2σ,2,X S 是样本均值和样本方差,试确定常数c ,使22X cS -是2μ的无偏估计量 .解2222222222()E X cS EX cES DX E X c c nσσμσμ-=-=+-=+-=所以1c n =.9. 设1ˆθ,2ˆθ是θ的两个独立的无偏估计量,并且1ˆθ的方差是2ˆθ的方差的两倍 .试确定常数c 1, c 2,使得11ˆc θ+22ˆc θ为θ的线性最小方差无偏估计量 . 解: 设22122,2D D θσθσ==112212121221(()11E c c c c c c c c c c θθμμμμ+=+=+=+==-),,()()222222211221211(2221D c c c c c c θθσσσ+=+=+-)()222111121321c c c c +-=-+当1212*33c -=-=,上式达到最小,此时21213c c =-= .10. 设总体X 具有如下密度函数,1,01(,)0,x x f x θθθθ-<<=>⎧⎨⎩,0其它1,...,n X X 是来自于总体X的样本,对可估计函数1()g θθ=,求()g θ的有效估计量ˆ()gθ,并确定R-C 下界 .解 因为似然函数1111L(,),ln ln (1)ln i i nn n n n i i x x x x L n x θθθθθ--====+-∑∏∏111ln ln ln ln ()0i i i d n L x n x n x g d n n θθθθ⎛⎫⎛⎫=+=---=---= ⎪ ⎪⎝⎭⎝⎭∑∑∑ 所以取统计量1ln i T x n=-∑ 11111101ln ln ln ln i E X x x dx xdx x x x dx θθθθθθ--===-=-⎰⎰⎰得1ET θ==()g θ,所以1ln i T x n=-∑是无偏估计量 令()c n θ= 由定理2.3.2知 T 是有效估计量,由221()1()g DT c n n θθθθ-'===- 所以 C-R 方差下界为21n θ.11. 设1,...,n X X 是来自于总体X 的样本,总体X 的概率分布为:||1||(,)()(1),1,0,1,012x x f x x θθθθ-=-=-≤≤1) 求参数θ的极大似然估计量ˆθ;2) 试问极大似然估计ˆθ是否是有效估计量?如果是,请求它的方差ˆD θ和信息量()I θ;3 试问θ是否是相合估计量?(书上没有这个问题) 解 1)()()111(,)1122ln ln (n )ln(1)iii ix x nx n x n i i i L x x L x x θθθθθθθ--=∑⎛⎫⎛⎫∑=-=- ⎪ ⎪⎝⎭⎝⎭=+--∏∑∑n 1ln 01(1)n xi xi d n L xi d θθθθθθ-⎛⎫=-=-= ⎪--⎝⎭∑∑∑ 得到θ最大似然估计量1ˆxi nθ=∑ 2)()()110011,10122Exi E xi E xi n n θθθθθ⎛⎫⎛⎫==-++-= ⎪ ⎪⎝⎭⎝⎭∑∑所以11Exi E xi n nθ==∑∑ 所以ˆθ是无偏估计量,()(1)n c θθθ=-,由定理2.3.2得到1ˆxi n θ=∑是θ有效估计量信息量c()1()(1)I n θθθθ==-3)1(1)ˆD 0,(n )c()nθθθθ-==→→∞ 所以,T 也是相合估计量 .12 从一批螺钉中随机地取16枚,测得其长度(单位:cm)为:2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15, 2.12,2.14,2.10,2.13,2.11,2.14,2.11设钉长分布为正态,在如下两种情况下,试求总体均值μ的90%置信区间,1)若已知σ=0.01cm ; 2)若σ未知;解 因为 2.125,16,0.171,X n s ===()0.950.9510.95, 1.65,15 1.7532t αμ===-1) 计算0.950.952.1209, 2.1291X b a X αμμ-===+== 所以 置信区间为[]1.1212.129,2) 计算((0.950.9515 2.1175,15 2.1325X t b X t α-==+== 所以 置信区间为[]2.1152.135,.13 随机地取某种炮弹9发做试验,测得炮口速度的样本标准差s=11(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信度为95%的置信区间 .解 由题意标准差σ的置信度为0.95的置信区间为0.9750.0252222(1)(1)(,)(8)(8)n S n S χχ-- 计算得0.9750.0252222(1)(1)11,9,0.05,7.431,21.072(8)(8)n S n S S n a b αχχ--=======所以 置信区间为 [7.431,21.072].14. 随机地从A 批导线中抽取4根,并从B 批导线中抽取5根,测得其电阻(Ω)为:A 批导线:0.143,0.142,0.143,0.137B 批导线:0.140,0.142,0.136,0.138,0.140设测试数据分别服从21(,)N μσ和22(,)N μσ,并且它们相互独立,又212,,μμσ均未知,求参数12μμ-的置信度为95%的置信区间 .解 由题意,这是两正太总体,在方差未知且相等条件下,对总体均值差的估计:置信区间为121221(2)X Y tn n S n α--±+- 计算得2626A B 120.14125,0.1392,8.25*10, 5.2*10,4,5,0.05x y S S n n α--======= 26W W 0.9756.5710,0.00255,(7) 2.365,0.0022,0.0063S S t a b -====-=所以[0.0022,0.0063]-.15. 有两位化验员A 、B ,他们独立地对某种聚合物的含氯量用相同方法各作了10次测定,其测定值的方差2s 依次为0.5419和0.6065,设2A σ与2B σ分别为A 、B 所测量数据的总体的方差(正态总体),求方差比2A σ/2B σ的置信度为95%的置信区间 .解 由题意,这是两正太总体方差比的区间估计:置信区间为22AA22BB1212(,)1(1,1)(1,1)22S S S S F n n Fn n -----计算得22A B 120.5419,0.6065,10,0.05S S n n α=====22AA22B B0.9750.0250.2217, 3.6008(9,9)(9,9)S S S S a b F F ====所以置信为 [0.2217,3.6008].。
《应用数理统计》吴翊李永乐第五章方差分析课后作业参考答案

第五章 方差分析课后习题参考答案5.1 下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数:设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显著差异?(01.0=α)解:(1)手工计算解答过程 提出原假设:()3,2,10:0==i H i μ记167.2081211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====r i n j ij ri n j ij T i iX n X S467.7011211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri n j ij iA ii Xn X n S7.137=-=A T e S S S当H 成立时,()()()r n r F r n S r S F e A ----=,1~/1/本题中r=3经过计算,得方差分析表如下:查表得()()35.327,2,195.01==---F r n r F α且F=6.909>3.35,在95%的置信度下,拒绝原假设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显著影响。
(2)软件计算解答过程组建效应检验Depend ent Variable: 存活日数a70.429235.215 6.903.004137.73727 5.101208.16729方差来源菌型误差总和平方和自由度均值F 值P 值R Squared = .338 (Adjusted R Squared = .289)a.从上表可以看出,菌种不同这个因素的检验统计量F 的观测值为6.903,对应的检验概率p 值为0.004,小于0.05,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显著影响。
5.2 现有某种型号的电池三批,他们分别是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6只电池进行寿命试验,数据如下表所示:工厂 寿命(小时) 甲 40 48 38 42 45 乙 26 34 30 28 32 丙39 40 43 50 50试在显著水平0.05α=下,检验电池的平均寿命有无显著性差异?并求121323,μμμμμμ---及的95%置信区间。
(完整版)《应用数理统计》吴翊_习题解答

第一章 数理统计的基本概念P261。
2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的子样,求最大顺序统计量()n X 与最小顺序统计量()1X 的分布函数与密度函数。
解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤=⎡⎤⎣⎦,,,。
()()()()1n n n f x F x n F x f x -'=⎡⎤=⎡⎤⎣⎦⎣⎦.(){}{}1121i n F x P X x P X x X x X x =≤=->>>,,,. {}{}{}121n P X x P X x P X x =->>>{}{}{}121111n P X x P X x P X x =-⎡-≤⎤⎡-≤⎤⎡-≤⎤⎣⎦⎣⎦⎣⎦()11nF x =-⎡-⎤⎣⎦()()()()1111n f x F x n F x f x -'=⎡⎤=⎡-⎤⎣⎦⎣⎦。
1。
3 设总体X 服从正态分布()124N ,,今抽取容量为5的子样1X ,2X ,…,5X ,试问: (i )子样的平均值X 大于13的概率为多少?(ii )子样的极小值(最小顺序统计量)小于10的概率为多少? (iii )子样的极大值(最大顺序统计量)大于15的概率为多少? 解:()~124X N ,,5n =,4~125X N ⎛⎫∴ ⎪⎝⎭,.(i ){}{}()13113111 1.1210.86860.1314X P X P X P φφ⎧⎫⎛⎫⎪⎪⎪>=-≤=-≤=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>>,,, {}{}{}5551111011101110i i i i P X P X P X ===->=-⎡-<⎤=-⎡-<⎤⎣⎦⎣⎦∏∏.()12~012X Y N -=,, {}{}121012*********X X P X P P P Y ---⎧⎫⎧⎫∴<=<=<-=<-⎨⎬⎨⎬⎩⎭⎩⎭{}()111110.84130.1587P Y φ=-<=-=-=.{}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-⎡<⎤⎣⎦∏,,,.{}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a==-=-+-∑∑对任意实数a 成立。
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案

《应⽤数理统计》吴翊李永乐第四章-回归分析课后作业参考答案第四章回归分析课后作业参考答案4.1 炼铝⼚测得铝的硬度x与抗张强度y的数据如下:i x68 53 70 84 60 72 51 83 70 64i y288 298 349 343 290 354 283 324 340 286(1)求y 对x的回归⽅程(2)检验回归⽅程的显著性(05.0=α) (3)求y在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果⼀元线性回归模型εββ++=x y 10只有⼀个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机⼲扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使⽤普通最⼩⼆乘法估计参数10,ββ上述参数估计可写为95.193??,80.1?101=-===x y L L xxxy βββ所求得的回归⽅程为:x y80.195.193?+= 实际意义为:当铝的硬度每增加⼀个单位,抗张强度增加1.80个单位。
2、软件运⾏结果根据所给数据画散点图过检验由线性回归分析系数表得回归⽅程为:x y801.1951.193?+=,说明x 每增加⼀个单位,y 相应提⾼1.801。
(2) 1、计算结果①回归⽅程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性⽔平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为⽅程的线性回归效果显著②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/?1=-=n Q L t e xx β在给定显著性⽔平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
《应用数理统计》吴翊李永乐第四章回归分析课后作业参考答案

第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图过检验由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
(2) 1、计算结果①回归方程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性水平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为方程的线性回归效果显著 ②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/ˆ1=-=n Q L t e xx β在给定显著性水平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
应用数理统计课后答案

1 n ˆ xi x n i 1 1 n 2 ˆ 2 ( xi x) 2 sn n i 1
则 , 2 的极大似然估计量:
1 n ˆ n X i X i 1 1 n 2 ˆ 2 ( X i X )2 Sn n i 1
1 e x, F (x) 0,
x 0, x 0.
(1) FY ( y) P{Y y} P{aX b y} P{ X
y b yb }(a 0) F ( ) a a
y b y b 当 0,即y b时,FY ( y ) 1 e a . a 当 y b 0,即y b时,F ( y ) 0. Y a
Xi
i 1
2
(t ) e i1
i ( eit 1)
2
根据特征函数的性质(5)得: X 1 X 2 ~ P(1 2 )
第二章 数理统计的基本概念
8.解:设 X 为样本,x 为样本的观测值。由于数据已经按照从小到大的顺序排列,
于是经验分布函数为:
0, 1 , 8 1 , 4 3 , 8 1 Fn ( x ) , 2 5 8 , 3, 4 7 , 8 1,
y
1 e y, FY ( y ) 0,
y 0, y 0.
14.证明:
Cov( , ) Cov(aX b, cY d ) acCov ( X , Y ) D( ) D(aX b) a 2 D( X )同理:D( ) c 2 D(Y )
由极大似然估计的不变性可知
ˆ Sn
应用数理统计吴翊李永乐第四章回归分析课后作业参考答案

第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图过检验由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
(2) 1、计算结果①回归方程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性水平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为方程的线性回归效果显著 ②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/ˆ1=-=n Q L t e xx β在给定显著性水平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
《应用数理统计》吴翊李永乐第五章方差分析课后作业参考答案

第五章 方差分析课后习题参考答案5.1 下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数:设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显著差异?(01.0=α)解:(1)手工计算解答过程 提出原假设:()3,2,10:0==i H i μ记167.2081211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====r i n j ij ri n j ij T i iX n X S467.7011211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri n j ij iA ii X n X n S7.137=-=A T e S S S当H成立时,()()()r n r F r n S r S F e A ----=,1~/1/本题中r=3经过计算,得方差分析表如下:查表得()()35.327,2,195.01==---F r n r F α且F=6.909>3.35,在95%的置信度下,拒绝原假设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显著影响。
(2)软件计算解答过程从上表可以看出,菌种不同这个因素的检验统计量F 的观测值为6.903,对应的检验概率p 值为0.004,小于0.05,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显著影响。
5.2 现有某种型号的电池三批,他们分别是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6只电池进行寿命试验,数据如下表所示:试在显著水平0.05α=下,检验电池的平均寿命有无显著性差异?并求121323,μμμμμμ---及的95%置信区间。
这里假定第i 种电池的寿命2i X (,)(1,2,3)i N i μσ=:。
解:手工计算过程: 1.计算平方和6.615])394.44()3930()396.42[(*4)()(4.216)3.28108.15(*4*))(1()(832429.59*14*))(1()(22212212122222=-+-+-=-=-==++=-==-===-==-=∑∑∑∑∑∑∑∑∑===ri i i i A ri i i ri ii i ij e ij T X X n X X S S n S n X X S s n ns X X S其检验假设为:H0:,H1:。
《应用数理统计》吴翊李永乐第五章方差分析课后作业参考答案

第五章 方差分析课后习题参考答案5.1 下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数:设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显著差异?(01.0=α)解:(1)手工计算解答过程 提出原假设:()3,2,10:0==i H i μ记167.2081211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====r i n j ij ri n j ij T i iX n X S467.7011211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri n j ij iA ii X n X n S7.137=-=A T e S S S当H成立时,()()()r n r F r n S r S F e A ----=,1~/1/本题中r=3经过计算,得方差分析表如下:查表得()()35.327,2,195.01==---F r n r F α且F=6.909>3.35,在95%的置信度下,拒绝原假设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显著影响。
(2)软件计算解答过程组建效应检验Dep endent Variable: 存活日数a70.429235.215 6.903.004137.73727 5.101208.16729方差来源菌型误差总和平方和自由度均值F 值P 值R Squared = .338 (Adjusted R Squared = .289)a.从上表可以看出,菌种不同这个因素的检验统计量F 的观测值为6.903,对应的检验概率p 值为0.004,小于0.05,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显著影响。
5.2 现有某种型号的电池三批,他们分别是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6只电池进行寿命试验,数据如下表所示:工厂 寿命(小时) 甲 40 48 38 42 45 乙 26 34 30 28 32 丙39 40 43 50 50试在显著水平0.05α=下,检验电池的平均寿命有无显著性差异?并求121323,μμμμμμ---及的95%置信区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为3.25?解:0101102: 3.25 H :t X 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴Q 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。
取检验统计量为X 本题中,代入上式得: 0.452%-0.5%拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==Q 2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受3.6 使用A(电学法)与B(混合法)两种方法来研究冰的潜热,样品都是C o72.0-的冰块,下列数据是每克冰从C o72.0-变成C o0水的过程中吸收的热量(卡/克);方法A :79.98,80.04,80.02,80.04,80.03,80.03,80.04 79.97,80.05,80.03,80.02,80.00,80.02方法B :80.02,79.94,79.97,79.98,79.97,80.03,79.95,79.97假设每种方法测得的数据都服从正态分布,且他们的方差相等。
检验:0H 两种方法的总体均值相等。
(05.0=α)解:()()481222413122181131106.881,104.51319788.7981,0208.80131-=-===⨯=-=⨯=-=====∑∑∑∑i i i i i i i i Y Y S X X S Y Y X X(1)提出假设211210::μμμμ≠=H H ,(2)构造统计量()98.32222211212121=+-+-+=S n S n YX n n n n n n t (3)否定域()()()⎭⎬⎫⎩⎨⎧-+>=⎭⎬⎫⎩⎨⎧-+>⋃⎭⎬⎫⎩⎨⎧-+<=--22221212121212n n t t n n t t n n t t V ααα(4)给定显著性水平05.0=α时,临界值()()0930.2192975.02121==-+-t n n tα(5) ()22121-+>-n n t t α,样本点在否定域内,故拒绝原假设,认为两种方法的总体均值不相等。
3.7 今有两台机床加工同一种零件,分别取6个及9个零件侧其口径,数据记为61,,X X X Λ及921,,Y Y Y Λ,计算得∑∑∑∑========9129161261173.15280,8.307,93.6978,6.204i i i i i i i iY Y X X假设零件的口径服从正态分布,给定显著性水平05.0=α,问是否可认为这两台机床加工零件口径的方法无显著性差异? 解:357.01,345.011222212221=-==-=∑∑==n i i n i i Y Y n S X X n S(1)提出假设2221122210::σσσσ≠=H H ,(2)构造统计量()()031.11122122121=--=S n n S n n F (3)否定域()()()⎭⎬⎫⎩⎨⎧-->=⎭⎬⎫⎩⎨⎧-->⋃⎭⎬⎫⎩⎨⎧--<=--1,11,11,121212121212n n F F n n F F n n F F V ααα(4)给定显著性水平05.0=α时,临界值()()82.48,51,1975.02121==---F n n Fα(5) ()1,12121--<-n n FF α,样本点在否定域之外,故接受原假设,认为两台机床加工零件口径的方差无显著性影响。
3.8用重量法和比色法两种方法测定平炉炉渣中2SiO 的含量,得如下结果 重量法:n=5次测量,120.5%,0.206%X S == 比色法:n=5次测量,221.3%,0.358%Y S == 假设两种分析法结果都服从正态分布,问(i )两种分析方法的精度σ()是否相同? (ii )两种分析方法的μ均值()是否相同?0.01α=() 解:(i )121122121221212121211H : H :n (1) F=n (1)H F F 11(11)(11)V H 0.015, n S n S n n n n n n n αασσσσα-=≠----⎧⎫⎧⎫----⎨⎬⎨⎬⎩⎭⎩⎭==:U 00220提出原假设:对此可采用统计量在下,(,),我们可取否定域为 V=F<F ,F>F ,此时 P()=本题中,111 x 20.5%, S =0.206% 5, y 21.3%, S =0.358%n ===212122120.0050.9950.0050.995n (1)5(51)0.206%F=0.3311n (1)5(51) F 0.0669 F F F H n S n S -*-*==-*-*=∴220代入上式得:()(0.358%)1(5,5)=14.94(5,5)=14.94由于 (5,5)<F<(5,5)接受即无明显差异。
(ii)1202122222121112012H H :11() ()H 2 V=n n i i i i X Y S X X S Y Y n n t n n t μμμμσ===≠=-=-+-∑∑11提出假设::这种未知的场合,用统计量其中在成立时,服从自由度为的分布。
否定域为:12121111t ((2))V H 0.015, x 20.5%, S =0.206% 5, y 21.3%, S =0.358%)t n n n n X Y αα-⎧⎫>+-⎨⎬⎩⎭======0此时 P()=本题中,代入上式得:120.9951-2121-20 =-3.8737 t(2)t (8) 3.3554t(2),n n t n n H αα+-==>+-∴Q 拒绝即差距显著。
3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50) =1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。