有关三角形知识点总结

合集下载

三角形知识总结与尺规作图知识点

三角形知识总结与尺规作图知识点

第一部分三角形考点一、三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

解三角形知识点归纳总结归纳

解三角形知识点归纳总结归纳

解三角形知识点归纳总结归纳三角形是平面几何中的基本图形之一,是由三条边和三个顶点组成的多边形。

学习三角形的知识点对于解题和理解几何性质非常重要。

下面是关于三角形的知识点的归纳总结,包括定义、分类、性质和求解方法等内容。

一、三角形的定义和分类:1.定义:三角形是由三条边和三个顶点组成的多边形。

三角形的边可以是直线段,但必须满足三边相交于一点的条件。

2.分类:根据边长和角度的关系,三角形可以分为以下几类:-按边长分类:-等边三角形:三条边相等的三角形。

-等腰三角形:两条边相等的三角形。

-普通三角形:没有边相等的三角形。

-按角度分类:-直角三角形:有一个角度为直角(90度)的三角形。

-钝角三角形:有一个角度大于直角(90度)的三角形。

-锐角三角形:三个角度都小于直角(90度)的三角形。

-按边长和角度分类:-等腰直角三角形:既是等腰三角形又是直角三角形的三角形。

二、三角形的性质:1.内角和性质:三角形的三个内角之和等于180度。

2.外角性质:三角形的一个内角的补角等于与其不相邻的两个外角的和。

3.边长性质:-任意两边之和大于第三边。

-任意两边之差小于第三边。

4.等腰三角形性质:等腰三角形的两底边相等,两底角相等。

5.等边三角形性质:等边三角形的三条边相等,三个内角都是60度。

6.直角三角形性质:直角三角形的一条边是其他两边的平方和的开方。

7.勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方。

8.三角形的中线性质:三角形三条中线的交点是三角形的重心,重心将中线按1:2的比例分成两段。

9.三角形的高线性质:三角形的高是从一个顶点向对边作垂线所得的线段,三角形三条高的交点是三角形的垂心。

三、三角形的求解方法:1.应用勾股定理求解直角三角形的边长。

2.应用正弦定理求解三角形的边长和角度。

3.应用余弦定理求解三角形的边长和角度。

4.应用海伦公式求解已知三边求三角形的面积。

5.利用相似三角形的性质解题。

6.利用三角形的中线、高线和角平分线的性质解题。

有关三角形知识点(大全)

有关三角形知识点(大全)

有关三角形知识点(大全)有关三角形知识点 (大全)三角形是一种基本的几何形状,由三条线段组成,形成一个封闭的平面图形。

在数学中,三角形有许多重要的性质和知识点。

本文将为您介绍有关三角形的知识点,如下所示:一、三角形的分类1.按照角度分类:- 锐角三角形:三个内角都是锐角的三角形。

- 钝角三角形:至少有一个内角是钝角的三角形。

- 直角三角形:其中一个内角是直角的三角形。

2.按照边长分类:- 等边三角形:三条边的边长完全相等的三角形。

- 等腰三角形:两条边的边长相等的三角形。

- 普通三角形:三条边的边长都不相等的三角形。

二、三角形的性质1.内角和定理:三角形的三个内角和等于180度。

证明:设三角形的三个内角分别为A、B、C,则角A、角B和角C的补角分别为180°-A,180°-B和180°-C。

由于角的补角互补,所以有(180°-A)+(180°-B)+(180°-C)=540°。

而三角形的三个内角之和和为180°,所以有A+B+C=180°。

2.外角和定理:三角形的一个内角的外角等于其他两个内角的和。

证明:设三角形的一个内角为A,则该内角的外角为180°-A。

另外两个内角的外角分别为180°-B和180°-C。

根据外角和定理,有(180°-A)+(180°-B)+(180°-C)=360°,即180°-A=180°-B+180°-C。

3.等腰三角形的性质:等腰三角形的底边上的两个角是相等的。

证明:设等腰三角形的两边边长相等,底边的两个角分别为A和B。

由于等腰三角形的两条腰相等,所以角A和角B的对边也相等。

根据对应角相等的性质,可以得出角A=角B。

4.直角三角形的性质:直角三角形的两条直角边的平方和等于斜边的平方。

三角形知识点总结完

三角形知识点总结完

三角形知识点全面总结1、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、HL (RtA^RtA)2、等腰三角形的判定及性质性质:①两腰相等②等边对等角(即“等腰三角形的两个底角相等”)③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰【即:DE+DF=CP,(D为BC上的任意一点)】3、等边三角形的性质及判定定理性质:①三条边都相等②三个角都相等,并且每个角都等于60度③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)④等边三角形是轴对称图形,有3条对称轴。

判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角 形。

③有一个角是60度的等腰三角形是等边三角形。

结论总结:①高二亘边【即: AD =巨AB 】 2 2②面积二三3边2【即:S=三3AB 2】4 A ABC 4 4、直角三角形的性质及判定 性质:①两锐角互余②勾股定理③30°角所对的直角边等于斜边的一半。

④斜边中 线等于斜边一半判定:①有一个内角是直角的三角形是直角三角形②勾股定理的逆定理(即“如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

”)5、线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:①定义法②到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质③一边中线等于这边一半的三角形是直角三角形结论总结:直角三角形斜边上的高二 直角边的乘积 斜边(1)线段垂直平分线的性质及判定【即:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线:分别以线段的两个端点人、B 为圆心, 以大于AB 的一半长为半径作弧,两弧交于点乂、N ;作直线MN ,则直线MN 就是线段 AB 的垂直平分线。

三角形所有知识点总结

三角形所有知识点总结

三角形所有知识点总结一、三角形的定义和性质1.1 三角形的定义三角形是由三条线段相互连接而成的闭合图形。

1.2 三角形的分类根据边长和角度的关系,三角形可以分为以下几类: - 等边三角形:三条边的长度相等。

- 等腰三角形:两条边的长度相等。

- 直角三角形:其中一个角是直角(90度)。

- 钝角三角形:其中一个角大于90度。

- 锐角三角形:三个角都小于90度。

1.3 三角形的性质三角形有许多重要性质需要了解: - 三角形的内角和为180度。

- 三角形任意两边之和大于第三边。

- 等边三角形的三个角都是60度。

- 等腰直角三角形的两个锐角都是45度。

二、三角形的重要定理2.1 三角形的重心定理重心定理指出,三角形的三条中线交于一点,该点被称为重心。

重心到三角形三个顶点的距离满足以下关系:重心到某个顶点的距离等于其他两个顶点到该顶点距离的和的一半。

2.2 三角形的垂心定理垂心定理指出,三角形的三条高交于一点,该点被称为垂心。

垂心到三角形三个顶点的距离满足以下关系:垂心到某个顶点的距离等于其他两个顶点到该顶点距离的和的一半。

2.3 三角形的外心定理外心定理指出,三角形的三条垂直平分线交于一点,该点被称为外心。

外心到三角形三个顶点的距离相等。

2.4 三角形的角平分线定理角平分线定理指出,三角形的三条角平分线交于一点,该点被称为角平分点。

角平分点到三角形的三个顶点的距离满足以下关系:角平分点到某个顶点的距离与该边对应边的长度之比等于另外两个顶点到对边的距离与对边长度的比值。

三、三角形的边长计算公式3.1 三角形的周长三角形的周长即三边之和,用公式表示为:周长 = 边1长 + 边2长 + 边3长。

3.2 三角形的面积根据海伦公式,可以计算三角形的面积。

海伦公式如下:设三角形的三边长分别为a、b、c,则三角形的面积S可通过以下公式计算:S = √(s * (s-a) * (s-b) * (s-c)),其中s=(a+b+c)/2。

关于三角形的知识点总结

关于三角形的知识点总结

关于三角形的知识点总结三角形是几何学中的重要概念,广泛应用于各个领域。

它具有独特的性质和特征。

本文将对三角形的定义、性质及分类进行总结,并介绍一些与三角形相关的重要定理。

1. 三角形的定义三角形是由三条线段连接起来形成的一个平面图形。

它由三个顶点和三条边组成,其中每条边连接两个顶点,而每个顶点又与其他两个顶点相连。

三角形的边可以是不等长的,但只能有一对边是平行的。

2. 三角形的性质(1)内角和:三角形的三个内角之和总是等于180度。

即∠A + ∠B + ∠C = 180°,其中∠A、∠B、∠C为三角形各内角度数。

(2)外角和:三角形的三个外角之和总是等于360度。

即∠D + ∠E + ∠F = 360°,其中∠D、∠E、∠F为三角形各外角度数。

(3)边长关系:在三角形ABC中,若边长满足a+b>c,a+c>b,b+c>a,则该三条边可以构成一个三角形。

3. 三角形的分类(1)按照边长分类:- 等边三角形:三边长度相等的三角形,内角也相等,每个内角都为60度。

- 等腰三角形:两边长度相等的三角形,内角均不相等。

- 普通三角形:三边长度各不相等的三角形,内角均不相等。

(2)按照角度分类:- 直角三角形:一个内角为90度的三角形。

直角三角形中的两条边相互垂直,分别称为直角边和斜边。

- 钝角三角形:一个内角大于90度的三角形。

钝角三角形的其他两个内角均为锐角。

- 锐角三角形:三个内角都小于90度的三角形。

4. 三角形的重要定理(1)勾股定理:直角三角形中,直角边的平方等于两条斜边的平方之和。

即a² + b² = c²,其中a、b分别为直角边的长度,c为斜边的长度。

(2)正弦定理:在任意三角形ABC中,三条边的比值与对应的正弦值相等。

即a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的内角。

认识三角形知识点

认识三角形知识点

认识三角形1.三角形有关的概念1 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边公共的端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角简称三角形的角.2 三角形的表示三角形用符号“△”表示,顶点是A 、B 、C 的三角形,记作“△ABC ”,读作“三角形ABC ”;如图7 -4一l,三角形有三个顶点:A 、B 、C ;有三条边:AB 、BC 、AC;有三个角:A ∠、B ∠、C ∠.△ABC 的三边用c b a ,,表示时,A ∠所对的边BC 用a 表示.B ∠所对的边AC 用b 表示.C ∠所对的边AB 用c 表示.2.三角形的分类⎪⎩⎪⎨⎧是钝角)钝角三角形(有一个角是直角)直角三角形(有一个角是锐角)锐角三角形(三个角都形角三注意:根据角的大小来识别三角形的形状时,一般只要考虑三角形中的最大角;若最大角是锐角,则三角形是锐角三角形;若最大角是直角,则三角形直角三角形;若最大角是钝角,则三角形钝角三角形.3.三角形中边的关系1三角形的任意两边之和大于第三边;2三角形的任意两边之差小于第三边如图7 -4 -1中,c b a b a c a b c b c a a c b c b a <-<-<->+>+>+,,;,,;注意:在任意给定的三条线段中,当三条线段中较短的两条线段之和大于另一条线段时,才能组成三角形; 例如:有三条线段的长分别为3、4、6因为3 +4 >6,所以这三条线段能组成三角形.又如:有三条线段的长分别为3、4、8要为3+4 <8,所以这三条线段不能组成三角形.4.三角形的三种主要线段1高:从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足间的线段,叫做三角形的高; 如图7 -4 -2,AD 是△ABC 的高,可表示为AD ⊥ BC 或ADC ∠=90°或ADB ∠= 90°;2中线:在三角形中,连接顶点和它对边中点的线段,叫做三角形的中线;如图7 -4 -3,AE 是△ABC 的中线,表示为BE=EC 或BE = 21BC 或BC= 2EC. 3角平分线:在三角形中,一个内角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线,一个角的平分线是一条射线,而三角形的角平分线是一条线段.如图7-4-4,AF 是ABC ∆的角平分线,可表示为CAF BAF ∠=∠或BAC BAF ∠=∠21或CAF BAC ∠=∠2.一个三角形中三条中线交于一点,三条角平分线交于一点,三条高所在直线交于一点;5.三角形的高、角平分线、中线的画法1三角形高的画法,如图7-4 -5.注意:①锐角三角形、直角三角形、钝角三角形都有三条高.②锐角三角形的三条高交于三角形内部一点.如图7 -4 -5甲,③钝角三角形的三条高交于三角形外部一点.如图7 -4 -5乙,④直角三角形的三条高交于直角顶点.如图7 -4 -5丙.2 三角形的中线的画法:将三角形一边的中点与这边所对角的顶点连接起来,就得到三角形一边上的中线. 3三角形的角平分线的画法:三角形的角平分线的画法与角平分线的画法相同,可以用量角器;防错档案:画钝角三角形的高容易出错,要抓住从三角形一顶点向对边作垂线段.6.面积法解题例如:如图7 -4 -6,在△ABC中,AB =AC,AC 边上的高BD= 10,求AB 边上的高CE 的长.解析:由三角形面积公式有:AC BD AB CE S ABC ⋅=⋅=∆2121 因为AB =AC,BD =10,所以CE= BD= 10.名题诠释例题1如图7 -4 -7,点D是△ABC的边BC上的一点,点E在AD上.1图中共有____个三角形;2以.AC为边的三角形是____;3以∠BDE为内角的三角形是____.解析1AD的左右两侧各有3个三角形,分别是△ABE、△ABD、△EBD、△ACE、△.ACD、△ECD,左右两侧组合又形成2个以BC为边的三角形,它们是△ABC、△EBC.故共有8个三角形.2 以AC为边的三角形有3个,它们是△.ACE、△ACD、△ACB. 3以∠BDE为内角的三角形有2个,它们是△EBD、△ABD.答案18 2△ACE、△ACD、△ACB 3△EBD、△ABD点评数三角形要注意选择恰当的顺序,做到不重不漏,注意最容易漏掉的是最大的三角形.例题2 下列三角形分别是什么三角形1已知一个三角形的两个内角分别是50°和60°;2 已知一个三角形的两个内角分别是35°和55°;3 已知一个三角形的两个内角分别是30°和45°;4 已知一个三角形的周长为16cm,有两边的长分别是6cm和4cm.解析确定三角形的形状,应紧扣定义.答案1 锐角三角形,因为三角形内角和为180°,而两个内角分别是50°和60°,所以第三个内角是70°,即这个三角形是锐角三角形.2 直角三角形,同理.3 钝角三角形,同理.4 等腰三角形.因为第三条边的长为16 -6 -4 =6cm.点评应全面考虑三角形的边和角的条件,再根据定义判别.例题3 下列长度的三条线段能组成三角形的是.A. lcm、2cm、3.5cmB.4cm、5cm、9cmC. 5cm、8cm、15cmD.8cm、8cm、9cm解析因为1+2<3.5,所以lcm、2cm、3.5cm的三条线段不能构成三角形因为4+5 =9,所以4cm、5cm、9cm的三条线段不能构成三角形;因为5+8<15,所以5cm、8cm、15cm的三条线段不能构成三角形;因为8+8 >9,所以8cm、8cm、9cm的三条线段能构成三角形.答案D点评三条线段能否构成三角形的条件是三角形三边的关系,即是否满足任意两边之和大于第三边.简便方法是检验较小的两边之和是否大于最大边.例题4 甲地离学校4km,乙地离学校lkm.记甲、乙两地之间的距离为dkm,则d的取值为.A.3B.5C.3或5 D.3≤d≤5解析本题应分两种情况讨论:1甲、乙两地与学校在一条直线上;2甲、乙两地与学校不在同一条直线上,则构成三角形,可利用三角形三边关系解题.答案D∠,G为AD的中点,延长BG交AC于E.F为例题5 如图7-4 -8,在△ABC中,1∠=2AB上一点,CF⊥AD于H,下面判断正确的有.①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH为△ACD边AD上的高;④AH是△ACF的角平分线和高线.A.l个B.2个 C.3个D.4个∠知AD平分∠BAE.但AD不是△ABE内的线段,故①错,AD应是△ABC的角平分线;同理,BE经解析由1∠=2过△ABD 的边AD 的中点G,但BE 不是△ABD 中的线段,故②不正确,正确的说法应是BG 是△ABD 边AD 上的中线;由于CH ⊥AD 于H,故CH 是△ACD 边AD 上的高,故③正确;AH 平分∠FAC 并且在△ACF 内,故AH 是△ACF 的角平分线,同理AH 也是△ACF 的高,故④正确.答案B点评 三角形的角平分线和角的平分线之间的区别:前者是线段,在三角形的内部,后者是射线,可以无限延伸.例题6在△ABC 中,AB =AC,AC 边上的中线BD 把三角形的周长分为12cm 和15cm 两部分,求三角形各边的长,解析 中线BD 把三角形的周长分为12cm 和15cm 两部分,要分类讨论:1当腰长小于底边时,AB +AD =12,如图7-4 -9①;2当腰长大于底边时,AB +AD =15,如图7-4 -9②.答案设AB=x ,则有:AD= DC=x 21. 1若AB +AD =12,即x + x 21=12,x =8. AB =AC =8,DC =4,故BC= 15 -4= 11.此时AB +AC> BC,所以三角形三边长分别为8cm,8cm,llcm.2若AB+ .4D= 15,即x +x 21=15,x =10. 即AB =AC =10,DC =5,故BC=12 -5 =7.显然,此时三角形存在,所以三角形三边长分别为l0cm,l0cm,7cm .综上所述,此三角形的三边长分别为8cm,8cm .llcm 或l0cm,l0cm,7cm .例题7 如图7-4 -10,是甲、乙、丙、丁四位同学画的钝角△ABC 的高BE,其中画法错误的是____________解析 甲图错在把三自形的高线与AC 边的垂线定义相混淆,把“线段”画成“直线”;乙图错在未抓住“垂线”这一特征,画出的BE 与AC 不垂直;丙图错在没有过点B 画AC 的垂线,故不是高;丁图错在没有向点B 的对边画垂线. 答案 甲、乙、丙、丁例题8 如图7—4-11,在△ABC 中,AB =AC,AC 边上高BD=10,P 为边BC 上任意一点,PM ⊥AB,PN ⊥AC,垂足分别为M,N .求PM+PN 的值.解析 连接AP 后,PM 、PN 就转化为△APB 和△APC 的高,从而由面积法可求得PM+ PN 的值.答案 连接AP,由图7-4 -11可知:ABC ACP ABP S S S ∆∆∆=+, 即BD AC PN AC PM AB ⋅=⋅+⋅212121 因为AB =AC,BD =10,所以PM+PN= BD =10.速效基础演练1如图7 -4 -12,图中三角形的个数共有 .A 1个B .2个 C.3个 D .4个2 三角形两边的长分别为lcm 和4cru,第三边的长是一个偶数,则第三边的长是________,这个三角形是___________三角形3如图7 -4 -13.1 AD ⊥BC,垂足为D,则AD 是___________的高,_______=_______= 90°;2 若AE 平分BAC ∠,交BC 于E 点,AE 叫___________的角平分线,BAE ∠ =_______=21________; 3 若AF= FC,则△ABC 的中线是_________;4 若BC= GH= HF .则AG 是________的中线,AH 是_________的中线;4 如图7 -4 -14,在△ABC 中,C ∠ = 90°,D 、E 为AC 上的两点,且AE= DE,CBD ∠ =EBC ∠21,则下列说法中不正确的是 .A .BC 是△ABE 的高B .BE 是△ABD 的中线C .BD 足△EBC 的角平分线D .DBC EBD ABE ==∠5如图7 -4 -15,哪一个图表示AD 为△ABC 的高6 如果三角形的两边分别为3和5,那么这个三角形的周长可能是.A.15 B.16 C.8 D.77 下列长度的三条线段,能组成三角形的是.A. lcm,2cm,3cmB. 2cm,3cm,6cmC. 4cm,6cm,8cmD. 5cm,6cm,12cm8 如图7 -4 -16,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA =15米,OB =10米,A、B间的距离不可能是.A.5米B.10米C.15米D.20米∠的平分线CD;2画出AC边上的中线BM;9 如图7 -4 -17,在△ABC中,1画出C3画出△ABM的边BM上的高AH.10如图7 -4 -18.△ABC是周长为18cm的等边三角形,D是BC上一点,△ABD的周长比△ADC的周长多2cm,求BD、DC的长;11 等腰三角形的周长为30,一腰上的中线把其周长分成差为3的两部分,试求腰长.∠,交AC于点E,DE∥BC,EF∥AB,分别交AB、BC于点D、F,则BE 12已知如图7 -4 -19,在△ABC中,BE平分ABC∠的平分线吗请说明理由.是DEF13在△ABC 中,C ∠= 90°,BC =6,AC =8,AB =10,求边AB 上的高.知能提升突破1 如图7 -4 -20,在△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 上的中点,且ABC S ∆=42cm , 求阴影部分的面积阴S ;2 如图7 -4 - 21,在△ABC 中,AB= AC,BD 是AC 边上的高,P 为BC 延长线上的一点,AB PM ⊥,AC PN ⊥,垂足分别为M 、N .试问PM 、PN 与BD 之间有何关系3某木材市场上木棒规格和价格如下表: 规格1m 2m 3m 4m 5m 6m价格元/根 10 15 20 25 30 35 小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3m 和5m 的木棒,还需要到 某木材市场上购买一根.问:1 有几种规格的木棒可供小明的爷爷选择2 选择哪一种规格的木棒最省钱。

第四章 三角形知识点

第四章   三角形知识点

第四章三角形一、认识三角形●三角形的有关概念1、三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫作三角形。

2、三角形的边:组成三角形的线段叫作三角形的边,可以用两个大写英文字母表示,也可以用一个小写英文字母表示。

3、三角形的顶点:相邻两边的公共端点叫作三角形的顶点。

4、三角形的角:相邻两边组成的角叫作三角形的内角,简称三角形的角。

5、角与边的对应关系:大边对大角。

6、三角形的表示:用符号“△”表示,以A,B,C为顶点的三角形记作“△ABC”,读作“三角形ABC”。

●三角形的分类1、按内角的大小分类锐角三角形(三个角都是锐角)直角三角形(最大内角为直角),互相垂直的两条边叫作直角边,最长的边叫作斜边,直角三角形ABC可以用符号“Rt△ABC”表示钝角三角形(最大内角为钝角)注:在一个三角形中,最多有三个锐角,最少有两个锐角;最多有一个直角,最多有一个钝角。

2、按边的相等关系分类等腰三角形:有两条边相等的三角形叫作等腰三角形,其中相等的两条边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,腰和底边的夹角叫作底角。

等边三角形:三条边都相等的三角形叫作等边三角形,即腰和底边相等的等腰三角形叫作等边三角形,也叫正三角形。

不等边三角形:三边都不相等的三角形。

注:●三角形的三边关系1、三角形的两边的和大于第三边,三角形两边的差小于第三边。

(证明可以依据两点之间线段最短,大角对大边,不等式性质)2、三边关系的运用(1)判断以已知的三条线段为边能否构成三角形(2)确定三角形的第三边长(或周长)的取值范围(3)解决线段的不等关系问题(如证明几何不等式)●三角形的高1、三角形的高的概念:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足所连线段叫做三角形的高。

2、三角形高的几何语言表达形式AD是△ABC的边BC上的高,或AD是△ABC的高,或AD垂直BC与点D,或∠BDA=∠CDA=90°3、三角形三条高的位置锐角三角形三条高都在三角形的内部。

小学数学三角形的知识点

小学数学三角形的知识点

小学数学三角形的知识点小学数学三角形的知识点11.由三条线段(每两条相邻线段的端点相连)围成的图形称为三角形。

2.从三角形的顶点到它的对边画一条垂直线。

从顶点到垂足的线段称为三角形的高,这条边称为三角形的底。

这个三角形只有三层高。

3、三角形具有稳定性。

4.三角形的任意两条边之和大于第三条边。

5、三个角都是锐角的三角形叫做锐角三角形。

6、有一个角是直角的三角形叫做直角三角形。

7.有一个钝角的三角形叫做钝角三角形。

8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

9、两条边相等的三角形叫做等腰三角形。

10.小学四年级数学四则运算与三角形知识点:三条边相等的三角形叫等边三角形,也叫正三角形。

11、等边三角形是特殊的等腰三角形12、三角形的内角和是180°。

13、四边形的内角和是360°14、用2个相同的三角形可以拼成一个平行四边形。

15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

16.两个相同的等腰直角三角形可以组合成一个平行四边形和一个正方形。

大等腰直角三角形。

小学数学三角形的知识点21、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。

三角形只有3条高。

重点:三角形高的画法。

3.三角形的特点:1。

物理特性:稳定。

如:自行车的三脚架,电线杆上的三脚架。

4、边的特性:任意两边之和大于第三边。

5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

6、三角形的分类:按照角大小来分:锐角三角形,直角三角形,钝角三角形。

按照边长短来分:等边三角形、等腰三角形、三条边都不相等的三角形 7、三个角都是锐角的三角形叫做锐角三角形。

8、有一个角是直角的三角形叫做直角三角形。

完整版)解三角形知识点归纳总结

完整版)解三角形知识点归纳总结

完整版)解三角形知识点归纳总结第一章解三角形一、正弦定理:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 sinA/a = sinB/b = sinC/c = 2R (其中R是三角形外接圆的半径)。

变形:1) sinA/sinB/sinC = (a/b/c)/(2R),化边为角;2) a:b:c = = sinA/sinB,化角为边;3) a = 2RsinA,b = 2RsinB,c = 2RsinC,化边为角;4) sinA = a/2R,sinB = b/2R,sinC = c/2R,化角为边。

利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,求解:由A+B+C=180°,求角A,由正弦定理求出b与c。

②已知两边和其中一个角的对角,求其他两个角及另一边。

例:已知边a,b,A,求解:由正弦定理求出角B,由A+B+C=180°求出角C,再使用正弦定理求出c边。

4.在△ABC中,已知锐角A,边b,则①a<bsinA时,B无解;②a=bsinA或a≥b时,B有一个解;③bsinA<a<b时,B有两个解。

二、三角形面积1.SΔABC = absinC = bcsinA = acsinB;2.SΔABC = (a+b+c)r,其中r是三角形内切圆半径;3.SΔABC = p(p-a)(p-b)(p-c),其中p=(a+b+c)/2;4.SΔABC = abc/4R,R为外接圆半径;5.SΔABC = 2R²sinAsinBsinC,R为外接圆半径。

三、余弦定理余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 a² = b² + c² -2bccosA,b² = a² + c² - 2accosB。

三角形 知识点+考点+典型例题(含答案)

三角形  知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

小学数学三角形的知识点

小学数学三角形的知识点

小学数学三角形的知识点小学数学三角形的知识点篇一一、认识角1、角的特征:一个顶点,两条边(直的)2、角的大小:与两条边叉开的大小有关,与两条边的长短无关。

3、角的画法:(1)、定顶点。

(2)、由这一点引一条直线。

(3)、画另一条边(直角时,用直角边对准画好的一条边后,沿着另一条直角边,画线)二、角的分类:1、认识直角:直角的特点,2、认识锐角和钝角:锐角比直角小,钝角比直角大。

3、会用三角尺来判断直角、锐角和钝角:吧三角尺上直角的顶点与被比较角的顶点重叠在一起,再将三角尺上直角的一条边与被比角的一条边重合,最后比较三角尺上直角的另一条边与被比角的另一条边,线上为直角,内为锐角,外为钝角。

4、画直角、锐角和钝角。

小学数学三角形的知识点篇二全等三角形形状与大小完全相等,与位置无关,这是大家要注意的。

全等三角形的判定边边边:三边对应相等的`两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)我们可以把一个三角形经过平移、翻折、旋转可以得到它的全等形。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一… …般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

三角形知识点总结归纳

三角形知识点总结归纳

三角形知识点总结一、知识框架:三角形的分类:1、按边分:普通三角形、等腰三角形在等腰三角形中,腰和底相等的三角形是等边三角形;2、按角分: 锐角三角形、直角三角形、钝角三角形直角三角形的两个锐角互余;二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线;三角形的三条中线相交于一点,这一点叫做三角形的重心;5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.1、多边形内角和公式:n边形的内角和等于n-2·180°2、多边形的外角和:多边形的外角和为360°.多边形对角线的条数:1、从n边形的一个顶点出发可以引n-3条对角线;2、把多边形分成n-2个三角形,n边形共有nn-3/2条对角线;。

(完整版)三角形知识点总结

(完整版)三角形知识点总结

三角形知识点总结一、基础知识1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.(三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点)2、三角形的表示三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.三个顶点用大写字母A,B,C来表示。

(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)注意:△ABC是三角形ABC的符号标记,单独的△没有意义3、三角形的分类:(1)按边分类:等腰三角形、等边三角形、不等边三角形(2)按角分类:锐角三角形、直角三角形、钝角三角形4、三角形的主要线段的定义:(1)三角形的中线:三角形中,连结一个顶点和它对边中点的线段.如图:(1)AD是△ABC的BC上的中线.(2)BD=DC= BC.注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部且交于三角形内部一点(重心)③中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段如图:(1)AD是△ABC的∠BAC的平分线.(2)∠1=∠2= ∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部且交于三角形内部一点(内心)③角平分线上的点到角的两边距离相等(3)三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.如图:①AD是△ABC的BC上的高线;②AD⊥BC于D;③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形的三条高的交点在三角形内部;钝角三角形的三条高的交点在三角形的外部:直角三角形的三条高的交点在直角顶点上。

三角形三条高所在直线交于一点(垂心)③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)(4)三角形的中垂线:过三角形一条边中点所做的垂直于该条边的线段如图:DE是△ABC的边BC的中垂线;DE⊥BC于D;BD=DC注意:①三角形的中垂线是直线;②三角形的三条中垂线交于一点(外心)小总结:内心:三条角平分线的交点,也是三角形内切圆的圆心.性质:到三边距离相等.外心:三条中垂线的交点,也是三角形外接圆的圆心.性质:到三个顶点距离相等.重心:三条中线的交点.性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍.垂心:三条高所在直线的交点.5、三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是任意两边之和大于第三边.6、三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.7、三角形的内角和定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。

关于三角形的所有知识点总结

关于三角形的所有知识点总结

关于三角形的所有知识点总结一、三角形的概念。

1. 定义。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 基本元素。

- 边:组成三角形的线段叫做三角形的边。

三角形有三条边。

- 顶点:相邻两边的公共端点叫做三角形的顶点。

三角形有三个顶点。

- 角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。

三角形有三个内角。

二、三角形的分类。

1. 按角分类。

- 锐角三角形:三个角都是锐角(即每个角都小于90°)的三角形。

- 直角三角形:有一个角是直角(等于90°)的三角形。

直角三角形中,夹直角的两条边叫做直角边,直角所对的边叫做斜边。

- 钝角三角形:有一个角是钝角(大于90°小于180°)的三角形。

2. 按边分类。

- 不等边三角形:三条边都不相等的三角形。

- 等腰三角形:有两条边相等的三角形。

相等的两条边叫做腰,另一条边叫做底边;两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。

- 等边三角形:三条边都相等的三角形。

等边三角形是特殊的等腰三角形,它的三个角都相等,并且每个角都等于60°。

三、三角形的性质。

1. 三角形内角和定理。

- 三角形的内角和等于180°。

可以通过多种方法证明,如剪拼法、作平行线法等。

2. 三角形的外角性质。

- 三角形的一个外角等于与它不相邻的两个内角的和。

- 三角形的一个外角大于任何一个与它不相邻的内角。

3. 三角形的三边关系。

- 三角形两边之和大于第三边。

- 三角形两边之差小于第三边。

可以根据这个关系判断三条线段能否组成三角形。

4. 等腰三角形的性质。

- 等腰三角形的两腰相等。

- 等腰三角形的两底角相等(简称为“等边对等角”)。

- 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称为“三线合一”)。

5. 等边三角形的性质。

- 等边三角形的三条边相等。

- 等边三角形的三个内角都相等,并且每一个角都等于60°。

三角形全部知识点的总结

三角形全部知识点的总结

第一章图形的初步认识考点一、线段垂直平分线,角的平分线,垂线1、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

2、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

角的平分线有下面的性质定理:〔1〕角平分线上的点到这个角的两边的距离相等。

〔2〕到一个角的两边距离相等的点在这个角的平分线上。

3垂线的性质:性质1:过一点有且只有一条直线与直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。

简称:垂线段最短。

考点二、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。

同一平面内,两条直线的位置关系只有两种:相交或平行。

4、平行线的性质〔1〕两直线平行,同位角相等;〔2〕两直线平行,内错角相等;〔3〕两直线平行,同旁内角互补。

考点三、投影与视图1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线〔如太阳光线〕形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

物体的三视图特指主视图、俯视图、左视图。

主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。

俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。

左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。

第二章三角形考点一、三角形1、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形〔有一个角为直角的三角形〕三角形 锐角三角形〔三个角都是锐角的三角形〕斜三角形钝角三角形〔有一个角为钝角的三角形〕把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

三角形的知识点整理

三角形的知识点整理

三角形的知识点整理一、三角形的定义与性质1. 定义:三角形是由三条线段所围成的封闭图形。

2. 性质:(1)三角形的内角和为180度;(2)任意两边之和大于第三边;(3)任意两角之和大于第三角;(4)三角形的边数、角数和面积都是有限的。

二、三角形的分类1. 根据边长:(1)等边三角形:三条边的长度相等;(2)等腰三角形:两边的长度相等;(3)普通三角形:三边的长度都不相等。

2. 根据角度:(1)锐角三角形:三个内角都小于90度;(2)直角三角形:一个内角为90度;(3)钝角三角形:一个内角大于90度。

三、三角形的重要定理1. 直角三角形的勾股定理:直角三角形的斜边的平方等于两腰的平方和。

2. 正弦定理:在任意三角形ABC中,有a/sinA = b/sinB = c/sinC,其中a、b、c分别为三边的长度,A、B、C分别为对应的内角。

3. 余弦定理:在任意三角形ABC中,有c² = a² + b² - 2abcosC,其中a、b、c分别为三边的长度,C为对应的内角。

4. 高度定理:在任意三角形ABC中,三条高的平方之和等于三边的平方和。

四、三角形的相关应用1. 三角形的相似性:根据三角形的相似性质,可以解决许多实际问题,如影子的长度与物体的高度、建筑物的高度与影子长度之间的关系等。

2. 三角形的面积计算:可以利用海伦公式或三角形的底边和高来计算三角形的面积,这在测绘、建筑、物理等领域有着广泛的应用。

3. 三角形的角平分线:角平分线将一个角分成两个相等的角,可以应用于求解角度相等的问题,如导弹的角度控制、射击的角度调整等。

4. 三角形的余弦定理在物理学、工程学等领域有着广泛的应用,如力的合成与分解、平衡力的计算、桥梁的设计等。

总结:三角形作为平面几何中的基本图形,具有独特的性质和特点。

通过对三角形的分类、重要定理和相关应用的整理和阐述,可以更好地理解和应用三角形的知识,为解决实际问题提供帮助。

解三角形最全知识点总结

解三角形最全知识点总结

解三角形最全知识点总结一、基本概念1. 三角形的定义三角形是由三条边和三个角组成的平面几何图形。

它是三边相交于三个顶点而成的基本图形,常用符号Δ表示。

2. 三角形的分类根据三角形的边长和角度大小,三角形可以分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形等5种类型。

3. 三角形的元素三角形的元素包括三边、三角、三个顶点、三个内角和三个外角等。

4. 三角形的性质三角形中的基本性质有:两边之和大于第三边、两角之和大于第三角、外角等于两个不相邻内角之和等。

二、性质定理1. 三角形内角和定理三角形内角和定理是几何学中的经典定理之一,它指出任意三角形内角的和等于180°。

2. 三角形外角和定理三角形的外角和定理是指三角形外角等于它对应内角的和,即三角形的一个外角等于与它相对的两个内角之和。

3. 直角三角形的性质直角三角形是一个内含有一个直角的三角形,它的两条边相对于直角的边长满足勾股定理。

4. 等腰三角形的性质等腰三角形是指两边边长相等的三角形,它的两条边角度相等,即底角相等。

5. 等边三角形的性质等边三角形是指三条边和三个角都相等的三角形,它是所有内角相等的三角形。

6. 中位线定理在三角形中,连接边上中点的直线称为中位线,中位线定理指出中位线的中点构成的线段等于底边的一半。

7. 外心定理外心定理是指三角形外接圆的圆心,外接圆定理指出外心是三角形三边的平分线的交点。

8. 内切圆定理内切圆定理是指三角形内切圆和三角形三边接触点构成的线段等于三角形的半周长。

9. 海伦公式海伦公式是指用三角形三边的长度来求三角形面积的公式,其中s为半周长。

10. 正弦定理正弦定理是三角形中用角的正弦比例来求边长的公式,可表示为a/sinA=b/sinB=c/sinC。

11. 余弦定理余弦定理是三角形中用边长和角度的余弦比例来求边长的公式,可表示为a²=b²+c²-2bc*cosA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关三角形知识点总结————————————————————————————————作者:————————————————————————————————日期:三角形知识点汇总1、三角形一、三角形三边的关系1、三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边。

(判断三条线段能否组成三角形的依据)2、已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b3、给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长(提示:一定要记得分类讨论)方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

二、三角形的高、中线、角平分线1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.(90°角和互余关系)锐角三角形锐角三角形的三条高都在三角形的内部,三条高的交点也在三角形内部.直角三角形直角三角形的三条高交于直角顶点.钝角三角形钝角三角形有两条高落在三角形外部,一条在三角形内部,三条高所在直线交于三角形外一点。

2、三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.三角形的三条中线交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3、三角形的角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。

要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

4、方法利用:求三角形中未知的高或者底边的长度,可利用“等积法”将三角形的面积用两种方式表达,求其中未知的高或者底边的长度三、三角形具有稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。

四、与三角形有关的角1. 三角形的内角和定理:三角形的内角和为180°,与三角形的形状无关。

2. 直角三角形两个锐角的关系直角三角形的两个锐角互余(相加为90°)。

有两个角互余的三角形是直角三角形。

3、三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和;三角形的一个外角大于与它不相邻的任何一个内角;三角形三个外角和为360°。

提示:三角形的内角和为180°,两个锐角互余在解题中经常用到。

4. 基本图形∠1+∠2=∠3+∠4 ∠BOC =∠A +∠B +∠C五、多边形及其内角和1、连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形②n 边形共有(3)2n n -条对角线. 2、多边形内角和公式:n 边形的内角和等于(2)n -·180°3、多边形的外角和:(每个项点取一个外角)多边形的外角和为360°,与多边形的形状和边数无关。

4、正n 边形每个内角相等:n n180)2(•-,每个外角都相等:n3602、全等三角形一、全等三角形的判定定理:1、边边边(SSS ):三边对应相等的两个三角形全等.2、边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等.3、角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.4、角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等.5、斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.(注意:只适用于直角三角形)书写格式:在Rt △ABC 和Rt △A ´B ´C ´中,⎪⎩⎪⎨⎧==''''CA AC BA AB ∴ Rt △ABC ≌Rt △A ´B ´C ´二、角平分线1、画法:①以O为圆心,适当长为半径作弧,交OA于M, 交OBN于.②分别以M,N为圆心.大于 1/2 MN的长为半 径作弧.两弧在∠AOB的内部交于C.③作射线OC.射线OC即为所求.2、性质定理:角平分线上的点到角的两边的距离相等. 书写格式:∵OM 是∠AOB 的平分线,C 是OM 上一点, CE ⊥OA 于E ,CF ⊥OB 于F ∴CE=CF 。

3、角平分线的判定:角的内部到角的两边距离相等的点在角的平分线上.书写格式:∵PE ⊥OA 于E ,PF ⊥OB 于F ,且PE=PF , ∴点P 在∠AOB 的平分线上。

3、等腰三角形一、等腰三角形的性质1、三线合一:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

2、有一个内角是60°的等腰三角形是等边三角形。

二、含30°角的直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.书写格式:∵在Rt △ABC 中,∠c =90°∠A =30°∴BC=21AB ((或AB = 2BC) 注意:在有些题目,若给出的角是15°角时,往往运用一个外角等于和它不相邻的两个内角的各将15°角转化为30°角后,再利用上面的性质解决问题。

例:已知:等腰三角形的底角为150,腰长为20.求:腰上的高. 解:∵∠B=∠ACB=150(已知),∴∠DAC=∠B+∠ACB= 15°+15°=30°∴CD=21AC=21×20=10 三、最短路径问题1、求直线同侧的两点到直线上一点距离的和最小的问题如图,点A ,B 在直线l 的同侧,点C 是直线上的一个动点, 当点C 在 l 的什么位置时,AC 与CB 的和最小? 作法:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′,与直线l 相交于点C 则点C 即为所求.2、利用平移解决最短路径问题从A 地到B 地需要经过一条小河(河岸平行),今欲在河上建一座桥MN (MN 垂直于河岸),则应如何选择桥的位置才能使从A 地到B 地的路程最短?①过点A 作AC 垂直于河岸,且AC 等于河宽, ②连接BC 交靠近点B 的河岸于点N③过点N 河岸的垂线另一河岸于点M ,则MN 即为所求4、勾股定理1、勾股定理内容:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222c b a =+2、勾股定理的应用:在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-3、勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。

(若222a b c +<时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形。

)(注意:定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边) 4、常见的勾股数:3,4,5; 6,8,10; 8,15,17; 7,24,25; 5,12,13;9,12,155、相似三角形知识点一:相似三角形相似三角形的性质:相似三角形的对应角相等,对应边成比例。

(1)相似三角形的传递性:若ABC ∆∽111C B A ∆,111C B A ∆∽222C B A ∆,则ABC ∆∽222C B A ∆,(4)全等三角形是相似比为1的相似三角形,但相似三角形不一定是全等三角形。

知识点二:平行线分线段成比例1、平等线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例。

如右图3l ∥4l ∥4l ,直线1l ,2l 被3l ,4l ,5l 所截, 那么EF DE BC AB =,DF DE AC AB =,DFEFAC BC = 角 由两个三角形相似确定对应角相等,对应点拨拨平行线分线段成比例基本事实的表达式有三种形式,其中EFDEBC AB =可简记为“上比下等于上比下”,DF DE AC AB =可简记为“上比全等于上比全”,DFEFAC BC =可简记为“下比全等于下比全”2、平等线分线段成比例的基本事实应用在三角形上的结论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

如图①②③所示,若DE//BC ,则有AC AE AB AD =,EC AE DB AD =,ACECAB DB =知识点三:相似三角形的判定定理1、平行于三角形一边的直线和其他两边相交所构成的三角形与原三角形相似。

DE ∥BC ,∴ABC ∆∽ADE ∆。

2、三边成比例的两个三角形相似。

如图所示: 如果DFACEF BC DE AB ==,那么ABC ∆∽DEF ∆。

3、两边成比例且夹角相等的两个三角形相似。

如图所示,在△ABC 和△DEF 中,∠B=∠E ,32==EF BC DE AB ,可判定△ABC ∽△DEF 。

4、两角分别相等的两个三角形相似。

如图所示:∠A=∠A',∠B=∠B',那么△ABC ∽△A'B'C'。

提示:在两个直角三角形中,若有一个锐角对应相等,则这两个直角三角形相似。

知识点四:相似三角形的性质1、相似三角形对应线段的比等于相似比。

相似三角莆对应高的比,对应角平分线的比,、对应中线的比都等于相似比。

2、相似三角形对应周长的比等于相似比。

(相似多边形周长的比等于相似比)3、相似三角形面积的比等于相似比的平方。

(相似多边形面积的比等于相似比的平方。

)有关三角形相似的基本图形 类型所需条件图形平行线型 (1)“A ”字型:如图(1),DE//BC(2)“X ”字型:如图(2)DE//BC斜交型有公共角∠A ,[如图(1)(2)(3)]或对顶角∠1与∠2,[如图(4)],另有一组角相等或夹公共角(对顶角)的两组对应边成比例。

旋转型∠1=∠2,另有一组角对应相等或夹∠B'A'C'与∠BAC 的两组对应边成比例。

6、锐角三角函数1.Rt △ABC 中(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA =斜边的对边A ∠=caAB BC =(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA =斜边的邻边A ∠=cbAB AC =(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA =邻边的对边A ∠=baAC BC =(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA =对边的邻边A ∠=abBC AC =2.特殊值的三角函数:二、解直角三角形在直角三角形中,除直角外的五个元素中,已知其中的两个元素(至少有一条边),可求出其余的三个未知元素(知二求三)。

相关文档
最新文档