高中物理竞赛的数学基础(自用修改)

合集下载

高中物理竞赛知识点

高中物理竞赛知识点

高中物理竞赛知识点摘要:在高中物理竞赛中,掌握一定的物理知识点对于取得好成绩至关重要。

本文将介绍一些高中物理竞赛中常见的知识点,包括力学、热学、电磁学和光学等方面的内容。

通过学习和理解这些知识点,同学们可以更好地准备和应对物理竞赛。

一、力学1. 牛顿三定律:牛顿第一定律(惯性定律)、牛顿第二定律(力与加速度的关系)、牛顿第三定律(作用力和反作用力)。

2. 运动学:匀速直线运动、匀加速直线运动、曲线运动、圆周运动等基本概念和计算方法。

3. 力学中的几个关键概念:作用力、质量、重力、摩擦力、弹力、弹性势能、动能、功和功率等。

4. 牛顿运动定律的应用:通过具体问题的分析和计算,掌握牛顿运动定律在实际运动中的应用,如斜面运动、谐振运动等。

5. 天体运动:了解行星运动和开普勒定律,理解宇宙中的引力作用。

二、热学1. 温度和热量:热学基本概念,包括温度、热量、热平衡、比热容等。

2. 热传导和传热:热传导的基本原理和计算,了解传热的三种方式:导热、对流和辐射。

3. 热力学定律:热力学第一定律(能量守恒定律)、热力学第二定律(热不可逆过程、熵增原理)等。

4. 热力学循环和功率:热力学循环的工作原理与效率计算,了解功率的概念和计算方法。

三、电磁学1. 电荷和电场:电荷的性质和基本单位,电场的概念和计算方法。

2. 电位差和电势:电场中两点之间的电位差和电势差的概念和计算。

3. 电流和电阻:电流的定义和计算,欧姆定律及其在电路中的应用。

4. 电路分析和电路图:串联、并联、混联电路的分析,理解电路图的符号和组成。

5. 磁场和电磁感应:磁场的产生和性质,电磁感应的基本原理和应用,包括法拉第电磁感应定律等。

四、光学1. 光的直线传播和折射:光的直线传播和折射的基本规律与计算方法,了解光的折射定律和斯涅尔定律。

2. 光的反射:光的反射定律和镜面成像的基本原理。

3. 光的干涉与衍射:理解干涉和衍射的基本概念和现象,了解杨氏双缝干涉和单缝衍射的基本原理。

高中物理竞赛教程(超详细修订版)_第七讲__运动定律精品文档24页

高中物理竞赛教程(超详细修订版)_第七讲__运动定律精品文档24页

第三讲运动定律§3.1牛顿定律3.1.1、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。

这是牛顿第一定律的内容。

牛顿第一定律是质点动力学的出发点。

物体保持静止状态或匀速直线运动状态的性质称为惯性。

牛顿第一定律又称为惯性定律,惯性定律是物体的固有属性,可用质量来量度。

无论是静止还是匀速直线运动状态,其速度都是不变的。

速度不变的运动也就是没有加速度的运动,所以物体如果不受到其他物体的作用,就作没有加速度的运动,牛顿第一定律指出了力是改变物体运动状态的原因。

牛顿第一定律只在一类特殊的参照系中成立,此参照系称为惯性参照系。

简称惯性系。

相对某一惯性系作匀速运动的参照系必定也是惯性系,牛顿第一定律不成立的参照系称为非惯性参照系,简称非惯性系,非惯性系相对惯性系必作变速运动,地球是较好的惯性系,太阳是精度更高的惯性系。

3.1.2.牛顿第二定律(1)定律内容:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同(2)数学表达式:maFmFa= =∑∑或(3)理解要点①牛顿第二定律不仅揭示了物体的加速度跟它所受的合外力之间的数量关系,而且揭示了加速度方向总与合外力的方向一致的矢量关系。

在应用该定律处理物体在二维平面或三维空间中运动的问题,往往需要选择适当的坐标系,把它写成分量形式②牛顿第二定律反映了力的瞬时作用规律。

物体的加速度与它所受的合外力是时刻对应的,即物体所受合外力不论在大小还是方向上一旦发生变化,其加速度也一定同时发生相应的变化。

③当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就如同其他力不存在—样;物体受几个力共同作用时,产生的加速度等于每个力单独作用时产生的加速度的矢量和,如图3-1-1示。

这个结论称为力的独立作用原理。

④牛顿第二定律阐述了物体的质量是惯性大小的量度,公式∑=aFm/反映了对同—物体,其所受合外跟它的加速度之比值是个常数,而对不同物体其比值不同,这个比值的大小就是物体的质量,它是物体惯性大小量度,当合外力不变时,物体加速度跟其质量成反比,即质量越大,物体加速度越小,运动状态越难改变,惯性也就越大。

高中物理奥赛常用数学公式

高中物理奥赛常用数学公式

中学物理奥赛常用数学公式一、等差、等比数列1.定义:{}1n n n a a d a +-=⇔是等差数列{}1,(0,0)n n n n a q a q a a +=≠≠⇔是等比数列,, (,)2a b a b a b +±等差中项等比中项同号2.公式(1)通项1(1)()n m a a n d a n m d =+-=+- 11n n m n m a a q a q --==(2)前n 项和 11(1)(1)()222n n n a a n n n n s n na d na d +--==+=+- 1(1)2n s d a n n =+-也是等差数列 111(1)1111n n n a a q a q q qq s na q ⎧--=≠⎪--=⎨⎪=⎩二.数列求和 (1)2222(1)(21)123...6n n n n ++++++=(2) 223332(1)12(12)4n n n n ++++=+++= 三、三角公式1、和差角公式 ()()()sin sin cos cos sin cos cos cos sin sin tan tan tan()1tan tan tan tan tan()(1tan tan )sin cos a b αβαβαβαβαβαβαβαβαβαβαβαβαααϕ±=±±=±±=±=±+=+ 2、倍角公式 万能公式22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+23332tan tan 21tan sin 33sin 4sin cos 4cos 3cos ααααααααα=-=-=- 3、半角公式,升降幂公式22221cos 1cos 1cos 1cos sin sin cos tan 222221cos sin 1cos 1cos 21cos 2sin cos 221cos 2cos 1cos 2sin 22ααααααααααααααααααα-+--=±=±=±==++-+==+=-=4、积化和差,和差化积公式sin sin 2sin cos sin sin 2sin cos 2222cos cos 2cos cos cos cos 2sin cos 222211sin cos [sin()sin()]cos cos [cos()cos()]221sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ+--++=-=+-+-+=-=-=++-=++-=-+--(2)正弦定理 2sin sin sin abcR A B C ===(R 是ABC ∆外接圆半径)(3)余弦定理 2222cos c a b ab C =+- 222cos 2a b c C ab +-=(4)11sin ()()()224ABC a abcS ah ab C pr p p a p b p c R ∆=====---其中2a b cp ++=为半周长四、重要不等式1.222(,0)1122a b a bab a b a b++≥≥≥>+2.22233(,,0)11133a b c a b cabc a b c a b c++++≥≥≥>++3.222(,)22a b a b ab ab a b R ++⎛⎫≤≤∈ ⎪⎝⎭3(,,0)3a b c abc a b c ++⎛⎫≤> ⎪⎝⎭五、球1、222R r d =+2、球面距离l R θ=⋅ 2222222cos 22cos R R AB R AB r r r θβ+-==+-(β是径度差) 3、24S R π=球内接长方体 222224l R a b c ==++ 侧棱两两垂直的三棱锥补形⇒长方体⇒球内接长方体4、体积 343V R π= 3S V R R S V '''==球球球球多面体内切球半径 : 3V r S =全 六、二项式定理(1)011()n n n n n n n n a b C a C a b C b -+=+++(2)22(1)11n nx nx nx c x +≈+≈++ 七、导数1.()()()00000x x f x x f x y f x lim lim x x∆→∆→+∆-∆'==∆∆ ()()00f x x f x x x ⇔==在处可导,注意:在处不可导二、运算法则:()()()()()()()21234x u U V U V UV U V UV U U V UV y y u x V V ''''''±=±=+'''-⎛⎫'''== ⎪⎝⎭ 三、导数公式(1)0C '= (2)()1n n x nx -'=(3)()x x e e '= (4)()x x a a ln a '=(5)1(ln x )x '= (6)11(log )log ln a a x e x x a'== (7)(sin )cos x x '= (8)(cos )sin x x '=-8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL中考不须要,竞赛中很明显的结论9、三角形的外心,垂心,重心在同一条直线上。

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类物理竞赛需要哪些知识?物理竞赛力学部分需要哪些数学?首先,为了理解力学一开始的匀加速直线运动和变加速直线运动,对于一元函数的简单微积分是必不可少的,当然主要集中在多项式函数的求导和积分上,实际操作起来十分容易。

此后,当运动范围被拓展到二维,运动形式成为曲线时,矢量代数、解析几何、参数方程、斜率、曲率半径等数学概念被融入到物理模型中,用来理解抛体、圆周、一般曲线运动。

这时微积分的应用也被拓展到更为复杂的函数范围,例如三角函数。

随着运动和力的关系——牛顿第二定律的引入,我们逐渐意识到光理解运动是不够的,运动背后的机理——力的作用,以及力的效果,才是我们要研究的。

动量定理、动能定理的引入,实际上反映了力在时空的积累效果,而牛顿方程本身,也是物理学家特别喜欢的形式——微分方程。

对于矢量和微积分更综合的运用体现在一种伴随物理学发展史的特殊运动形式——简谐振动当中。

而振动在介质当中的扩散效应——波动,又引出了波动方程、波函数这一时空函数的概念。

总结下来,力学部分所需要的数学是一元函数的微积分、矢量代数、解析几何、常微分方程、对二元函数的运用。

物理竞赛热学部分需要哪些数学?虽然高中热学部分涉及气体定律和热力学第一定律的内容比较容易,一般不需要微积分,但如果深入学习,热力学过程、各种态函数(内能、熵)、热力学第二定律,那么由于热力学体系变量多,适当的偏微分基础知识是必要的。

热力学是宏观的理论,而其背后有着分子动理论作为基础,它们之间的联系是通过对大量粒子系统的统计来实现的,因此,概率统计的知识就显得十分必要了。

总结下来,热学部分所需要的数学是简单的偏微分和概率统计。

物理竞赛电磁学部分需要哪些数学?依照往年的经验,电磁学是最容易让高考学生放弃物理、竞赛学生放弃物理竞赛的困难内容。

原因是因为数学不到位,非但理解不了场的概念,而且容易产生记忆模型和公式,套例题做习题的固有思维模式,最终对于电磁学可谓是“一点没学会”!从静电场开始,如果仅仅按高中的要求来学习,对于场的理解是空洞的,仅仅是唯像的概念,对于电场线、电势、静电平衡、介质极化等概念无法做到深入掌握,那就更别提解答赛题了。

(完整版)高中物理竞赛中的高等数学

(完整版)高中物理竞赛中的高等数学

高中物理竞赛中的高等数学一、微积分初步物理学研究的是物质的运动规律,因此经常遇到的物理量大多数是变量,而要研究的正是一些变量彼此间的联系.这样,微积分这个数学工具就成为必要的了.考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的.所以在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要.至于更系统和更深入地掌握微积分的知识和方法,可在通过高等数学课程的学习去完成. §1.函数及其图形1.1 函数 自变量和因变量 绝对常量和任意常量在数学中函数的功能是这样定义的:有两个互相联系的变量x 和y ,如果每当变量x 取定了某个数值后,按照一定的规律就可以确定y 的对应值,那么称y 是x 的函数,并记作:y =f (x ),(A .1);其中x 叫做自变量,y 叫做因变量,f 是一个函数记号,它表示y 和x 数值的对应关系.有时把y =f (x )也记作y =y (x ).如果在同一个问题中遇到几个不同形式的函数,也可以用其它字母作为函数记号,如ϕ(x )、ψ(x )等等.①常见的函数可以用公式来表达,例如()32y f x x ==+,212ax bx +,c x,cos2x π,ln x ,x e 等等.在函数的表达式中,除变量外,还往往包含一些不变的量,如上面出现的13 2 2e π、、、、和a b c 、、等,它们叫做常量;常量有两类:一类如13 2 2e π、、、、等,它们在一切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a 、b 、c 等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量.在数学中经常用拉丁字母中最前面几个(如a 、b 、c )代表任意常量,最后面几个(x 、y 、z )代表变量.当y =f (x )的具体形式给定后,就可以确定与自变量的任一特定值x 0相对应的函数值f (x 0).例如: (1)若y =f (x )=3+2x ,则当x =-2时y =f (-2)=3+2×(-2)=-1.一般地说,当x =x 0时,y =f (x 0)=3+2x 0.(2)若()cy f x x==,则当0x x =时,00()c f x x =.1.2 函数的图形在解析几何学和物理学中经常用平面上的曲线来表示两个变量之间的函数关系,这种方法对于直观地了解一个函数的特征是很有帮助的.作图的办法是先在平面上取一直角坐标系,横轴代表自变量x ,纵轴代表因变量(函数值)y =f (x ).这样一来,把坐标为(x ,y )且满足函数关系y =f (x )的那些点连接起来的轨迹就构成一条曲线,它描绘出函数的面貌.图A -1便是上面举的第一个例子y =f (x )=3+2x 的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线.图A -2是第二个例子()cy f x x==的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:1(,4)4c 、1(,2)2c 、(1,)c 、(2,)2c 、(4,)4c ,各点连接成双曲线的一支.1.3 物理学中函数的实例反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的.下面举几个例子. (1)匀速直线运动公式:s =s 0+vt .(A .2)此式表达了物体作匀速直线运动时的位置s 随时间t 变化的规律,在这里t 相当于自变量x ,s 相当于因变量y ,s 是t 的函数.因此记作:s =s (t )=s 0+vt ,(A .3)式中初始位置s 0和速度v 是任意常量,s 0与坐标原点的选择有关,v 对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值.图A -3是这个函数的图形,它是一根倾斜的直线.易知它的斜率等于v .(2)匀变速直线运动公式:20012s s v t at =++,(A .4),v =v 0+at .(A .5)两式中s 和v 是因变量,它们都是自变量t 的函数,因此记作:2001()2s s t s v t at ==++,(A .6),v =v (t )=v 0+at ,(A .7)图A -4a 、4b 分别是两个函数的图形,其中一个是抛物线,一个是直线.(A .6)和(A .7)式是匀变速直线运动的普遍公式,式中初始位置s 0、初速v 0和加速度a 都是任意常量,它们的数值要根据讨论的问题来具体化.例如在讨论自由落体问题时,若把坐标原点选择在开始运动的地方,则s 0=0,v 0=0,a =g ≈9.8M /s 2,这时(A .6)和(A .7)式具有如下形式:21()2s s t gt ==,(A .8);v =v (t )=gt .(A .9);这里的g 可看作是绝对常量,式中不再有任意常量了.(3)玻意耳定律:PV =C .(A .10)上式表达了一定质量的气体,在温度不变的条件下,压强P 和体积V 之间的函数关系,式中的C 是任意常量.可以选择V 为自变量,P 为因变量,这样,(A .10)式就可写作:()CP P V V==,(A .11)它的图形和图A -2是一样的,只不过图中的x 、y 应换成V 、P .在(A .10)式中也可以选择P 为自变量,V 为因变量,这样它就应写成:()CV V P P==,(A .12) 由此可见,在一个公式中自变量和因变量往往是相对的. (4)欧姆定律:U IR =.(A .13)当讨论一段导线中的电流I 这样随着外加电压U 而改变的问题时,U 是自变量,I 是因变量,R 是常量.这时,(A .13)式应写作:()UI I U R==,(A .14);即I 与U 成正比. 应当指出,任意常量与变量之间的界限也不是绝对的.例如,当讨论串联电路中电压在各电阻元件上分配问题时,由于通过各元件的电流是一样的,(A .13)式中的电流I 成了常量,而R 是自变量,U 是因变量.于是U =U (R )=IR ,(A .15)即U 与R 成正比.但是当讨论并联电路中电流在各分支里的分配问题时,由于各分支两端具有共同的电压,(A .13)式中的U 就成了常量,而R 为自变量,I 是因变量,于是:()UI I R R==,(A .16)即I 与R 成反比.总之,每个物理公式都反映了一些物理量之间的函数关系,但是其中哪个是自变量,哪个是因变量,哪些是常量,有时公式本身反映不出来,需要根据所要讨论的问题来具体分析. §2.导数2.1 极限若当自变量x 无限趋近某一数值x 0(记作x →x 0)时,函数f (x )的数值无限趋近某一确定的数值a ,则a 叫做x →x 0时函数f (x )的极限值,并记作:0lim ()x x f x a →=,(A .17)(A .17)式中的“lim ”是英语“limit (极限)”一词的缩写,(A .17)式读作“当x 趋近x 0时,f (x )的极限值等于a ”.极限是微积分中的一个最基本的概念,它涉及的问题面很广.这里不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义.考虑下面这个函数:232()1x x y f x x --==-,(A .18),这里除x =1外,计算任何其它地方的函数值都是没有困难的.例如当0x =时,(0)2f =,当2x =,(2)8f =,等等.但是若问x =1时函数值f (1)=?,就会发现,这时(A .18)式的分子和分母都等于0,即0(1)0f =!用0去除以0,一般地说是没有意义的.所以表达式(A .18)没有直接给出f (1),但给出了x 无论如何接近1时的函数值来.下表列出了当x 的值从小于1和大于1两方面趋于1时f (x )值的变化情况:从上表看,x →1时f (x )的极限值. 其实计算f (x )值的极限无需这样麻烦,只要将(A .18)式的分子作因式分解:3x 2-x -2=(3x +2)(x -1),并在x ≠1的情况下从分子和分母中将因式(x -1)消去:(32)(1)()3 2 (1)1x x y f x x x x +-===+≠-;即可看出:x 趋于1时,函数f (x )的数值趋于:3×1+2=5.所以根据函数极限的定义,21132lim ()lim51x x x x f x x →→--==-. 2.2 几个物理学中的实例 (1)瞬时速度当一个物体作任意直线运动时,它的位置可用它到某个坐标原点O 的距离s 来描述.在运动过程中s 是随时间t 变化的,也就是说,s 是t 的函数:s =s (t ).函数s (t )表示的是这个物体什么时刻到达什么地方.形象一些说,假如物体是一列火车,则函数s (t )就是它的一张“旅行时刻表”.但是,在实际中往往不满足于一张“时刻表”,还需要知道物体运动快慢的程度,即速度或速率的概念.例如,当车辆驶过繁华的街道或桥梁时,为了安全,对它的速率就要有一定的限制;一个上抛体(如高射炮弹)能够达到怎样的高度,也与它的初始速率有关,等等.为了建立速率的概念,就要研究在一段时间间隔里物体位置的改变情况.假设考虑的是从t =t 0到t =t 1的一段时间间隔,则这间隔的大小为:△t =t 1-t 0.根据s 和t 的函数关系s (t )可知,在t 0和t 1=t 0+△t 两个时刻,s 的数值分别为s (t 0)和s (t 1)=s (t 0+△t ),即在t 0到t 1这段时间间隔里s 改变了:△s =s (t 1)-s (t 0)=s (t 0+△t )-s (t 0).在同样大小的时间间隔△t 里,若s 的改变量△s 小,就表明物体运动得慢, 所以就把s ∆与t ∆之比st∆∆叫做这段时间间隔里的平均速率,用v 来表示,则00()()s t t s t s v t t+∆-∆==∆∆,(A .19),举例说明如下. 对于匀变速直线运动,根据(A .4)式有2000001()2s t s v t at =++和2000001()()()2s t t s v t t a t t +∆=++∆++∆,22200000000000000111[()()]()()()()()12222s v t t a t t s v t at v at t a t s t t s t v v at a t t t t ++∆++∆-+++∆+∆+∆-====++∆∆∆∆;平均速率s v t ∆=∆反映了物体在一段时间间隔内运动的快慢,除了匀速直线运动的特殊情况外,st∆∆的数值或多或少与t ∆的大小有关;t ∆取得越短,s t ∆∆就越能反映出物体在0t t =时刻运动的快慢;通常就把0t ∆→时st∆∆的极限值叫做物体在t =t 0时刻的瞬时速率v ,即0000()()lim lim t t s t t s t sv t t ∆→∆→+∆-∆==∆∆,(A .20) 对于匀变速直线运动来说,0000001lim lim()2t t s v v at a t v at t ∆→∆→∆==++∆=+∆. 这就是熟悉的匀变速直线运动的速率公式(A .5).(2)瞬时加速度一般地说,瞬时速度或瞬时速率v 也是t 的函数:v =v (t ).但是在许多实际问题中,只有速度和速率的概念还不够,还需要知道速度随时间变化的快慢,即需要建立“加速度”的概念.平均加速度a 和瞬时加速度a 概念的建立与v 和v 的建立类似.在直线运动中,首先取一段时间间隔t 0到t 1,根据瞬时速率v 和时间t 的函数关系v (t )可知,在t =t 0和t =t 1两时刻的瞬时速率分别为v (t 0)和v (t 1)=v (t 0+△t ),因此在t 0到t 1这段时间间隔里v 改变了△v =v (t 0+△t )-v (t 0).通常把v t∆∆叫做这段时间间隔里的平均加速度,记作a ;00()()v t t v t v a t t +∆-∆==∆∆,(A .21) 举例来说,对于匀变速直线运动,根据(A .5)式有000()v t v at =+,000()()v t t v a t t +∆=++∆.所以平均加速度为000000()()[()]()v t t v t v a t t v at v a a t t t+∆-++∆-+∆====∆∆∆(常数). 对于一般的变速运动,a 也是与t ∆有关的,这时为了反映出某一时刻速度变化的快慢,就需要取vt∆∆在0t ∆→时的极限,这就是物体在t =t 0时刻的瞬时加速度a :0000()()lim lim t t v t t v t va t t∆→∆→+∆-∆==∆∆,(A .22)(3)应用举例水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动.为简单起见,假设水渠是直的,这时可以把x 坐标轴取为逆水渠走向的方向(见图A -5),于是各处渠底的高度h 便是x 的函数:h =h (x ).知道了这个函数,就可以计算任意两点之间的高度差.在修建水渠的时候,人们经常运用“坡度”的概念.譬如说,若逆水渠而上,渠底在100m 的距离内升高了20cm ,人们就说这水渠的坡度是0.221001000m m =,因此所谓坡度,就是指单位长度内的高度差,它的大小反映着高度随长度变化的快慢程度.如果用数学语言来表达,就要取一段水渠,设它的两端的坐标分别为x 0和x 1,于是这段水渠的长度为:△x =x 1-x 0.根据h 和x 的函数关系h (x )可知,在x 0和x 1=x 0+△x 两地h 的数值分别为h (x 0)和h (x 1)=h (x 0+△x ),所以在△x 这段长度内h 改变了:△h =h (x 0+△x )-h (x 0).根据上述坡度的定义,这段水渠的平均坡度为:00()()h x x h x h k x x+∆-∆==∆∆,(A .23) 前面所举例子,△x 采用了100米的数值.实际上在100米的范围内,水渠的坡度可能各处不同.为了更细致地把水渠在各处的坡度反映出来,应当取更小的长度间隔x ∆,x ∆取得越小,hx∆∆就越能精确反映出x =x 0处的坡度.所以在x =x 0处的坡度k 应是0x ∆→时的平均坡度k 的极限值,即0000()()lim lim x x h x x h x hk x x∆→∆→+∆-∆==∆∆,(A .24)2.3 函数的变化率——导数前面举了三个例子,在前两个例子中自变量都是t ,第三个例子中自变量是x .这三个例子都表明,在研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,即函数的“变化率”概念.当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量.增量,通常用代表变量的字母前面加个“△”来表示.例如,当自变量x 的数值由x 0变到x 1时,其增量就是△x ≡x 1-x 0.(A .25)与此对应.因变量y 的数值将由y 0=f (x 0)变到y 1=f (x 1),它的增量为△y ≡y 1-y 0=f (x 1)-f (x 0)=f (x 0+△x )-f (x 0).(A .26)应当指出,增量是可正可负的,负增量代表变量减少.增量比00()()f x x f x y x x+∆-∆=∆∆,(A .27) 可以叫做函数在x =x 0到x =x 0+△x 这一区间内的平均变化率,它在△x →0时的极限值叫做函数y =f (x )对x 的导数或微商,记作y ′或f ′(x ),0000()()()lim lim x x f x x f x yy f x x x∆→∆→+∆-∆''===∆∆,(A .28)除y '或()f x '外,导数或微商还常常写作dy dx 、df dx 、d dx等其它形式.导数与增量不同,它代表函数在一点的性质,即在该点的变化率.应当指出,函数f (x )的导数f ′(x )本身也是x 的一个函数,因此可以再取它对x 的导数,这叫做函数y =f (x )的二阶导数,记作y ''、()f x ''、22d y dx等;22()()()d y d dy dy f x f x dx dx dx dx '''''====,(A .29) 据此类推,则不难定义出高阶的导数来.有了导数的概念,前面的几个实例中的物理量就可表示为:瞬时速率:ds v dt =,(A .30);瞬时加速度:22dv d sa dt dt==,(A .31);水渠坡度:dh k dx =,(A .32).2.4 导数的几何意义在几何中切线的概念也是建立在极限的基础上的.如图A -6所示,为了确定曲线在P 0点的切线,先在曲线上P 0附近选另一点P 1,并设想P 1点沿着曲线向P 0点靠拢.P 0P 1的联线是曲线的一条割线,它的方向可用这直线与横坐标轴的夹角α来描述.从图上不难看出,P 1点愈靠近P 0点,α角就愈接近一个确定的值α0,当P 1点完全和P 0点重合的时候,割线P 0P 1变成切线P 0T ,α的极限值α0就是切线与横轴的夹角.在解析几何中,把一条直线与横坐标轴夹角的正切tan α叫做这条直线的斜率.斜率为正时表示α是锐角,从左到右直线是上坡的(见图A -7a );斜率为负时表示α是钝角,从左到右直线是下坡的(见图A -7b ).现在来研究图A -6中割线P 0P 1和切线P 0T 的斜率.设P 0和P 1的坐标分别为(x 0,y 0)和(x 0+△x ,y 0+△y ),以割线P 0P 1为斜边作一直角三角形△P 0P 1M ,它的水平边P 0M 的长度为△x ,竖直边MP 1的长度为△y ,因此这条割线的斜率为:10tan MP y P M xα∆==∆. 如果图A -6中的曲线代表函数y =f (x ),则割线P 0P 1的斜率就等于函数在 0x x =附近的增量比yx∆∆,切线0PT 的低斜率0tan α是10P P →时,割线P 0P 1斜率的极限值,即10100tan lim tan lim ()P P P P yf x xαα→→∆'===∆;所以导数的几何意义是切线的斜率. §3.导数的运算在上节里只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来.3.1 基本函数的导数公式(1)y =f (x )=C (常量):00()()()lim lim 0x x f x x f x C C y f x x x ∆→∆→+∆--''====∆∆; (2)y =f (x )=x :000()()()()lim lim lim 1x x x f x x f x x x x x y f x x xx ∆→∆→∆→+∆-+∆-∆''=====∆∆∆; (3)y =f (x )=x 2:22000()()()()limlim lim(2)2x x x f x x f x x x x y f x x x x x x∆→∆→∆→+∆-+∆-''====+∆=∆∆; (4)y =f (x )=x 3:33222000()()()()limlim lim[33()]3x x x f x x f x x x x y f x x x x x x x x∆→∆→∆→+∆-+∆-''====+∆+∆=∆∆; (5)y =f (x )=1x :0()()()lim x f x x f x y f x x ∆→+∆-''===∆011lim x x x x x∆→-+∆=∆ 200()11lim lim ()()x x x x x x x x x x x x x∆→∆→-+∆-===-+∆⋅∆+∆;(6)y =f (x )000()()()limlim x x x f x x f x y f x x ∆→∆→∆→+∆-''====∆limlimx x ∆→∆→===上面推导的结果可以归纳成一个普遍公式:当ny x =时,1n n dx y nx dx-'==,(n 为任何数),(A .33). 例如:当1n =时,()y f x x ==,1dxy dx '==; 当2n =时,2()y f x x ==,22dx y x dx '==; 当3n =时,3()y f x x ==,323dx y x dx '==; 当1n =-时,11()y f x x x -===,2211()(1)d y x dx x x-'==-=-;当12n =时,12()y f x x ===1212y x -'===利用(A .33)式还可以计算其它幂函数的导数(见表A -2).除了幂函数n x 外,物理学中常见的基本函数还有三角函数、对数函数和指数函数.现在只给出这些函数的导数公式(见表A -2)而不推导,解题时可以直接引用.3.2 有关导数运算的几个定理定理一:[()()]d du dvu x v x dx dx dx ±=±,(A .34). 证明:00[()()]lim lim[]x x d u v u v du dvu x v x dx x x x dx dx∆→∆→∆±∆∆∆±==±=±∆∆∆. 定理二:[()()]()()d du dvu x v x v x u x dx dx dx ⋅=+,(A .35).证明:00[()][()]u(x)v(x)v()()[()()]lim lim x x d u x u v x v x u u x v u vu x v x dx x x∆→∆→+∆+∆-∆+∆+∆∆⋅==∆∆ 0lim[()()]()()x u v du dvv x u x v x u x x x dx dx∆→∆∆=+=+∆∆.定理三:2()()()[]()[()]du dv v x u x d u x dx dx dx v x v x -=,(A .36).证明:000()()()[()]()[()]()()()()()[]lim lim lim()[()]()[()]()x x x u x u u x d u x u x u v x v x v u x v x u u x v v x v v x dx v x x v x v v x xv x v v x x ∆→∆→∆→+∆-+∆-+∆∆-∆+∆===∆+∆∆+∆∆ 20()()()()lim [()]()[()]x u v du dv v x u x v x u x x x dx dx v x v v x v x ∆→∆∆--∆∆==+∆. 定理四:[()]d du dvu v x dx dv dx=⋅,(A .37). 证明:00[()][()]()()[()]lim lim[]x x d u v x x u v x u v v v v v u v x dx x v x ∆→∆→+∆-+∆-∆==⋅∆∆∆00()()lim[]lim[]x x u v v v v v du dvv x dv dx∆→∆→+∆-∆=⋅=⋅∆∆ 例1.求22y x a =±(a 为常量)的导数.解:22202dy dx da x x dx dx dx=±=±=. 例2.求ln x y a =(a 为常量)的导数. 解:ln ln 110dy d x d a dx dx dx x x=-=-=. 例3.求2y ax =(a 为常量)的导数. 解:222022dy da dx x a x a x ax dx dx dx=⋅+⋅=⋅+⋅=. 例4.求2x y x e =的导数. 解:22222(2)xx x x x dy dx de e x x e x e x x e dx dx dx=+=⋅+⋅=+. 例5.求23251x y x -=+的导数.解:2222222(32)(51)(51)(32)6(51)(32)515610(51)(51)(51)d x d x x x dy x x x x x dx dx dx x x x -++--⋅+--⋅++===+++. 例6.求tan y x =的导数.解:2222sin cos cos sin sin cos cos sin (sin )1(tan )()sec cos cos cos cos d x d x x xdy d d x x x x x dx dx x xdx dx dx x x x x -⋅-⋅-======. 例7.求cos()y ax b =+(a 、b 为常量)的导数.解:令v ax b =+,()cos y u v v ==,则(sin )sin()dy du dvv a a ax b dx dv dx=⋅=-⋅=-+.例8.求y =解:令21v x =-,()y u v ==2dy du dv x dx dv dx =⋅=例9.求22ax y x e -=(a 为常量)的导数.解:令v u e =,2v ax =-,则2222222(2)2(1)v ax dy dx du dvu x xu x e ax x ax e dx dx dv dx-=+⋅=+⋅⋅-=- §4.微分和函数的幂级数展开 4.1 微分自变量的微分,就是它的任意一个无限小的增量△x .用dx 代表x 的微分,则dx =△x .(A .38)一函数y =f (x )的导数f ′(x )乘以自变量的微分dx 即为该函数的微分,用dy 或df (x )表示,即dy =df (x )=f ′(x )dx ,(A .39) 所以()dyf x dx'=,(A .40)在之前曾把导数写成dydx的形式,是把它作为一个整体引入的.当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分.在引入微分的概念之后,就可把导数看成微分dy 与dx 之商(所谓“微商”),即一个真正的分数了.把导数写成分数形式,常常是很方便的,例如,把上节定理四(A .37)式的左端[()]d u v x dx 简写成du dx,则该式化为du du dvdx dv dx =⋅;此公式从形式上看和分数运算法则一致,很便于记忆.下面看微分的几何意义.图A -8是任一函数y =f (x )的图形,P 0(x 0,y 0)和P 1(x 0+△x ,y0+△y )是曲线上两个邻近的点,P 0T 是通过P 0的切线.直角三角形△P 0MP 1的水平边0P M x =∆,竖直边1MP y =∆(见图8A -).设0PT 与1MP 的交点为N ,则0tan MNMNNP M xPM ∠==∆,但0tan NP M ∠为切线P 0T 的斜率,它等于x =x 0处的导数f ′(x 0),因此00()tan dy f x x NP M x MN '=∆=∠⋅∆=.所以微分dy 在几何图形上相当于线段MN 的长度,它和增量1y MP ∆=相差1NP 一段长;从上一节计算导数时取极限的过程可以看出,dy 是y ∆中正比于x ∆的那一部分,而1NP 则是正比于(△x )2以及△x 更高幂次的各项之和[例如对于函数y =f (x )=x 3,△y =3x 2△x +3x (△x )2+(△)3,而d y =f ′(x )△x =3x 2△x ].当△x 很小时,(△x )2、(△x )3、…比△x 小得多,1NP 也就比dy 小得多,所以可以把微分dy 叫做增量y ∆中的线性主部.也就是说,若函数在x =x 0的地方像线性函数那样增长,则它的增量就是dy .4.2幂函数的展开已知一个函数f (x )在x =x 0一点的数值f (x 0),如何求得其附近的点x =x 0+△x 处的函数值f (x )=f (x 0+△x )? 若f (x )为x 的幂函数n x ,可以利用牛顿的二项式定理:23000000000(1)(1)(2)()()[1()]()[1()]()[1()()()]2!3!n n nn n x x x n n x n n n x f x x x x x f x f x n x x x x x ∆∆∆-∆--∆==+∆=+=+=++++⋅⋅⋅000(1)(1)()()!nmm n n n m x f x m x =-⋅⋅⋅-+∆=∑,(A .41)此式适用于任何n (整数、非整数、正数、负数等等).若n 为正整数,则上式中的级数在M =n 的地方截断,余下的项自动为0,否则上式为无穷级数.不过当△x <<x 0时,后面的项越来越小,只需保留有限多项就足够精确了.不要以为数学表达式越精确越好.如图A -9中A 、B 两点间的水平距离为l ,若将B 点竖直向上提高一个很小的距离a (a <<l)到达B ′,问AB ′之间的距离比AB 增加了多少?利用勾股定理易得距离的增加量为22l l a l ∆=+-.这是个精确的公式,但没有给出一个鲜明的印象,究竟△l 是随a 怎样变化的?若用二项式定理将它展开,只保留到最低级的非0项,则有12222221[1()1]{[1()]1}[1()1]()222a a a l a a l l l l l l l l l∆=+=+-=++⋅⋅⋅-≈=,即△l 是正比于a平方增长的,属二级小量.这种用幂级数展开来分析主要变化趋势的办法,在物理学里是经常用到的.4.3泰勒展开非幂函数(譬如s in x 、e x )如何作幂级数展开?这要用泰勒(Taylor)展开. 下面用一种不太严格,但简单明了的办法将它导出.假设函数f (x )在x =x 0处的增量△f =f (x )-f (x 0)能够展成△x =x -x 0的幂级数:001()()()mm m f x f x a x x ∞=-=-∑,(A .42)则通过逐项求导可得101()()m m m f x ma x x ∞-='=-∑;当x →x 0时,m >1的项都趋于0,于是有f ′(x 0)=a 1;再次求导,得202()(1)()m m m f x m m a x x ∞-=''=--∑,当x →x 0时,m >2的项都趋于0,于是有f (x 0)=2a 2;如此类推,一般地说,对于M阶导数有()0()!M M fx M a =;于是(A .42)式可以写为:()000()()()()!m m m Mf x f x f x x x m ∞=-=-∑,(A .43).若定义第0阶导数f (0)(x )就是函数f (x )本身,则上式还可进一步简写为:()000()()()!m m m f x f x x x m ∞==-∑,(A .44). 上述(A .43)或(A .44)式称为泰勒展开式,它在物理学中是非常有用的公式. 下面在表A -3中给出几个常见函数在x 0=0或1处的泰勒展开式.函数 展开式收敛范围12(1)x ± 234111113113512242462468x x x x ⋅⋅⋅⋅⋅⋅±-±-±⋅⋅⋅⋅⋅⋅⋅⋅⋅1x ≤ 32(1)x ± 234331311311312242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤52(1)x ± 234553531531112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤ 12(1)x -± 234113135135712242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <32(1)x -± 234335357357912242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 52(1)x -±2345575795791112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <1(1)x -±2341x x x x ±+±+±⋅⋅⋅1x < 2(1)x -±23412345x x x x ±+±+±⋅⋅⋅1x < sin x3573!5!7!x x x x -+-+⋅⋅⋅ x <∞ cos x24612!4!6!x x x -+-+⋅⋅⋅ x <∞ tan x 35791217623153152835x x x x x +++++⋅⋅⋅ x <∞x e 23411!2!3!4!x x x x +++++⋅⋅⋅ x <∞ln(1)x + 234234x x x x -+-+⋅⋅⋅11x -<≤ ln(1)x -234()234x x x x -++++⋅⋅⋅11x -≤<§55.1几个物理中的实例 (1)变速直线运动的路程大家都熟悉匀速直线运动的路程公式.若物体的速率是v ,则它在t a 到t b 一段时间间隔内走过的路程是s =v (t b -t a ),(A .45).对于变速直线运动来说,物体的速率v 是时间的函数:v =v (t ),函数的图形是一条曲线(见图A -10a ),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A -4b ).对于变速直线运动,(A .45)式已不适用.但是,可以把t =t a 到t =t b 这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的.这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到t a 到t b 这段时间里走过的总路程.设时间间隔(t b -t a )被t =t 1(=t a )、t 2、t 3、…、t n 、t b 分割成n 小段,每小段时间间隔都是△t ,则在t 1、t 2、t 3、…、t n 各时刻速率分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n ).若把各小段时间的速率v 看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t .于是,在整个(t b -t a )这段时间里的总路程是1231()()()()()nn i i s v t t v t t v t t v t t v t t ==∆+∆+∆+⋅⋅⋅+∆=∆∑,(A .46).现在再看看上式的几何意义.在函数v =v (t )的图形中,通过t =t 1、t 2、t 3、…、t n 各点垂线的高度分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n )(见图A -10b ),所以v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t 就分别是图中那些狭长矩形的面积,而1()ni i v t t=∆∑则是所有这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积.在上面的计算中,把各小段时间△t 里的速率v 看做是不变的,实际上在每小段时间里v 多少还是有些变化的,所以上面的计算并不精确.要使计算精确,就需要把小段的数目n 加大,同时所有小段的△t 缩短(见图A -10c ).△t 越短,在各小段里v 就改变得越少,把各小段里的运动看成匀速运动也就越接近实际情况.所以要严格地计算变速运动的路程s ,就应对(A .46)式取n →∞、△t →0的极限,即01lim ()ni t i n s v t t ∆→=→∞=∆∑,(A .47). 当n 越来越大,△t 越来越小的时候,图A -10中的阶梯状图形的面积就越来越接近v (t )曲线下面的面积(图A -10d).所以(A .47)式中的极限值等于(t b -t a )区间内v (t )曲线下的面积.总之,在变速直线运动中,物体在任一段时间间隔(t b -t a )里走过的路程要用(A .47)式来计算,这个极限值的几何意义相当于这区间内v (t )曲线下的面积. (2)变力的功当力与物体移动的方向一致时,在物体由位置s =s a 移到s =s b 的过程中,恒力F 对它所作的功为:A =F (s b -s a )(A .48);若力F 是随位置变化的,即F 是s 的函数:F =F (s ),则不能运用(A .48)式来计算力F 的功.此时,也需要象计算变速运动的路程那样,把(s b -s a )这段距离分割成n 个长度为△s 的小段(见图A -11):并把各小段内力F 的数值近似看成是恒定的,用恒力作功的公式计算出每小段路程△s 上的功,然后加起来取n →∞、△s →0的极限值.具体地说,设力F 在各小段路程内的数值分别为F (s 1)、F (s 2)、F (s 3)、…、F (s n ),则在各小段路程上力F 所作的功分别为F (s 1)△s 、F (s 2)△s 、F (s 3)△s 、…、F (s n )△s ,在(s b -s a )整段路程上力F 的总功A 就近似地等于1()ni i F s s =∆∑;因为实际上在每一小段路程上加F 都是变化的,所以严格地计算,还应取n →∞、△s →0的极值,即01lim ()ni t i n A F s s ∆→=→∞=∆∑,(A .49).同上例,这极限值应是(s b -s a )区间内F (s )下面的面积(见图A -12).5.2定积分以上两个例子表明,许多物理问题中需要计算象(A .47)和(A .49)式中给出的那类极限值.概括起来说,就是要解决如下的数学问题:给定一个函数f (x ),用x =x 1(=a )、x 2、x 3、…、x n 、b 把自变量x 在(b -a )区间内的数值分成n 小段,设每小段的大小为△x ,求n →∞、△x →0时1()ni i f x x =∆∑的极限;通常把这类形式的极限用符号()ba f x dx ⎰来表示,即01()lim ()nbi ax i n f x dx f x x ∆→=→∞=∆∑⎰,(A .50);()baf x dx ⎰叫做x a =到x b =区间内()f x 对x 的定积分,()f x 叫做被积函数,b 和a 分别叫做定积分的上限和下限.用定积分的符号来表示,(A .47)和(A .49)式可分别写为()b at t s v t dt =⎰,(A .51)、()bas s A F s ds =⎰,(A .52).在变速直线运动的路程公式(A .51)里,自变量是t ,被积函数是v (t ),积分的上、下限分别是t b 和t a ;在变力作功的公式(A .52)里,自变量是s ,被积函数是F (s ),积分的上、下限分别是s b 和s a .求任意函数定积分的办法有赖于下面关于定积分的基本定理:若被积函数f (x )是某个函数Ф(x )的导数,即f (x )=Ф′(x ),则在x =a 到x =b 区间内f (x )对x 的定积分等于Ф(x )在这区间内的增量,即()()()ba f x dxb a =Φ-Φ⎰,(A .53).下面来证明上述定理.在a ≤x ≤b 区间内任选一点x i ,首先考虑Ф(x )在x =x i 到x =x i +△x =x i+1区间的增量△Ф(x i )=Ф(x i+1)-Ф(x i ):()()i i x x x x ∆Φ∆Φ=⋅∆∆,当0x ∆→时,可用Ф(x )的导数()d x dx Φ'Φ=代替x∆Φ∆;但按照定理的前提,Ф′(x )=f (x ),故△Ф(x i )≈Ф′(x i )△x =f (x i )△x 式中≈表示“近似等于”,若取△x →0的极限,上式就是严格的等式.把a ≤x ≤b 区间分成n -1小段,每段长△x ;上式适用于每小段.根据积分的定义和上式,有:12112100()lim[()()()]lim[()()()]bn n ax x n n f x dx f x x f x x f x x x x x --∆→∆→→∞→∞=∆+∆+⋅⋅⋅+∆=∆Φ+∆Φ+⋅⋅⋅+∆Φ⎰2132110lim{[()()][()()][()()]}()()n n n x n x x x x x x x x -∆→→∞=Φ-Φ+Φ-Φ+⋅⋅⋅+Φ-Φ=Φ-Φ因x 1=a ,xn =b ,于是得(A .53)式,至此定理证毕.下面看看函数Ф(x )在f -x 图(见图A -13)中所表现的几何意义.如前所述,△Ф(x i )=Ф(x i+1)-Ф(x i )=f (x i )△x ,正是宽为△x 、高为()i i i f x x P =的一个矩形(即图13A -中的1i i i x x NP +)的面积.它和曲线段P i P i+1下面的梯形x i x i+1P i+1P i 的面积只是相差一小三角形P i NP i +1的面积.当△x →0时,可认为△Ф(x i )就是梯形x i x i+1P i+1P i 的面积.既然当x 由x i 变到x i+1时,Ф(x )的增量的几何意义是相应区间f -x 曲线下的面积,则Ф(x )本身的几何意义就是从原点O 到x 区间f -x 曲线下面的面积加上一个常量C =Ф(0).例如Ф(x i )的几何意义是图形Ox i P i P 0的面积加C ,Ф(x i +1)的几何意义是图形Ox i+1P i+1P 0的面积加C ,等等.这样,△Ф(x i )=Ф(x i+1)-Ф(x i )就是:(Ox i+1P i+1P 0的面积+C )-(Ox i P i P 0的面积+C )=x i x i+1P i+1P i 的面积,而Ф(b )-Ф(a )的几何意义是:(ObP b P 0的面积+C )-(OaP a P 0的面积+C )=abP b P a 的面积.它相当于定积分()ba f x dx ⎰的值.5.3不定积分及其运算在证明了上述定积分的基本定理之后,就可以着手解决积分的运算问题了.根据上述定理,只要求得函数Ф(x )的表达式,利用(A .53)式立即可以算出定积分()ba f x dx ⎰来,那么,给出了被积函数()f x 的表达式之后,怎样去求Ф(x )的表达式呢?上述定理说明,Ф′(x )=f (x ),所以这就相当于问f (x )是什么函数的导数.由此可见,积分运算是求导的逆运算.如果f (x )是Ф(x )的导数,可以称Ф(x )是f (x )的逆导数或原函数.求f (x )的定积分就可以归结为求它的逆导数或原函数.在上节里讲了一些求导数的公式和定理,常见的函数都可以按照一定的法则把它们的导数求出来.然而求逆导数的问题却不像求导数那样容易,而需要靠判断和试探.例如,知道了Ф(x )=x 3的导数Ф′(x )=3x 2,也就知道了F (x )=3x 2的逆导数是Ф(x )=x 3;这时,如果要问函数f (x )=x 2的逆导数是什么,那么就不难想到,它的逆导数应该是x 3/3;这里要指出一点,即对于一个给定的函数f (x )来说,它的逆导数并不是唯一的.Ф1(x )=x 3/3是f (x )=x 2的逆导数,Ф2(x )=x 3/3+1和Ф3(x )=x 3/3-5也都是它的逆导数,因为Ф1′(x )、Ф2′(x )、Ф3′(x )都等于x 2.一般说来,在函数f (x )的某个逆导数Ф(x )上加一任意常量C ,仍旧是f (x )的逆导数.通常把一个函数f (x )的逆导数的通式Ф(x )+C 叫做它的不定积分,并记作()f x dx ⎰,于是()()f x dx x C =Φ+⎰,(A .54).因在不定积分中包含任意常量,它代表的不是个别函数,而是一组函数.。

高中物理奥赛常用数学公式

高中物理奥赛常用数学公式

高中物理奥‎赛常用数学‎公式一、等差、等比数列1.定义:{}1n n n a a d a +-=⇔是等差数列{}1,(0,0)n n n n a q a q a a +=≠≠⇔是等比数列,, (,)2a b a b a b +±等差中项等比中项同号2.公式(1)通项1(1)()n m a a n d a n m d =+-=+- 11n n m n m a a q a q --==(2)前n 项和 11(1)(1)()222n n n a a n n n n s n na d na d +--==+=+- 1(1)2n s d a n n =+-也是等差数‎列 111(1)1111n n n a a q a q q q q s na q ⎧--=≠⎪--=⎨⎪=⎩二.数列求和 (1)2222(1)(21)123...6n n n n ++++++=(2) 223332(1)12(12)4n n n n ++++=+++= 三、三角公式1、和差角公式‎()()()sin sin cos cos sin cos cos cos sin sin tan tan tan()1tan tan tan tan tan()(1tan tan )sin cos a b αβαβαβαβαβαβαβαβαβαβαβαβαααϕ±=±±=±±=±=±+=+ 2、倍角公式 万能公式22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 23332tan tan 21tan sin 33sin 4sin cos 4cos 3cos ααααααααα=-=-=- 3、半角公式,升降幂公式‎22221cos sin sin cos tan 222sin 1cos 1cos 21cos 2sin cos 221cos 2cos 1cos 2sin 22ααααααααααααααα-=====+-+==+=-=4、积化和差,和差化积公‎式 sin sin 2sin cos sin sin 2sin cos 2222cos cos 2cos cos cos cos 2sin cos 222211sin cos [sin()sin()]cos cos [cos()cos()]221sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ+--++=-=+-+-+=-=-=++-=++-=-+--(2)正弦定理 2sin sin sin a b c R A B C ===(R 是外接圆‎ABC ∆半径)(3)余弦定理 2222cos c a b ab C =+- 222cos 2a b c C ab +-= (4)11sin 224ABC a abc S ah ab C pr R ∆===== 其中为半周‎2a b c p ++=长 四、重要不等式‎1.2(,0)112a b a b a b+≥≥≥>+ 2.3(,,0)1113a b c a b c a b c++≥≥≥>++ 3.222(,)22a b a b ab ab a b R ++⎛⎫≤≤∈ ⎪⎝⎭ 3(,,0)3a b c abc a b c ++⎛⎫≤> ⎪⎝⎭五、球1、222R r d =+2、球面距离l R θ=⋅ 2222222cos 22cos R R AB R AB r r r θβ+-==+- (β是径度差)3、24S R π=球内接长方‎体 222224l R a b c ==++ 侧棱两两垂‎直的三棱锥‎补形长方体‎⇒⇒球内接长方‎体4、体积 343V R π=R R '==多面体内切‎球半径 : 3V r S =全六、二项式定理‎ (1)011()n n n n n n n n a b C a C a b C b -+=+++(2)22(1)11n n x nx nx c x +≈+≈++七、导数1.()()()00000x x f x x f x y f x lim lim x x∆→∆→+∆-∆'==∆∆ ()()00f x x f x x x ⇔==在处可导,注意:在处不可导二、运算法则:()()()()()()()21234x u U V U V UV U V UV U U V UV y y u x V V ''''''±=±=+'''-⎛⎫'''== ⎪⎝⎭ 三、导数公式(1)0C '= (2)()1n n x nx -'=(3)()x x e e '= (4)()x x a a ln a '=(5)1(ln x )x '= (6)11(log )log ln a a x e x x a'== (7)(sin )cos x x '= (8)(cos )sin x x '=-8、设三角形A ‎B C 的外心‎为O ,垂心为H ,从O 向BC ‎边引垂线,设垂足不L ‎,则AH=2OL 中考不需要‎,竞赛中很显‎然的结论9、三角形的外‎心,垂心,重心在同一‎条直线上。

全国高中物理竞赛考纲(绝对完整)

全国高中物理竞赛考纲(绝对完整)

全国中学生物理竞赛内容提要2006年2月修订版。

一、理论基础力学1、运动学参照系。

质点运动的位移和路程,速度,加速度。

相对速度。

矢量和标量。

矢量的合成和分解。

矢量的标积和矢积匀速及匀速直线运动及其图象。

运动的合成。

抛体运动。

圆周运动。

刚体的平动和绕定轴的转动。

2、牛顿运动定律力学中常见的几种力牛顿第一、二、三运动定律。

惯性参照系的概念。

摩擦力。

弹性力。

胡克定律。

惯性力的概念。

万有引力定律。

均匀球壳对壳内和壳外质点的引力公式(不要求导出)。

开普勒定律。

行星和人造卫星的运动。

3、物体的平衡共点力作用下物体的平衡。

力矩刚体的平衡。

重心。

物体平衡的种类。

4、动量冲量。

动量。

质点与质点组的动量定理。

动量守恒定律。

质心,质心运动定理。

反冲运动及火箭。

5、冲量距角动量。

质点与质点组的角动量定理(不引入转动惯量)。

角动量守恒定律。

6、机械能功和功率。

动能和动能定理。

重力势能。

引力势能。

质点及均匀球壳壳内和壳外的引力,势能公式(不要求导出)。

弹簧的弹性势能。

功能原理。

机械能守恒定律。

碰撞。

恢复系数。

7、流体静力学静止流体中的压强。

浮力。

8、振动简揩振动[ x=Acos(ωt α)]。

振幅。

频率和周期。

位相。

振动的图象。

参考圆。

振动的速度υ=-Asin(ωt α)]和加速度。

由动力学方程确定简谐振动的频率,简谐振动的能量。

同方向同频率简谐振动的合成。

阻尼振动。

受迫振动和共振(定性了解)。

9、波和声横波和纵波。

波长、频率和波速的关系。

波的图象。

平面简谐波的表达式y= Acos(t-x/v)波的干涉和衍射(定性)。

驻波,声波。

声音的响度、音调和音品。

声音的共鸣。

乐音和噪声。

多普勒效应。

热学1、分子动理论原子和分子的量级。

分子的热运动。

布朗运动。

温度的微观意义。

分子力。

分子的动能和分子间的势能。

物体的内能。

2、热力学第一定律热力学第一定律。

3、热力学第二定律热力学第二定律。

可逆过程和不可逆过程。

4、气体的性质热力学温标。

高中物理竞赛中的数学知识

高中物理竞赛中的数学知识

物理竞赛中的数学知识一、重要函数 1. 指数函数2. 三角函数3. 反三角函数反正弦Arcsin x ,反余弦Arccos x ,反正切Arctan x ,反余切Arccot x 这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。

二、数列、极限2. 等差数列: a n =a 1+(n-1)d ,前n 项和11(1)22n n a a n n S n na d +-==+ 3.等比数列:通项公式a n =a 1q(n-1),前n 项和11(1)(1)11n n n a a q a q S q q q--==≠-- 所有项和1(1)1n a S q q=<-4. 求和符号5.常用的等价无穷小为:当x →0时: sin x ~x ,tan x ~x ,arcsin x ~x ,arctan x ~x ,1-cos x ~221x , 11-+n x ~x n1。

(1+x)n =1+nx 等价无穷小可代换五、二项式定理1. 阶乘: n!=1×2×3×……×n2. 组合数:从m 个不同元素中取出n (n≤m )个元素的所有组合的个数,叫做从m 个不同元素中取出n 个元素的组合数3. 二项式定理即六、常用三角函数公式sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α sin (π/2+α)=cos α cos (π/2+α)=—sin α tan (π/2+α)=-cot αsin()sin cos cos sin A B A B A B +=+ s i n ()s i n c o s c o s s A B A B A B -=- cos()cos cos sin sin A B A B A B +=- c o s ()c o sc o ss i n sA B A B A B -=+ sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=-22tan tan 21tan AA A=-sin2A =cos 2A =s i n t a n 21c o sA A A ==+ 和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦()()1s i n c o s s i n s i n 2a b a b a b =++-⎡⎤⎣⎦ ()()1c o s s i n s i n s i n 2a b a b a b =+--⎡⎤⎣⎦ 万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22t a n2t a n 1t a n2aa a=-求导与微分一、导数的概念1.几个基本初等函数的导数 ⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=-2.导数的四则运算 (1))(])([x u c x u c '⋅='⋅; (2))()(])()([x v x u x v x u '+'='±;(3))()()()()]()([x v x u x v x u x v x u '⋅+'⋅'=⋅;(4))()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡二、微分1.微分的概念设)(x f y =在0x 的某邻域内有定义,若在其中给0x 一改变量x ∆,相应的函数值的改变量y ∆可以表示为).0()(0)()(00→∆∆+∆=-∆+=∆x x x A x f x x f y其中A 与x ∆无关,则称)(x f 在0x 点可微,且称A x ∆为)(x f 在0x 点的微分,记为.0x A x x dfx x dy∆====x A ∆是函数改变量y ∆的线性主部.)(x f y =在0x 可微的充要条件是)(x f 在0x 可导,且)(00x x f x x dy ∆'==.当x x f =)(时,可得x dx ∆=,因此.)(,)(00dx x f dy dx x f x x dy'='==由此可以看出,微分的计算完全可以借助导数的计算来完成.(2)微分的几何意义 当x 由0x 变到x x ∆+0时,函数纵坐标的改变量为y ∆,此时过0x 点的切线的纵坐标的改变量为dy.如图2-1所示.当dy <y ∆时,切线在曲线下方,曲线为凹弧. 当dy >y ∆时,切线在曲线上方,曲线为凸弧.2.微分运算法则 设)(),(x v x u 可微,则)()()()()()()().()()()()]()([).()()]()([.0)(),())((2x v x dv x u x du x v x v x u dx du x v x dv x u x v x u d x du x du x v x u d c d x cdu x cu d -=+=⋅±=±==三、不定积分1.不定积分概念【定义】(不定积分) 函数f(x)的原函数的全体称为f(x)的不定积分,记作⎰dx x f )(.若F(x)是f(x)的一个原函数,则⎰+=)()()(是任意常数C Cx F dx x f2.不定积分的性质(1)积分运算与微分运算互为逆运算.()()⎰⎰⎰⎰+=+='==.)()()()(,)()()()(C x F x dF C x F dx x F dx x f dx x f d x f dx x f dxd或或(2)⎰⎰≠=)0()()(k dx x f k dx x kf 常数(3)⎰⎰⎰±=±.)()()]()([dx x g dx x f dx x g x f3.基本积分公式kdx kx c =+⎰ 11x x dx c μμμ+=++⎰c o s s i n xd x x c=+⎰ sin cos xdx x c =-+⎰四、定积分【定义】(定积分) 函数)(x f 在区间[a,b ]上的定积分定义为∑⎰=→∆∆==ni iix baxf dx x f I 1)(lim)(ξ,【定理】(牛顿-莱布尼茨公式) 若函数)(x f 在区间[a,b ]上连续,)(x F 是)(x f 在[a,b ]上的一个原函数,则)()()()(a F b F abx F dx x f ba-==⎰.上述公式也称为微积分基本定理,是计算定积分的基本公式.常用数学知识汇总一、三角函数公式 1.两角和公式sin()sin cos cos sin A B A B A B +=+ s i n ()s i n c o s c o s s A B A B A B -=- cos()cos cos sin sin A B A B A B +=- c o s ()c o sc o ss i n sA B A B A B -=+ tan tan tan()1tan tan A B A B A B ++=- tan tan tan()1tan tan A BA B A B --=+cot cot 1cot()cot cot A B A B B A ⋅-+=+ cot cot 1cot()cot cot A B A B B A ⋅+-=- 2.二倍角公式sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 22tan tan 21tan AA A=- 3.半角公式sin2A =cos 2A =sin tan21cos A A A ==+sin cot 21cos A A A==- 4.和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅5.积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦()()1s i n c o s s i n s i n 2a b a b a b =++-⎡⎤⎣⎦ ()()1c o s s i n s i n s i n 2a b a b a b =+--⎡⎤⎣⎦ 6.万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22t a n2t a n 1t a n2aa a=- 7.平方关系22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=8.倒数关系tan cot 1x x ⋅= sec cos 1x x ⋅= c sin 1cs x x ⋅=9.商数关系sin tan cos x x x =cos cot sin xx x= 二、重要公式(1)0sin lim 1x xx →= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0xx e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→=三、下列常用等价无穷小关系(0x →)sin xx tan x x a r c s i n x x arctan xx 211c o s 2xx -()ln 1x x + 1x e x - 1l n x a x a - ()11x x ∂+-∂四、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭五、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'=⒀()arcsin x '=⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x'=-+⒄()1x '=⒅'=八、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1logln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x =-+ 九、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭十、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+。

拓展第一讲 物理竞赛中的数学基础

拓展第一讲 物理竞赛中的数学基础

第一讲物理竞赛中的数学基础一、勾股定理勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。

据考证,人类对这条定理的认识,少说也超过4000 年!又据记载,现时世上一共有超过300 个对这定理的证明!勾股定理,主要应用是直角三角形中已知两边求第三边。

1、应用勾股定理求最短距离。

我们已经学过平面内两点之间线段最短的道理,也就是说两点之间的所有连线,最短路线是两点之间的线段。

但在立体图形中不同的侧面上两点之间,曲面上的两点之间的最短距离如何解决,我们分两个小问题来讲。

(1)圆柱形物体上的两点的最短路线。

圆柱体是立体图形,两点之间的连线绝大部分是曲线,应该不是最短的,但有人只凭直觉、感觉,认为如图所示的A→B→C的路线最短,是错误的。

解决问题的方法是将圆柱的侧面展开转化为平面图形来解决。

如图,将右上圆柱的侧面沿母线AB展开后是矩形ABB′A′,不难看出,从A到C的最短路线应是矩形ABCD的对角线AC,这时AC是一个直角三角形的斜边,可用勾股定理解决,其中矩形ABB′A′长、宽分别是圆柱的高与底面周长。

(2)长方体(或正方体)面上两点间的距离。

长方体(或正方体)是立体图形,它的每个面都是平面,如果计算同一个面上两点之间的距离,则比较简单。

如果计算不在同一个面上的两点之间的距离,就变成了两个平面之间的问题,必须将它们转化到同一个平面内。

就需把长方体(或正方体)的侧面设法展开成为一个平面,且使计算距离的两个点所在的平面放在一起,这样可利用勾股定理解决问题。

如图,一个正方块,求A点到E点的最短距离,可把AA′D′D与A′B′C′D′展成一个平面,A 与E之间的最短距离就是RtΔADE的斜边AE的长,可根据题目中给出的数据,用勾股定理加以解决。

2、应用勾股定理可测量建筑物高度、河宽等,主要是在测量设计时构造直角三角形,其中两边可测,利用勾股定理求出无法直接测的距离,如测A、B间距离,可在与AB成90°的方向选一点C(可测出AC),同时,CB可直接测得,可用勾股定理算出AB,AB2=BC2-AC2。

物理竞赛中的数学知识

物理竞赛中的数学知识

物理竞赛中的数学知识一、重要函数1.指数函数2.三角函数3.反三角函数反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。

二、数列、极限1.数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n项。

数列的一般形式可以写成a1,a2,a3,…,a n,a(n+1),… 简记为{an},通项公式:数列的第N项a n 与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。

2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

通项公式a n =a 1+(n-1)d ,前n 项和11(1)22n n a a n n S n na d +-==+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

这个常数叫做等比数列的公比,公比通常用字母q 表示。

通项公式a n =a 1q (n-1),前n 项和11(1)(1)11n n n a a q a q S q q q --==≠-- 所有项和1(1)1n a S q q=<- 3. 求和符号 4. 数列的极限: 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作Aa n n =∞→lim 否则称数列{}n a 发散或nn a ∞→lim 不存在.三、函数的极限:在自变量x 的某变化过程中,对应的函数值f (x )无限接近于常数A ,则称常数A 是函数f (x )当自变量x 在该变化过程中的极限。

高中物理竞赛微积分基础

高中物理竞赛微积分基础

高中物理竞赛微积分基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、常用等价无穷小关系(0x →) 小量近似①sin x x = ;②tan x x = ;③211cos 2x x -= ;④()ln 1x x += ;⑤1x e x -= 2、基本函数的导数公式 小量比值(1)y =f (x )=C (常量)(2)y=f (x )=x(3)y =f (x )=x 2⑴ 导数的四则运算①d(u±v)d t =du d t ± dv d t ③d(u v )d t = du d t ·v - u ·dv d t u v v 2②d(u ·v)d t =du d t ·v + u ·dv d t u v ⑵ 常见函数的导数①dC dt =0(C 为常数); ②dt n dt =nt n-1 (n 为实数); ③dsint dt =cost ; ④ dcost dt =-sint ;⑶ 复合函数的导数在数学上,把u=u(v(t))称为复合函数,即以函数v(t)为u(x)的自变量。

du(v(t))d t =du(v(t))d v(t) ·dv(t)d t导数的数学意义:变化率导数的几何意义:图线切线斜率导数的物理意义:定义物理量(速度、加速度等)3、定积分 小量累计函数,b 和a 分别叫做定积分的上限和下限。

f(x)是Ф(x)的导数,Ф(x)是f(x)的逆导数或原函数。

求f(x)的定积分就可以归结为求它的逆导数或原函数(不定积分)。

4、不定积分通常把求一个导函数f(x)的逆导数的通式Ф(x)+C叫做它的不定积分。

物理竞赛大纲

物理竞赛大纲

物理竞赛大纲力学1. 运动学参考系坐标系直角坐标系※平面极坐标※自然坐标系矢量和标量质点运动的位移和路程速度加速度匀速及匀变速直线运动及其图像运动的合成与分解抛体运动圆周运动圆周运动中的切向加速度和法向加速度曲率半径角速度和※角加速度相对运动伽里略速度变换2.动力学重力弹性力摩擦力惯性参考系牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式不要求导出※非惯性参考系※平动加速参考系中的惯性力※匀速转动参考系惯性离心力、视重☆科里奥利力3.物体的平衡共点力作用下物体的平衡力矩刚体的平衡条件☆虚功原理4.动量冲量动量质点与质点组的动量定理动量守恒定律※质心※质心运动定理※质心参考系反冲运动※变质量体系的运动5.机械能功和功率动能和动能定理※质心动能定理重力势能引力势能质点及均匀球壳壳内和壳外的引力势能公式不要求导出弹簧的弹性势能功能原理机械能守恒定律碰撞弹性碰撞与非弹性碰撞恢复系数6.※角动量冲量矩角动量质点和质点组的角动量定理和转动定理角动量守恒定律7.有心运动在万有引力和库仑力作用下物体的运动开普勒定律行星和人造天体的圆轨道和椭圆轨道运动8.※刚体刚体的平动刚体的定轴转动刚体绕轴的转动惯量平行轴定理正交轴定理刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学静止流体中的压强浮力☆连续性方程☆伯努利方程10.振动简谐振动振幅频率和周期相位振动的图像参考圆简谐振动的速度线性恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成阻尼振动受迫振动和共振定性了解11.波动横波和纵波波长频率和波速的关系波的图像※平面简谐波的表示式波的干涉※驻波波的衍射定性声波声音的响度、音调和音品声音的共鸣乐音和噪声前3项均不要求定量计算※多普勒效应热学1. 分子动理论原子和分子大小的数量级分子的热运动和碰撞布朗运动※压强的统计解释☆麦克斯韦速率分布的定量计算;※分子热运动自由度※能均分定理;温度的微观意义分子热运动的动能※气体分子的平均平动动能分子力分子间的势能物体的内能2.气体的性质温标热力学温标气体实验定律理想气体状态方程道尔顿分压定律混合理想气体状态方程理想气体状态方程的微观解释定性3.热力学第一定律热力学第一定律理想气体的内能热力学第一定律在理想气体等容、等压、等温、绝热过程中的应用※多方过程及应用※定容热容量和定压热容量※绝热过程方程※等温、绝热过程中的功※热机及其效率※卡诺定理4.热力学第二定律※热力学第二定律的开尔文表述和克劳修斯表述※可逆过程与不可逆过程※宏观热力学过程的不可逆性※理想气体的自由膨胀※热力学第二定律的统计意义☆热力学第二定律的数学表达式☆熵、熵增5.液体的性质液体分子运动的特点表面张力系数※球形液面两边的压强差浸润现象和毛细现象定性6.固体的性质晶体和非晶体空间点阵固体分子运动的特点7.物态变化熔化和凝固熔点熔化热蒸发和凝结饱和气压沸腾和沸点汽化热临界温度固体的升华空气的湿度和湿度计露点8.热传递的方式传导※导热系数对流辐射※黑体辐射的概念※斯忒番定律※维恩位移定律9.热膨胀热膨胀和膨胀系数电磁学1.静电场电荷守恒定律库仑定律电场强度电场线点电荷的场强场强叠加原理匀强电场均匀带电球壳内、外的场强公式不要求导出※高斯定理及其在对称带电体系中的应用电势和电势差等势面点电荷电场的电势电势叠加原理均匀带电球壳内、外的电势公式电场中的导体静电屏蔽,※静电镜像法电容平行板电容器的电容公式※球形、圆柱形电容器的电容电容器的连联接※电荷体系的静电能,※电场的能量密度,电容器充电后的电能☆电偶极矩☆电偶极子的电场和电势电介质的概念☆电介质的极化与极化电荷☆电位移矢量2.稳恒电流欧姆定律电阻率和温度的关系电功和电功率电阻的串、并联电动势闭合电路的欧姆定律一段含源电路的欧姆定律※基尔霍夫定律电流表电压表欧姆表惠斯通电桥补偿电路3.物质的导电性金属中的电流欧姆定律的微观解释※液体中的电流※法拉第电解定律※气体中的电流※被激放电和自激放电定性真空中的电流示波器半导体的导电特性p型半导体和n型半导体※P-N结晶体二极管的单向导电性※及其微观解释定性三极管的放大作用不要求掌握机理超导现象☆超导体的基本性质4.磁场电流的磁场※毕奥-萨伐尔定律磁场叠加原理磁感应强度磁感线匀强磁场长直导线、圆线圈、螺线管中的电流的磁场分布定性※安培环路定理及在对称电流体系中的应用※圆线圈中的电流在轴线上和环面上的磁场☆磁矩安培力洛伦兹力带电粒子荷质比的测定质谱仪回旋加速器霍尔效应5. 电磁感应法拉第电磁感应定律楞次定律※感应电场涡旋电场自感和互感自感系数※通电线圈的自感磁能不要求推导6.交流电交流发电机原理交流电的最大值和有效值☆交流电的矢量和复数表述纯电阻、纯电感、纯电容电路感抗和容抗※电流和电压的相位差整流滤波和稳压☆谐振电路☆交流电的功率☆三相交流电及其连接法☆感应电动机原理理想变压器远距离输电7.电磁振荡和电磁波电磁振荡振荡电路及振荡频率赫兹实验电磁场和电磁波☆电磁场能量密度、能流密度电磁波的波速电磁波谱电磁波的发射和调制电磁波的接收、调谐、检波光学1. 几何光学※费马原理光的传播反射折射全反射光的色散折射率与光速的关系平面镜成像球面镜成像公式及作图法※球面折射成像公式※焦距与折射率、球面半径的关系薄透镜成像公式及作图法眼睛放大镜显微镜望远镜※其它常用光学仪器2.波动光学光程※惠更斯原理定性光的干涉现象双缝干涉光的衍射现象※夫琅禾费衍射※光栅※布拉格公式※分辩本领不要求导出光谱和光谱分析定性※光的偏振※自然光与偏振光※马吕斯定律※布儒斯特定律近代物理1.光的本性光电效应※康普顿散射光的波粒二象性光子的能量与动量2.原子结构卢瑟福实验原子的核式结构玻尔模型用玻尔模型解释氢光谱※用玻尔模型解释类氢光谱原子的受激辐射激光的产生定性和特性3.原子核原子核的尺度数量级天然放射性现象原子核的衰变半衰期放射线的探测质子的发现中子的发现原子核的组成核反应方程质能关系式裂变和聚变质量亏损4.粒子“基本粒子”轻子与夸克简单知识四种基本相互作用实物粒子具有波粒二象性※物质波※德布罗意关系※不确定关系5.※狭义相对论爱因斯坦假设洛伦兹变换时间和长度的相对论效应多普勒效应☆速度变换相对论动量相对论能量相对论动能相对论动量和能量关系6.※太阳系,银河系,宇宙和黑洞的初步知识.单位制国际单位制与量纲分析数学基础1.中学阶段全部初等数学包括解析几何.2.矢量的合成和分解,矢量的运算,极限、无限大和无限小的初步概念.3.※微积分初步及其应用:含一元微积分的简单规则;微分:包括多项式、三角函数、指数函数、对数函数的导数,函数乘积和商的导数,复合函数的导数;积分:包括多项式、三角函数、指数函数、对数函数的简单积分;。

物理奥赛第一讲数学基础

物理奥赛第一讲数学基础

全国物理奥赛与自主招生培训课程第一讲——数学基础知识主讲人:姚桂元内部资料1、数学近似:(1)当0→θ,即θ很小时,(θ取弧度单位)①0sin ≈≈θθ ②1cos ≈θ ③0sin tan ≈≈≈θθθ。

(2)泰勒级数展开+⨯--±-+±=±3223)2)(1(2)1(1)1(x n n n x n n nx x n 其中,n 取任意实数。

特别地,当1<<x 时,n 取任意实数,我们常做如下近似nx x n ±≈±1)1(例题:2/3)(x a ky +=,a x <<。

解:)231()1()1(2/32/32/32/32/3ax a k a x a k ax ak y -≈+=+=-2、矢量的合成矢量和21F F F +=⇒矢量差12F F F -=⇒021=--F F F,如下图所示:进一步推广,例题:解:0=+-++-f e d c b a巡行方向abcde f12⇒3、求和表示法(1)∑=++++nin aa a a a 1321(2)∑∑=++++==++++ni n nin a k a a a ak ka ka ka ka ka 13211321)((3)∑∑∑-=-=++++-++++ni in in in n b ab a b b b b a a a a 111321321)()(4、数列求和n S (1)基本数列求和 ①等差数列:n a a a a ,,,,⋯321 其中:n 为项数,d a a i i =-+1定值——公差,则2)(1321n n n a a n a a a a S +=+⋯+++= 若111==d a ,,则 2)1(321+=+⋯+++=n n n S n②等比数列:n a a a a ,,,,⋯321 其中:n 为项数,q a a ii =+1定值——公比,则 qq a a a a a S n n n --=+⋯+++=1)1(1321若1<q ,且∞→n ,则qa a a a a S n n -=+⋯+++=11321(2)特殊数列求和n S①)1(21321+=+⋯+++n n n ②)12)(1(613212222++=+⋯+++n n n n③223333)1(41321+=+⋯+++n n n5、三角函数关系、正余弦定理。

高中物理竞赛的数学基础(自用修改)

高中物理竞赛的数学基础(自用修改)

普通物理的数学基础选自赵凯华老师新概念力学一、微积分初步物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。

这样,微积分这个数学工具就成为必要的了。

我们考虑到,读者在学习基础物理课时假设能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。

所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。

至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。

§1.函数及其图形1.1函数自变量和因变量绝对常量和任意常量1.2函数的图象1.3物理学中函数的实例§2.导数2.1极限如果当自变量x无限趋近某一数值x0〔记作x→x0〕时,函数f〔x〕的数值无限趋近某一确定的数值a,则a叫做x→x0时函数f〔x〕的极限值,并记作〔A.17〕式中的“lim”是英语“limit〔极限〕”一词的缩写,〔A.17〕式读作“当x趋近x0时,f〔x〕的极限值等于a”。

极限是微积分中的一个最基本的概念,它涉及的问题面很广。

这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。

求极限公式〔2〕〔3〕〔4〕等价无穷小量代换sinx~x; tan~x;2.2极限的物理意义〔1〕瞬时速度对于匀变速直线运动来说,这就是我们熟悉的匀变速直线运动的速率公式〔A.5〕。

〔2〕瞬时加速度时的极限,这就是物体在t=t0时刻的瞬时加速度a:〔3〕水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动。

为简单起见,我们假设水渠是直的,这时可以把x坐标轴取为逆水渠走向的方向〔见图A-5〕,于是各处渠底的高度h便是x的函数:h=h〔x〕.知道了这个函数,我们就可以计算任意两点之间的高度差。

就愈能精确地反映出x=x0这一点的坡度。

高中物理竞赛中的高等数学

高中物理竞赛中的高等数学

高中物理竞赛中的高等数学一、微积分初步物理学研究的是物质的运动规律,因此经常遇到的物理量大多数是变量,而要研究的正是一些变量彼此间的联系.这样,微积分这个数学工具就成为必要的了.考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的.所以在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要.至于更系统和更深入地掌握微积分的知识和方法,可在通过高等数学课程的学习去完成.§1.函数及其图形1.1 函数 自变量和因变量 绝对常量和任意常量在数学中函数的功能是这样定义的:有两个互相联系的变量x 和y ,如果每当变量x 取定了某个数值后,按照一定的规律就可以确定y 的对应值,那么称y 是x 的函数,并记作:y =f (x ),(A .1);其中x 叫做自变量,y 叫做因变量,f 是一个函数记号,它表示y 和x 数值的对应关系.有时把y =f (x )也记作y =y (x ).如果在同一个问题中遇到几个不同形式的函数,也可以用其它字母作为函数记号,如ϕ(x )、ψ(x )等等.①常见的函数可以用公式来表达,例如()32y f x x ==+,212ax bx +,cx,cos2x π,ln x ,x e 等等. 在函数的表达式中,除变量外,还往往包含一些不变的量,如上面出现的13 2 2e π、、、、和a b c 、、等,它们叫做常量;常量有两类:一类如13 2 2e π、、、、等,它们在一切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a 、b 、c 等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量.在数学中经常用拉丁字母中最前面几个(如a 、b 、c )代表任意常量,最后面几个(x 、y 、z )代表变量.当y =f (x )的具体形式给定后,就可以确定与自变量的任一特定值x 0相对应的函数值f (x 0).例如: (1)若y =f (x )=3+2x ,则当x =-2时y =f (-2)=3+2×(-2)=-1.一般地说,当x =x 0时,y =f (x 0)=3+2x 0.(2)若()cy f x x ==,则当0x x =时,00()c f x x =.1.2 函数的图形在解析几何学和物理学中经常用平面上的曲线来表示两个变量之间的函数关系,这种方法对于直观地了解一个函数的特征是很有帮助的.作图的办法是先在平面上取一直角坐标系,横轴代表自变量x ,纵轴代表因变量(函数值)y =f (x ).这样一来,把坐标为(x ,y )且满足函数关系y =f (x )的那些点连接起来的轨迹就构成一条曲线,它描绘出函数的面貌.图A -1便是上面举的第一个例子y =f (x )=3+2x 的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线.图A -2是第二个例子()cy f x x==的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:1(,4)4c 、1(,2)2c 、(1,)c 、(2,)2c 、(4,)4c ,各点连接成双曲线的一支.1.3 物理学中函数的实例反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的.下面举几个例子. (1)匀速直线运动公式:s =s 0+vt .(A .2)此式表达了物体作匀速直线运动时的位置s 随时间t 变化的规律,在这里t 相当于自变量x ,s 相当于因变量y ,s 是t 的函数.因此记作:s =s (t )=s 0+vt ,(A .3)式中初始位置s 0和速度v 是任意常量,s 0与坐标原点的选择有关,v 对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值.图A -3是这个函数的图形,它是一根倾斜的直线.易知它的斜率等于v .(2)匀变速直线运动公式:20012s s v t at =++,(A .4),v =v 0+at .(A .5)两式中s 和v 是因变量,它们都是自变量t 的函数,因此记作:2001()2s s t s v t at ==++,(A .6),v =v (t )=v 0+at ,(A .7)图A -4a 、4b 分别是两个函数的图形,其中一个是抛物线,一个是直线.(A .6)和(A .7)式是匀变速直线运动的普遍公式,式中初始位置s 0、初速v 0和加速度a 都是任意常量,它们的数值要根据讨论的问题来具体化.例如在讨论自由落体问题时,若把坐标原点选择在开始运动的地方,则s 0=0,v 0=0,a =g ≈9.8M /s 2,这时(A .6)和(A .7)式具有如下形式:21()2s s t gt ==,(A .8);v =v (t )=gt .(A .9);这里的g 可看作是绝对常量,式中不再有任意常量了. (3)玻意耳定律:PV =C .(A .10)上式表达了一定质量的气体,在温度不变的条件下,压强P 和体积V 之间的函数关系,式中的C 是任意常量.可以选择V 为自变量,P 为因变量,这样,(A .10)式就可写作:()CP P V V==,(A .11)它的图形和图A -2是一样的,只不过图中的x 、y 应换成V 、P .在(A .10)式中也可以选择P 为自变量,V 为因变量,这样它就应写成:()CV V P P==,(A .12) 由此可见,在一个公式中自变量和因变量往往是相对的. (4)欧姆定律:U IR =.(A .13)当讨论一段导线中的电流I 这样随着外加电压U 而改变的问题时,U 是自变量,I 是因变量,R 是常量.这时,(A .13)式应写作:()UI I U R==,(A .14);即I 与U 成正比. 应当指出,任意常量与变量之间的界限也不是绝对的.例如,当讨论串联电路中电压在各电阻元件上分配问题时,由于通过各元件的电流是一样的,(A .13)式中的电流I 成了常量,而R 是自变量,U 是因变量.于是U =U (R )=IR ,(A .15)即U 与R 成正比.但是当讨论并联电路中电流在各分支里的分配问题时,由于各分支两端具有共同的电压,(A .13)式中的U 就成了常量,而R 为自变量,I 是因变量,于是:()U I I R R==,(A .16)即I 与R 成反比.总之,每个物理公式都反映了一些物理量之间的函数关系,但是其中哪个是自变量,哪个是因变量,哪些是常量,有时公式本身反映不出来,需要根据所要讨论的问题来具体分析. §2.导数2.1 极限若当自变量x 无限趋近某一数值x 0(记作x →x 0)时,函数f (x )的数值无限趋近某一确定的数值a ,则a 叫做x →x 0时函数f (x )的极限值,并记作:0lim ()x x f x a →=,(A .17)(A .17)式中的“lim ”是英语“limit (极限)”一词的缩写,(A .17)式读作“当x 趋近x 0时,f (x )的极限值等于a ”.极限是微积分中的一个最基本的概念,它涉及的问题面很广.这里不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义.考虑下面这个函数:232()1x x y f x x --==-,(A .18),这里除x =1外,计算任何其它地方的函数值都是没有困难的.例如当0x =时,(0)2f =,当2x =,(2)8f =,等等.但是若问x =1时函数值f (1)=?,就会发现,这时(A .18)式的分子和分母都等于0,即0(1)0f =!用0去除以0,一般地说是没有意义的.所以表达式(A .18)没有直接给出f (1),但给出了x 无论如何接近1时的函数值来.下表列出了当x 的值从小于1和大于1两方面趋于1时f (x )值的变化情况:表A -1 x 与f (x )的变化值x232x x --1x -232()1x x f x x --=- 0.9 -0.47 -0.1 4.70.99 -0.0497 -0.01 4.97 0.999 -0.004997 -0.001 4.997 0.9999 -0.0004997 -0.0001 4.9997 1.1 0.53 0.1 5.3 1.01 0.503 0.01 5.03 1.001 0.005003 0.001 5.003 1.00010.000500030.00015.0003从上表看,x 值无论从哪边趋近1时,分子分母的比值都趋于一个确定的数值5,这便是x →1时f (x )的极限值. 其实计算f (x )值的极限无需这样麻烦,只要将(A .18)式的分子作因式分解:3x 2-x -2=(3x +2)(x -1),并在x ≠1的情况下从分子和分母中将因式(x -1)消去:(32)(1)()3 2 (1)1x x y f x x x x +-===+≠-;即可看出:x 趋于1时,函数f (x )的数值趋于:3×1+2=5.所以根据函数极限的定义,21132lim ()lim 51x x x x f x x →→--==-. 2.2 几个物理学中的实例 (1)瞬时速度当一个物体作任意直线运动时,它的位置可用它到某个坐标原点O 的距离s 来描述.在运动过程中s 是随时间t 变化的,也就是说,s 是t 的函数:s =s (t ).函数s (t )表示的是这个物体什么时刻到达什么地方.形象一些说,假如物体是一列火车,则函数s (t )就是它的一张“旅行时刻表”.但是,在实际中往往不满足于一张“时刻表”,还需要知道物体运动快慢的程度,即速度或速率的概念.例如,当车辆驶过繁华的街道或桥梁时,为了安全,对它的速率就要有一定的限制;一个上抛体(如高射炮弹)能够达到怎样的高度,也与它的初始速率有关,等等.为了建立速率的概念,就要研究在一段时间间隔里物体位置的改变情况.假设考虑的是从t =t 0到t =t 1的一段时间间隔,则这间隔的大小为:△t =t 1-t 0.根据s 和t 的函数关系s (t )可知,在t 0和t 1=t 0+△t 两个时刻,s 的数值分别为s (t 0)和s (t 1)=s (t 0+△t ),即在t 0到t 1这段时间间隔里s 改变了:△s =s (t 1)-s (t 0)=s (t 0+△t )-s (t 0).在同样大小的时间间隔△t 里,若s 的改变量△s 小,就表明物体运动得慢, 所以就把s ∆与t ∆之比st∆∆叫做这段时间间隔里的平均速率,用v 来表示,则00()()s t t s t s v t t+∆-∆==∆∆,(A .19),举例说明如下. 对于匀变速直线运动,根据(A .4)式有2000001()2s t s v t at =++和2000001()()()2s t t s v t t a t t +∆=++∆++∆,22200000000000000111[()()]()()()()()12222s v t t a t t s v t at v at t a t s t t s t v v at a t t t t ++∆++∆-+++∆+∆+∆-====++∆∆∆∆;平均速率s v t ∆=∆反映了物体在一段时间间隔内运动的快慢,除了匀速直线运动的特殊情况外,st∆∆的数值或多或少与t ∆的大小有关;t ∆取得越短,s t ∆∆就越能反映出物体在0t t =时刻运动的快慢;通常就把0t ∆→时st∆∆的极限值叫做物体在t =t 0时刻的瞬时速率v ,即0000()()lim lim t t s t t s t sv t t ∆→∆→+∆-∆==∆∆,(A .20) 对于匀变速直线运动来说,0000001lim lim()2t t s v v at a t v at t ∆→∆→∆==++∆=+∆. 这就是熟悉的匀变速直线运动的速率公式(A .5). (2)瞬时加速度一般地说,瞬时速度或瞬时速率v 也是t 的函数:v =v (t ).但是在许多实际问题中,只有速度和速率的概念还不够,还需要知道速度随时间变化的快慢,即需要建立“加速度”的概念.平均加速度a 和瞬时加速度a 概念的建立与v 和v 的建立类似.在直线运动中,首先取一段时间间隔t 0到t 1,根据瞬时速率v 和时间t 的函数关系v (t )可知,在t =t 0和t =t 1两时刻的瞬时速率分别为v (t 0)和v (t 1)=v(t 0+△t ),因此在t 0到t 1这段时间间隔里v 改变了△v =v (t 0+△t )-v (t 0).通常把v t∆∆叫做这段时间间隔里的平均加速度,记作a ;00()()v t t v t v a t t +∆-∆==∆∆,(A .21) 举例来说,对于匀变速直线运动,根据(A .5)式有000()v t v at =+,000()()v t t v a t t +∆=++∆.所以平均加速度为000000()()[()]()v t t v t v a t t v at v a a t t t+∆-++∆-+∆====∆∆∆(常数).对于一般的变速运动,a 也是与t ∆有关的,这时为了反映出某一时刻速度变化的快慢,就需要取v t∆∆在0t ∆→时的极限,这就是物体在t =t 0时刻的瞬时加速度a :0000()()limlim t t v t t v t va t t∆→∆→+∆-∆==∆∆,(A .22)(3)应用举例水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动.为简单起见,假设水渠是直的,这时可以把x 坐标轴取为逆水渠走向的方向(见图A -5),于是各处渠底的高度h 便是x 的函数:h =h (x ).知道了这个函数,就可以计算任意两点之间的高度差.在修建水渠的时候,人们经常运用“坡度”的概念.譬如说,若逆水渠而上,渠底在100m 的距离内升高了20cm ,人们就说这水渠的坡度是0.221001000m m =,因此所谓坡度,就是指单位长度内的高度差,它的大小反映着高度随长度变化的快慢程度.如果用数学语言来表达,就要取一段水渠,设它的两端的坐标分别为x 0和x 1,于是这段水渠的长度为:△x =x 1-x 0.根据h 和x 的函数关系h (x )可知,在x 0和x 1=x 0+△x 两地h 的数值分别为h (x 0)和h (x 1)=h (x 0+△x ),所以在△x 这段长度内h 改变了:△h =h (x 0+△x )-h (x 0).根据上述坡度的定义,这段水渠的平均坡度为:00()()h x x h x h k x x+∆-∆==∆∆,(A .23) 前面所举例子,△x 采用了100米的数值.实际上在100米的范围内,水渠的坡度可能各处不同.为了更细致地把水渠在各处的坡度反映出来,应当取更小的长度间隔x ∆,x ∆取得越小,hx∆∆就越能精确反映出x =x 0处的坡度.所以在x =x 0处的坡度k 应是0x ∆→时的平均坡度k 的极限值,即0000()()lim lim x x h x x h x hk x x ∆→∆→+∆-∆==∆∆,(A .24)2.3 函数的变化率——导数前面举了三个例子,在前两个例子中自变量都是t ,第三个例子中自变量是x .这三个例子都表明,在研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,即函数的“变化率”概念.当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量.增量,通常用代表变量的字母前面加个“△”来表示.例如,当自变量x 的数值由x 0变到x 1时,其增量就是△x ≡x 1-x 0.(A .25)与此对应.因变量y 的数值将由y 0=f (x 0)变到y 1=f (x 1),它的增量为△y ≡y 1-y 0=f (x 1)-f (x 0)=f (x 0+△x )-f (x 0).(A .26)应当指出,增量是可正可负的,负增量代表变量减少.增量比00()()f x x f x y x x +∆-∆=∆∆,(A .27)可以叫做函数在x =x 0到x =x 0+△x 这一区间内的平均变化率,它在△x →0时的极限值叫做函数y =f (x )对x 的导数或微商,记作y ′或f ′(x ),0000()()()lim lim x x f x x f x yy f x x x ∆→∆→+∆-∆''===∆∆,(A .28)除y '或()f x '外,导数或微商还常常写作dy dx 、df dx 、ddx等其它形式.导数与增量不同,它代表函数在一点的性质,即在该点的变化率.应当指出,函数f (x )的导数f ′(x )本身也是x 的一个函数,因此可以再取它对x 的导数,这叫做函数y =f (x )的二阶导数,记作y ''、()f x ''、22d y dx 等;22()()()d y d dy dy f x f x dx dx dx dx '''''====,(A .29) 据此类推,则不难定义出高阶的导数来.有了导数的概念,前面的几个实例中的物理量就可表示为:瞬时速率:ds v dt =,(A .30);瞬时加速度:22dv d sa dt dt==,(A .31);水渠坡度:dh k dx =,(A .32).2.4 导数的几何意义在几何中切线的概念也是建立在极限的基础上的.如图A -6所示,为了确定曲线在P 0点的切线,先在曲线上P 0附近选另一点P 1,并设想P 1点沿着曲线向P 0点靠拢.P 0P 1的联线是曲线的一条割线,它的方向可用这直线与横坐标轴的夹角α来描述.从图上不难看出,P 1点愈靠近P 0点,α角就愈接近一个确定的值α0,当P 1点完全和P 0点重合的时候,割线P 0P 1变成切线P 0T ,α的极限值α0就是切线与横轴的夹角.在解析几何中,把一条直线与横坐标轴夹角的正切tan α叫做这条直线的斜率.斜率为正时表示α是锐角,从左到右直线是上坡的(见图A -7a );斜率为负时表示α是钝角,从左到右直线是下坡的(见图A -7b ).现在来研究图A -6中割线P 0P 1和切线P 0T 的斜率.设P 0和P 1的坐标分别为(x 0,y 0)和(x 0+△x ,y 0+△y ),以割线P 0P 1为斜边作一直角三角形△P 0P 1M ,它的水平边P 0M 的长度为△x ,竖直边MP 1的长度为△y ,因此这条割线的斜率为:10tan MP y P M xα∆==∆.如果图A -6中的曲线代表函数y =f (x ),则割线P 0P 1的斜率就等于函数在 0x x =附近的增量比yx∆∆,切线0PT 的低斜率0tan α是10P P →时,割线P 0P 1斜率的极限值,即10100tan lim tan lim ()P P P P yf x x αα→→∆'===∆;所以导数的几何意义是切线的斜率.§3.导数的运算在上节里只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来.3.1 基本函数的导数公式(1)y =f (x )=C (常量):00()()()lim lim 0x x f x x f x C Cy f x xx ∆→∆→+∆--''====∆∆; (2)y =f (x )=x :000()()()()lim lim lim 1x x x f x x f x x x x x y f x x xx ∆→∆→∆→+∆-+∆-∆''=====∆∆∆; (3)y =f (x )=x 2:22000()()()()lim lim lim(2)2x x x f x x f x x x x y f x x x x x x∆→∆→∆→+∆-+∆-''====+∆=∆∆;(4)y =f (x )=x 3:33222000()()()()lim lim lim[33()]3x x x f x x f x x x x y f x x x x x x x x∆→∆→∆→+∆-+∆-''====+∆+∆=∆∆; (5)y =f (x )=1x :0()()()lim x f x x f x y f x x ∆→+∆-''===∆011lim x x x x x∆→-+∆=∆ 200()11lim lim ()()x x x x x x x x x x x x x∆→∆→-+∆-===-+∆⋅∆+∆; (6)y =f (x )=x :000()()()lim lim lim[]x x x f x x f x x x x x x x x x xy f x x x x x x x∆→∆→∆→+∆-+∆-+∆-+∆+''====⋅∆∆∆+∆+ 220()()11limlim()2x x x x x x x x x x x x x∆→∆→+∆-===∆+∆++∆+上面推导的结果可以归纳成一个普遍公式:当ny x =时,1n n dx y nx dx-'==,(n 为任何数),(A .33). 例如:当1n =时,()y f x x ==,1dxy dx '==; 当2n =时,2()y f x x ==,22dx y x dx '==; 当3n =时,3()y f x x ==,323dx y x dx '==; 当1n =-时,11()y f x x x -===,2211()(1)d y x dx x x-'==-=-;当12n =时,12()y f x x x ===,121122d x y x dx x-'===;等等.利用(A .33)式还可以计算其它幂函数的导数(见表A -2).除了幂函数n x 外,物理学中常见的基本函数还有三角函数、对数函数和指数函数.现在只给出这些函数的导数公式(见表A -2)而不推导,解题时可以直接引用.3.2 有关导数运算的几个定理 定理一:[()()]d du dvu x v x dx dx dx ±=±,(A .34). 证明:00[()()]lim lim[]x x d u v u v du dvu x v x dx x x x dx dx∆→∆→∆±∆∆∆±==±=±∆∆∆. 定理二:[()()]()()d du dvu x v x v x u x dx dx dx ⋅=+,(A .35).证明:00[()][()]u(x)v(x)v()()[()()]lim lim x x d u x u v x v x u u x v u vu x v x dx x x∆→∆→+∆+∆-∆+∆+∆∆⋅==∆∆ 0lim[()()]()()x u v du dvv x u x v x u x x x dx dx ∆→∆∆=+=+∆∆.表A -2基本导数公式函数y =f (x )导数y ′=f ′(x )函数y =f (x ) 导数y ′=f ′(x )c (任意常量) 012n =- ,121x x -=3321212()x x --=- x n (n为任意常量)nx n -132n =-,3321()x x -=5523232()x x --=-n =1, x1…… ……n =2, x 2 2x sin xcos xn =3, x 33x 2 cos xsin x - 1n =-,11x x -=221(1)x x --=-ln x 1x2n =-,221x x -=332(2)x x --=-x ex e12n =,121x x=121212x x -= …… ……定理三:2()()()[]()[()]du dv v x u x d u x dx dx dx v x v x -=,(A .36).证明:000()()()[()]()[()]()()()()()[]lim lim lim ()[()]()[()]()x x x u x u u x d u x u x u v x v x v u x v x u u x v v x v v x dx v x x v x v v x xv x v v x x ∆→∆→∆→+∆-+∆-+∆∆-∆+∆===∆+∆∆+∆∆20()()()()lim [()]()[()]x u v du dv v x u x v x u x x x dx dx v x v v x v x ∆→∆∆--∆∆==+∆. 定理四:[()]d du dvu v x dx dv dx=⋅,(A .37). 证明:00[()][()]()()[()]lim lim[]x x d u v x x u v x u v v v v v u v x dx x v x ∆→∆→+∆-+∆-∆==⋅∆∆∆00()()lim[]lim[]x x u v v v v v du dvv x dv dx∆→∆→+∆-∆=⋅=⋅∆∆ 例1.求22y x a =±(a 为常量)的导数.解:22202dy dx da x x dx dx dx=±=±=. 例2.求ln x y a =(a 为常量)的导数. 解:ln ln 110dy d x d a dx dx dx x x=-=-=. 例3.求2y ax =(a 为常量)的导数. 解:222022dy da dx x a x a x ax dx dx dx=⋅+⋅=⋅+⋅=. 例4.求2x y x e =的导数. 解:22222(2)xx x x x dy dx de e x x e x e x x e dx dx dx=+=⋅+⋅=+. 例5.求23251x y x -=+的导数.解:2222222(32)(51)(51)(32)6(51)(32)515610(51)(51)(51)d x d x x x dy x x x x x dx dx dx x x x -++--⋅+--⋅++===+++. 例6.求tan y x =的导数. 解:2222sin cos cos sin sin cos cos sin (sin )1(tan )()sec cos cos cos cos d x d xxxdy d d x x x x x dx dx x x dxdx dx xx x x-⋅-⋅-======. 例7.求cos()y ax b =+(a 、b 为常量)的导数.解:令v ax b =+,()cos y u v v ==,则(sin )sin()dy du dv v a a ax b dx dv dx=⋅=-⋅=-+. 例8.求21y x =-的导数.解:令21v x =-,()y u v v ==,则21221dy du dv x x dx dv dx vx =⋅=⋅=-.例9.求22ax y x e -=(a 为常量)的导数.解:令v u e =,2v ax =-,则2222222(2)2(1)v ax dy dx du dvu x xu x e ax x ax e dx dx dv dx-=+⋅=+⋅⋅-=-§4.微分和函数的幂级数展开 4.1 微分自变量的微分,就是它的任意一个无限小的增量△x .用dx 代表x 的微分,则dx =△x .(A .38) 一函数y =f (x )的导数f ′(x )乘以自变量的微分dx 即为该函数的微分,用dy 或df (x )表示,即dy =df (x )=f ′(x )dx ,(A .39) 所以()dyf x dx'=,(A .40) 在之前曾把导数写成dydx的形式,是把它作为一个整体引入的.当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分.在引入微分的概念之后,就可把导数看成微分dy 与dx 之商(所谓“微商”),即一个真正的分数了.把导数写成分数形式,常常是很方便的,例如,把上节定理四(A .37)式的左端[()]d u v x dx 简写成du dx,则该式化为du du dvdx dv dx =⋅;此公式从形式上看和分数运算法则一致,很便于记忆. 下面看微分的几何意义.图A -8是任一函数y =f (x )的图形,P 0(x 0,y 0)和P 1(x 0+△x ,y 0+△y )是曲线上两个邻近的点,P 0T 是通过P 0的切线.直角三角形△P 0MP 1的水平边0P M x =∆,竖直边1MP y =∆(见图8A -).设0PT 与1MP 的交点为N ,则0tan MNMNNP M xPM∠==∆,但0tan NP M ∠为切线P 0T 的斜率,它等于x =x 0处的导数f ′(x 0),因此00()tan dy f x x NP M x MN '=∆=∠⋅∆=.所以微分dy 在几何图形上相当于线段MN 的长度,它和增量1y MP ∆=相差1NP 一段长;从上一节计算导数时取极限的过程可以看出,dy 是y ∆中正比于x ∆的那一部分,而1NP 则是正比于(△x )2以及△x 更高幂次的各项之和[例如对于函数y =f (x )=x 3,△y =3x 2△x +3x (△x )2+(△)3,而d y =f ′(x )△x =3x 2△x ].当△x 很小时,(△x )2、(△x )3、…比△x小得多,1NP 也就比dy 小得多,所以可以把微分dy 叫做增量y ∆中的线性主部.也就是说,若函数在x =x 0的地方像线性函数那样增长,则它的增量就是dy .4.2幂函数的展开已知一个函数f (x )在x =x 0一点的数值f (x 0),如何求得其附近的点x =x 0+△x 处的函数值f (x )=f (x 0+△x )? 若f (x )为x 的幂函数n x ,可以利用牛顿的二项式定理:23000000000(1)(1)(2)()()[1()]()[1()]()[1()()()]2!3!n n nn n x x x n n x n n n x f x x x x x f x f x n x x x x x ∆∆∆-∆--∆==+∆=+=+=++++⋅⋅⋅000(1)(1)()()!nmm n n n m x f x m x =-⋅⋅⋅-+∆=∑,(A .41)此式适用于任何n (整数、非整数、正数、负数等等).若n 为正整数,则上式中的级数在M =n 的地方截断,余下的项自动为0,否则上式为无穷级数.不过当△x <<x 0时,后面的项越来越小,只需保留有限多项就足够精确了.不要以为数学表达式越精确越好.如图A -9中A 、B 两点间的水平距离为l ,若将B 点竖直向上提高一个很小的距离a (a <<l)到达B ′,问AB ′之间的距离比AB 增加了多少?利用勾股定理易得距离的增加量为22l l a l ∆=+-.这是个精确的公式,但没有给出一个鲜明的印象,究竟△l 是随a 怎样变化的?若用二项式定理将它展开,只保留到最低级的非0项,则有12222221[1()1]{[1()]1}[1()1]()222a a a l a a l l l l l ll l l∆=+-=+-=++⋅⋅⋅-≈=,即△l 是正比于a 平方增长的,属二级小量.这种用幂级数展开来分析主要变化趋势的办法,在物理学里是经常用到的.4.3泰勒展开非幂函数(譬如s in x 、e x )如何作幂级数展开?这要用泰勒(Taylor)展开. 下面用一种不太严格,但简单明了的办法将它导出.假设函数f (x )在x =x 0处的增量△f =f (x )-f (x 0)能够展成△x =x -x 0的幂级数:001()()()mm m f x f x a x x ∞=-=-∑,(A .42)则通过逐项求导可得101()()m m m f x ma x x ∞-='=-∑;当x →x 0时,m >1的项都趋于0,于是有f ′(x 0)=a 1;再次求导,得202()(1)()m m m f x m m a x x ∞-=''=--∑,当x →x 0时,m >2的项都趋于0,于是有f (x 0)=2a 2;如此类推,一般地说,对于M 阶导数有()0()!M M f x M a =;于是(A .42)式可以写为:()000()()()()!m m m Mf x f x f x x x m ∞=-=-∑,(A .43).若定义第0阶导数f (0)(x )就是函数f (x )本身,则上式还可进一步简写为:()000()()()!m m m f x f x x x m ∞==-∑,(A .44). 上述(A .43)或(A .44)式称为泰勒展开式,它在物理学中是非常有用的公式. 下面在表A -3中给出几个常见函数在x 0=0或1处的泰勒展开式.表A -3 常见函数的幂级数展开式函数展开式收敛范围12(1)x ± 234111113113512242462468x x x x ⋅⋅⋅⋅⋅⋅±-±-±⋅⋅⋅⋅⋅⋅⋅⋅⋅1x ≤ 32(1)x ± 234331311311312242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤ 52(1)x ± 234553531531112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤ 12(1)x -± 234113135135712242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 32(1)x -± 234335357357912242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 52(1)x -±2345575795791112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 1(1)x -±2341x x x x ±+±+±⋅⋅⋅1x <2(1)x -±23412345x x x x ±+±+±⋅⋅⋅1x < sin x3573!5!7!x x x x -+-+⋅⋅⋅ x <∞ cos x24612!4!6!x x x -+-+⋅⋅⋅ x <∞ tan x 35791217623153152835x x x x x +++++⋅⋅⋅ x <∞ xe 23411!2!3!4!x x x x +++++⋅⋅⋅ x <∞ln(1)x + 234234x x x x -+-+⋅⋅⋅11x -<≤ ln(1)x -234()234x x x x -++++⋅⋅⋅11x -≤<§5.积分5.1几个物理中的实例 (1)变速直线运动的路程大家都熟悉匀速直线运动的路程公式.若物体的速率是v ,则它在t a 到t b 一段时间间隔内走过的路程是s =v (t b -t a ),(A .45).对于变速直线运动来说,物体的速率v 是时间的函数:v =v (t ),函数的图形是一条曲线(见图A -10a ),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A -4b ).对于变速直线运动,(A .45)式已不适用.但是,可以把t =t a 到t =t b 这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的.这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到t a 到t b 这段时间里走过的总路程.设时间间隔(t b -t a )被t =t 1(=t a )、t 2、t 3、…、t n 、t b 分割成n 小段,每小段时间间隔都是△t ,则在t 1、t 2、t 3、…、t n 各时刻速率分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n ).若把各小段时间的速率v 看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t .于是,在整个(t b -t a )这段时间里的总路程是1231()()()()()nn i i s v t t v t t v t t v t t v t t ==∆+∆+∆+⋅⋅⋅+∆=∆∑,(A .46).现在再看看上式的几何意义.在函数v =v (t )的图形中,通过t =t 1、t 2、t 3、…、t n 各点垂线的高度分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n )(见图A -10b ),所以v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t 就分别是图中那些狭长矩形的面积,而1()ni i v t t =∆∑则是所有这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积.在上面的计算中,把各小段时间△t 里的速率v 看做是不变的,实际上在每小段时间里v 多少还是有些变化的,所以上面的计算并不精确.要使计算精确,就需要把小段的数目n 加大,同时所有小段的△t 缩短(见图A -10c ).△t越短,在各小段里v 就改变得越少,把各小段里的运动看成匀速运动也就越接近实际情况.所以要严格地计算变速运动的路程s ,就应对(A .46)式取n →∞、△t →0的极限,即01lim ()ni t i n s v t t ∆→=→∞=∆∑,(A .47). 当n 越来越大,△t 越来越小的时候,图A -10中的阶梯状图形的面积就越来越接近v (t )曲线下面的面积(图A -10d).所以(A .47)式中的极限值等于(t b -t a )区间内v (t )曲线下的面积.总之,在变速直线运动中,物体在任一段时间间隔(t b -t a )里走过的路程要用(A .47)式来计算,这个极限值的几何意义相当于这区间内v (t )曲线下的面积. (2)变力的功当力与物体移动的方向一致时,在物体由位置s =s a 移到s =s b 的过程中,恒力F 对它所作的功为:A =F (s b -s a )(A .48);若力F 是随位置变化的,即F 是s 的函数:F =F (s ),则不能运用(A .48)式来计算力F 的功.此时,也需要象计算变速运动的路程那样,把(s b -s a )这段距离分割成n 个长度为△s 的小段(见图A -11):并把各小段内力F 的数值近似看成是恒定的,用恒力作功的公式计算出每小段路程△s 上的功,然后加起来取n →∞、△s →0的极限值.具体地说,设力F 在各小段路程内的数值分别为F (s 1)、F (s 2)、F (s 3)、…、F (s n ),则在各小段路程上力F 所作的功分别为F (s 1)△s 、F (s 2)△s 、F (s 3)△s 、…、F (s n )△s ,在(s b -s a )整段路程上力F 的总功A 就近似地等于1()ni i F s s =∆∑;因为实际上在每一小段路程上加F 都是变化的,所以严格地计算,还应取n →∞、△s →0的极值,即01lim ()ni t i n A F s s ∆→=→∞=∆∑,(A .49).同上例,这极限值应是(s b -s a )区间内F (s )下面的面积(见图A -12).5.2定积分以上两个例子表明,许多物理问题中需要计算象(A .47)和(A .49)式中给出的那类极限值.概括起来说,就是要解决如下的数学问题:给定一个函数f (x ),用x =x 1(=a )、x 2、x 3、…、x n 、b 把自变量x 在(b -a )区间内的数值分成n 小段,设每小段的大小为△x ,求n →∞、△x →0时1()ni i f x x =∆∑的极限;通常把这类形式的极限用符号()ba f x dx ⎰来表示,即01()lim ()nbi ax i n f x dx f x x ∆→=→∞=∆∑⎰,(A .50);()baf x dx ⎰叫做x a =到x b =区间内()f x 对x 的定积分,()f x 叫做被积函数,b 和a 分别叫做定积分的上限和下限.用定积分的符号来表示,(A .47)和(A .49)式可分别写为()bat t s v t dt =⎰,(A .51)、()bas s A F s ds =⎰,(A .52).在变速直线运动的路程公式(A .51)里,自变量是t ,被积函数是v (t ),积分的上、下限分别是t b 和t a ;在变力作功的公式(A .52)里,自变量是s ,被积函数是F (s ),积分的上、下限分别是s b 和s a .求任意函数定积分的办法有赖于下面关于定积分的基本定理:若被积函数f (x )是某个函数Ф(x )的导数,即f (x )=Ф′(x ),则在x =a 到x =b 区间内f (x )对x 的定积分等于Ф(x )在这区间内的增量,即()()()ba f x dxb a =Φ-Φ⎰,(A .53).下面来证明上述定理.在a ≤x ≤b 区间内任选一点x i ,首先考虑Ф(x )在x =x i 到x =x i +△x =x i+1区间的增量△Ф(x i )=Ф(x i+1)-Ф(x i ):()()i i x x x x ∆Φ∆Φ=⋅∆∆,当0x ∆→时,可用Ф(x )的导数()d x dx Φ'Φ=代替x ∆Φ∆;但按照定理的前提,Ф′(x )=f (x ),故△Ф(x i )≈Ф′(x i )△x =f (x i )△x 式中≈表示“近似等于”,若取△x →0的极限,上式就是严格的等式.把a ≤x ≤b 区间分成n -1小段,每段长△x ;上式适用于每小段.根据积分的定义和上式,有:12112100()lim[()()()]lim[()()()]bn n ax x n n f x dx f x x f x x f x x x x x --∆→∆→→∞→∞=∆+∆+⋅⋅⋅+∆=∆Φ+∆Φ+⋅⋅⋅+∆Φ⎰2132110lim{[()()][()()][()()]}()()n n n x n x x x x x x x x -∆→→∞=Φ-Φ+Φ-Φ+⋅⋅⋅+Φ-Φ=Φ-Φ因x 1=a ,xn =b ,于是得(A .53)式,至此定理证毕.下面看看函数Ф(x )在f -x 图(见图A -13)中所表现的几何意义.如前所述,△Ф(x i )=Ф(x i+1)-Ф(x i )=f (x i )△x ,正是宽为△x 、高为()i i i f x x P =的一个矩形(即图13A -中的1i i i x x NP +)的面积.它和曲线段P i P i+1下面的梯形x i x i+1P i+1P i 的面积只是相差一小三角形P i NP i +1的面积.当△x →0时,可认为△Ф(x i )就是梯形x i x i+1P i+1P i 的面积.既然当x 由x i 变到x i+1时,Ф(x )的增量的几何意义是相应区间f -x 曲线下的面积,则Ф(x )本身的几何意义就是从原点O 到x 区间f -x 曲线下面的面积加上一个常量C =Ф(0).例如Ф(x i )的几何意义是图形Ox i P i P 0的面积加C ,Ф(x i +1)的几何意义是图形Ox i+1P i+1P 0的面积加C ,等等.这样,△Ф(x i )=Ф(x i+1)-Ф(x i )就是:(Ox i+1P i+1P 0的面积+C )-(Ox i P i P 0的面积+C )=x i x i+1P i+1P i 的面积,而Ф(b )-Ф(a )的几何意义是:(ObP b P 0的面积+C )-(OaP a P 0的面积+C )=abP b P a 的面积.它相当于定积分()ba f x dx ⎰的值.5.3不定积分及其运算在证明了上述定积分的基本定理之后,就可以着手解决积分的运算问题了.根据上述定理,只要求得函数Ф(x )的表达式,利用(A .53)式立即可以算出定积分()ba f x dx ⎰来,那么,给出了被积函数()f x 的表达式之后,怎样去求Ф(x )的表达式呢?上述定理说明,Ф′(x )=f (x ),所以这就相当于问f (x )是什么函数的导数.由此可见,积分运算是求导的逆运算.如果f (x )是Ф(x )的导数,可以称Ф(x )是f (x )的逆导数或原函数.求f (x )的定积分就可以归结为求它的逆导数或原函数.在上节里讲了一些求导数的公式和定理,常见的函数都可以按照一定的法则把它们的导数求出来.然而求逆导数的问题却不像求导数那样容易,而需要靠判断和试探.例如,知道了Ф(x )=x 3的导数Ф′(x )=3x 2,也就知道了F (x )=3x 2的逆导数是Ф(x )=x 3;这时,如果要问函数f (x )=x 2的逆导数是什么,那么就不难想到,它的逆导数应该是x 3/3;这里要指出一点,即对于一个给定的函数f (x )来说,它的逆导数并不是唯一的.Ф1(x )=x 3/3是f (x )=x 2的逆导数,Ф2(x )=x 3/3+1和Ф3(x )=x 3/3-5也都是它的逆导数,因为Ф1′(x )、Ф2′(x )、Ф3′(x )都等于x 2.一般说来,在函数f (x )。

高中物理竞赛知识点

高中物理竞赛知识点

高中物理竞赛知识点高中物理竞赛涵盖了广泛而深入的物理知识,对于想要在竞赛中取得好成绩的同学来说,系统地掌握这些知识点至关重要。

一、力学1、运动学这部分包括直线运动、曲线运动。

直线运动中的匀变速直线运动,其速度、位移公式需要熟练掌握。

对于曲线运动,重点是平抛运动和圆周运动。

平抛运动要理解水平和竖直方向的分运动规律,圆周运动则要清楚线速度、角速度、向心加速度等概念,以及向心力的来源和计算。

2、牛顿运动定律牛顿第一定律揭示了物体的惯性本质;牛顿第二定律是力学的核心,F = ma 这个公式要能灵活运用,解决各种受力情况下物体的运动问题;牛顿第三定律则说明了作用力和反作用力的关系。

3、机械能包括动能、势能(重力势能、弹性势能)的概念和计算。

机械能守恒定律是重点,要能判断在何种情况下机械能守恒,并运用其解决问题。

4、动量动量和冲量的概念要清晰,动量定理和动量守恒定律在碰撞、爆炸等问题中经常用到。

二、热学1、分子动理论了解物质是由大量分子组成的,分子在不停地做无规则运动,分子间存在相互作用力。

2、热力学定律热力学第一定律揭示了能量的守恒与转化,热力学第二定律则说明了热现象的方向性。

三、电磁学1、静电场库仑定律、电场强度、电势、电势能等概念是基础。

要能熟练运用电场线和等势面来分析电场的性质。

2、电路掌握串并联电路的特点,欧姆定律,电阻的串并联计算。

复杂电路可以用基尔霍夫定律来分析。

3、磁场磁感应强度的概念,安培力和洛伦兹力的计算。

带电粒子在磁场中的运动是重点和难点,需要掌握其运动规律和半径、周期的计算。

4、电磁感应法拉第电磁感应定律是关键,要能分析各种情况下的电磁感应现象,计算感应电动势。

四、光学1、几何光学光的直线传播、反射、折射定律,全反射现象。

能利用这些知识解决平面镜成像、凸透镜和凹透镜成像等问题。

2、物理光学光的干涉、衍射、偏振现象,了解双缝干涉实验和薄膜干涉的原理。

五、近代物理1、原子物理原子的结构模型,氢原子能级,原子核的组成,放射性衰变等内容都需要掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通物理的数学基础
选自赵凯华老师新概念力学
一、微积分初步
物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。

这样,微积分这个数学工具就成为必要的了。

我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。

所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。

至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。

§1.函数及其图形
1.1函数自变量和因变量绝对常量和任意常量
1.2函数的图象
1.3物理学中函数的实例
§2.导数
2.1极限
如果当自变量x无限趋近某一数值x0(记作x→x0)时,函数f(x)的数值无限趋近某一确定的数值a,则a叫做x→x0时函数f(x)的极限值,并记作
(A.17)式中的“lim”是英语“limit(极限)”一词的缩写,(A.17)式读作“当x趋近x0时,f(x)的极限值等于a”。

极限是微积分中的一个最基本的概念,它涉及的问题面很广。

这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。

求极限公式
(2)
(3)
(4)
等价无穷小量代换
sinx~x; tan~x;
2.2极限的物理意义
(1)瞬时速度
对于匀变速直线运动来说,
这就是我们熟悉的匀变速直线运动的速率公式(A.5)。

(2)瞬时加速度
时的极限,这就是物体在t=t0时刻的瞬时加速度a:
(3)水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动。

为简单起见,我们假设水渠是直的,这时可以把x坐标轴取为逆水渠走向的方向(见图A-5),于是各处渠底的高度h便是x的函数:
h=h(x).
知道了这个函数,我们就可以计算任意两点之间的高度差。

就愈能精确地反映出x=x0这一点的坡度。

所以在x=x0这一点的坡度k应是△
2.3小量比值函数的变化率——导数
前面我们举了三个例子,在前两个例子中自变量都是t,第三个例子中自变量是x.这三个例子都表明,在我们研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,我们往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,亦即,函数的“变化率”概念。

当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量。

增量,通常用代表变量的字母前面加个“△”来表示。

例如,当自变量x 的数值由x0变到x1时,其增量就是
△x≡x1-x0.(A.25)
与此对应。

因变量y的数值将由y0=f(x0)变到y1=f(x1),于是它的增量为
△y≡y1-y0=f(x1)-f(x0)=f(x0+△x)-f(x0).(A.26)应当指出,增量是可正可负的,负增量代表变量减少。

增量比
可以叫做函数在x=x0到x=x0+△x这一区间内的平均变化率,它在△x→0时的极限值叫做函数y=f(x)对x的导数或微商,记作y′或f′(x),
f(x)等其它形式。

导数与增量不同,它代表函数在一点的性质,即在该点的变化率。

应当指出,函数f(x)的导数f′(x)本身也是x的一个函数,因此我们可以再取它对x的导数,这叫做函数y=f(x)
据此类推,我们不难定义出高阶的导数来。

有了导数的概念,前面的几个实例中的物理量就可表示为:
2.4导数的几何意义
所以导数的几何意义是切线的斜率。

函数的变化率
§3.导数的运算
在上节里我们只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来。

3.1基本函数的导数公式
(1)y=f(x)=C(常量)
(2)y=f(x)=x
§4.微分
4.1微分
自变量的微分,就是它的任意一个无限小的增量△x.用dx代表x的微分,则
dx=△x.(A.38)
一个函数y=f(x)的导数f′(x)乘以自变量的微分dx,叫做这个函数的微分,用dy或df(x)表示,即
dy≡df(x)≡f′(x)dx,(A.39)
一个整体引入的。

当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分。

在引入微分的概念之后,我们就可把导数看成微分dy与dx之商(所谓“微商”),即一个真正的分数了。

把导数写成分数形式,常常是很方便的,例如,把上节定理四(A.37)
此公式从形式上看就和分数运算法则一致了,很便于记忆。

下面看微分的几何意义。

图A-8是任一函数y=f(x)的图形,P0(x0,y0)和P1(x0+△x,y0+△y)是曲线上两个邻近的点,P0T是通过P0的切线。

直角三角形△P0MP1的水平边
的交点为N,则
但tan∠NP0M为切线P0T的斜率,它等于x=x0处的导数f′(x0),因此
所以微分dy在几何图形上相当于线段MN的长度,它和增量
是正比于(△x)2以及△x更高幂次的各项之和[例如对于函数y=f(x)=x3,△y=3x2△x+3x(△x)2+(△x)3,而dy=f′(x)△x=3x2△x].当△x很小时,(△x)2、(△x)3、…比△x小得多,
中的线性主部。

这就是说,如果函数在x=x0的地方象线性函数那样增长,则它的增量就是dy.
§5.小量累积积分
5.1几个物理中的实例
(1)变速直线运动的路程
我们都熟悉匀速直线运动的路程公式。

如果物体的速率是v,则它在t a
到t b一段时间间隔内走过的路程是
s=v(t b-t a). (A.45)
对于变速直线运动来说,物体的速率v是时间的函数:
v=v(t),
函数的图形是一条曲线(见图A-10a),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A-4b)。

对于变速直线运动,(A.45)式已不适用。

但是,我们可以把t=t a到t=t b这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的。

这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到t a到t b这段时间里走过的总路程。

设时间间隔(t b-t a)被t=t1(=t a)、t2、t3、…、t n、t b分割成n小段,每小段时间间隔都是△t,则在t1、t2、t3、…、t n各时刻速率分别是v(t1)、v(t2)、v(t3)、…、v(t n)。

如果我们把各小段时间的速率v看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v(t1)△t、v(t2)△t、v(t3)△t、…、v(t n)△t.于是,在整个(t b-t a)这段时间里的总路程是
现在我们来看看上式的几何意义。

在函数v=v(t)的图形中,通过t=t1、t2、t3、…、t n各点垂线的高度分别是v(t1)、v(t2)、v(t3)、…、v(t n)(见图
A-10b),所以v(t1 )△t、v(t2)△t、v(t3)△t、…、v(t n)△t就分
这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积。

在上面的计算中,我们把各小段时间△t里的速率v看做是不变的,实际上在每小段时间里v多少还是有些变化的,所以上面的计算并不精确。

要使计算精确,就需要把小段的数目n加大,同时所有小段的△t缩短(见图A-10c)。

△t愈短,在各小段里v就改变得愈少,把各小段里的运动看成匀速运动也就愈接近实际情况。

所以要严格地计算变速运动的路程s,我们就应对(A.46)式取n→∞、△t→0的极限,即
当n愈来愈大,△t愈来愈小的时候,图A-10中的阶梯状图形的面积
就愈来愈接近v(t)曲线下面的面积(图A-10d)。

所以(A.47)式中的极限值等于(t b-t a)区间内v(t)曲线下的面积。

总之,在变速直线运动中,物体在任一段时间间隔(t b-t a)里走过的路程要用(A.47)式来计算,这个极限值的几何意义相当于这区间内v(t)曲线下的面积。

5 2定积分
5.3不定积分及其运算。

相关文档
最新文档