集合的基本运算PPT课件

合集下载

集合的基本运算课件(共11张PPT)

集合的基本运算课件(共11张PPT)

解析: M={x|-1≤x≤3},M∩N={1,3},有2个.
3:(必修1第一章复习参考题B组练习1) 学校举办运动会时,高一(1)班有28名同学参 加比赛,有15人参加游泳比赛,有8人参加田径比 赛,14人参加球类比赛,同时参加游泳和田径比赛的 有3人,同时参加游泳和球类比赛的有3人,没有人 同时参加三项比赛。问同时参加田径和球类比赛的 有_____人? 解析:设同时参加田径和球 类比赛的有x人,则 9+3+3+(8-3-x)+x+(14-3-x)=28
二:以点集为背景的集合运算:
例1:(必修1习题1.1B组练习2)在平面直角坐标系中,
集合 C ( x, y ) y x表示直线 y
x, 从这个角度看,集合
2 x y 1 D ( x, y ) ,表示什么?集合C , D之间有什么关系? x 4 y 5
(1) A B A, A B B; A A B, B A B
A (CU A) , A (CU A) U
( 2) A B A A B;
A B B A B
(3)德摩根定律: CU ( A B ) (CU A) (CU B ) CU ( A B ) (CU A) (CU B )
【解题回顾】将两集合之间的关系转化为两曲线之 间的位置关系,然后用数形结合的思想求出 的范围 (准确作出集合对应的图形是解答本题的关键).
a
课堂总结:
1、集合的基本运算:
2、集合的运算性质:
3、注重数形结合思想的应用:
(1)韦恩(Venn)图 (2)连续的数集——数轴 (3)点集的运算——曲线位置关系
游泳 田径

高一数学必修一集合的基本运算课件PPT

高一数学必修一集合的基本运算课件PPT
③AB=A A____B
目标升华
回顾本节课你有什么收获? (1)两个定义:并集 A∪B={x|x∈A或x∈B}, 交集 A∩B={x|x∈A且x∈B}. (2)两种方法:数轴和Venn图. (3)几个性质:A∩A=A,A∪A=A,
A∩=,A∪=A; A∩B=B∩A,A∪B=B∪A.
当堂诊学
完成课本的P8-9页例4、5、6、7以及 P11页练习题1、2、3
1.我们之中的每个人都更 偏向于把心思花费在更能 影响自己切身利益的事情
上,你同意这个说法吗?
2.你曾经做过哪些努力,来让自己的教 学活动 显得对 学生有 意义?
3.在下面的教学活动中,你觉得哪种教 学方式 对学生 来说更 有意义
A.在课堂上,让学生在给定的句子里用下划线标记 出其中的名词
B.在课堂上,让学生自由造句,但不许在句子中出现 名词。
怎样的。 G.最后,让学生谈谈这个历史人物在历史上的作为
对我们现在的生活产生了哪些影响。 H.在课堂上,通过扔骰子给学生讲解概率论。
I.在课堂上,让学生利用概率论(和天气有关的)来规 划哪几个月的哪几周适合班级出游
03
现在,请写出四到五条你在当前教学中的实际经验。 写出五条你曾在课堂中使用过的教学方法,并努
图2
并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例2.已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,
添加标题
5.理论上,这个会议的内容对你三十年 之后的 生活也 许会有 帮助。

《集合的基本运算》集合与常用逻辑用语PPT(第1课时并集与交集)

《集合的基本运算》集合与常用逻辑用语PPT(第1课时并集与交集)

设集合 A={1,3,5,7},B={x|2≤x≤5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
解析:选 B.因为 A={1,3,5,7},B={x|2≤x≤5},所以 A∩B ={3,5}.
栏目 导引
第一章 集合与常用逻辑用语
已知集合 M={x|-1<x<3},N={x|-2<x<1},则 M∩N= ________. 解析:在数轴上表示出集合,如图所示,
并集与交集 掌握并集与交集的相关 逻辑推理、数学运算、
的性质
性质,并会应用
数学抽象
第一章 集合与常用逻辑用语
问题导学 预习教材 P10-P12,并思考以下问题: 1.两个集合的并集与交集的含义是什么? 2.如何用 Venn 图表示集合的并集和交集? 3.并集和交集有哪些性质?
栏目 导引
1.并集
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
2.已知集合 A={x|-3≤x<4},B={x|-2≤x≤5},则 A∩B=
() A.{x|-3≤x≤5} C.{x|-2≤x≤5}
B.{x|-2≤x<4} D.{x|-3≤x<4}
解析:选 B.因为集合 A={x|-3≤x<4},集合 B={x|-2≤x≤5}, 所以 A∩B={x|-2≤x<4}.
1.若集合 A={x|-2<x<1},B={x|0<x<2},则集合 A∩B=( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 解析:选 D.如图,

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

(3)(∁SA)∪(∁SB);
6
解析:
• 【解析】(1)由并集的概念可知A∪B={1,2,3,4,5,6};

(2)借助数轴(如图)


∴M∪N={x|x<-5或x>-3}.
• 【答案】(1){1,2,3,4,5,6} (2)A
7
方法归纳:
• 并集的运算技巧: • (1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的
互异性. • (2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但是要注意含“=”
用实心点表示,不含“=”用空心点表示.
8
探究一 并集的运算
9
解析:
10
探究二 交集的运算
• 【例】(1)已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则A∩B=________.

(2)已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=
________.

11
解析:
• 【解析】(1)A={x|x=1或x=-2},B={x|x=-2或x=3},

∴A∩B={-2}.

(2)结合数轴:


由图可知m=6.
• 【答案】(1){-2} (2)6
是否存在?若存在,求出x;
∴(∁RA)∩B={x|2<x<3或7≤x<10}.
由此可得:(1)(∁SA)∩(∁SB)={x|1<x<2}∪{7}.(2)∁S(A∪B)={x|1<x<2}∪{7};
(3)(∁SA)∪(∁SB)={x|1<x<3}∪{x|5≤x≤7}={x|1<x<3,或5≤x≤7};

《集合的基本运算》课件

《集合的基本运算》课件

分配律
集合的分配律指对于三个集 合A、B、C,(A∪B)∩C = (A∩C)∪(B∩C),(A∩B)∪C = (A∪C)∩(B∪C)。
实例演练
针对不同场景的集合问题进行解答,帮助大家更好地应用集合运算法则。
小结
1 集合的基本运算
包括并集、交集、差集和互补集。
2 集合的运算律
包括交换律、结合律和分配律。
用符号表示为C。
并集
集合的并集是指将两个集合中的所有 元素合并在一起的运算,用符号表示 为∪。
差集
集合的差集是指从一个集合中减去另 一个集合中共有的元素所得到的集合, 用符号表示为\-。
集合的运算律
交换律
集合的交换律指交换并集和 交集的顺序不会集合进 行并集或交集运算时,可以 按照任意顺序进行,结果不 变。
《集合的基本运算》PPT 课件
本节课将介绍集合的基本运算,帮助大家更好地理解集合的概念和运算法则。
什么是集合?
集合的定义
集合是由一组元素组成的整体,元素与集合的关 系由包含和不包含来决定。
元素与集合的关系
元素可以属于一个集合,也可以不属于一个集合。 这种关系通过包含和不包含来描述。
集合的表示形式
3 实例演练回顾
通过实例演练加深对集合的基本运算和运算律的理解。
Q&A
回答听众提出的问题,帮助大家进一步理解集合的基本运算和运算律。
列举法
通过列举集合中的元素来 表示。适用于元素个数较 少的情况。
描述法
通过描述元素的特征或性 质来表示。适用于元素个 数较多的情况。
Venn图
通过画图的方式来表示集 合和元素之间的关系。直 观且易于理解。
集合的基本运算
1

人教版 集合的基本运算(共30张PPT)教育课件

人教版 集合的基本运算(共30张PPT)教育课件

1A 2 B 3
一般地,由所有属于A且属于B的元素组成的集合,
称为集合A与B的交集,记作A∩B(读作“A交B”).
即A∩B={ x | x ∈A,且 x∈B}
例5、已知集合A={x|x≤5,且x∈N}, B={x|x>1,且x∈N},
那么A∩B等于( A、{1,2,3,4,5}
). B
B、{2,3,4,5}
D 则实数a满足( )
A、a 4 B、a 4
C、a 4
D、a 4
一、复习回顾
例1、写出集合{a,b}的所有子集,并指出哪些是它的 真子集. 分析:一般写子集时先写不含任何元素的集合,再写 由1个元素构成的集合,再写2个,依此类推……
解:集合{a,b}的所有子集为: ,{a},{b}, {a,b} 真子集为: ,{a}, {b}
二、新课讲解
观察:集合U与集合A,B之间有何关系? (1)A={1,3,5},B={2,4,6},U={1,2,3,4,5,6}; (2)A={x|x是有理数},B={x|x是无理数}, U={x|x是实数}
(3)A={x|x是澄海中学高一(6)班的男同学}, B={x|x是澄海中学高一(6)班的女同学}, U={x|x是澄海中学高一(6)班的学生}.
集合的基本运算
本节课程在本学科中的地位
集合论是现代数学的一个重要的基础,在高中数学中,集合的初步 知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的 基础。
高考中一般有1个选择 5分 与其他部分知识综合在一起考(函数定义域等)
本节课程的意义及作用 通过实例,了解集合间的基本运算
一、复习回顾
用韦恩图表示为
A
二、新课讲解
补集运算性质
(1)

集合的基本运算(共18张PPT)

集合的基本运算(共18张PPT)
(2)设A={4,5,6,8},B={3,5,7,8},C={1,3}, 求
A∪(B∩C) A∪(B∩C)={3,4,5,6,8}
(3)设集合A={x|-1<x<2},集合B={x|1<x<3},求
A∩B
A∩B={x|1<x<2}
(4)设集合A={x|-1<x≤2},集合B={x|x<0或x≥2},
Venn图


AB


B A
AB AB
学习新知

交集的性质
Venn图



B A
AB
AB
A∩A = A A∩φ = φ
AB
A∩B =B∩A
A∩B A A∩B B 若A∩B=A,则A B.反之,亦然.
应用新知
典例分析
例2.(1)设A={4,5,6,8},B={3,5,7,8},求A∩B
A∩B={5,8}
B={x| x是鄂州二中2021年9月在校的高一同学} C={x| x是鄂州二中2021年9月在校的高一女 同学}
集合C是由那些既属于集合A且属于集合B的所有 元素组成
学习新知
交集
交集:由AB 所有属于集合A且属于集合B的元素组成的集合,称
为集合A与B的交集记做 A B (读做A交B)
A B x x A,且x B
典例分析
例4 设平面内直线l1上点的集合为L1,直线l2 上点的集合为L2,试用集合的运算表示l1,l2的 位置关系
答:平面内直线l1与l2可能有三种位置关系,即相 交于一点,平行或重合。
(1)l1与l2交于一点P
L1∩L2={点P}
(2)l1与l2平行 (3)l1与l2重合

1.3 集合的基本运算(第一课时) 课件(共15张PPT)

1.3 集合的基本运算(第一课时)  课件(共15张PPT)

课堂小结
并集的概念: 一般地,由所有属于集合A或属于集合B的元素所组成的 集合,称为集合A与B的并集.记作:A∪B(读作:“A并B”)即: A∪B ={x|x∈A,或x∈ B}.
并集的性质:(1)A∪A=A; (2)A∪ =A; (3)若A⊆(A∪B),B⊆(A∪B); (4)若A⊆B,则A∪B=B,反之也成立
交集的概念:一般地,由所有属于集合A且属于集合B的元素组成的集合, 称为集合A与B的交集.记作:A∩B(读作:“A交B”) 即: A∩B ={ x | x ∈ A ,且 x ∈ B}.
交集的性质:(1)A∩A=A; (2)A∩ = ; (3)(A∩B)⊆B,(A∩B)⊆A; (4)若A⊆B,则A∩B=A,反之也成立.
解:A∩B就是立德中学高一年级中那些既参加百米赛跑又参加跳高 比赛的同学组成的集合.所以,
A∩B={x|x是立德中学高一年级既参加百米赛跑又参加跳高比赛的 同学}.
例题精讲
【例4】设平面内直线l1上的点的集合为L1, 直示线l1,l2上l2的点位的置集关合系为.L2,试用集合的运算表
解:(1)直线l1与直线l2相交于一点P可表示为:L1∩L2={P};
上述两个问题中,集合A、B和C之间都具有这样一种关系:集合C是 由所有属于A或属于集合B的元素组成的.
并集
一般地,由所有属于集合A或属于集合B的元素所
组成的集合,称为集合A与B的并集。
记作:A∪B(读作:“A并B”)
即:
A∪B ={ x | x ∈ A ,或 x ∈ B}
这说明:两个集合求并集,结果还是一个集合,是由集合A与B 的所有 元素组成的集合(由集合的互异性,重复元素只看成一个元素,不能重复写出).
思考
下列关系式成立吗? (1)A∪A=A;(2)A∪ =A

《集合的基本运算》PPT课件

《集合的基本运算》PPT课件

精选课件
5
名师点睛 1.补集及全集概念的理解 (1)理解补集概念时,应注意补集∁SA 是对给定的集合 A 和 S(A ⊆S)相对而言的一个概念,一个确定的集合 A,对于不同的集 合 S,补集不同.如:集合 A={正方形},当 S={菱形}时,∁SA ={一个内角不等于 90°的菱形};当 S={矩形}时,∁SA={邻边 不相等的矩形}. (2)全集是相对于研究的问题而言的,如我们只在整数范围内研 究问题,则 Z 为全集;而当问题扩展到实数集时,则 R 为全集, 这时 Z 就不是全集.
精选课件
6
(3)∁UA 表示 U 为全集时 A 的补集,如果全集换成其他集合(如 R)时,则记号中“U”也必须换成相应的集合(即∁RA). (4)求集合 A 的补集的前提是“A 是全集 U 的子集”.
精选课件
7
2.解决集合问题的方法 集合问题大都比较抽象,解题时要尽可能借助 Venn 图、数轴或 直角坐标系等工具将抽象问题直观化、形象化、明朗化,利于 将题设条件转化.
精选课件
14
【训练 2】 (1)设 U={x|x 是小于 9 的正整数},A={1,2,3},B ={3,4,5,6},求∁UA,∁UB,A∩U,U∩(A∪B). (2)设全集 U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形},求 A∩B,∁U(A∪B). 解 (1)易得 U={1,2,…,8},∴∁UA={4,5,6,7,8};∁UB= {1,2,7,8},A∩U={1,2,3},U∩(A∪B)={1,2,3,4,5,6}, (2)A∩B=∅; ∵A∪B={x|x 是锐角三角形或钝角三角形}, ∴∁U(A∪B)={x|x 是直角三角形}.
精选课件
8

《集合的基本运算》新教材PPT完美课件

《集合的基本运算》新教材PPT完美课件

归纳小结
问题9 本节课你有哪些收获?可以从以下两个方面思考:
(1)两个集合间的基本运算有哪些? 略 (2)求解集合运算问题,你获得了哪些经验? ①集合中的元素若是离散的,一般采用什么方法;集合中的元素若是 连续的实数,则用什么方法,此时要注意端点的情况. ②已知集合的运算结果求参数,要注意检验参数的值是否满足题意, 或者是否满足集合中元素的互异性.
目标检测
1 设全集U={1,2,3,4,5,6},A={1,2,3,4},则CUA等于 ( B) A.{1,2,5,6} B.{5,6} C.{2} D.{1,2,3,4}
2 如图所示,阴影部分表示的集合是__{_7_,__9_}__,
全集是__U_=__{_1_,__2_,__3_,__4_,__5_,__6_,__7_,__8_,__9_,__1_0_}_____. 或写成 {n∈N|1≤n≤10}
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
作业布置
作业:教科书习题1.3的第4,5,6题.
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
新知探究
例2 设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+ m=0},若(CUA)∩B=∅,则m=__________.
问题8 本题中两个集合可否化简?集合B化简之后有几种 情况?待求解的问题是否可以化简?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19
1.补集的性质:
∁UU=
∁U(∁UA)= A
∁U= U
A∩(∁UA)=
2.两点注意:
(1) 全集不同A的补集也不同 (2) 全集U不一定是R
练习:P11 T1----T4
.
20
本课小结
1.并集 2.交集
.
21
.
4
思考
考察下列各个集合,你能说出集合A,B与集合C 之间的关系吗?
(1)A={2,4,6,8,10}, B={3,5,8,12} ,C={8};
(2) A={x|x是新华中学2004年9月在校的女同学},
B={x|x是新华中学2004年9月入学的高一级同学},
C={x|x是新华中学2004年9月入学的高一级女同 学}.
全集常用U表示.
.
15
6.补集
对于一个集合A,由全集U中不属于A的 所有元素组成的集合称为集合A相对于 全集U的补集,简称为集合A的补集,
记作 CU A
即 C u A { x |x U ,且 x A }
.
16
A
CU A
U
简单陈述三种运算,让同学们对三种运算有一
个整体的了解!
.
17
A
CU A
2。 设平面内 l1上直 的线 点的L1集 ,直合 线 l2上 为点 的集合 L2,试 为用集合的l1,运 l2的算 位表 置 .示 关
.
7
3. 交集的性质
(1) A A A (2) A (3) A B B A (4) A B A, A B B (5) A B 则 A B A
.
8
4.并集的性质
(1) AA A (2) A A (3) ABBA (4) AAB,BAB, ABAB (5) AB则ABB
.
9
例题分析
1 。已 A { |x x 知 2B } { 集 |x x 3 求 合 A } B , A B
1 改 B { |x x -3 2 改 } B { |x x 3 3 改 } B x | 3 x 3
变式:设 A x / x 2 a b 0 x , B x / x 2 c 1 x 0 ,5
又 A B 3 , 5 ,A B 3 ,求实数a,b和c
的值。
.
12
例题分析
4。已知A集 {合 y| yx2x, R}B{y|yx2-2x-8x, R} 求A B,AB
1改B{x|yx2-2x-8x, R} 2改A{x,y| yx2x, R}B{x,y|yx2-2x-8x, R} 3改A{x| x20x, R}B{x|x2-2x-80x, R}
U
.
18
例8 设U={x|x是小于9的正整数}, A={1,2,3},B={3,4,5,6},求CUA, CUB
例9.设U={x|x是三角形},A={x|x是锐角 三角形},B={x|x是钝角三角形}.求A∩B, CU (A∪B)
补例.已知全集U=R,集合A={x| 1≤2x+1<9},求CUA
.
.
10
例题分析
2.设 A x / 2 x 5 , B x / m 1 x 1 3 m ,
若 ABA,求实数m的取值范围。
.
11
例题分析
3.设集合 A x / x 2 6 x 0 , B x / a 2 3 x x 2 0 ,
且ABA,求实数a的取值范围
.
2
1.并集
一般地,由所有属于集合A或属于集合B的元素所 组成的集合,称为集合A与B的并集,记作A∪B,(读作 “A并B”).即
A∪B={x|x∈A,或x∈B}
.
3
练习
1。 设A={4,5,6,8}, B={3,5,7,8},求A∪B.
2。 设集合A={x|x为等腰三角形},集合B={x|x 为直角三角形} 求A∪B.
.
13
思考
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗?
(1) U={1,2,3,4,5,6}, A={1,2}, B={3,4,5,6}
(2) U={x|x是实数}, A={x|x是有理数},B={x|x是无理数},
.
14
5.全集 如果一个集合含有我们所要研究的各 个集合的全部元素,这个就称这个集合 为全集
.
5
2.交集
一般地,由属于集合A且属于集合B的所有 元素组成的集合,称为A与B的交集,记作 A∩B,(读作“A交B”),即
A∩B={x新华中学开运动会,设 A={x|x是新华中学高一年级参加百米赛跑的同学} B={x|x是新华中学高一年级参加跳高比赛的同学}, 求A∩B.
1.1.3 集合的基本运算
实数有加减乘除 的基本运算,集 合是否有类似的
运算法则 ?
.
1
思考
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
相关文档
最新文档