概统公式大全教学提纲

合集下载

概统知识点总结

概统知识点总结

公理三:Pr(Èi=1¥Ai)=Pr(Ai)i=1¥å求并公式:Pr(Èi=1n Ai)=Pr(Ai)-Pr(AiAj)+Pr(AiAjAk)i<j<kåi<jåi=1nå-Pr(AiAjAkAl)+ +(-1)n+1Pr(A1A2An)i<j<k<lå全概公式和贝叶斯定理:Pr(A)=Pr(Bj)Pr(A|Bj)j=1kåPr(Bi|A)=Pr(Bi)Pr(A|Bi)Pr(Bj)Pr(A|Bj)j=1kå二元边际分布:f1(x)=f(x,y)dy-¥¥òf2(y)=f(x,y)dx-¥¥ò二元条件分布:转换:独立性的判断:多元边际分布:多元条件分布:独立性的判断:随机样本(randomsamplei.i.d):随机变量的函数:多个随机变量的函数:gn(y)=dGn(y)dy=n F(y)[]n-1f(y)g1(y)=dG1(y)dy=n1-F(y)[]n-1f(y)g(y1,yn)=¶2G(y1,yn)¶y1¶yn=n(n-1)F(yn)-F(y1)[]n-2f(y1)f(y n)g(y1, ,yn)=f[s1(y1, ,yn), ,sn(y1, ,yn)]|J|for(y1, ,yn)ÎT0otherwiseìíïîï线性转换:极差(range):Y1=ZYn=W+Z期望(一致收敛):函数的期望:期望的性质:. If Y=aX+b, then E(Y)=aE(X)+b..E(X1+...+Xn)=E(X1)+...+E(Xn)无需独立.E(a1X1+...+anXn+b)=a1E(X1)+...+anE(Xn)+b. 需要独立方差(一致收敛):方差的性质:. Var(X)=0 if and only if there exists aconstant c such that Pr(X=c)=1.... Var(X1+...+Xn)=Var(X1)+...+Var(Xn)要独立协方差(covariance):. Cov(X,Y) will be finite.. Cov(X,Y) can be positive, negative, or zero.相关系数(correlation):. Cor(X,Y) will be finite.. .. X and Y are positively correlated: >0X and Y are negatively correlated: r<0X and Y are uncorrelated:r=0相关性质:. Cov(X,Y)=E(XY)-E(X)E(Y). If X and Y are independent,但是不相关的变量不一定独立。

概率论核心概念及公式(全)

概率论核心概念及公式(全)
0-1 分布 P(X=1)=p, P(X=0)=q
二项分布 泊松分布 超几何分布
在n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生的 次数是随机变量,设为 X ,则 X 可能取值为0,1,2,, n 。
P( X
k)
Pn(k
)
C
k n
p k q nk ,
其中
q 1 p,0 p 1, k 0,1,2,, n ,
P(a X b) F(b) F(a) 可以得到 X 落入区间(a,b] 的概率。分布函数
F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F(x2) ;
(2)连 续型随机 变量的分 布密度
(3)离 散与连续 型随机变 量的关系 (4)分 布函数
(5)八 大分布
设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意实数x ,有
F (x) x f (x)dx ,
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函数或密度函数,简称概率 密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
ba
f
(x)
b
1
a
,
0,
a≤x≤b
其他,
指数分布
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b)。
分布函数为
0,
x<a,
x
F (x) f (x)dx
xa, ba 1,
a≤x≤b x>b。
当 a≤x1<x2≤b 时,X 落在区间(x1, x2 )内的概率为

概率论与数理统计完整公式以及各知识点梳理

概率论与数理统计完整公式以及各知识点梳理

的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
P( X

k)

Pn(k )

C
k n
p k q ,
其中
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) 。
当 n 1时, P( X k) p k q1k , k 0.1,这就是(0-1)分
1567014781.doc
概率论与数理统计完整版公式
第 1 章 随机事件及其概率
(1)排列 组合公式
Pmn

m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn

m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加法 和乘法原 理
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
0-1 分布
P(X=1)=p, P(X=0)=q
二项分布
(5)八大 分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生
1° 0 F(x) 1, x ;
(4)分布 函数
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;

统计概论公式汇总

统计概论公式汇总

国民经济统计概论公式汇总1、简单算术平均数:12n x x x x x n n+++==∑L2、加权平均数:11221121niin ni n nii xf x f x f x f x f f f f==+++==+++∑∑L L1212nn f f f f x x x x x f f f f ⎛⎫=+++= ⎪ ⎪⎝⎭∑∑∑∑∑L 3、简单调和平均数: 4、加权调和平均数:1211111nn H x x x xn==++∑K121212n n nm m m m H m m m m x x x x ++==++∑∑L K 5、简单几何平均数:6、加权几何平均数:G =G =一、标志变异指标1、全距(极差):2、平均差:未分组资料:||x x A D n-=∑g ,分组资料:||x x f A D f-=∑∑g ;3、标准差:未分组资料:σ=分组资料:σ=;4、标志变异系数:平均差系数:100%A D A DV x⋅=⨯g ,标准差系数:100%V xσσ=⨯二、总方差=组内方差的算术平均数+组间方差222σσδ=+组内方差:212()if iji j iixx f σ=-=∑,其中,1if ijj i ixx f ==∑组内方差的算术平均数:2211mii m ii f fσσ===∑∑组间方差:2211()miii mii xx f fδ==-=∑∑,其中,11miii mii xf x f ===∑∑纵数:组距数列纵数近似值:112o M L d ∆=+∆+∆;或:212o M U d ∆=-∆+∆中位数:组距数列中位数近似值:12m e mfS M L d f --=+∑;或:12m e mfS M U d f +-=-∑三、总体参数和统计量1、总体参数:(1)总体平均数: 在总体未分组情况下:X X N =∑;在总体分组情况下:XFX F=∑∑;F 表示总体各组次数,F N =∑。

(2)总体成数:是指总体总具有某一相同标志表现的单位数占全部总体单位数的比重。

概率论教学大纲( 概念公式总结)

概率论教学大纲( 概念公式总结)

《概率论基础》教学大纲山西财经大学本科生应用数学系课程教学大纲课程名称:概率论基础课程英文名称:Probability Theory base学时数:64 学时(课堂讲授54学时,习题课10学时)学分数:4学分适用专业:应用数学专业开课学期:第Ⅲ或第IV学期第一部分大纲说明一、课程的性质与任务《概率论基础》是研究大量随机现象客观规律性的一门数学课程。

随着现代科学技术的迅速发展,概率论也得到了蓬勃的发展。

它不仅形成了结构宏大的理论体系,而且在很多科学研究、工程技术和经济管理等领域里有愈来愈多的应用。

同时概率论基础也是数理统计和统计学的学习前提。

由于其应用的广泛性和理论的重要性,《概率论基础》被列为我校应用数学系的一门重要的必修课。

概率论有其独特的思维方式,通过各个教学环节,逐步培养学生处理随机现象的能力和综合运用所学思维方法和知识分析问题、解决有关实际问题的能力。

为学生学习后续课程和进一步获得近代科学技术和管理技术知识奠定必要的数学基础。

二、课程的教学基本要求1、概率论是研究随机现象客观规律的一门科学。

通过本课程的学习,使学生对概率的概念和方法有全面、深入的理解,掌握概率常用方法的基本思想;使学生建立随机的思想,认识到随机现象存在的普遍性、概率应用的广泛性和学好这门课的重要性。

2、通过概率论的学习,使学生掌握概率论的基础知识,了解概率论公理化体系,为后续课程---数理统计的学习打下必要的基础。

3、通过概率论的学习,使学生初步掌握概率方法在实际中的应用,并能用一些方法处理较简单的实际问题。

三、学时分配:因本课程涉及数学分析等预备知识,故建议放在第三学期或第四学期。

本课程共64学时(讲授54课时,习题课10课时),4学分。

教材建议选用复旦大学李贤平编著的《概率论论基础》。

序号内容学时1第一章随机事件与概率8+22第二章条件概率与统计独立性6+23第三章随机变量及其分布10+24第四章随机向量及其分布10+25第五章数字特征及特征函数12+26第六章极限定理8四、参考书目:1、《概率论与数理统计》(第三版)浙江大学盛骤等编,高等教育出版社。

概率论复习课提纲

概率论复习课提纲

概率论复习课提纲一、古典概率用古典概型求概率的题在练习册中较多,初步统计有:习题一中的2、3、4、9、13;习题二中的1、2、4;习题四中的1;检测题1-二、三等。

一)、计数原理1、加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

2、乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

二)、排列组合1、无重复的排列与组合 1)、无重复的排列 Ⅰ、基础知识从n 个不同元素中,任取m(≤n)个不同元素,按照一定顺序排成一列(或从n 个不同元素中,有序地任取m 个不同元素),叫做从n 个不同元素中取出m 个不同元素的一个排列。

从n 个不同元素中,任取m(≤n)个不同元素的排列的个数,叫做从n 个不同元素中取出m 个不同元素的排列数,用符号m n P 或mn A 表示。

由乘法原理得:)!(!1m -n )2()1(n n m n n n P mn -=+-⋅-⋅=)( (约定0!=1)(取第一个元素放在第一个位置有n 种方法;取定第一位后,由于元素不允许重复,选择第二位时则只有n-1种方法,…,选择第m 位则只有n-(m-1)=n-m+1种方法)。

特别地,当m=n 时,就得到n 个不同元素的全排列数公式 !123)2()1(n n n n P n n =⋅⋅-⋅-⋅=2)、无重复的组合从n 个不同元素中,任取m(≤n)个不同元素并成一组(或从n 个不同元素中,无序地任取m 个不同元素),叫做从n 个不同元素中任出m 个不同元素的组合。

从n 个不同元素中,任取m(≤n)个不同元素的所有组合的个数,叫做从n 个不同元素中取出m个不同元素组合数,用符号mn C 表示,其计算公式为:)!(!!m!1m -n )2()1(n !n m m n n n m P C m n mn-=+-⋅-⋅==)( (约定0!=1) (事实上,对每一个从n 个不同元素m 个不同元素的组合,将其元素进行全排列可产生m!个不同的排列。

概统精华公式提纲全整理

概统精华公式提纲全整理

第一章 概率论基础知识 §1.1.1 随机试验特点:1.可在相同条件下重复进行;2.试验结果不止一个,且可以预知一切可能的结果的取值范围;3.试验前不能确定会出现哪一个结果。

§1.1.2 样本空间定义: Ω表示一个试验的所有可能的集合,称Ω为样本空间. 而这个随机试验的每个基本结果称为样本点,记作ω.基本事件:只含有一个样本点ω的事件,记为{ω}.两个特殊事件: 必然事件、不可能事件.§1.1.3 事件的关系及运算交换律 ,A B B A A B B A ==U U I I结合律 ()(),()()A B C A B C A B C A B C ==U U U U I I I I 分配律 ()()(),()()()A B C AB AC A B C A B A C ==I U U U I U I U 对偶律 ,A B A B A B A B ==U I I U§1.2.1 频率及性质:().n n A k k A kA f A n定义在次重复试验中,若事件发生了次,则称为事件发生的频数,称为事件发生的频率,记为频率的性质:()()()1211(1) 01(2)1; ()0;3,,,()().n n n rrr n i n i i i f A f f A A A r f A f A φ==≤≤Ω==∑LU ;=若为个两两互斥的事件,则§1.2.2 概率的公理化定义1.1211,,,P()P()i i i i A A A A ∞∞===∑L U 对于两两互不相容的事件2. A,B AB ϕ=互斥(即)()()()P A B P A P B ⇒=+U 3. ()()()P A B P A P AB -=- 4. ()()()()P A B P A P B P AB =+-U()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+U U§1.3.1 古典概型(1)试验只有有限个可能结果;(2)每次试验中,每个样本点出现的可能性相同;在古典概型中,若Ω中有n 个样本点,事件A 中有k 个样本点,则()k nP A =.Eg.两个基本的摸球模型:口袋中有N 只球,其中m 个红球,余下是白球,他们除颜色以外没有差别,现随机从中摸球n 次并观察摸出球的颜色,计算恰好摸到k 个红球的概率。

概率统计复习提纲(百度文库)讲解

概率统计复习提纲(百度文库)讲解

《概率论与数理统计》总复习提纲第一块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为:,.1)试验可在相同的条件下重复进行;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验F的所有可能结果组成的集合称为F的样本空间;记为Q;试验的每一个可能结果,即Q中的元素,称为样本点,记为「(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为「)和不可能事件(记为-).2、事件的关系与运算(1)包含关系与相等:“事件一发生必导致匸'发生”,记为二一「或丄-J ; A=B^AcB 且鸟匚乂.(2)互不相容性-互为对立事件1 :、「-门且一 :.(3)独立性:(i)设丄:'为事件,若有匸二-匸二y 口‘,则称事件-与F相互独立.等价于:若* 1 2 3 4(2)多个事件的独立:设一……;是n个事件,如果对任意的乂山二口匚,任意的1■\ ',具有等式,称;个事件…人相互独立.3、事件的运算(1)和事件(并):“事件一与匸'至少有一个发生”,记为」一丄.(2)积事件(交):“ 事件」与匸'同时发生”,记为』丄「或丄.(3)差事件、对立事件(余事件):“事件发生一而匸'不发生”,记为」「称为一与匚'的差事件;…二二称为T的对立事件;易知:二】匸.4、事件的运算法则1 交换律:亠二一二一 _」,二土;2结合律:』u0uO = (£u仍uC,(曲)0 =玫蜀;3分配律:(心―2此,的uC = (g(S;4 对偶()律:丸匸二丄,,一二二一1,十十u A=n n©u血可推广* ■'5、概率的概念(1)概率的公理化定义:i厂存v「J的f事件域.恥F隹义在F上的一个集值函数P(備足;1)菲负性:旳1)20;2)规范性:卩⑼訂3)可列可加性;设力岀,…是可列个互不相容事件,则则称P")为事件胡概率.(2)频率的定义:事件」在「次重复试验中出现11次,则比值」称为事件」在[次重复试验中出现的频率,记为 ,即— 」.即随旳的増大越来越韋近基个常数戸切丹斗审冲 n 称W 为事件一的(统计)概率在实际问题中,当「很大时,取f 一,“(4)古典概率:若试验的基本结果数为有限个, 且每个事件发生的可能性相等,则(试验对应古典概型)事件 」发生的概率为:—A 中所含样本点数」/(占) c 中样本点总数n(5)几何概率:若试验基本结果数无限,随机点落在某区域 g 的概率与区域g的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域「中随机地取一点落在区域-中”这一事件二发生的概率为:1丿Q 的测度. (6)主观概率:人们根据经验对该事件发生的可能性所给出的个人信念6、概率的基本性质(3)统计概率: 频率具有稳定性, 9 QD(1)不可能事件概率零:= 0.(2)有限可加性:设\ \ -是n个两两互不相容的事件,即」•.=;,(;) 丄,12…j 则有= + 酗)+…+P⑷.(3)单调不减性:若事件口—上「」「—」,且冊卜附也).(4)互逆性:丿二】且H上-(5)加法公式:对任意两事件二:,有二二-匚—二二I-P匚.—厂扑;此性质可推广到任意个事件的情形.(6)可分性:对任意两事件二:,有门上二:,且AAu3)<PU) + ?(3)7、条件概率与乘法公式(1)条件概率:设丄E是两个事件,即」.,则P(AB)称为事件一发生的条件下事件匸'发生的条件概率.(2)乘法公式:设丄H 且「一•〕「"」则W = P(^P(B| X) = P^)P(A13)称为事件二-的概率乘法公式.8全概率公式与贝叶斯()公式(1)全概率公式:设-…二是异的一个划分,且S,•厂亠,…,则对任何事件”」,有p(s)=^mwi4)2-1称为全概率公式(2)贝叶斯()公式:设是打的一个划分,且■ 1 ' 1 _'\ ,则对任何事件丄「一,有P(AAP(B\JL)mi月)=丨宀心=1,…⑻i-L称为贝叶斯公式或逆概率公式9、贝努里()概型(1)只有两个可能结果的试验称为贝努里试验,常记为丄.丄也叫做“成功—失败”试验,“成功”的概率常用/ " L:/表示,其中」成功”.(2)把匚重复独立地进行•.次,所得的试验称为!重贝努里试验,记为匸.(3)把::'重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为孑.以上三种贝努里试验统称为贝努里概型.(4)匸中成功卜次的概率是二」mi其中—1 1:--/--1.疑难分析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件•它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件」与厂必有一个事件发生,且至多有一个事件发生,则J、'为互逆事件;如果两个事件」与1不能同时发生,则J、'为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形•作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个3、两事件独立与两事件互斥两事件」、T独立,则」与T中任一个事件的发生与另一个事件的发生无关,这时「'' ■:' 1;而两事件互斥,则其中任一个事件的发生必然导致另一个事件不发生,这两事件的发生是有影响的,这时二一二二二.可以用图形作一直观解释.在图1.1左边的正方形中,图1.1咖)二.P⑷丄F(B) 一、^ 亠、4 2 ,表示样本空间中两事件的独立关系,而在右边的正方形中,丄匸•,表示样本空间中两事件的互斥关系.4、条件概率''与积事件概率「卜是在样本空间「内,事件二的概率,而’'''是在试验丄增加了新条件发生后的缩减的样本空间中计算事件』的概率.虽然都发生,但两者是不同的,一般说来,当」、-同时发生时,常用「加,而在有包含关系或明确的主从关系时,用"八二.如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率•问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯()公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件•贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设「是随机试验的样本空间,如果对于试验的每一个可能结果二一X,都有唯一的实数'与之对应,则称为定义在「上的随机变量,简记为.随机变量通常用大写字母二-■-等表示.设g,F*)是一t概率空间,若枷W R有珂紋是-个随腋氢离散型随机喪量(可能取值至多可列)随机变量连续型随机变量(可育諏值充满某个区间〉奇异型随机变量■-2、离散型随机变量及其分布列如果随机变量二只能取有限个或可列个可能值,贝淋二为离散型随机变量.如果」的一切可能值为〔1 ,并且負取:;的概率为X,则称儿":一:一】“:为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为匸:日,分布列为丄工卜;■'■-■'!5 P或(2)二项分布:记为'-,,概率函数尸区胡乂”(1-卩严北二0「也0<^<1(3)泊松分布,记为'-',概率函数iJtP&"}二斗,"Oh, 4 0<1泊松定理设“::是一常数,J是任意正整数,设’人',则对于任一固定的非负整数i,有八,■-.当〔很大且|很小时,二项分布可以用泊松分布近似代替,即切(1宀年,其中5(4) 超几何分布:记为概率函数(5) 几何分布:记为上•「心口,概率函数> ;< :匚 ‘ .;■..3、分布函数及其性质分布函数的定义:设"为随机变量,:为任意实数,函数阳=P{X <X)(-0O<X< +oo)称为随机变量負的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下 性质: (1) 有界性(-00 < X <松);⑵ 单调性 如果:'< ,则旳g(xj ;(3) 右连续, 即戸;7C(4) 极限性 血 F(i) = 0> 陀)二127 W-Hfi ;(5)完美性 Pg fXSxj =P{X “卜P{X 二F(xj-F(xj .4、连续型随机变量及其分布分布如果对于随机变量二的分布函数门「,存在非负函数「九,使对于任一实数:, 有宀'",则称;为连续型随机变量.函数—称为;的概率密度函数.P{X "}= pJtr k- 0丄…,min (丹,M) ,其中匚暑为正整数,且:二「- \n 当:「很大,且'1较小时,有马軒泌"(1十严概率密度函数具有以下 性质:(1)工沁〕;⑵二(3) - ' _、「 7 '■ ' ; ( 4)丄;二 11 ;(5) 如果在:处连续,则.常用连续型随机变量的分布:(1) 均匀分布:记为- ; ,概率密度为a①其它分布函数为Q,x <a-f a<x<bl, x(2) 指数分布:记为工- ,概率密度为分布函数为0, A<0(3) 正态分布:记为--,概率密度为p(x) = -=^ 2f2 ? -DO <z < +CO* ?相应的分布函数为di当"-"■■■-1时,即「时,称負服从标准正态分布.这时分别用」:和 _1表示二的密度函数和分布函数,即具有性质:①」:i .jPW = 加-X >Q0,其它②一般正态分布]」严丁的分布函数门与标准正态分布的分布函数■' 有关系:陀)二①¥5、随机变量函数的分布(1)离散型随机变量函数的分布设;为离散型随机变量,其分布列为(表2-2):则亠— if任为离散型随机变量,其分布列为(表2-3):表2-3h有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设;为离散型随机变量,概率密度为'-'1,贝L 「二的概率密度有两种方法可求.1)定理法:若f在丄的取值区间内有连续导数「,且:单调时,X⑷ 是连续型随机变量,其概率密度为11 / 27• ①其它其中二一匸「7二「代汕匚一二1二;I—]:门是]:的反函数.2)分布函数法:先求的分布函数F,(y) = P(Y<y^P(g(X)<y)=X[人何必 &止心)然后求疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间沐上,对试验的每一个可能结果:,都有唯一的实数•「与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间2、分布函数的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数门「左连续,但大多数书籍定义分布函数「二为右连续.左连续与右连续的区别在于计算「二时,二二点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于 '負-^ ,则定义左连续或右连续时门值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布1、二维随机变量及其联合分布函数如果随机变量血(讥血(町…,血@)定义在同一概率空间(Q FQ上则称恥)心⑷兀(叭-北3)为n维(n元)随机变量或随机向量.当沪2时诽为二维随戕氢常记为工儿联合分布函数的定义设—-匸丄二一「赴随机变量,心"为随机向量1■的联合分布函数特别卄血称为二淼合分布函数即恥』)訂(淞汀幻)二维联合分布函数具有以下基本性质:(1)单调性是变量:或;的非减函数;(2)有界性一―]I:* ;(3)极限性” 7」,:',一,厂「.一(?」丨一■.- -」.-工-1「-工,亠二(3)连续性l I;.关于:右连续,关于^也右连续;(4)非负性对任意点 =.「_.「,若「;二,贝V式表示随机点二门落在区域内的概率为:二…2、二维离散型随机变量及其联合分布列如果二维随机变量所有可能取值是有限对或可列对,则称■'为二维离散型随机变量.设「「为二维离散型随机变量,它的所有可能取值为匸- 将f 一—°厂一」或表3.1称为「「的联合分布列.表3.1(1)「「';( 2)肴' 联合分布列具有下列性质:3、二维连续型随机变量及其概率密度函数如果存在一个非负函数和乩门,使得二维随机变量的分布函数‘八「对任意实数「有 'f,则称 — 是二维连续型随机变量,称u为的联合密度函数(或概率密度函数)联合密度函数具有下列性质:设…丄|为二维随机变量,则称F x (x ) = P (X<^<Y <+oo ) 的0)二 P 卜00 <X <4007<7) 分别为关于二和关于「的边缘(边际)分布函数当为离散型随机变量,则称(1) 非负性对一切实数",有■" 1;(3) *-ho在任意平面域-上,「厂 取值的概率F {(工二[“(砂)如y Q ;3细(兀刃=Xj 为如果小」在;’处连续,则 「八一八 规范性(4)4、二维随机变量的边缘分布P 广乞珂(八12…):-1分别为关于;和关于『的边缘分布列当为连续型随机变量,则称內A )二ph 』)必分别为关于二和关于「的边缘密度函数5、二维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布列分别为P(X = ip/ = - p^,P(X= f P(Y -y^} = (ij = 12…),则当 j 固定P{f = ”} = Pj>Ci 时,称---------------------------------- 二——为'「条件下随机变量匚的条件分布律.同理,有吃讪|XrJ 二丝八12…Pi(2)连续型随机变量的条件分布设■= 为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:心.则当’•时,在和门,的连续点处,-在条件’下,】的条件概率密度函数为曲力)=畔 Px Wp^\y)=p (兀力p^y) 同理,6、随机变量的独立性设;」’及匚:'1分别是的联合分布函数及边缘分布函数.如果对任何实数「有『上=则称随机变量;与「相互独立.设:;'|为二维离散型随机变量,..与『相互独立的充要条件是廿妝血=12…).设为二维连续型随机变量,二与[相互独立的充要条件是对几乎一切实数,有7、两个随机变量函数的分布设二维随机变量的联合概率密度函数为」;」,「—“ —「是;'的函数,则匚的分布函数为马⑵二\\p(x t yyixdy.(1);'二的分布若.1;|为离散型随机变量,联合分布列为',则】的概率函数为:易仇)=£临耳-吗)&仇)=5>%巩-为);或>若丄八为连续型随机变量,概率密度函数为W,则匚的概率函数为:严r-Ko旳⑵二p^z-x)dx=\ p(z-y r y)dy的分布若I为连续型随机变量,概率密度函数为小乩门,则]的概率函数为:8.最大值与最小值的分布曲”冊勺)畝阿〔兀…兀)勺厂P©)畅)胡旳)*血吃…北)勺)4*(卜恥))9.数理统计中常用的分布(1)正态分布:设随机变劉諾厂也相互紐,肮广N仏口;),心谊…也则2也皿左的加巾其中用心…尼为常黏(2)宀 *:设随机变就“血…也相互從,且丫厂M(叮〉心12…”则(3)「• 卄:亡*……-厂\ L書让二I(4)「—--:亡「疑难分析1、事件=-丄二「表示事件梟•丄「与的积事件,为什么二计不一定等于'■■■'■ :■■■.■ ?如同仅当事件二f相互独立时,才有「二-1三匚二一样,这里依乘法原理只有事件一与1「■'/.相互独立时,才有P{X<x t Y<y) = P(X<^ P(Y<y\,因为P{Y<y\X<x} = P{Y <y).2、二维随机变量「厂的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由「丄丫二心」宀「7 r知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果二『相互独立,贝V「仁―t —:,即卩宀二;丄J •:'.说明当二『独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量二〕相互独立,是指组成二维随机变量•厂的两个分量二〕中一个分量的取值不受另一个分量取值的影响,满足儿」—匸-:匚-.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有「二—L匚.两者可以说不是一个问题.但是,组成二维随机变量I的两个分量二「是同一试验丄的样本空间上的两个一维随机变量,而丄f也是一个试验的样本空间的两个事件.因此,若把“匸土”、”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质1、随机变量的数学期望设离散型随机变量負的分布列为「工二:!亠,如果级数台"'绝对收敛,则称级数的和为随机变量J丄的数学期望.设连续型随机变量x的密度函数为p⑴,如果广义积分L腴R处绝对收敛,则f-HD称此积分值」为随机变量匚的数学期望•数学期望有如下性质:(1)设「是常数,则"'■;(2)设]'是常数,则和(3)若-1:'是随机变量,则-[丄:_:丄-';对任意〔个随机变量■ ' - ■ ',有(4)若-亠相互独立,贝U -七--'-.1 ;对任意「个相互独立的随机变量 u :•,有2、随机变量函数的数学期望设离散型随机变量 負的分布律为■"丄|丄,则」的函数一1 一的设连续型随机变量 負的密度函数为;;|,则負的函数'■_ ■的数学期望为i +®购恥讥讷,式中积分绝对收敛 3、随机变量的方差设匚是一个随机变量,贝V 丄一匸「L - - 称为匚的方差-一“称为;的标准差或均方差.计算方差也常用公式 方差具有如下性质:(1)设一1是常数,则\ '-; (2)设「是常数,则--------;(3)若分1、*2相互独立,则0区+托)=D(X])+°(為);对任意〔个相互独立的随机变量■' -■' ,有- ;(4) 的充要条件是:存在常数 「,使- - - -二八 4、几种常见分布的数学期望与方差 (1)匸;.「匸;二:.:;(2) 「——数学期望为亟(②卜另欽亦)久朮=12…jt-i 式中级数绝对收敛(3)(4)匸」已匸二2 1 ;(5)「一 -'■- :丫;(6)—「二 < 匚一,「I」门一:■汀匸⑺—:'二一;:.;;(8)八“血刊凤& = “23)=代5、矩设;是随机变量,贝y L 「2;* 4称为;的一阶原点矩.如果f存在,则■ ■ _ ' ' ■ '■■ - - - | "'-称为負的;阶中心矩.设「「是二维随机变量,贝y心亠;止【;;「工称为的I 阶混合原点矩;址=E ([X-E(Q*•[『-占(別),灯=1,2,…称为(x,y)的七+]阶混合中心矩.6、协方差与相关系数随机变量(XQ的协方差为^f Y^E{[X-E^Y-£(『)]).它是i+i阶混合中心矩,有计算公式:沏(工『)二E(沼)・E(x)E(y).随机变量■= 的相关系数为_ cov(xn呛二亦页相关系数具有如下性质:(1)卜冷」;(2)卜」存在常数•:',使";-汇+「=1,即二与1以概率1线性相关;(3)若;独立,则L •,即不相关.反之,不一定成立.(4)() 设()是二维随机变量,若X与Y的方差都存在,则[Cau(X r^<DX DY疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性•但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数1■二反映了随机变量二和「之间的什么关系?相关系数;I是用随机变量就和[的协方差和标准差来定义的,它反映了随机变量二和『之间的相关程度.当时,称二'与丁依概率1线性相关;当匚二I 时,称免与『不相关;当时,又分为强相关与弱相关.4、两个随机变量二与]相互独立和不相关是一种什么样的关系?(1)若、相互独立,则、不相关.因为、独立,则川;「厂小.,故心二-一,从而七j,所以J、r不相关.(2)若不相关,则门、「不一定独立.如:f —]"兀x2+y2 <}rPW= 1 o, 其它一因为TO = £(y)= 0,TO=1/4-1'1二•,知」、」不相关.但U ;1「’L,加y)二2尸加,瞼J)HP占)P0 ,知乂、『不独立.(3)若相关,则匚、[一定不独立.可由反证法说明.(4)若匚、)不相关,则二、不一定不相关.因为二、不独立,二—〕,但若汇-厂m时,可以有―,从而可以有」、不相关.但是,也有特殊情况,如服从二维正态分布时,不相关与;、J 独立是等价的第五块大数定律和中心极限定理内容提要基本内容:切比雪夫()不等式,切比雪夫大数定律,伯努里()大数定律,辛钦()大数定律,棣莫弗-拉普拉斯()定理,列维-林维德伯格()定理.1、切贝雪夫不等式设随机变量二的数学期望m—工,方差匸,则对任意正数「,有不等刊■心沪召或刊,小"-召成立2、大数定律(1)切贝雪夫大数定律:设…是相互独立的随机变量序列,数学期望J. 1和方差’二都存在,且「二」〔|,则对任意给定的I「,有1丄如列-乞凶-欧扎)]|<沪1“讯i-i .(2)贝努利大数定律:设L是「次重复独立试验中事件d发生的次数,:是事limP(|^-^|<F)=l件丿在一次试验中发生的概率,则对于任意给定的:'.■丨,有…贝努利大数定理给出了当[很大时,」发生的频率一=依概率收敛于d的概率,证明了频率的稳定性.(3)辛钦大数定律:设相互独立,服从同一分布的随机变量序列且匸也〕卫(:=匚),则对任意给定的:,I,有3、中心极限定律(1) 林德贝格-勒维中心极限定理:设〔芒〕,…丄 是独立同分布的随机变量 序列,有有限的数学期望和方差,「二-「,「..「一、:.则对任意实数刀(血-“)刀疋厂冲“Y _ ____:,随机变量■■,'■--■的分布函数二-满足 Em 氏⑵二曲尸也<i} = fJ2/T(2) 李雅普诺夫定理:设是不同分布且相互独立的随机变量,它护—y 2 们分别有数学期望和方差:小1 一畀,■'■■'■■<;「厂-八-■-;亠文欧因-丛角TO正数$,,使得当心谕时,有盯口,则随机变量»X屋据F7 _ i-1 H _ J-1 X的分布函数对于任意的x ,满足当〔很大时,爲』㈣总拓』(也昭.(3)德莫佛一拉普拉斯定理:设随机变量'■. 1 " 1 1服从参数为匚时卩J 匸;的二项分布,则对于任意的:,恒有疑难分析D 乞逊!-1lim 坨(打=lira <>=r 加 J 十矩rlimP\%-® J 誓(D<x1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列J依概率收敛于,,说明对于任给的£>0,当"很大时,事件“”的概率接近于1•但正因为是概率,所以不排除小概率事件“ 1八_2卜6”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.。

统计学原理知识点公式整理

统计学原理知识点公式整理

数。

)如:产量指数、销售量指数、生产指数、人数指数、运输量指数。

说明复杂现象总体的质量指标变动程度的相对数。

(说明总体内涵数量变动情况的相对数。

)例:价格指数、成本指数、工资水平指数、股票价格指数。

:平均数指数总体:即统计总体,是指客观存在的、在同一性质基础上结合起来的许多个别事物的整体。

总体单位:即构成统计总体的个别单位。

标志:即指表明总体单位特征的名称。

可分为品质标志和数量标志。

品质标志:说明总体单位质的特征,用属性表示(如:性别、民族、籍贯、工种) 数量标志:说明总体单位量的特征,用数值表示。

(如:年龄、工资额)数量标志的具体表现,统计上称为标志值(或变量值)指标(亦称统计指标):说明总体的综合数量特征。

包括指标名称和指标数值。

数量指标如:人口数、工业增加值、货运量等。

用绝对数表示。

质量指标如:人口的性别比例、单位产品成本、劳动生产率等。

用相对数或平均数表示。

:标志是说明总体单位特征的;指标是说明总体特征的。

标志中的品质标志不能用数量表示;而所有的指标都能用数量表示。

标志(指数量标志)不一定经过汇总,可直接取得;而指标(指数量指标)一定要经过汇总才能取得。

∑∑=pqpqK q1∑∑=111qpqpKpqkk kV qqσ=pkk kV ppσ=标志一般不具备时间、地点等条件;但完整的统计指标一定要讲明时间、地点、范围。

变异:标志在各总体单位具体表现的差异 —— 一般意义上的变异。

严格地说,变异仅指品质标志的不同具体表现。

如:性别为男或女。

变量:指可变的数量标志。

变量的具体数值表现即变量值。

按取值是否连续分—— 只能取整数的变量。

(如:人数,企业数,机器台数)—— 在整数之间可插入小数的变量。

(如:身高、体重、总产值、资金、利润等)例如:搜集国有及国有控股企业生产情况的资料时,每一个国有及国有控股企业是调查单位,也是填报单位;当搜集国有及国有控股企业中高精尖设备的使用情况的资料时,国有及国有控股企业中每一台高精尖设备是调查单位,而填报单位是每一个国有及国有控股企业。

概统知识点总结归纳

概统知识点总结归纳

概统知识点总结归纳一、概率1. 概率的概念概率是指某一事件发生的可能性大小。

通常用P(A)表示,其中A表示事件的名称。

概率的取值范围是[0,1],概率为0表示不可能事件,概率为1表示必然事件。

2. 概率的性质(1)0≤P(A)≤1(2)P(Ω)=1,其中Ω表示全集。

(3)互斥事件:若A与B互斥,则P(A∪B)=P(A)+P(B)(4)相互独立事件:若A与B相互独立,则P(A∩B)=P(A)·P(B)3. 概率的计算(1)古典概率:P(A)=m/n,其中m表示事件A发生的次数,n表示试验的总次数。

(2)几何概率:P(A)=S(A)/S(Ω),其中S(A)表示事件A对应的几何区域的面积,S(Ω)表示全集对应的几何区域的面积。

(3)统计概率:P(A)=n(A)/n,其中n(A)表示事件A发生的次数,n表示试验的总次数。

二、随机变量1. 随机变量的概念随机变量是指试验结果的数量特征的变量。

随机变量可以是离散型的或连续型的。

2. 随机变量的分布(1)离散型随机变量:如果X取值有限或可数,即X可以把其所有可能的取值列举出来,那么称X为离散型随机变量。

离散型随机变量的分布可以用概率分布列或累积分布函数来描述。

(2)连续型随机变量:如果X的取值连续,即X的取值范围是一个或多个区间,那么称X为连续型随机变量。

连续型随机变量的分布可以用概率密度函数或累积分布函数来描述。

3. 随机变量的期望和方差(1)期望:随机变量X的期望E(X)表示X的平均取值。

若X是离散型随机变量,则有E(X)=Σx·P(X=x),若X是连续型随机变量,则有E(X)=∫x·f(x)dx,其中f(x)表示X的概率密度函数。

(2)方差:随机变量X的方差Var(X)表示X的取值偏离其期望值的程度。

Var(X)=E((X-E(X))^2),其中E(X)表示X的期望。

三、概率分布1. 常见的概率分布(1)离散型概率分布:0-1分布、二项分布、泊松分布等。

概率统计讲义提纲1

概率统计讲义提纲1

概率统计讲义提纲第一章一、排列组合3.组合:注:0!=1.(1)(2)(1)r nA n n n n r =---+ !rr n n A C r =!()!!n n r r =-二、随机事件及其概率1、概率论是研究随机现象规律性的一门数学学科.2、随机现象是通过随机试验来研究的. 3.样本空间、样本点4、随机事件、基本事件、必然事件、不可能事件5、事件之间的关系及运算律含义:A 发生,则B 一定发生含义:A ,B 至少一个发生,or A 发生或B 发生 含义:A ,B 同时发生,or A 发生且B 发生A ,B 互不相容 (互斥),含义:A ,B 不同时发生 A 的逆事件或对立事件,含义:A 发生,但B 不发生:,.A B A B A B A B ⋅==(4) 德摩根律 (对偶律)例1、用A 、B 、C 表示如下事件1)A 、B 、C 至少有一个发生 A B C2)A 、B 、C 恰有一个发生 3)A 、B 、C 至多有两个发生 ABC A B C =A B ⊂A B=A B ⋃A B⋂A A B ⋂=∅A A S A A ==∅ 且AB A AB AB -=-=ABC ABC A BC例2、一个工人生产了3个零件,以事件i A 表示他生产的第i 个零件是合格品,i =1,2,3,试用i A (i =1,2,3)表示下列事件:6.频数与频率:在相同的条件下,进行了 n 次试验:7. 概率的统计定义:大量重复同一试验时事件A 发生频率的稳定值。

8. 概率的公理化定义::)(,,)(,.,满足下列条件如果集合函数的概率件称为事记为赋予一个实数的每一事件对于是它的样本空间是随机试验设⋅P A A P A E S E (1):,()0;对于每一个事件有A P A ≥非负性(2):,()1;S P S =对于必然事件有规范性12(3):,,,,,1,2,, 设是两两互不相容的事件,即对于则有i j A A i j A A i j ≠=∅= 可列可加性1212()()()P A A P A P A =++11()(B );只有第一个零件是合格品22()(B );三个零件中只有一个零件是合格品33(),(B );第一个是合格品但后两个零件中至少有一个次品();4(4)B 三个零件中最多有两个合格品55()(B ).三个零件都是次品11231();B A A A =21231231232();B A A A A A A A A A = 31233()();B A A A = 41234(),B A A A =4123;B A A A = 或51235(),B A A A =5123.B A A A = 或9. 概率的性质: 有限可加性特别,若AB =Φ(互不相容),则()()()P A B P A P B ⋃=+ (3) (减法公式) 特别若B A ⊂,则()()(),()P A BP A P B P B P A-=-≤且对三个事件, 例3、解:(1)(2) P(BA )P(B )P(A )=- (3)).()()()(,)()6(AB P B P A P B A P B A -+= 有对于任意两事件加法公式10()().P ∅=12(2),,,,n A A A 若是两两互不相容的事件则有).()()()(2121n n A P A P A P A A A P +++= ()()().P A B P AP AB -=-(5),()1().A A P A P A =-设是的对立事件则 (4),() 1.对于任一事件A P A ≤123()P A A A 123122313123()()()()()()().P A P A P A P A A P A A P A A P A A A =++---+113211238A,B ,P(B A ).()A B ;()A B;()P(AB ).⊂=设事件的概率分别为和求在下列三种情况下的值与互斥12P(BA )P(B ).==111236.=-=P(BA )P(B A )=-P(B )P(AB )=-113288.=-=概率统计讲义提纲第一章三、古典概型样本点有限(n 个):等可能性:古典概率: ()=k P A n例1. 甲、乙两人连续赌四次,每次双方赢的机会均相同,求乙连续赢 4 次的概率?解:A ——乙连赢4次k=1所以 P (A )=1/16例2. 有100件同类型同批次的产品,按性能分成两类:甲40件,乙60件。

概统公式大全

概统公式大全
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。
A、B同时发生:A B,或者AB。A B=,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
密度函数具有下面4个性质:
如果二维随机向量 (X,Y)的所有可能取值为至多可列个有序对(x,y),则称 为离散型随机量。
设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称
?
为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
Y
X
y1
y2

概率与统计教学大纲

概率与统计教学大纲

概率与统计教学大纲(总学时数:64,学分数:4)一、课程的性质、任务和目标本课程是小学教育(理)专业的一门基础课。

通过本课程的学习,使学生获得概率论与数理统计的基本知识和基本运算技能,同时使学生在运用数学方法分析和解决问题的能力方面得到进一步的培养和训练,为学习有关专业课程和扩大数学知识提供必要的数学基础。

为学习后续其它有关课程和将来从事相关工作打下必要的基础。

二、课程的基本内容和要求(一)事件与概率1.随机事件(理解)2.古典概型(掌握)3.条件概率(掌握)4.独立重复实验(掌握)重点:条件概率难点:全概率公式的应用(二)离散型随机变量1.离散型随机变量(理解)2.随机变量的分布函数(掌握)3.常见离散型分布(熟练掌握)4.离散型随机变量函数的分布(理解)5.离散型随机向量(理解)6.数学期望与方差(理解)重点:分布函数的概念难点:函数的分布(三)连续型随机变量1.连续型随机变量(掌握)2.连续型随机向量(掌握)3.连续型随机变(向)量的数字特征(掌握)重点:连续型随机变量难点:连续型随机向量的边缘分布(四)大数定理与中心极限定理1.大数定理(了解)2.中心极限定理(了解)(五)抽样分布1.总体与样本(理解)2.统计量与子样矩(掌握)3.常见的统计分布(掌握)4.正态总体子样分布(掌握)重点:常见的统计分布难点:分位数的概念(六)参数估计1.参数的矩估计(掌握)2.参数的最大似然估计(掌握)3.参数的区间估计(掌握)重点:参数的最大似然估计难点:参数的最大似然估计(七)假设检验1.假设检验的基本概念(理解)2.参数的假设检验(掌握)3.非参数的假设检验(了解)重点:参数的假设检验难点:非参数的假设检验(八)方差分析与回归分析1.方差分析(掌握)2.一元线性回归分析(掌握)3.一元非线性回归分析(了解)4.多元线性回归分析(了解)重点:一元线性回归分析难点:一元非线性回归分析四、有关说明(一)先修课程数学分析(二)教学建议教学中要注意与实际应用问题结合提高学生学习的兴趣,注意应用相关计算机软件(EXCEL等)降低统计类问题的计算难度。

初中数学知识点定理公式总结及教学大纲【模板范本】

初中数学知识点定理公式总结及教学大纲【模板范本】

初中数学知识点总结一、全部知识点导图(一)数与代数的全部知识点有理数:数轴绝对值相反数有理数的加法有理数的减法有理数的乘法有理数的除法有理数的乘方实数:平方根立方根近似数有效数字二次根式科学计数法代数式:用字母表示数代数式化简代数式求代数式的值待定系数法解方程函数关系式比例关系整式:整式的加减整式的乘法整式的乘法公式整式的除法因式分解幂的计算多项式整式的化简分式:分式分式基本性质分式的运算分式方程分式方程的应用分式不等式通分约分一元一次方程:等式与方程一元一次方程的定义解一元一次方程一元一次方程的应用二元一次方程(组):二次一次方程组和它的解二元一次方程组的解法三元一次方程组的解法二元一次方程组的应用方程组的应用二元一次方程的解一元二次方程:一元二次方程的定义一元二次方程的解法一元二次方程的应用根与系数的关系一元二次方程判别式一元二次不等式一元一次不等式(组):不等式的基本性质解一元一次不等式一元一次不等式组一元一次不等式(组)的应用一次函数:变量与函数一次函数一次函数的图像一次函数的性质一次函数的应用一次函数解析式分段函数反比例函数:反比例函数反比例函数的图像反比例函数的性质反比例函数的应用复合函数性质反比例函数解析式二次函数:二次函数的图象二次函数的性质二次函数与一元二次方程二次函数的应用二次函数的解析式自变量的取值范围(二)空间与图形的全部知识点图形的认识:立体图形平面图形截一个几何体图形的构成(点、线、面、体)线段角线段垂直平分线图形的分割相交线与平行线:相交线平行线的判定平行线的性质垂直三角形:三角形的面积与三角形有关的线段、角全等三角形等腰三角形直角三角形全等的条件勾股定理及逆定理三角形性质三角形内切圆、内心四边形:面积平行四边形菱形矩形正方形梯形多边形的对角线四边形面积多边形及其内角和圆:圆的有关概念直线与圆有关的位置关系圆与圆的位置关系圆的计算问题圆锥的计算问题圆的基本性质尺规作图:线段的基本作图角的基本作图角平分线的基本作图垂直平分线的基本作图三角形的基本作法圆的基本作法视图与投影:投影三视图几何体的展开图与折叠图形轴对称:轴对称图形基本图形的轴对称性图形的平移与旋转:平移旋转中心对称图形的相似:图形的相似相似三角形相似多边形比例线段黄金分割平行线分线段成比例位似图形锐角三角函数:锐角三角函数解直角三角形图形与坐标:探索确定位置的方法平面直角坐标系图形的变化求点的坐标图形与证明:定义与命题反例与证明反证法(三)统计与概率的相关知识点数据与图表: 数据的收集数据的整理统计表统计图平均数中位数众数极差概率初步:简单事件的概率估计概率概率的简单应用可能性二、基本知识详解(一)、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.②任何一个有理数都可以用数轴上的一个点来表示。

统计与概率教案----基础知识框架版

统计与概率教案----基础知识框架版

统计与概率基础知识概要数据的收集(一):知识框架1.统计学中的基本概念.(1)总体:我们所要考察对象的全体(2)个体:组成总体的每一个考察对象 。

(3)样本: 从总体中抽取的一部分个体 。

(4)样本容量:指一个样本的必要抽样单位数目。

(5)样本是从总体中抽出来的,它能在一定程度上反映总体的情况,但样本既然是总体的一部分,用样本反映总体就会有一定的局限性,一般来说,样本容量越大,用样本估计总体就越准确。

2.数据收集方法的选择:普查 、抽样调查 。

(1)普查:为了某种特定的目的而专门组织的一次性的全面调查。

(2)抽样调查:只考察总体当中的一部分个体 ;抽样调查时要注意样本的 代表性和广泛 性。

巩固:1.为了解我县5000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:(1)这5000名学生的数学会考成绩的全体是总体;(2)每个考生是个体;(3)200名考生是总体的一个样本;(4)样本容量是200,其中说法正确的有( )A .4个B .3个C .2个D .l 个 5.为了解某一地区八年级学生的身体发育情况,将对学生的身高调查分析,方法是从这一地区的不同区域选20所学校,共抽取男女学生200名,测出每位学生的身高共200个数据,在这个问题中:①总体是指②个体是指③样本是指。

④样本容量是指。

数据的描述一:知识梳理1.描述数据集中趋势和平均水平特征的数 (1)平均数:(2)加权平均数: (3)中位数: (4)众数:2.描述数据波动大小(离散程度)特征的数 (1)方差:计算公式:[X-E(X)]^2。

(2)标准差: 计算方法是。

(3)极差:。

1.则这组数据的中位数与众数分别是( )A .27,28B .27.5,28C .28,27D .26.5,272.甲、乙两名学生在相同条件下各射靶10次,两人命中环数的平均数为7x x ==乙甲方差223 1.2S S ==乙甲;,射击情况较稳定的是( ) A.甲; B.乙; C.甲、乙一样稳定; D.不确定统计的应用一:知识梳理1.频数与频率(1)频数:某个数据在一组数据中出现的为频数;或将数据分组后,落在各小组的数据的叫做该小组的频数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,( =1
3°对于两两互不相容的事件,,…有
常称为可列(完全)可加性。
则称P(A)为事件的概率。
(8)古典概型
1°,
2°。
设任一事件,它是由组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
乘法原理(两个步骤分别不能完成这件事):m×n
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。
(3)一些常见排列
重复排列和非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
(2)连续型随机变量的分布密度
设是随机变量的分布函数,若存在非负函数,对任意实数,有

则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。
密度函数具有下面4个性质:
1°。
2°。
(3)离散与连续型随机变量的关系
积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似。
-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
德摩根率:,
(7)概率的公理化定义
设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件:
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件满足
1°两两互不相容,,
2°,
则有

(16)贝叶斯公式
设事件,,…,及满足
1°,,…,两两互不相容,>0,1,2,…,,
2°,,

,i=1,2,…n。
此公式即为贝叶斯公式。
,(,,…,),通常叫先验概率。,(,,…,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型
我们作了次试验,且满足
u每次试验只有两种可能结果,发生或不发生;
u次试验是重复进行的,即发生的概率每次均一样;
u每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。
这种试验称为伯努利概型,或称为重伯努利试验。
用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,
若事件、相互独立,则可得到与、与、与也都相互独立。
必然事件和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足P(ABC)=P(A)P(B)P(C)
(4)分布函数
设为随机变量,是任意实数,则函数
称为随机变量X的分布函数,本质上是一个累积函数。
可以得到X落入区间的概率。分布函数表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
。其中L为几何度量(长度、面积、体积)。
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义设A、B是两个事件,且P(A)>0,则称为事件A发生条件下,事件B发生的条件概率,记为。
如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。
,。
第二章随机变量及其分布
(1)离散型随机变量的分布律
设离散型随机变量的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1),,(2)。
概统公式大全
概率论与数理统计公式大全
来源:王子阳的日志
第一章随机事件和概率
(1)排列组合公式
从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… …。
(14)独立性
①两个事件的独立性
设事件、满足,则称事件、是相互独立的。
若事件、相互独立,且,则有
相关文档
最新文档