因式分解(十字相乘法分组分解法提升)
初中因式分解基本方法
word格式-可编辑-感谢下载支持初中因式分解的基本方法因式分解(factorization)因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的~.②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.am+bm+cm=m(a+b+c)③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.⑵运用公式法①平方差公式:. a2-b2=(a+b)(a-b)②完全平方公式:a2±2ab+b2=(a±b)2※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.③立方和公式:a3+b3=(a+b)(a2-ab+b2).立方差公式:a3- b3=(a-b)( a2+ab+ b2).③完全立方公式:a3±3 a2b+3a b2±b3=(a±b)3④a n-b n=(a-b)[a(n-1)+a(n-2)b+……+b(n-2)a+b(n-1)]a m +b m =(a+b)[a(m-1)-a(m-2)b+……-b(m-2)a+b(m-1)] (m为奇数)⑶分组分解法分组分解法:把一个多项式分组后,再进行分解因式的方法.分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.⑷拆项、补项法拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.例:分解因式bc(b+c)+ca(c-a)-ab(a+b)解bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)⑸十字相乘法①x2+(p q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p q)x+pq=(x+p)(x+q)这个很实用,但用起来不容易.在无法用以上的方法进行分解时,可以用下十字相乘法.例:x2+5x+6首先观察,有二次项,一次项和常数项,可以采用十字相乘法.一次项系数为1.所以可以写成1*1常数项为6.可以写成1*6, 2*3, -1*-6, -2*-3(小数不提倡)然后这样排列1 - 21 - 3(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)我再写几个式子,楼主再自己琢磨下吧.x2-x-2=(x-2)(x+1)2 x2+5x-12=(2x-3)(x+4)②mx2 +px+q型的式子的因式分解对于mx2 +px+q形式的多项式,如果a×b=m, c×d=q且ad+bc=p,则多项式可因式分解为(ax+ c)(bx+ d)例:分解因式7x2 -19x-6分析: 1 --37- 21×2+(-3×7)= -19解:7 x2 -19x-6=(x-3)(7x+2)⑸双十字相乘法难度较之前的方法要提升许多。
分解因式的几种常用方法
分解因式的几种常用方法因式分解的主要方法有: 1. 十字相乘法 2. 提取公因式法 3. 公式法 4. 分组分解法 5. 求根法 6. 待定系数法高中必备知识点1:十字相乘法要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++.要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号; (2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止. 要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即21a a a =,常数项c 可以分解成两个因数之积,即21c c c =,把2121c c a a ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号 里面的二次三项式,最后结果不要忘记把提出的负号添上.典型考题【典型例题】阅读与思考:将式子分解因式.法一:整式乘法与因式分解是方向相反的变形. 由,; 分析:这个式子的常数项,一次项系数,所以.解:.法二:配方的思想..请仿照上面的方法,解答下列问题: (1)用两种方法分解因式:;(2)任选一种方法分解因式:.【答案】(1);(2)【解析】(1)法一:,法二:,(2).或.【变式训练】阅读材料题:在因式分解中,有一类形如x2+(m+n)x+mn的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成x2+(m+n)x+mn=(x+m)(x+n).例如:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).运用上述方法分解因式:(1)x2+6x+8;(2)x2﹣x﹣6;(3)x 2﹣5xy+6y 2;(4)请你结合上述的方法,对多项式x 3﹣2x 2﹣3x 进行分解因式. 【答案】(1)(2);(3)(4).【解析】 解:; ;; .故答案为:(1)(2);(3)(4).【能力提升】由多项式的乘法:(x +a)(x +b)=x 2+(a +b)x +ab ,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x 2+(a +b)x +ab =(x +a)(x +b).实例 分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3). (1)尝试 分解因式:x 2+6x +8;(2)应用 请用上述方法解方程:x 2-3x -4=0. 【答案】(1) (x+2)(x +4);(2) x =4或x =-1. 【解析】(1)原式=(x+2)(x +4);(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.高中必备知识点2:提取公因式法与分组分解法1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。
初二下册因式分解公式法、十字相乘法
因式分解的常用方法第一部分:方法介绍提取公因式法、运用公式法、分组分解法和十字相乘法. 一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.【知识要点】1.运用公式法:如果把科法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
2.乘法公式逆变形(1)平方差公式:))((22b a b a b a -+=-(2)完全平方公式:222222)(2,)(2b a b ab a b a b ab a -=+-+=++ 3.把一个多项式分解因式,一般可按下列步骤进行: (1)如果多项式的各项有公因式,那么先提公因式;(2)如果多项式没有公因式,那么可以尝试运用公式来分解; (3)如果上述方法不能分解,那么可以尝试用。
思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9 (2)9x 2-6x+1二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5 (2)4x 3y+4x 2y 2+xy 3三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2 (2)4x 2-12xy 2+9y 4四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4 (2)16x 4-72x 2y 2+81y 4五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
因式分解技巧十法
因式分解技巧这里介绍了10种因式分解的技巧,若将这些技巧全部掌握,在解决因式分解问题上必然有质的提升。
首先提取公因式,然后考虑用公式。
十字添拆要合适,待定主元要试试。
几种方法反复试,最后必是连乘式。
一、提取公因式法多项式中所有的项都含有的因式称为它们的公因式。
例1:分解因式12a2bc2x2y3-9ab2cx3y2+3abcx2y2解:仔细观察,其中3abcx2y2 是它们的公因式所以原式=3abcx2y2(4acy-3bx+1)技巧:先提取每一项的系数的公因数,再逐个将每个字母的最低次提取出来。
注意其中符号的变化以及不能遗漏其中的“1”。
例2:分解因式3x2y(a+b)(b+c)+3xy2(a+b)(b+c)若在求解过程中将(a+b)(b+c)展开,则在后面的分解过程中会有很大的麻烦,应该观察到每一项都含有(a+b)(b+c),将其看成一个整体,不做变化。
解:含有公因式3xy(a+b)(b+c)所以原式=3xy(a+b)(b+c)(x+y)技巧:在分解过程中,利用好整体思想。
二、公式法利用常见的公式进行因式分解。
常用公式a2-b2=(a+b)(a-b)a2-2ab+b2=(a-b)2a2+2ab+b2=(a+b)2a3-b3=(a-b)(a2+ab+b2)a3+b3=(a+b)(a2-ab+b2)a3+3a2b+3ab2+b3=(a+b)3a3-3a2b+3ab2-b3=(a-b)3a2+b2+c2+2ab+2bc+2ca=(a+b+c)2补充公式当n为正奇数时有a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-……-ab n-2+b n-1)当n为正整数时,有a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+……+ab n-2+b n-1)例3:分解因式16(m+x)2-9(n+y)2解:16(m+x)2=(4m+4x)29(n+y)2=(3n+3y)2原式=(4m+4x)2-(3n+3y)2=(4m+3n+4x+3y)(4m-3n+4x-3y)技巧:应该先观察,若先进行展开,将会非常麻烦。
9.6因式分解(十字相乘、分组分解)
9.6因式分解——分组分解法、十字相乘法班级________姓名________【学习目标】1、理解分组分解法、十字相乘法的概念和意义,会用分组分解法、十字相乘法进行因式分解。
2、培养学生的观察、分析、抽象、概括的能力,渗透化归数学思想和局部、整体的思想方法。
【学习过程】I.分组分解法一、分解因式:(1)ax+ay+ab+ac (2)ax+ay+bx+by二、新知探索:把下列多项式分解因式:1.按字母特征分组:(1)a+b+ab+1 (2)a²-ab+ac-bc2.按系数特征分组:(1)2x²+3y+xy+6x (2)2ac-6ad+bc-3bd3.按指数特点分组:(1)a²-b²+2a-2b (2)x²+x-4y²-2y4.按公式特点分组:(1)a²-2ab+b²-c²(2)a²-4b²+12bc-9c²小结:分组分解法的步骤:(1)________________________(2)________________________(3)________________________练习1:把下列各式分解因式:(1)x²+6y-3x-2xy (2)a²+ab-3a-3b (3)4x²-4xy-a²+y²(4)1-m²-n²+2mnII .十字相乘法一、情境创设:1.口答计算结果: (1)(x+2)(x-1) (2)(x+2)(x+1) (3)(x+3)(x+2) (4)(x+2)(x-3)(5)(x-2)(x+1) (6)(x-2)(x+3) (7)(x-2)(x-1) (8)(x-2)(x-3)2.想一想:你怎样将这类题目算得又快有准确呢?二、探索尝试:根据上面的公式将多项式写成两个一次因式相乘的形式:x ²+(2 +3)x+ 2 × 3 = x ²+(-1-2)x+(-1)×(-2)= x ²+(-1+2)x+(-1)× 2 = x ²+( 1-2)x+ 1 ×(-2)= 小结:对于二次三项式q px x ++2,若ab q b a p =+=,, 则()ab x b a x q px x +++=++22可分解为()()b x a x ++三、例题讲解:将下列各式因式分解(1)x ²+7x+6 (2)x ²-5x-6 (3)x ²-5x+6练习2:把下列各式分解因式:(1)x ²-7x+6 (2)a ²-4a-21 (3)t ²-2t-8(4)x ²+xy-12y ² (5)x 2+5x-6 (6)a ²-11ab-12b ²III.自主检测:分解因式 1.1--+b a ab2.22441b ab a --- 3.by bx ay ax 3322--+4.1072+-x x 5.x x x +-232 6.2)(3)(2++-+y x y x ()pxx b a bx ax bxbxax a x =+=++课后作业姓名____________班级____________一、选择题1.如果))((2b x a x q px x ++=+-,那么p 等于 ( )A .abB .a +bC .-abD .-(a +b )2.如果305)(22--=+++⋅x x b x b a x ,则b 为 ( )A .5B .-6C .-5D .63.多项式a x x +-32可分解为(x -5)(x -b ),则a ,b 的值分别为 ( ) A .10和-2 B .-10和2 C .10和2 D .-10和-24.分解结果等于(x +y -4)(x +y -5)的多项式是 ( )A .20)(13)(2++-+y x y xB .20)(13)22(2++-+y x y xC .20)(13)(22++++y x y xD .20)(9)(2++-+y x y x 二、填空题1.=-+1032x x __________.2.=--652m m (m +a )(m +b ). a =__________,b =__________. 3.+2x ____=-22y (x -y )(__________).4.22____)(____(_____)+=++a mna . 5.若x -y =6,3617=xy ,则代数式32232xy y x y x +-的值为__________.三、解答题1.把下列各式分解因式:(1)6724+-x x ; (2)36524--x x ; (3)2287b b a a --;(4)1+--y x xy (5)315523+--x x x (6)x xy y x 21372-+-2.把下列各式分解因式:(1)2224)3(x x -- (2)9)2(22--x x(3)2222)332()123(++-++x x x x (4)60)(17)(222++-+x x x x(5)8)2(7)2(222-+-+x x x x ; (6)48)2(14)2(2++-+b a b a(7)xy y x y xy x x 22))(1(3222+++-+ (8)b a bx ax bx ax ++--+223.已知x +y =2,xy =a +4,2622=+y x ,求a 的值.5. 已知:长方形的长、宽为x 、y ,周长为16cm ,且满足02222=++-+-y xy x y x ,求长方形的面积。
因式分解技巧讲解002
七、综合运用及技巧
1、换元(即整体法)
因式分解时可以用一个字母代替一个整式,也可以将原式中的某个部分变形后的式子用
一个字母代替,(一般都是既约多项式),分解完后再将其带入。
2、主次分清
我们在处理一个项数多的多项式的时候,可以按照一个主要字母(任选)的降幂整理后,
然后分解。
十字相乘法解决。
[例]分解因式:6x2-7x+2
解:采用类似的办法:把6分解成2×3,写在第一列;把2分解成(-1)×(-2),写在第二
列;然后交叉相乘,把积相加,最后把得到的和写在横线下面。如下:
2 -1
3 -2
-7
这个和恰好是一次项的系数,于是有:
上面的算式称之为长十字相乘,式子中的三个十字,就是上面所说的三个十字相乘,我
们省略了横线及其底下的数。
如果二次式中的缺少一项或几项,长十字相乘仍然可用。
[例]分解因式:x2-y2+5x+3y+4[缺少含有字母的项]
解:由如下算式
(x) (y) (1)
1 1 1
=2a2b(x+y)(b+c)[(x+y)+3a3b3(b+c)]
=2a2b(x+y)(b+c)(x+y+3a3b4+3a3b3c)
其实这是一种整体的思想,在因式分解中应用广泛。
3、切勿漏1
4、注意符号
在提出的公因式为负的时候,注意各项符号的改变。
5、化“分”为整
数学论文——因式巧分解
史虓
◎综述
所谓多项式的因式分解,是把一个多项式写成几个整式的积的形式。因式分解并不复杂,
因式分解的七种常见方法
因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。
在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。
1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。
公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。
它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。
例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。
它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。
例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。
它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。
例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。
这样我们就把原始式子分解成了两个因子的乘积。
3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。
该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。
例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。
因式分解的14种方法
因式分解的14种方法1因式分解的14种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:??1332xxxx)分解因式技巧1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
(完整版)因式分解16种方法
因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:()1332--=+-x x x x )分解因式技巧1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数.提出“—”号时,多项式的各项都要变号。
提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶. 例如:-am+bm+cm=—m (a-b —c);a(x-y)+b(y-x )=a(x-y )—b (x-y)=(x —y )(a-b)。
中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)
中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列因式分解结果正确的是( ) A .32(1)x x x x -=-B .229(9)(9)x y x y x y -=+-C .232(3)2x x x x -+=-+D .()()22331x x x x --=-+2.分式 212x x x ---有意义, 则( ) A .2x ≠ B .1x ≠- C .2x ≠或1x ≠- D .2x ≠且1x ≠- 3.下列多项式中是多项式243x x -+的因式的是( )A .1x -B .xC .2x +D .3x +4.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x -,乙与丙相乘的积为26x x +-,则甲与丙相减的结果是( )A .5-B .5C .1D .1-5.将下列各式分解因式,结果不含因式()2x +的是( )A .22x x +B .24x -C .()()21211x x ++++D .3234x x x -+ 6.甲、乙两位同学在对多项式2x bx c ++分解因式时甲看错了b 的值,分解的结果是()()45x x -+,乙看错了c 的值,分解的结果是()()34x x +-,那么2x bx c ++分解因式正确的结果为( )A .()()54x x --B .()()45x x +-C .()()45x x -+D .()()45x x ++ 7.如果多项式432237x x ax x b -+++能被22x x +-整除,那么:a b 的值是( )A . 2-B . 3-C .3D .6 8.若分解因式()()2153x mx x x n +-=--则m 的值为( )A .5-B .5C .2-D .2二、填空题9.因式分解26a a +-的结果是 .三、解答题21424x x -+ 解:24(2)(12)=-⨯- (2)(12)14-+-=-21424(2)(12)x x x x ∴-+=-- 解:原式222277724x x =-⋅⋅+-+2(7)4924x =--+2(7)25x =-- (75)(75)x x =-+--(2)(12)x x =-- (1)按照材料一提供的方法分解因式:22075x x -+;(2)按照材料二提供的方法分解因式:21228x x +-.20.利用整式的乘法运算法则推导得出:()()()2ax b cx d acx ad bc x bd ++=+++.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可把()2acx ad bc x bd +++看作以x 为未知数,a 、b 、c 、d 为常数的二次三项式,此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式221112x x ++的二项式系数2与常数项12分别进行适当的分解,如图2,则()()221112423x x x x ++=++.根据阅读材料解决下列问题:(1)用十字相乘法分解因式:2627x x +-;(2)用十字相乘法分解因式:2673x x --;(3)结合本题知识,分解因式:220()7()6x y x y +++-.参考答案: 1.D【分析】本题考查了因式分解;根据因式分解-十字相乘法,提公因式法与公式法的综合运用,进行分解逐一判断即可. 【详解】解:A 、()()32(1)11x x x x x x x -=-=+-故本选项不符合题意;B 、229(3)(3)x y x y x y -=+-故本选项不符合题意;C 、()()23221x x x x -+=--故本选项不符合题意;D 、223(3)1)x x x x --=-+(故本选项符合题意; 故选:D .2.D【分析】本题考查的是分式有意义的条件,利用十字乘法分解因式,根据分式有意义的条件:分母不为零可得 ²20x x --≠,再解即可. 【详解】解:由题意得: ²20x x --≠ 210x x解得: 2x ≠且1x ≠-故选: D .3.A【分析】本题考查的是利用十字乘法分解因式,掌握十字乘法是解本题的关键.【详解】解:()()24313x x x x -+=--;∴1x -是多项式243x x -+的因式;故选A4.D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∴甲与乙相乘的积为29(3)(3)x x x -=+-,乙与丙相乘的积为()262(3)x x x x +-=-+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数 ∴甲为3x -,乙为3x +,丙为2x则甲与丙相减的差为:()(3)21x x ---=-;故选:D5.D【分析】本题主要考查了分解因式,正确把每个选项中的式子分解因式即可得到答案.【详解】解:A 、()222x x x x +=+故此选项不符合题意;B 、()()2422x x x -=+-故此选项不符合题意;C 、()()()()2221211112x x x x ++++=++=+故此选项不符合题意;D 、()()323441x x x x x x =+-+-故此选项符合题意; 故选:D .6.B【分析】本题主要考查了多项式乘以多项式以及因式分解,根据甲分解的结果求出c ,根据乙分解的结果求出b ,然后代入利用十字相乘法分解即可.【详解】解:∴()()24520x x x x -+=+-∴20c =-∴()()23412x x x x +-=--∴1b∴2x bx c ++220x x =--()()45x x =+-故选:B .7.A【分析】由于()()2221+-=+-x x x x ,而多项式432237x x ax x b -+++能被22x x +-整除,则432237x x ax x b -+++能被()()21x x +-整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x -+++=+-,则2x =-和1x =时4322370x x ax x b -+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值.【详解】解:∴()()2221+-=+-x x x x∴432237x x ax x b -+++能被()()21x x +-整除设商是A .则()()43223721x x ax x b A x x -+++=+-则2x =-和1x =时右边都等于0,所以左边也等于0.当2x =-时43223732244144420x x ax x b a b a b -+++=++-+=++= ∴当1x =时43223723760x x ax x b a b a b -+++=-+++=++= ∴-①②,得3360a +=∴12a =-∴66b a =--=.∴:12:62a b =-=-故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =-和1x =时原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.8.D【分析】已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 的值即可.【详解】解:已知等式整理得:()()()2215333x mx x x n x n x n +-=--=+--+可得3m n =-- 315n =-解得:2m = 5n =-故答案为:D .【点睛】此题考查了因式分解-十字相乘法,熟练掌握运算法则是解本题的关键. 9.(3)(2)a a +-【分析】解:本题考查了公式法进行因式分解,掌握2()()()x p q x pq x p x q +++=++进行因式分解是解题的关键.【详解】26(3)(2)a a a a +-=+-故答案为:(3)(2)a a +-.10.(2)(3)y y y --【分析】本题考查提公因式法,十字相乘法,掌握提公因式法以及2()()()x p q x pq x p x q +++=++是正确解答的关键.先提公因式y ,再利用十字相乘法进行因式分解即可.【详解】解:原式2(56)y y y =-+(2)(3)y y y =--.故答案为:(2)(3)y y y --.11.()()21a a a --/()()12a a a --【分析】先去括号合并后,直接提取公因式a ,再利用十字相乘法分解因式即可.本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止【详解】解:2(3)2a a a -+3232a a a -+=()232a a a =-+(2)(1)a a a =--.故答案为:(2)(1)a a a --.12.1±或5±【分析】此题考查因式分解—十字相乘法,解题关键在于理解()()()2x a b x ab x a x b +++=++.把6-分成3和2-,3-和2,6和1-,6-和1,进而得到答案.【详解】解:当()()2632x mx x x +-=+-时()321m =+-=当()()2632x mx x x +-=-+时321m =-+=-当()()2661x mx x x +-=-+时615m =-+=-当()()2661x mx x x +-=+-时615m =-=综上所述:m 的取值是1±或5±故答案为:1±或5±.13.6±【分析】本题考查十字相乘法进行因式分解,根据5可以分成15⨯或()()15-⨯-即可求解.【详解】解:155⨯= ()()155-⨯-=()()21565x x x x ++=++ ()()26515x x x x =---+∴如果关于x 的二次三项式25x kx ++可以用十字相乘法进行因式分解,那么整数k 等于6±. 故答案为:6±.14.()()21x x +-【分析】本题主要考查了根与系数的关系、十字相乘法因式分解的知识点,先根据根与系数的关系确定b 、c 的值,然后再运用十字相乘法因式分解即可.【详解】解:∴关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2- 根据根与系数的关系可得:()12b -=+- ()12c =⨯-∴1b = 2c =-∴()()22221x bx c x x x x ++=+-=+-故答案为:()()21x x +-.15.()()211x x --【分析】本题考查了一元二次方程的解及因式分解,将1x =代入原方程,求出m 的值,然后再进行因式分解是解决问题的关键.【详解】解:∴关于x 的一元二次方程2210x mx ++=有一个根是1∴把1x =代入,得210m ++=解得:3m =-.则()()2221231211x mx x x x x ++=-+=--故答案为:()()211x x --.16.()()23x x +-【分析】根据一元二次方程的根与系数的关系求出p q ,,再进行因式分解即可.【详解】解:∴方程20x px q ++=的两个根分别是2和3-∴23p -=- ()23q ⨯-=∴1,6p q ==-∴()()2623x x x x --=+-;故答案为()()23x x +-.【点睛】本题主要考查一元二次方程根与系数的关系,因式分解,熟练掌握一元二次方程根与系数的关系是解题的关键.17.(1)()()322x x x +-(2)()23y x y --(3)()()26x x +-【分析】本题考查因式分解的知识,解题的关键是掌握因式分解的方法:提公因式法,公式法和十字相乘法,即可.(1)先提公因式3x ,然后根据()()22a b a b a b -=+-,即可; (2)先提公因式y -,再根据()2222a b a ab b ±=±+,即可;(3)根据十字相乘法,进行因式分解,即可.【详解】(1)3312x x -()234x x =- ()()322x x x =+-;(2)22369xy x y y --()2269y xy x y =--++()2296y x xy y =--+ ()23y x y =--; (3)2412x x --()()26x x =+-.18.3a b += 2ab =.【详解】解:因为()()()2x a x b x a b x ab ++=+++,且232x x ++因式分解的结果是()()x a x b ++所以3a b += 2ab =.19.(1)(5)(15)x x --(2)(14)(2)x x +-【分析】本题考查了因式分解,解答本题的关键是理解题意,明确题目中的分解方法. (1)仿照题目中的例子进行分解即可得出答案;(2)仿照题目中的例子进行分解即可得出答案.【详解】(1)解:75(5)(15)=-⨯- (5)(15)20-+-=-22075(5)(15)x x x x ∴-+=--;(2)解:原式222266628x x =+⋅⋅+--2(6)3628x =+--2(6)64x =+-(68)(68)x x =+++-(14)(2)x x =+-.20.(1)()()39x x -+(2)()()2331x x -+(3)()()443552x y x y +++-【分析】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.【详解】(1)解:2627x x +-第 11 页 共 11 页 ()()39x x =-+;(2)解:2673x x -- ()()2331x x =-+;(3)解:220()7()6x y x y +++- ()()4352x y x y ⎡⎤⎡⎤=+++-⎣⎦⎣⎦ ()()443552x y x y =+++-.。
因式分解(提公因式法、公式法、十字相乘法、分组分解法)
整式乘法中,有 (x+a)(x+b)=x2+(a+b)x+ab
口答计算结果
(1) (x+3)(x+4) (2) (x+3)(x-4) (3) (x-3)(x+4) (4) (x-3)(x-4)
x2 px q
=
x2 (a b)x ab (x + a )(x + b)
“头” 平方, “尾” 平方, “头” “尾”两倍中间放.
判别下列各式是不是 完全平方式
1x2 2xy y2 是 2A2 2AB B2 是 3甲2 2甲乙 乙2 是 42 2 2 是
a2 2abb2 a2 2abb2
完全平方式的特点:
1.20042+2004能被2005整除吗?
2.先分解因式,再求值
4a2(x 7) 3(x 7), 其中a 5, x 3.
20023 2 20022 2000 20023 20022 2003
六.利用分解因式计算: (1)-4.2×3.14-3.5×3.14+17.7×3.14 解:原式 =-3.14 ×(4.2+3.5-17.7)=-3.14×(-10)=-31.4
思维延伸
2. 对于任意的自然数n, (n+7)2- (n-5)2能被 24整除吗? 为什么?
巩固练习:
1.选择题:
1)下列各式能用平方差公式分解因式的是( D )
A. 4X²+y² B. 4 x- (-y)² C. -4 X²-y³ D. - X²+ y²
2) -4a²+1分解因式的结果应是 ( D )
(八年级数学教案)《因式分解-分组分解与十字相乘法》知识点归纳
《因式分解-分组分解与十字相乘法》知识点归纳八年级数学教案★★ 知识体系梳理♦分组分解法:用分组分解法来分解的多项式一般至少有四项,分组不是盲目的,要有预见性.也就是说,分组后每组之间必须要有公因式可提取,或者分组后可直接运用公式。
1、分组后能提公因式;2、分组后能运用公式♦十字相乘法:、型的二次三项式因式分解:(其中,)、二次三项式的分解:如果二次项系数分解成、,常数项分解成、;并且等于一次项系数那么二次三项式:借助于画十字交叉线排列如下:♦因式分解的一般步骤:一提二代三分组①、如果多项式的各项有公因式,那么先提取公因式;②、提取公因式以后或没有公因式,再考虑公式法或十字相乘法;③、对二次三项式先考虑能否用完全平方公式,再考虑能否用十字相乘法;④、用以上方法不能分解的三项以上的多项式,考虑用分组分解法。
♦因式分解几点注意与说明:①、因式分解要进行到不能再分解为止;②、结果中相同因式应写成幕的形式;③、根据不同多项式的特点,灵活的综合应用各种方法分解因式是本章的重点和难点,因此掌握好因式分解的概念、方法、步骤是学好本章的关键。
★★ 典型例题、解法导航♦考点一:十字相乘法1、型三项式的分解【例1】计算:(1)(2) (3) (4)运用上面的结果分解因式:方法点金:型三项式关键是把常数分解为两个数之积),而这两个数的和正好等于一次项的系数()◎变式议练一:1、2、已知能分解成两个整系数的一次因式的乘积,则符合条件的整数的个数为()3、把下列各式分解因式:①、②、③、2、形如: 的二次三项式的因式分解【例2】将下列各式分解因式:(1);(2);(3)方法点金:(1)二次项系数不为1的二次三项式进行因式分解时,分解因数及十字相乘都有多种情况产生,往往要经过多次尝试,,直到满足条件为止。
(2)—般地,二次项系数只考虑分解为两个正因数的积。
◎变式议练二:将下列各式分解因式:八年级数学教案♦考点二:运用分组分解法分解因式【例】分组后能提公因式(二二分组)①、②、【例】分组后能运用公式(一三分组)①、◎变式议练三:分解因式:(1)(2)♦考点三:能力解读【例】分解因式:(1)(2)(3)(希望杯”邀请赛试题)【例6】若(),求的值♦♦♦快乐体验一、选择题、填空题:1、可以分解因式为()、、、、2、已知,那么;3、(北京)把代数式分解因式,下列结果正确的是-----()、、、、二、分解因式:①、②、③、④、三、(能力提升)把下列多项式分解因式:①、②、③、④、(为正整数)、已知:,求:的值;。
18十字相乘法及分组分解法(提高)知识讲解及其练习 含答案
十字相乘法及分组分解法(提高)【学习目标】1. 熟练掌握首项系数为1的形如pq x q p x +++)(2型的二次三项式的因式分解. 2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解. 3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度) 4. 掌握好简单的分组分解法. 【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号(2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:方法分类分组方法特点分组分解法四项二项、二项①按字母分组②按系数分组③符合公式的两项分组三项、一项先完全平方公式后平方差公式五项三项、二项各组之间有公因式六项三项、三项二项、二项、二项各组之间有公因式三项、二项、一项可化为二次三项式要点四、添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、分解因式:22(1)(6136)x a x a a++--+【答案与解析】解:原式=()()()212332x a x a a++---()()()()23322332x a x ax a x a=--+-⎡⎤⎡⎤⎣⎦⎣⎦=-++-【总结升华】将a视作常数,就以x为主元十字相乘可解决.举一反三:【变式】分解因式:23345xy y x y++--【答案】解:原式2(34)35(35)(1)y x y x y x y=+-+-=+-+2、分解因式:【思路点拨】该题可以先将()2a a-看作一个整体进行十字相乘法分解,接着再套用一次十字相乘.【答案与解析】 解: 因为()()()22221214a a a a a a ----=--所以:原式=[-2][-12]=22(2)(12)a a a a ----=()()()()1234a a a a +-+-【总结升华】十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握. 举一反三:【变式】分解因式:222(3)2(3)8x x x x ----; 【答案】解:原式()()223432x x xx =---+()()()()4112x x x x =-+--3、分解下列因式(1)22(1)(2)12x x x x ++++- (2)22(33)(34)8x x x x +-++- 【答案与解析】解:(1)令21x x t ++=,则原式222(1)1212(4)(3)(5)(2)t t t t t t x x x x =+-=+-=+-=+++- 2(2)(1)(5)x x x x =+-++(2)令23x x m +=,原式2(3)(4)820(5)(4)m m m m m m =-+-=+-=+- 222(35)(34)(4)(1)(35)x x x x x x x x =+++-=+-++【总结升华】此两道小题结构都非常有特点,欲分解都必须先拆开,再仔细观察每个式子中都存在大量相同的因式→整体性想法.整体性思路又称换元法,这与我们生活中搬家有些类似,要先将一些碎东西找包,会省许多事. 类型二、分组分解法4、分解因式:222332x xy y x y -++-+【思路点拨】对完全平方公式熟悉的同学,一看见该式,首先想到的肯定是式子中前三项恰好构成2()x y -,第4、5项→3()x y -. 【答案与解析】解:原式2()3()2x y x y =-+-+(1)(2)x y x y =-+-+【总结升华】①熟记公式在复杂背景下识别公式架构很重要;②我们前面练习中无论公式、配方、十字相乘一般都只涉及单一字母,其实代数式学习是一个结构的学习,其中任一个字母均可被一个复杂代数式来替代,故有时要有一些整体性认识的想法. 举一反三:【变式1】分解因式:(1)22a b ac bc -++(2)225533a b a b --+ (3)23345xy y x y ++--【答案】解:(1)原式()()()()()a b a b c a b a b a b c =+-++=+-+;(2)原式()()()()()()()225353553a b a b a b a b a b a b a b =---=+---=-+-; (3)原式233453(1)(1)(5)(1)(35)xy x y y x y y y y x y =++--=+++-=++-. 【变式2】(秋•昌江区校级期末)分解因式:2242244241a b c ab ac bc ++--+-. 【答案】解:2242244241a b c ab ac bc ++--+- =()()()2222444241a b ab ac bc c +-+-++- =()()()()222222211b a cb ac c -+-++-=()()222121b a c b a c -++-+-.类型三、拆项或添项分解因式5、(春•吉州区期末)阅读理解:对于二次三项式x 2+2ax+a 2可以直接用公式法分解为(x+a )2的形式,但对于二次三项式x 2+2ax ﹣8a 2,就不能直接用公式法了.我们可以在二次三项式x2+2ax﹣8a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变,于是又:x2+2ax﹣8a2=x2+2ax﹣8a2+a2﹣a2=(x2+2ax+a2)﹣8a2﹣a2=(x+a)2﹣9a2=[(x+a)+3a][(x+a)﹣3]=(x+4a)(x﹣2a)像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x2+2ax﹣3a2分解因式.(2)直接填空:请用上述的添项法将方程的x2﹣4xy+3y2=0化为(x﹣)•(x﹣)=0并直接写出y与x的关系式.(满足xy≠0,且x≠y)(3)先化简﹣﹣,再利用(2)中y与x的关系式求值.【答案与解析】解:(1)x2+2ax﹣3a2=x2+2ax+a2﹣4a2=(x+a)2﹣4a2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a);(2)x2﹣4xy+3y2=x2﹣4xy+4y2﹣y2=(x﹣2y)2﹣y2=(x﹣2y+y)(x﹣2y﹣y)=(x﹣y)(x﹣3y);x=y或x=3y;故答案为:y;3y(3)原式===﹣,若x=y,原式=﹣2;若x=3y,原式=﹣23.【总结升华】此题考查了因式分解﹣添(拆)项法,正确地添(拆)项是解本题的关键.【巩固练习】 一.选择题1. (秋·惠民县期末)如果多项式22mx nx --能因式分解为()()32x x p ++,那么下列结论正确的是 ( ).A.m =6B.n =1C.p =-2D.mnp =3 2. 若()2230x a b x ab x x +++=--,且b a <,则b 的值为( ). A.5 B.-6 C.-5 D.6 3. 将()()256x y x y +-+-因式分解的结果是( ).A.()()23x y x y +++-B. ()()23x y x y +-++C.()()61x y x y +-++D. ()()61x y x y +++-4.(滨湖区校级期中)把多项式1+a+b+ab 分解因式的结果是( ) A .(a ﹣1)(b ﹣1) B .(a+1)(b+1) C .(a+1)(b ﹣1) D .(a ﹣1)(b+1) 5. 对224293x x y y +--运用分组分解法分解因式,分组正确的是( )A. 22(42)(93)x x y y ++-- B. 22(49)(23)x y x y -+- C. 22(43)(29)x y x y -+- D. 22(423)9x x y y +-- 6.如果3233x x x m +-+有一个因式为()3x +,那么m 的值是( )A. -9B.9C.-1D.1 二.填空题7.(•黄冈模拟)分解因式:2242y xy x --+= . 8. 分解因式:224202536a ab b -+-= . 9.5321x x x -+-分解因式的结果是__________. 10. 如果代数式有一因式,则a 的值为_________.11.若3223a ab ab b --+有因式()a b -,则另外的因式是_________. 12. 分解因式:(1)3)32(2-+-+k x k kx ;(2)mn m x m n x -+-+22)2( 三.解答题13. 已知0x y +=,31x y +=, 求2231213x xy y ++的值.14. 分解下列因式:(1)()()128222+---a a a a(2)32344xy xy x y x y -++(3)42222459x y x y y --(4)43226a a a +-15.(•巴南区一模)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法. 如:ax+by+bx+ay=(ax+bx )+(ay+by ) =x (a+b )+y (a+b ) =(a+b )(x+y ) 2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1 =(x+y+1)(x+y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x 2+2x ﹣3 =x 2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2) =(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7;(3)分解因式:a2+4ab﹣5b2.【答案与解析】 一.选择题1. 【答案】B ;【解析】()()()223233222x x p x p x p mx nx ++=+++=--,∴22,32p p n =-+=-,解得1n =.2. 【答案】B ;【解析】()()23065x x x x --=-+,由b a <,所以6b =-. 3. 【答案】C ;【解析】把()x y +看成一个整体,分解()()()()25661x y x y x y x y +-+-=+-++. 4. 【答案】B ;【解析】解:1+a+b+ab=(1+a )+b (1+a ) =(1+a )(1+b ). 故选:B .5. 【答案】B ;【解析】A 各组经过提取公因式后,组与组之间无公因式可提取,所以分组不合理.B 第一组可用平方差公式分解得()()2323x y x y +-,与第二组有公因式23x y-可提取,所以分组合理,C 与D 各组均无公因式,也不符合公式,所以无法继续进行下去,分组不合理.6. 【答案】A ;【解析】由题意当3x =-时,代数式为零,解得9m =-. 二.填空题7. 【答案】()()22x y x y -+--. 【解析】解:2242y xy x --+=()2224y xy x -+- =()24x y --=()()22x y x y -+--.8. 【答案】()()256256a b a b -+--; 【解析】原式()224202536a ab b=-+-()()()22256256256a b a b a b =--=-+--9. 【答案】()()()22111x x x x +--+;【解析】原式()()()()()()()23222321111111xxx x x x x x x =-+-=-+=+--+.10.【答案】16;【解析】由题意当4x =时,代数式等于0,解得16a =. 11.【答案】()()a b a b -+;【解析】()()322322a a b ab b a a b b a b --+=---()()2a b a b =-+.12.【答案】()()31kx k x +-+;()()x m x m n --+; 【解析】()()2(23)331kx k x k kx k x +-+-=+-+;()()()()22(2)x n m x m mn x m x m n x m x m n +-+-=---=--+⎡⎤⎣⎦.三.解答题13.【解析】解: ()()22231213334x xy y x y x y y ++=+++由0x y +=,31x y +=解得12y =所以,原式21301412⎛⎫=⨯⨯+⨯= ⎪⎝⎭.14.【解析】解:(1)原式()()()()()()22261223a a a a a a a a =----=+-+-;(2)原式()()()()222244222xy y x xxy x y xy x y x y ⎡⎤=-++=+-=++-+⎣⎦;(3)原式()()()()()()2422222245949123231y x x y x x y x x x =--=-+=+-+;(4)()()()4322222626232a a a aaa a a a +-=+-=-+.15.【解析】 解:(1)原式=(a+b )(a ﹣b )+(a ﹣b )=(a ﹣b )(a+b+1); (2)原式= x 2﹣6x+9-16=(x-3)2﹣16 =(x-3+4)(x-3-4) =(x+1)(x ﹣7); (3)原式= a 2+4ab ﹣5b 2= a 2+4ab+4b 2﹣9b2 = (a+2b )2﹣9b 2=(a +2b ﹣3b )(a+2b +3b )=(a﹣b)(a+5b).11。
第十一讲因式分解(分组分解法和十字相乘法)
第十一讲因式分解(分组分解法和十字相乘法)第一部分、教学目标:1、掌握十字相乘法和分组分解法分解因式2掌握十字相乘法在实际生活中的应用第二部分、教学重点、难点本节课的重点是会利用分组分解法等方法分解因式本节课的难点是因式分解在实际问题中的应用。
第三部分、教学过程例题讲解:例1、因式分解:m2﹣my+mx﹣yx=.【分析】原式两项两项结合提取公因式即可.【解答】解:原式=(m2﹣my)+(mx﹣yx)=m(m﹣y)+x(m﹣y)=(m﹣y)(m+x),故答案为:(m﹣y)(m+x).练1.1、分解因式:6k2+9km﹣6mn﹣4kn.解:6k2+9km﹣6mn﹣4kn=3k(2k+3m)﹣2n(3m+2k)=(2k+3m)(3k﹣2n).练1.2、观察下面分解因式的过程,并完成后面的习题分解因式:am+an+bm+bn解法一:原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:原式=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)根据你发现的方法,分解因式:(1)mx﹣my+nx﹣ny(2)2a+4b﹣3ma﹣6mb.【解答】(1)解法一:原式=(mx﹣my)+(nx﹣ny)=m(x﹣y)+n(x﹣y)=(m+n)(x﹣y);解法二:原式=(mx+nx)﹣(my+ny)=x(m+n)﹣y(m+n)=(m+n)(x﹣y);(2)解法一:原式=(2a+4b)﹣(3ma+6mb)=2(a+2b)﹣3m(a+2b)=(2﹣3m)(a+2b);解法二:原式=(2a﹣3ma)+(4b﹣6mb)=a(2﹣3m)+2b(2﹣3m)=(2﹣3m)(a+2b).例2、分解因式:(1)2x2﹣18;(2)a2﹣4ab+4b2﹣9.【分析】(1)先提2,然后利用平方差公式分解因式;(2)先分组,把前面三项利用完全平方公式表示,然后利用平方差公式分解.【解答】解:(1)原式=2(x2﹣9)=2(x+3)(x﹣3);(2)原式=(a﹣2b)2﹣32=(a﹣2b+3)(a﹣2b﹣3).练2.2、分解因式:25﹣4x2+4xy﹣y2.解:25﹣4x2+4xy﹣y2,=25﹣(4x2﹣4xy+y2),=52﹣(2x﹣y)2,=(5+2x﹣y)(5﹣2x+y)例3、先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x﹣3y)+(2x﹣3y)2.(2)因式分解:(a+b)(a+b﹣4)+4;【分析】(1)将(2x﹣3y)看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b,代入后因式分解后代入即可将原式因式分解.【解答】解:(1)原式=(1+2x﹣3y)2.(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,故(a+b)(a+b﹣4)+4=(a+b﹣2)2.练3.2、先阅读下列两段材料,再解答下列问题:(一)例题:分解因式:(a+b)2﹣2(a+b)+1解:将“a+b”看成整体,设M=a+b,则原式=M2﹣2M+1=(M﹣1)2,再将“M”还原,得原式=(a+b﹣1)2上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法;(二)常用的分解因式的方法有提取公因式法和公式法但有的多项式只用上述一种方法无法分解,例如x2﹣4y2﹣2x+4y,我们细心观察就会发现,前两项可以分解,后两项也可以分解,分别分解后会产生公因式就可以完整的分解了.过程为:x2﹣4y2﹣2x+4y=(x2﹣4y2)﹣2(x﹣2y)=(x﹣2y)(x+2y)﹣2(x ﹣2y)=(x﹣2y)(x+2y﹣2).这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述数学思想方法解决下列问题:(1)分解因式(3a+2b)2﹣(2a+3b)2;(2)分解因式.xy2﹣2xy+2y﹣4;(3)分解因式:(a+b)(a+b﹣4)﹣c2+4.解:(1)(3a+2b)2﹣(2a+3b)2=(3a+2b﹣2a﹣3b)(3a+2b+2a+3b)=5(a﹣b)(a+b);(2)xy2﹣2xy+2y﹣4=xy(y﹣2)+2(y﹣2)=(xy+2)(y﹣2);(3)(a+b)(a+b﹣4)﹣c2+4=(a+b)2﹣4(a+b)+4﹣c2=(a+b﹣2)2﹣c2=(a+b﹣2﹣c)(a+b﹣2+c).例4、x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子因式分解呢?因为(x+p)(x+q)=x2+(p+q)x+pq,所以,根据因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+(p+q)x+pq=(x+p)(x+q).如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2)上述过程还可以形象的用十字相乘的形式表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项的系数,如图.这样,我们可以得到:x2+3x+2=(x+1)(x+2)利用这种方法,将下列多项式分解因式:(1)x2+7x+10(2)﹣2x2﹣6x+36【分析】(1)仿照题中的方法将原式分解即可;(2)仿照题中的方法将原式分解即可.【解答】解:(1)x2+7x+10=(x+5)(x+2);(2)﹣2x2﹣6x+36=﹣2(x2+3x﹣18)=﹣2(x+6)(x﹣3).例5、若m+n=4,则2m2+4mn+2n2﹣5的值为()A.27B.11C.3D.0【分析】根据m+n=4和完全平方公式,将所求式子变形,即可得到所求式子的值.【解答】解:∵m+n=4,∴2m2+4mn+2n2﹣5=2(m+n)2﹣5=2×42﹣5=2×16﹣5=32﹣5=27,故选:A.练5.1、若m2+m﹣1=0,则m3+2m2+2019的值为(A)A.2020B.2019C.2021D.2018练5.2、已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab﹣ac﹣bc的值为(D)A.0B.1C.2D.3例6、已知a,b,c是△ABC的三条边,且满足a2+b2+c2﹣ab﹣bc﹣ac=0,判断△ABC形状【分析】把等式两边乘以2,再利用完全平方公式得到(a﹣b)2+(b﹣c)2+(a﹣c)2=0,然后根据非负数的性质得到a=b=c,从而可判断△ABC的现状.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2﹣2ab﹣2bc﹣2ac=0,∴(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a﹣b=0,b﹣c=0,a﹣c=0,∴a=b=c,∴△ABC为等边三角形.练6.1、已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值(B)A.大于零B.小于零C.等于零D.不能确定练6.2、已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是(C)A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形阅读并解决问题:分解因式(a+b)2+2(a+b)+1.解:设a+b=x,则原式=x2+2x+1=(x+1)2=(a+b+1)2.这样的解题方法叫做“换元法”,即当复杂的多项式中,某﹣﹣部分重复出现时,我们用字母将其替换,从而简化这个多项式换元法是一一个重要的数学方法,不少问题能用换元法解决.请用“换元法”对下列多项式进行因式分解:(1)(m+n)2﹣18(m+n)+81;(2)(x2﹣4x+2)(x2﹣4x+6)+4【解答】解:(1)设m+n=x,则原式=x2﹣18x+81=(x﹣9)2=(m+n﹣9)2;(2)设x2﹣4x+2=y,则原式=y(y+4)+4=y2+4y+4=(y+2)2=(x2﹣4x+2+2)2=[(x﹣2)2]2=(x﹣2)4第四部分、板书设计第五部分、作业布置今天是2020年月号星期天气今日所学:因式分解今日作业:新思维第页下次上课时间:下周正常上课第六部分、课后反思。
因式分解16种方法
因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:—3x2• x=-x3x —1)分解因式技巧1•分解因式与整式乘法是互为逆变形。
2. 分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“ ”号时,多项式的各项都要变号。
提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
初中数学因式分解-十字相乘与分组分解法(含解析)
初中数学因式分解-十字相乘与分组分解考试要求:知识点汇总:一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.例题精讲:一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】[][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】[][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。
十字相乘和分组分解法因式分解-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)
十字相乘和分组分解法因式分解【知识梳理】一、十字相乘十字相乘法:如果二次三项式2x px q ++中的常数项q 能分解成两个因式a 、b 的积,而且一次项系数p 又恰好是a b +,那么2x px q ++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b ++=+++=++要将二次三项式2x px q ++分解因式,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p , 满足这两个条件便可以进行如下分解因式, 即:22()()()x px q x a b x ab x a x b ++=+++=++.由于把2x px q ++中的q 分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.二、分组分解如何将多项式am an bm bn +++因式分解?分析:很显然,多项式am an bm bn +++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n +=+,()bm bn b m n +=+而:()()()()a m n b m n m n a b +++=+.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法. 说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.【考点剖析】一.因式分解-十字相乘法等(共22小题)1.(2022秋•静安区校级期中)多项式77x 2﹣13x ﹣30可因式分解成(7x +a )(bx +c ),其中a 、b 、c 均为整数,求a +b +c 之值为何?( )A .0B .10C .12D .22【分析】首先利用十字交乘法将77x2﹣13x ﹣30因式分解,继而求得a ,b ,c 的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).2.(2021秋•奉贤区期末)分解因式:x2+3x﹣10=.【分析】原式利用十字相乘法分解即可.【解答】解:原式=(x﹣2)(x+5),故答案为:(x﹣2)(x+5)【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.3.(2022秋•闵行区校级期末)因式分解:(y2﹣y)2﹣14(y2﹣y)+24.【分析】直接利用十字相乘法分解因式得出答案【解答】解:原式=(y2﹣y﹣2)(y2﹣y﹣12)=(y﹣2)(y+1)(y﹣4)(y+3).【点评】此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.4.(20222x2﹣6x﹣8=.【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【解答】解:原式=2(x2﹣3x﹣4)=2(x﹣4)(x+1),故答案为:2(x﹣4)(x+1).【点评】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.5.(2022秋•虹口区校级期中)分解因式:x2﹣7xy﹣18y2=.【分析】由十字相乘法进行分解因式即可.【解答】解:x2﹣7xy﹣18y2=(x﹣9y)(x+2y).故答案是:(x﹣9y)(x+2y).【点评】本题考查因式分解,熟练掌握十字相乘法分解因式是解题的关键.6.(2022秋•宝山区期末)分解因式:2x2+6xy+4y2.【分析】先提公因式,再用十字相乘法因式分解即可.【解答】解:2x2+6xy+4y2=2(x2+3xy+2y2)=2(x+2y)(x+y).【点评】本题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解题的关键.7.(2022秋•宝山区期末)分解因式:x2﹣9x+14=(x+□)(x﹣7),其中□表示一个常数,则□的值是()A.7B.2C.﹣2D.﹣7【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣9x+14=(x﹣2)(x﹣7),∴□表示﹣2,故选:C.【点评】本题考查因式分解,熟练掌握利用十字相乘法进行因式分解是解题的关键.8.(2022秋•虹口区校级期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】∵4=﹣1×(﹣4),﹣1+(﹣4)=﹣5,∴可以用十字相乘法因式分解.【解答】解:当c=4时,x2﹣5x+c=x2﹣5x+4=(x﹣1)(x﹣4).故选:C.【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.9.(2022x2﹣5x﹣6=.【分析】因为﹣6×1=﹣6,﹣6+1=﹣5,所以利用十字相乘法分解因式即可.【解答】解:x2﹣5x﹣6=(x﹣6)(x+1).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.10.(2022秋•嘉定区校级期末)因式分解a2﹣a﹣6=.【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用十字相乘法求解.【解答】解:a2﹣a﹣6=(a+2)(a﹣3).故答案为:(a+2)(a﹣3).【点评】本题考查了因式分解.解题的关键是掌握十字相乘法因式分解.11.(2022秋•闵行区校级期中)因式分解:x2﹣5x﹣24=.【分析】用十字相乘法因式分解.【解答】解:x2﹣5x﹣24=(x﹣8)(x+3),故答案为:(x﹣8)(x+3),【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法,根据题意可知a、b是相互独立的,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值是解题关键.12.(2021秋•宝山区期末)分解因式:x2+4x﹣21=.【分析】根据因式分解﹣十字相乘法进行分解即可.【解答】解:x2+4x﹣21=(x+7)(x﹣3),故答案为:(x+7)(x﹣3).【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.13.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.14.(2022ax4﹣14ax2﹣32a.【分析】首先提取公因式a,再利用十字相乘法分解因式,再结合平方差公式分解因式即可.【解答】解:ax4﹣14ax2﹣32a=a(x4﹣14x2﹣32)=a(x2+2)(x2﹣16)=a(x2+2)(x+4)(x﹣4).【点评】此题主要考查了十字相乘法分解因式,正确运用公式是解题关键.15.(2022秋•嘉定区校级期中)阅读下列文字,解决问题.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.这样利用添项的方法,将原代数式中的部分(或全部)变形为完全平方的形式,这种方法叫做配方法.按照这个思路,试把多项式x4+3x2y2+4y4分解因式.【分析】把原式中的第二项的系数1变为4﹣1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.【解答】解:x4+3x2y2+4y4=x4+4x2y2+4y4﹣x2y2=(x2+2y2)2﹣x2y2=(x2+2y2+xy)(x2+2y2﹣xy).【点评】此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.16.(2021秋•普陀区期末)因式分解:(x2+4x)2﹣(x2+4x)﹣20.【分析】直接利用十字相乘法分解因式得出即可.【解答】解:原式=(x2+4x﹣5)(x2+4x+4)=(x+5)(x﹣1)(x+2)2.【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.17.(2022秋•虹口区校级期中)分解因式:(a2﹣a)2+2(a2﹣a)﹣8.【分析】先变形,局部逆用完全平方公式,再使用十字相乘法.【解答】解:(a2﹣a)2+2(a2﹣a)﹣8=(a2﹣a)2+2(a2﹣a)+1﹣9=(a2﹣a+1)2﹣9=(a2﹣a+1+3)(a2﹣a+1﹣3)=(a2﹣a+4)(a2﹣a﹣2)=(a2﹣a+4)(a﹣2)(a+1).【点评】本题主要考查运用公式法、十字相乘法进行因式分解,熟练掌握公式法、十字相乘法是解决本题的关键.18.(2021秋•浦东新区期末)分解因式:x2﹣4x﹣12=.【分析】因为﹣6×2=﹣12,﹣6+2=﹣4,所以利用十字相乘法分解因式即可.【解答】解:x2﹣4x﹣12=(x﹣6)(x+2).故答案为:(x﹣6)(x+2).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.19.(2022秋•上海期末)分解因式:3x2﹣9x﹣30.【分析】先提取公因式,再利用十字相乘法分解.【解答】解:3x2﹣9x﹣30=3(x2﹣3x﹣10)=3(x﹣5)(x+2).【点评】本题考查了整式的因式分解,掌握提公因式法和十字相乘法是解决本题的关键.20.(2022秋•徐汇区期末)分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.【分析】(1)先提取公因式,再利用十字相乘法;(2)先利用十字相乘法,再利用公式法和十字相乘法.【解答】解:(1)2ab2﹣6a2b2+4a3b2=2ab2(1﹣3a+2a2)=2ab2(2a﹣1)(a﹣1);(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24=(x2﹣4x﹣8)(x2﹣4x+3)=[(x2﹣4x+4)﹣12](x﹣3)(x﹣1)=[(x﹣2)2﹣12](x﹣3)(x﹣1)=(x﹣2+2)(x﹣2﹣2)(x﹣3)(x﹣1).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.21.(2021秋•金山区期末)分解因式:(x2﹣x)2﹣18(x2﹣x)+72.【分析】把(x2﹣x)看成一个整体,利用十字相乘法分解即可.【解答】解:(x2﹣x)2﹣18(x2﹣x)+72=[(x2﹣x)﹣6][(x2﹣x)﹣12]=(x2﹣x﹣6)(x2﹣x﹣12)=(x﹣3)(x+2)(x﹣4)(x+3).【点评】本题考查了整式的因式分解,掌握十字相乘法和整体的思想是解决本题的关键.22.(2021秋•奉贤区期末)分解因式:(a2+a)2﹣8(a2+a)+12.【分析】因为﹣2×(a2+a)=﹣2(a2+a),﹣6×(a2+a)=﹣6(a2+a),所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.【解答】解:根据十字相乘法,(a2+a)2﹣8(a2+a)+12,=(a2+a﹣2)(a2+a﹣6),=(a+2)(a﹣1)(a+3)(a﹣2).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.二.因式分解-分组分解法(共12小题)23.(2022秋•徐汇区期末)分解因式:xy+(x+1)(y+1)(xy+1).【分析】根据分组法和十字相乘法因式分解即可.【解答】解:xy+(x+1)(y+1)(xy+1)=xy+(xy+x+y+1)(xy+1)=xy+[(xy+1)+(x+y)](xy+1)=(xy+1)2+(x+y)(xy+1)+xy=(xy+x+1)(xy+y+1).【点评】本题考查了分组法进行因式分解,熟练掌握分组法和十字相乘法是解题的关键.24.(2022秋•青浦区校级期末)因式分解:x2+4y﹣1﹣4y2.【分析】首先重新分组,进而利用完全平方公式以及平方差公式分解因式得出答案即可.【解答】解:x2+4y﹣1﹣4y2.x2﹣(﹣4y+4y2+1)=x2﹣(1﹣2y)2=(x﹣2y+1)(x+2y﹣1).【点评】此题主要考查了分组分解法以及公式法分解因式,正确分组是解题关键.25.(2022秋•浦东新区校级期末)分解因式:(1)m2﹣n2+6n﹣9;(2)(x+2y)x2+6(x+2y)x﹣7x﹣14y.【分析】(1)根据平方差公式和完全平方公式解答;(2)用提公因式法和十字相乘法解答.【解答】解:(1)原式=m2﹣(n2﹣6n+9)=m2﹣(n﹣3)2=(m﹣n+3)(m+n﹣3);(2)原式=(x+2y)x2+6(x+2y)x﹣7(x+2y)=(x+2y)(x2+6x﹣7)=(x+2y)(x﹣1)(x+7).【点评】本题考查了因式分解,熟悉乘法公式和提公因式法是解题的关键.26.(2022秋•闵行区校级期末)分解因式:2x3﹣2x2y+8y﹣8x.【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.27.(2022秋•闵行区校级期中)因式分解:a2﹣6ab+9b2﹣16.【分析】先分成两组,用完全平方公式,再用平方差公式分解因式.【解答】解:原式=(a2﹣6ab+9b2)﹣16=(a﹣3b)2﹣42=(a﹣3b+4)(a﹣3b﹣4).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,完全平方公式和平方差公式的熟练应用是解题关键.28.(2022秋•青浦区校级期中)因式分解:2ac﹣6ad+bc﹣3bd.【分析】首先将前两项以及后两项提取公因式,进而分解因式得出即可.【解答】解:2ac﹣6ad+bc﹣3bd=2a(c﹣3d)+b(c﹣3d)=(c﹣3d)(2a+b).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.29.(2022秋•上海期末)分解因式:x2﹣xy+ax﹣ay=.【解答】解:x2﹣xy+ax﹣ay=x(x﹣y)+a(x﹣y)=(x﹣y)(x+a).故答案为:(x﹣y)(x+a).【点评】本题考查了整式的因式分解,掌握分组分解法和提公因式法是解决本题的关键.30.(2022秋•宝山区校级期末)分解因式:b2﹣4a2﹣1+4a.【分析】利用分组分解法,将﹣4a2﹣1+4a分为一组,先利用完全平方公式,再利用平方差公式即可.【解答】解:原式=b2﹣(4a2+1﹣4a)=b2﹣(2a﹣1)2=[b+(2a﹣1)][b﹣(2a﹣1)]=(b+2a﹣1)(b﹣2a+1).【点评】本题考查分组分解法分解因式,掌握分组的原则和分组的方法是正确解答的前提,掌握完全平方公式、平方差公式的结构特征是解决问题的关键.31.(2022秋•嘉定区校级期末)因式分解:x2﹣4+4y2﹣4xy.【分析】直接将原式分组,再利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x2﹣4+4y2﹣4xy=x2+4y2﹣4xy﹣4=(x﹣2y)2﹣4=(x﹣2y+2)(x﹣2y﹣2).【点评】此题主要考查了分组分解法分解因式,正确运用公式是解题关键.32.(2022秋•徐汇区期末)分解因式:x2+4z2﹣9y2+4xz=.【分析】先利用完全平方公式,再利用平方差公式.【解答】解:x2+4z2﹣9y2+4xz=x2+4z2+4xz﹣9y2=(x+2z)2﹣9y2=(x+2z+3y)(x+2z﹣3y).故答案为:(x+2z+3y)(x+2z﹣3y).【点评】本题主要考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.33.(2022秋•宝山区期末)分解因式:m2﹣2m+1﹣4n2.【分析】先分组再利用平方差公式.【解答】解:m2﹣2m+1﹣4n2=(m﹣1)2﹣4n2=(m﹣1+2n)(m﹣1﹣2n).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.34.(2022秋•闵行区校级期中)因式分解:x2+9xy+18y2﹣3x﹣9y.【分析】先把多项式按三、二分组,再分别因式分解,最后提取公因式.【解答】解:x2+9xy+18y2﹣3x﹣9y=(x2+9xy+18y2)﹣(3x+9y)=(x+3y)(x+6y)﹣3(x+3y)=(x+3y)(x+6y﹣3).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式和十字相乘法是解决本题的关键.三.因式分解的应用(共9小题)35.(2022秋•青浦区校级期末)用合理的方法计算:7.52×1.6﹣2.52×1.6.【分析】先利用提取公因式法,再利用平方差公式因式分解求得答案即可.【解答】解:原式=(7.52﹣2.52)×1.6=(7.5+2.5)×(7.5﹣2.5)×1.6=10×5×1.6=80.【点评】此题考查因式分解的实际运用,掌握提取公因式法和平方差公式是解决问题的关键.36.(2022秋•黄浦区期中)已知x﹣y=2,x2+y2=6,(1)求代数式xy的值;(2)求代数式x3y﹣3x2y2+xy3的值.【分析】(1)根据x2+y2=(x﹣y)2+2xy,再将已知代入即可;(2)将所求的式子变形为xy(x2﹣3xy+y2),再将x2+y2=6,xy=1代入求值即可.【解答】解:(1)∵x2+y2=(x﹣y)2+2xy,又∵x﹣y=2,x2+y2=6,∴6=4+2xy,∴xy=1;(2)x3y﹣3x2y2+xy3=xy(x2﹣3xy+y2),∵x2+y2=6,xy=1,∴原式=1×(6﹣3)=3.【点评】本题考查因式分解的应用,熟练掌握完全平方公式的变形形式,提取公因式法因式分解是解题的关键.37.(2022秋•静安区校级期中)已知x2﹣x﹣3=0,那么x3﹣2x2﹣2x+2022=.【分析】根据x2﹣x﹣3=0,得出x2=x+3,代入求值即可.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x3﹣2x2﹣2x+2022=x(x+3)﹣2x2﹣2x+2022=﹣x2+x+2022=﹣(x2﹣x﹣3)+2019=2019,故答案为:2019.【点评】本题主要考查因式分解的应用,熟练掌握因式分解是解题的关键.38.(2022秋•静安区校级期中)n是整数,式子[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0B.总是奇数C.总是偶数D.可能是奇数也可能是偶数【分析】根据题意,可以利用分类讨论的数学思想探索式子[1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.【解答】解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)=[1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选:C.【点评】本题考查因式分解的应用,解题的关键是明确题意,利用分类讨论的数学思想解答问题.39.(2022秋•闵行区校级期中)已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.【分析】根据已知条件得到a2﹣a=1,将要求的代数式化简得到a(a2+a)﹣a2﹣2a+6,两次代入求解即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,a3﹣2a+6=a3﹣a2+a2﹣2a+6=a(a2﹣a)+a2﹣2a+6=a+a2﹣2a+6=a2﹣a+6,将a2﹣a=1代入原式=1+6=7.故答案为:7.【点评】本题考查因式分解的应用,合理利用已知条件是关键.40.(2022秋•闵行区校级期中)已知a,b,c是三个连续的正整数,a2=33124,c2=33856,那么b2=.【分析】由于a2=33124,c2=33856,则利用平方差公式得到(c+a)(c﹣a)=732,再根据a、b、c是三个连续正整数得到c﹣a=2①,于是可计算出c+a=366②,然后由①②可解得c,从而得到b的值.【解答】解:c2﹣a2=(c+a)(c)=33856﹣33124=732,∵a、b、c是三个连续正整数,∴c﹣a=2,∴c+a=366,∴c=184,∴b=183,∴b2=33489.故答案为:33489.【点评】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.41.(2022秋•宝山区校级期中)a,b,c是正整数,且满足①a+b2﹣2c﹣2=0②3a2﹣8b+c=0,求abc的最小值(要有过程).【分析】根据②3a2﹣8b+c=0,得出c=8b﹣3a2,代入①a+b2﹣2c﹣2=0,得出(b﹣8)2=66﹣6a2﹣a,根据完全平方数得出a,b,c的值即可.【解答】解:∵②3a2﹣8b+c=0,∴c=8b﹣3a2,∵a+b2﹣2c﹣2=0,即a+b2﹣2(8b﹣3a2)﹣2=0,整理得(b﹣8)2=66﹣6a2﹣a,∴66﹣6a2﹣a是完全平方数,∴66﹣6a2﹣a的值可能为1,4,9,16,25,36,49,64,∵a为正整数,∴a=3,可得b=5或11,c=13或61,∴abc的最小值为3×5×13=195.【点评】本题主要考查因式分解的应用,熟练掌握因式分解的知识是解题的关键.42.(2022秋•杨浦区期中)已知:x﹣2y=8,xy=5,求代数式x3y+4xy3的值.【分析】首先运用提取公因式法分解因式,再配方,然后代入已知条件计算即可.【解答】解:∵x﹣2y=8,xy=5,∴x3y+4xy3=xy(x2+4y2)=xy[(x﹣2y)2+4xy]=5(82+4×5)=5×84=420.43.(2022秋•奉贤区期中)根据所学我们知道:可以通过用不同的方法求解长方形面积,从而得到一些数学等式.如图1可以表示的数学等式:(a+m)(b+n)=ab+an+bm+mn,请完成下列问题:(1)写出图2中所表示的数学等式:.(2)从图3可得(a+b)(a+b+c)=.(3)结合图4,已知a+b+c=6,a2+b2+c2=14,求ab+bc+ac的值.【分析】(1)(2)根据题意利用面积公式计算即可求解;(3)首先根据面积公式得到(a+b+c)(a+b+c)=a2+b2+c2+2ab+2ac+2bc,然后利用已知条件即可求解.【解答】解:(1)(a+1)(a+2)=a2+a+2a+2=a2+3a+2;故答案为:a2+3a+2;(2)(a+b )(a+b+c )=a2+b2+ab+ab+ac+bc =a2+2ab+b2+ac+bc ;故答案为:a2+2ab+b2+ac+bc ;(3)根据题意得;(a+b+c )(a+b+c )=a2+b2+c2+2ab+2ac+2bc ,而a+b+c =6,a2+b2+c2=14∴6×6=14+2ab+2ac+2bc ,∴ab+bc+ca =11.【点评】此题主要考查了因式分解的应用,解题的关键是正确理解题意,然后根据题意求解.【过关检测】一、单选题 1.(2023·上海·七年级假期作业)如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是( )A .2B .3C .4D .5【答案】C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x −+,不能用十字相乘法进行因式分解,不符合题意; B 、253x x −+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x −+=−−,能用十字相乘法进行因式分解,符合题意;D 、255x x -+,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解. 2.(2018秋·上海浦东新·七年级校考阶段练习)把多项式2+x ax bw +分解因式得(+1)(-3)x x ,则a.b 的值分别是( )【答案】A【分析】运用多项式乘以多项式的法则求出(x+1)(x-3)的值,对比系数可以得到a ,b 的值.【详解】∵(x+1)(x−3)=x ⋅x−x ⋅3+1⋅x−1×3=x 2−3x+x−3=x 2−2x−3,∴x 2+ax+b=x 2−2x−3∴a=−2,b=−3.故选A.【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则求出(x+1)(x-3)的值.3.(2021秋·上海·七年级期中)若1a −是25a a m ++的因式,则m 的值是( )A .4B .6C .-4D .-6【答案】D【分析】利用因式分解与整式乘法的恒等关系计算解答即可.【详解】∵多项式25a a m ++因式分解后有一个因式为1a −, ∴设另一个因式是a k −,即25a a m ++=()()1a a k −−=()21a k a k −++,则()15k k m ⎧−+=⎨=⎩,解得:66k m =−⎧⎨=−⎩,故答案为:D .【点睛】此题考查了因式分解的意义,熟练掌握因式分解的方法是解本题的关键.A .5m =,1n =B .5m =−,1n =C .5m =,1n =−D .5m =−,1n =−【答案】C 【分析】根据十字相乘法的分解方法和特点解答.【详解】解:由x2-4x-m=(x-5)(x-n ),得:-5-n=-4,(-5)(-n )=-m所以n=-1,m=5.故选:C .【点睛】本题主要考查十字相乘法分解因式,对常数项的不同分解是解本题的关键.5.(2021秋·上海·七年级期中)多项式3333a b c abc −++有因式( )A .a b c ++B .c a b +−C .222a b c bc ac ab ++−+−D .bc ac ab −+【答案】B【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.【详解】原式=33()33()a c b abc ac a c +−+−+=22()[()()]3()a c b a c b a c b ac a c b +−++++−+−=22()[()()3]a c b a c b a c b ac +−++++−=222()[23]a c b a c ac ab ac b ac +−+++++−=222()()a c b a c b ab ac ac +−++++−. 故选:B .【点睛】本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.本题还需要熟练掌握立方和立方差公式. 6.(2023·上海·七年级假期作业)给出下面四个多项式:①2232x xy y −−;②22x x y y +−−;③76x xy −;④33x y +,其中以代数式x y −为因式的多项式的个数是( )A .1B .2C .3D .4【答案】C 【分析】综合提公因式法和公式法,十字相乘法,将四个多项式分解因式,根据分解的结果,逐一判断即可得到答案.【详解】解:①()()223322x y x y x xy y −−=+−; ②()()()()()()()22221x x y y x y x y x y x y x y x y x y +−−=−+−=+−+−=−++; ③()()()()()()()663333222276x x y x x y x y x x y x y xy x xy x y x xy y =−=+−=+−+−++−; ④()()2323x y x y y x xy =++−+,∴以代数式x y −为因式的多项式为①②③,共3个,故选C .【点睛】本题考查了公因式的确定,先分解因式,再做判断,熟练掌握因式分解的方法是解题关键.二、填空题7.(2023·上海·七年级假期作业)分解因式:21124x x −+=________.【答案】()()38x x −−【分析】根据十字相乘法可进行因式分解.【详解】解:()()2112438x x x x −+=−−; 故答案为:()()38x x −−. 【点睛】本题主要考查因式分解,熟练掌握十字相乘法因式分解是解题的关键.8.(2023·上海·七年级假期作业)分解因式:256x x −−=________.【答案】()()61x x −+【分析】直接根据十字相乘法分解即可.【详解】256x x −−=()()61x x −+, 故答案为()()61x x −+.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.【答案】241x x −+【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【详解】解:原式()2234x x =−−()()241x x =−+, 故答案为:()()241x x −+. 【点睛】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.10.(2022秋·上海·七年级专题练习)分解因式:2x -ay +ax -2y =________.【答案】()()2x y a −+【分析】首先分组,然后利用提取公因式法分解因式.【详解】解:原式=()()()()()()22222x ax y ay x a y a x y a +−+=+−+=−+, 故答案为:()()2x y a −+.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解,因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法,因式分解必须分解到每个因式都不能再分解为止. 11.(2023·上海·七年级假期作业)如图,边长分别为a ,b 的长方形,它的周长为15,面积为10,则2233a b ab +=__________.【答案】225【分析】根据长方形的周长及面积可得出152a b +=,10ab =,将其代入2233a b ab +中即可求出结论.【详解】解:长方形的周长为15,面积为10,152a b ∴+=,10ab =,()22153333102252a b ab ab a b ∴+=+=⨯⨯=. 故答案为:225.【点睛】本题考查了因式分解的应用以及长方形的周长及面积,根据长方形的周长及面积找出152a b +=,10ab =是解题的关键.【答案】27x y −−/27y x −−【分析】根据平方差公式将4249y x −分解因式,并变形为()()222277y x x y −−−,即可得出答案.【详解】解:∵()()2224224977y x y x y x =−−+()()222277y x x y ⎡⎤=−+−⎣⎦()()222277y x x y =−−−, ∴与()27x y −之积等于4249y x −的因式为27x y −−.故答案为:27x y −−. 【点睛】本题主要考查了分解因式的应用,解题的关键是熟练掌握平方差公式()()22a b a b a b −=+−. 13.(2020秋·上海闵行·七年级期中)分解因式:321024a a a +−=____.【答案】()()122a a a +−【分析】先提出公因式,再利用十字相乘法因式分解,即可求解.【详解】解:()()()32210241024122a a a a a a a a a +−=+−=+−. 故答案为:()()122a a a +− 【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并根据多项式的特征灵活选合适方法解答是解题的关键.14.(2023秋·上海嘉定·七年级上海市育才中学校考期末)因式分解a 2-a -6=_____.【答案】(a +2)(a -3)【分析】利用公式()()()2x p q x pq x p x q +++=++ 公式进行因式分解. 【详解】解:()()()()226323232a a a a a a −−=+−++−⨯=−+ , 故填(a-3)(a+2)【点睛】本题考查因式分解,基本步骤是一提二套三检查. 15.(2020秋·上海徐汇·七年级上海市徐汇中学校考阶段练习)已知多项式223x mx ++可以分解成两个一次多项式,则整数m 的值是_____________【答案】7±或5±【分析】分别把2和3分解成2个因数的积的形式,共有4种情况,所以对应的m 也有4种情况.【详解】解:221=⨯,313=⨯或13−⨯−,∴①2311m =⨯+⨯或2(3)1(1)⨯−+⨯−,即7m =±,②2131m =⨯+⨯或2(1)1(3)⨯−+⨯−,即5m =±,故答案为:7±或5±.【安静】此题主要考查了分解因式−十字相乘法,解题的关键是要熟知二次三项式的一般形式与分解因式之间的关系:2()()()x m n x mn x m x n +++=++,即常数项与一次项系数之间的等量关系. 16.(2023·上海·七年级假期作业)已知a ,b ,c 是三个连续的正整数,233124a =,233856c =,那么2b =_____.【答案】33489【分析】利用平方差公式得到()()732c a c a +−=,再根据a 、b 、c 是三个连续正整数得到2c a −=,于是可计算出366c a +=,然后可得c ,从而得到b 的值.【详解】解:()()223385633124732c a c a c a −=+−=−=,∵a 、b 、c 是三个连续正整数,∴2c a −=,∴366c a +=,∴184c =,182a =,∴183b =,∴233489b =.故答案为:33489.【点睛】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.17.(2023·上海·七年级假期作业)23x +______多项式43225101518x x x x −−++的因式(填“是”或“不是”)【答案】是【分析】假设23x +是多项式43225101518x x x x −−++的因式,则只需将多项式43225101518x x x x −−++进行分组,43225101518x x x x −−++可写成4332223812231218x x x x x x x +−−++++,此时两两一组分解因式即可得到结果.【详解】43225101518x x x x −−++,4332223812231218x x x x x x x =+−−++++,32(23)4(23)(23)6(23)x x x x x x x =+−+++++,32(23)(46)x x x x =+−++,∴23x +是多项式43225101518x x x x −−++的因式.故答案为:是【点睛】本题主要考查因式分解的应用,掌握分组分解法是解题的关键. 18.(2022秋·七年级单元测试)已知关于x 的多项式x 2+kx ﹣3能分解成两个一次多项式的积,那么整数k 的值为 _____.【答案】2±【分析】把常数项分解成两个整数的乘积,k 就等于那两个整数之和.【详解】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k =﹣3+1=﹣2或k =﹣1+3=2,∴整数k 的值为:±2,故答案为:±2.【点睛】本题考查因式分解—十字相乘法,是重要考点,掌握相关知识是解题关键.三、解答题19.(2022秋·上海·七年级专题练习)因式分解:2244x x a +−+.【答案】(2)(2)x a x a +++−【分析】分组,利用完全平方公式以及平方差公式分解即可求解.【详解】解:2244x x a +−+2244x x a =++−22(2)x a =+−(2)(2)x a x a =+++−.【点睛】本题考查的是因式分解,掌握完全平方公式以及平方差公式是解题的关键.20.(2022秋·上海闵行·七年级校考阶段练习)分解因式2812x x −+:.【答案】()()26x x −−【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x −+=−−.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.21.(2022秋·上海·七年级校考期末)分解因式:()224516x xy y −−. 【答案】()()()22454x y x y x xy y −−−−【分析】先直接利用完全平方公式,然后再运用十字相乘法继续因式分解即可.【详解】解:()224516x xy y −− ()()222254x xy y =−− ()()()()22225454x xy y x xy y ⎡⎤⎡⎤=−+−−⎣⎦⎣⎦ ()()22225454x xy y xxy y =−+−− ()()()22454x y x y x xy y =−−−−.【点睛】本题考查了运用平方差公式和十字相乘法进行因式分解;解题的关键是分解因式要彻底.22.(2023秋·上海嘉定·七年级上海市育才中学校考期末)因式分解:4289ax ax a −−.【答案】()()()2331a x x x ++−【分析】先提取公因式a ,再用十字相乘法分解,最后再用平方差公式分解.【详解】解:4289ax ax a −−()4289a x x =−−()()2291a x x +=−()()()2331a x x x ++=−. 【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.23.(2022秋·上海·七年级校联考期末)分解因式:23930x x −−.【答案】()()352x x −+.【分析】先提取公因式,再利用十字相乘法继续分解即可.【详解】解:23930x x −−()23310x x =−−()()352x x =−+.【点睛】本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.24.(2022秋·上海闵行·七年级校考阶段练习)分解因式:22944a ab b −+−.【答案】()()3232a b a b +−−+【分析】先将多项式分组为()22944a ab b −−+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b −+−()22944b a a b =−−+()292a b =−−()()3232a b a b =+−−−⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+−−+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.25.(2022秋·上海·七年级专题练习)阅读并解答:对于多项式32510x x x −++,我们把2x =代入多项式,。
因式分解的14种方法
因式分解的14种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:()1332--=+-x x x x )分解因式技巧1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解
——分组分解法;十字相乘法
一.选择题
1. 把多项式211242a a a a a ()+++++分解因式,所得的结果为( )
A a a
B a a
C a a
D a a .().().()
.()
22222
2
2
2
1111+--+++--
2.将by bx ay ax --+分组,下列不合理的是() (A ))()(by ay bx ax -+- (B ))()(by bx ay ax +-+ (C ))()(bx ay by ax -+-
(D ))()(ay by bx ax ---
3.将a b ab a 332-+-分解因式,不正确的分组是() (A ))3()3(2
ab b a a -+- (B ))33()(2
b a ab a --- (C ))3()3(2
a a a
b b -+-
(D ))3()3(2
a a
b b a +-+
4.多项式bd ac bc ad --+可分解为()
(A )))((d c b a -+ (B )))((c d b a -- (C )))((d c b a +- (D )))((c b d a -- 5.下列因式分解中,错误的是()
(A )bn bm an am +--))((b a n m --= (B )n m mn n m 3322+--)3)((--=mn n m (C )b a b a +--22)1)((-+-=b a b a (D )b a b a ---22)1)((+-+=b a b a 6.多项式bx ay by ax 3443+--分解因式,其分组方法不恰当的是() (A ))43()43(by bx ay ax -+- (B ))44()33(ay by bx ax +-+ (C ))34()43(bx ay by ax --- (D ) )34()43(bx by ay ax ---
7.多项式bc c b a 22
22+--进行分组,其正确分法是()
(A ))2()(2
22bc b c a --- (B )bc c b a 2)(2
22+-- (C ))2()(2
2
2
bc c b a ---
(D ))2(2
2
2
bc c b a -+-
8.若3
223b ab b a a +--有因式)(b a -,则另外的因式为()
(A )2
2b a +
(B )2)(b a - (C )))((b a b a +- (D )2
)(b a +
9.把2228242c b ab a -++分解因式得( )
(A ))4)(4(c b a c b a -+++ (B )))((2c b a c b a -+++ (C ))42)(42(-+++b a b a (D ))2)(2(2c b a c b a -+++ 10.多项式bc ac ab a +--2与222c ac a +-的公因式是( ) (A )c a - (B )c a + (C )b a - (D )c b a +- 11.若)())((2
b a ab b a b a +--+p b a ⋅+=)(,则p 为( ) (A )22b a +
(B )22b ab a +-
(C )223b ab a +-
(D )22b ab a ++
12.将1234-+-x x x 分解因式得( ) (A ))1)(1(3
++-x x x
(B ))1)(1(3
-++x x x
(C ))1)(1(2+-x x x (D ))1)(1)(1(2
+-+x x x 13.若m x x x +-+3323有一个因式为3+x ,则m 的值为() (A )9-
(B )9
(C )1- (D )1
14.把96422---a a x 分解因式得()
(A ))32)(32(--+-a x a x (B ))32)(32(-++-a x a x (C ))32)(32(--++a x a x (D ))32)(32(-+++a x a x 15.把b b a a 44222+--分解因式得()
(A ))22)(2(-++b a a (B ))22)(2(-+-b a b a (C ))22)(2(+-+b a b a (D ))22)(2(++-b a b a 16.多项式652++x x 分解因式得() (A ))1)(6(-+x x
(B ))1)(6(+-x x (C ))2)(3(--x x
(D ))3)(2(++x x
17.下列因式分解正确的是()
(A )652-+x x )3)(2(++=x x (B )62
--a a )6)(1(-+=a a (C )762
--y y )7)(1(-+=y y (D )2
243b ab a +-))(4(b a b a +-=
18.若)3)(5(--x x 是二次三项式n mx x +-2
的两个因式,则m 值为()
(A )8 (B )8- (C )2 (D )2-
19.下列多项式分解因式得)3)(4(x x +-的是()
(A )212x x -+ (B )212x x +- (C )212x x ++ (D )212x x -- 20.下列各式能用ab x b a x +++)(2
))((b x a x ++=因式分解的是() (A )322++x x (B )322--x x (C )322+-x x (D )232--x x
二.因式分解
1. b a b a +--2
)(5 2.b a ab -+-1 3.by ay bx ax 263+--
4.bc ac ab a +++2
5.b a b a ++-2422
6.bc c b a 2222+--
7.ac a bc ab 10252+-- 8.1222++-a b a 9.2
2
y y x x +--
10.93323+++a a a 11.a 2+ac -ab -bc 12. 3a -6b -ax +2bx
13 2x 3-x 2+6x -3 14. 2ax +6bx +7ay +21by 15. xy +x -y -1
16. ax 2+bx 2 -ay 2-by 2 17.x 3-2x 2y -4xy 2+8y 3 18. 3m -3y -ma +ay
19. 4x 3+4x 2y -9xy 2-9y 3 20. x 3y -3x 2-2x 2y 2+6xy 21.4a 2-b 2
+6a-3b
22.9m 2-6m+2n-n 2 23.x 2y 2-4+xy 2-2y 24.a 2b 2-c 2
+abd+cd
25.4x 2-y 2-4x +2y 26.b 2-a 2+ax +bx 27.m -2n +m 2-4n 2
28. x 2-2x +1-y 2 29.m 2+2mn +n 2-p 2 30.4x 2-4xy +y 2-16z 2
31. a 2-b 2-2bc -c 2 32.x 2-4y 2+4y -1 33.x 2-y 2-z 2-2yz 34.2
2(35)(31)3x
x x x +++++ 35. x 4-6x 3+9x 2-16 36. a 4-2a 2b 2-8b 4
37.(a 2+b 2)2-4a 2b 2 38.a 4(x -y)+b 4
(y -x) 39.(a 2+1)2-4a(a 2+1)+4a 2
40.a 2
+2ab +b 2
-ac -bc 41.m 2
+2mn +n 2
-p 2
-2pq -q 2
42.(x 2-3)2-4x 2
43.(x 2
-3)2
+(x 2
-3)-2
44.(x 2-2x)2-4(x 2-2x)-5 45.a 4-2a 2b 2-8b 4。