模具设计与制造外文翻译
模具设计外文翻译资料4
Ž.Surface and Coatings Technology142᎐1442001143᎐145Practice boratory tests for plastic injection mouldingM.Van Stappen U,K.Vandierendonck,C.Mol,E.Beeckman,E.De ClercqWTCM r CRIF,Scientific and Technical Centre for the Metalworking Industry,Uni¨ersitaire Campus,3590Diepenbeek,BelgiumAbstractDifferent types of anti-sticking coatings have been applied industrially on injection moulds for various types of plastics.Very often these tests are being done on a trial-and-error basis and results obtained are difficult to interpret.WTCM r CRIF has developed laboratory equipment where the injection moulding process can be simulated and demoulding forces and friction coefficients can be measured.These measurements were compared with surface energy calculations of the coated surfaces and of the plastic materials in order tofind a ing this approach it must be possible to make an easy and cheap selection of promising coatings towards plastic injection moulding.Another important advantage is that the understanding and modelling of the mould᎐plastic interface becomes possible.This new way of coating selection for plastic injection moulding has been demonstrated for various PVD coatings and verified for different industrial injection moulding applications.Keywords:Injection moulding;PVD coating;Modeling;Surface energy1.IntroductionPVD coatings have found their way into industry for several applications like metal cutting and deep draw-ing.Their use in plastic injection moulds has given bothw xpositive and negative results1᎐3.The unreproducible character of the results hinders further implementation in industry.To valorise the intrinsically good coating properties like chemical in-ertness vs.plastics to enhance demoulding,more in-sight is needed into the mechanism of interaction between the mould surface and the plastic material during injection moulding.To our knowledge,a systematic study of the influ-ence of mould surface roughness,mould coating, properties of the polymer like Young’s modulus,sur-face energy,polarity,structures,etc.on possible bind-ing mechanisms between the mould surface and the plastic material has never been carried out.This makes it practically impossible to understand demouldingU Corresponding author.Tel.:q32-11-26-88-26;fax:q32-11-26-88-99.mechanisms and,as a consequence of this,to select a proper coating for the injection mould.The purpose of this work was to try to simulate the injection moulding process in the laboratory and to correlate the results with surface energy measurements of the coated mould and of the plastic material.This could result in an approach to select the proper coating for a certain kind of plastic to be injected.2.Experimental detailsLaboratory equipment has been built to measure demoulding forces and friction coefficients.The mould itself is made out of tool steel1.2083and has a diame-Ž.ter of64mm and a height of30mm Fig.1.The thickness of the moulded part is2mm.A pressure sensor measures the demoulding forces.The tempera-ture inside the mould is measured by thermocouples as presented in Fig.1.All moulds were hardened to a hardness of56HRC.After a running-in period of40injections,the de-moulding force was measured10times for each coat-ing᎐plastic material combination.()M.Van Stappen et al.r Surface and Coatings Technology 142᎐1442001143᎐145144Fig.1.A cylindrical plastic part injection moulded around a mould.Surface energy was measured on the surface of the coating and on the surface of the plastic material using the model of Owens and Wendt.A Digidrop GBX apparatus has been used based on water and di-iodomethane as testing liquids.To measure the total surface energy,the dispersive surface energy and the polar surface energy are measured.Injection moulding was carried out as follows.In the first application,a polyurethane plastic material with tradename DESMOPAN 385S was injection moulded using uncoated moulds and moulds coated with,respec-tively,a TiN and a CrN coating.In the second applica-tion,three types of polymers were tested on a TiN coated mould and an uncoated mould.Two elastomers Žtrade name HYTREL G 3548W,which is a block-copolyester,and SANTOPRENE 101-73,which is a .blend of polypropylene and EPDM ,and EVOPRENE,which consists of polystyrene and butadiene.3.Results and discussionThe demoulding forces measured for the first appli-cation are given in Table 1.The demoulding forces for the second application are given in Fig.2.This demoulding behaviour has also been observed in industrial practice,so the demoulding laboratory apparatusis a good simulation of reality.To explain these results,an attempt was made to find a correlation with the surface energy measurements.Both total surface energy as well as polar surfaceTable 1Ž.Demoulding forces N for DESMOPAN Uncoated mould 7757N TiN coated mould -2810N CrN coated mould<415NŽ.Fig. 2.Demoulding forces in N for three materials:HYTREL,EVOPRENE,SANTOPRENE.energy in mJ r m 2were compared for both coated sur-Ž.faces and plastic materials Fig.3.In order to explain the demoulding behaviour,an attempt was made to make a correlation between de-moulding forces measured and the surface energy val-ues.It should be expected that when the surface energy of the coated surface is lower than the surface energy of the plastic material,an easy demoulding behaviour could result as a consequence of low material affinity between coating and plastic material.Because the ratio of polar vs.dispersive surface energy varies for the different plastic materials,both surface energy values are taken into account.For the demoulding forces measured in the first case Ž.Table 1,it could be seen that a CrNcoating,espe-cially,could offer good demoulding behaviour.When Ž.we compare Fig.3the surface energy values of DESMOPAN with the values for the mould surfaces Ž.ᎏSTAVAX s uncoated ,CrN and TiN ᎏthen it can be seen,for both total surface energy as polar surface energy,that the measured values for DESMO-Ž2.Fig.3.Total surface energies mJ r m of the different coatings and plastic materials.()M.Van Stappen et al.r Surface and Coatings Technology142᎐1442001143᎐145145Ž2.Fig.4.Polar surface energies mJ r m of the different coatings and plastic materials.PAN are lower compared to the mould surface values. This means that there is no correlation between the demoulding forces measured and the surface energy values.It seems,however,that a CrN surface has the lowest surface energy compared to a TiN coated sur-face and an uncoated surface.When one looks to the total surface energy values Ž.Fig.3,one can see that SANTOPRENE has the lowest value and HYTREL the highest.If our hypothesis was correct from the beginning,we should conclude that the demoulding force for HYTREL should be small and should be large for SANTOPRENE.One can see from Fig.2that this is not the case.When one looks at the polar surface energy values Ž.Fig.4,the three plastic materials have a lower value than the mould surface and SANTOPRENE and EVOPRENE have a lower value than HYTREL. Even when other surface energy criteria are used, e.g.the lower the energy of the mould surface theŽ.lower the demoulding force3,even then no correla-tion can be found.It can be seen that a TiN coating always increases the surface energy and,on the other hand,good de-moulding is sometimes seen, e.g.for HYTREL and DESMOPAN,and sometimes bad demoulding results, e.g.for EVOPRENE.Hence,we can conclude that,based on the surface energy values measured,no correlation could be found within the demoulding forces.Obviously,other parameters,such as roughness and injection tempera-ture,also play an important role in explaining the demoulding behaviour.In order to continue the research work to explain the demoulding behaviour,we will focus onfive industrial demonstrations and try to incorporate all relevant parameters:coating properties,plastic material proper-ties and injection parameters.4.ConclusionsNo correlation could be found between the demould-ing behaviour of plastics vs.coated moulds and the measured surface energy values.Other parameters must also influence this demould-ing behaviour.Further research will focus on other parameters like coating properties,plastic properties and injection parameters.Referencesw x1Annonymous,Big savings made with coated injection mouldingŽ.tool,Precision Toolmaker61998,138w x2O.Kayser,PVD-Beschichtungen schutzen werkzeug und¨Ž.schmelze,Kunststoffe7199598.w x3M.Grischke,Hartstoffschichten mit niedriger Klebneigung,JOT Ž.1199615.。
模具设计与制造技术-英文
Mold Design and Manufacturing TechnologyCourse Title: Mold Design and Manufacturing TechnologyCourse Code:Credit: 3Lecture Hours: 46OverviewThis course is a compulsory course for students majoring in Mechanical Engineering and Automation. It is a comprehensive course with systematic combination of common mold design and manufacturing technology. This course focuses on the technological properties of materials, some typical mold designs and manufacture methods, and the manufacturing process and assembly process. It aims to help students master the typical mold design and manufacturing capability so as to form mould manufacturing concepts and industry knowledge, as well as lay foundation for graduation design and technical work in the future.Aims and ObjectivesOn successful completion of this course, students should be able to:*have a basic understanding of occupation quality in mold design and relevant manufacturing and carry out the mold design and manufacture of the actual product; *analyze the molding of material property as well as develop reasonable and feasible mould processing ability;*acquaint themselves with the mould design method so as to select standard parts for mould structure design with characteristics such as proper structure, convenient operation, convenient processing and assembling, and technique economic;*formulate the ability of correct mold manufacturing processing and assembly processing;*analyze and test generation processing related to technical problems;*develop their ability to learn to track the professional and technical development direction as well as explore latest knowledge on their own;*master the basic theory and methods for typical mould design and manufacture, and lay a theoretical basis for the graduation design and technical work further.Syllabus and Schedule of LecturesTheoretical Teaching:Chapter 1 Introduction: Basis of Stamping Process1.1An Overview of Moulds1.2Classification and Characteristics of Stamping1.3Properties of Sheet Stamping1.4Common Stamping Materials & Stamping EquipmentChapter 2 Blanking Process and Blanking Die2.1 Design Basis on Blanking Process & Typical Structure of Blanking Die2.2. Layout Design & Blanking Technology Calculation2.3. Structure Design of Blanking Die Parts & Integrated CasesChapter 3 Bending Process and Bending Die3.1 Bending Process and Bending Die Process & Typical Structure of Bending Die 3.2 Bending Quality Analysis & Bending Process Calculation3.3 Bending Die & Integrated CasesChapter 4 Drawing Process and Drawing Die4.1 Drawing Process and Drawing Parts Process;4.2 Typical Structure of Drawing Die & Wrinkling and Rupture of Drawing Parts4.3 Drawing Process Calculation & Drawing Die Design & Integrated Cases Chapter 5 Other Sheet Stamping and Process & Mould Design5.1 Bulging & Flanging5.2 Necking & Integrated CasesChapter 6 Stamping Die FEA Analysis Based on DTBAFIRN6.1 An Analysis of Software for Stamping;6.2 Case AnalysisChapter 7 Stamping Process Design7.1 Stamping Process Design & Analysis of Stamping Parts Processing7.2 Stamping Technology Program Development & Mold Design7.3 Stamping Equipment Selection & Process Documenting and Design Calculation ManualChapter 8 Fundamental Plastics Molding Process8.1Composition, Classification and Characteristics of Plastics8.2 Method and Process Characteristics of Plastic Forming;8.3 Structure Process of Plastic Pieces & Plastic Forming EquipmentChapter 9 Injection Molding Process and Injection Mold & Other Plastic Molding Process and Mold9.1 Principle and Process Conditions of Injection Molding Process & Structure of Injection Mold & Parting Surface9.2 Design of Gating System & Design Forming Part9.3 The Side Parting and Core Pulling Mechanism & Ejecting Mechanism Design & Clamping Mechanism9.4 Design Temperature Control System & Related Parameter Checking of Mould and Injection Machine9.5 Co-injection Molding Process & Design Flow of injection Mould & Integrated cases9.6 Compression Molding Process and Compression Mold & Pressure Injection Molding Process and Injection Mold & Extrusion Forming Process and Die & Hollow Blow Molding & Vacuum Forming & Compressed Forming & Air Foam Forming Chapter 10 Fundamental Mold Manufacturing10.1 Characteristics of Mold Manufacturing & Mold Manufacturing Process10.2 Process-scheduled Principles and Procedures for Mould and Die Manufacturing 10.3 Process Analysis of Mold Parts Diagram & Blank Selection of Mold Parts Chapter 11 Processing of Forming Die Surface11.1 Mechanical Process of Forming Die Surface11.2 Non-Traditional Machining (NTM) of Forming Die Surface11.3 Modern Technology for Mold Manufacturing & Processing of Mould Parts Chapter 12 Mold Assembly Process12.1 An Overview of Mold Assembly12.2 Dimension Chain of Assembly & Control Method of Die Clearance12.3 Assembly Process for Stamping and Injection Mould & Integrated Cases Practical Training (2 Hours)PrerequisitesMechanical Drawing and Computer Graphics, Fundamental Mechanical Design, Engineering Materials and Heat Treatment, Manufacturing Technology, NC Machining Technology, etc.TextbookTian Guanghui & Lin Hongqi. Mould Design and Manufacturing. Peking University Press, 2009.AssessmentsAssignment (including group work, course design report, homework, lecture participation and attendance) 50%Examination 50%。
模具设计外文翻译
Four-Cavity Hot-runner Stack Mold for Producing Automotive Inner SillTrim Made from PolypropyleneTo produce the inner sill trim used in an automobile as the transition the carpeting and vehicle frame, a four-cavity hot-runner stack mold was designed. Interconnecting tubes with a sliding fit inate the thermal expansion of the hot-runner systenm ..Depending on the car mold ,there is a left-hand and a right-hand version as well as a long and a short sill.General Mold DesignThe dimensions of the inner sills are 1250 mm*60 mm*2.5 mm, so that the parts are relatively large in area but with comparatively little material content (fig.1). The molded parts weigh 180 and 150 g respectively. Producing these parts by means of a stack mold was the obvious solution, as this doubles the output of the injection molding machine although the claming force requirements remain the same. The name of parts needed to obtain optimum machine utilization resulted in a four-cavity mold with two different cavities for the left-hand and right-hand versions (fig.2 to 5)) . The variation in the lengh of the trim is taken care of by interchangeable mold inserts. To achieve warp-free polypropylene copolymer (hostalon ppr 1042,supplier: Hoechst AG , Germany)required that the flow lengths be limited to approximately 170 mm. Five injection points are needed to along the inside of the trim.The design of the mold provides for simultaneous opening of the two part lines with the aid of two racks (40) and a pinion (36) for each side. As it is essential that no gate marks show on the front of the inside. The mounting attachment and spacers for the carpeting, which require ejector assistance for part release, are also located in this area ,however. Some of the mounting attachment are not at right angles to the part line ,so that hydraulically operated ejectors have been incorporated in hot-runner plates (3) and (5). The cylinders have been specially designed to permit utilization in the immediate vicinity of the hot-runner manifolds at temperatures of about 260 cMold Temperature ControlThree independent circuits have been provide in cach of the mold plates (2) and (3) as well as (5) and (6) for mold temperature control. This permits the temperatures of the outer regions of the 1250 mm long part to be controlled independently of the center region .At a mold width of 1500 mm and with several channels per plate, division into several circuits is also much more favorable with regard to pressure losses, which otherwise would occur.Hot-Rnner DesignA hot-runner system utilizing indirectly heated thermally conductive torpedodes has been selected to distriute melt within the mold.Incorporating the hydraulically operated ejectors in reduce the available space ,thereby forcing a partial reduction of the torpedo diameter.By modifying other design parameters, it was possible to compensate for the resulting change in heat transfer. The chosen injection points require the hot-runner manifold to be 888 mm long. To reduce the ensuing thermal expansion of approx .2 mm total, four indibidual manifold blocks 8 to 11 that are connected to one another by means ofmelt-conbeying pipes 12 to 14 with sliding fits have been provided. The feed pipes 15 divides the central manifold 11 into a right-hand and a left-hand half, each with its own termperature control Eachmaniflod contains four thermally conducting torpecdoes. The left-hand side of manifold block 11 contains only three cartridge heaters, the heating for the feed pipe compensating for any possible heat loss in this area. It is thus possible to vary the temperature at each gate.The melt-conveying pipes of the hot-runner system are fitted with connercially available heater bands with integral thermocouples. The hot-runner system thus contains five heater circuits for the manifold blocks and four heater circuits four the melt-conveying pipes 12 and 13 was not needed. These pipes received adequate heat from the neighboring manifold blocks 8 to 11. No measurable temperature loss occurred .All of the cartridge heaters have the same dimension of 200 mm*16 mm dia. and a heating capacity of 1250w. The watt density in this case lies at 12.5w/cm ,a value guaranteeing long cartridge life even with negligible play in the heater cartridge well. The result is an installed heating capacity of 5000w per manifold or heater circuit power is supplied bia a temperature controller with thyristorcontrol and an output current of 25 A The four controllers for the melt-conveying pipes were chosen to have the same specifications, although an output current of 6 to 10 A would have been adequate. This mesure that if one temperature controller fails, operation of the most important manifold can be ensured by a simple wiring change. The total installed heating capacity thus amounts to 25 kw. The manifolds were designed to have 250w per kg .with this specific heating capacity, balanced heating can be achieved for temperatures of up to approx. 300 c at a mold temperature of 40 c .The warm-up time is approximately 15 minutes, not including the soft start provided bu the controls. The integral soft start limits the supplied power to 50% and thus protects the cartridge heaters.The manifold popes have been produced from hot work steel to ensure that there is no loss in hardness at a possible temperature of 300 c .The sealing lips which slide with the thermal expansion are designed to provide favorable flow characteristics. They have additionally been protected against proven to be leakproof in operation.The threaded section has been produced with a toleranced press fit. The feed pipe 15 is providedwith a decom-pression bushing 16 at the end; this bushing has a stroke of about 5 mm.The length of the feed pipe is such that no dripping material can possibly drop into the parting line of the mold .The melt covers a distance of 940 mm to the farthest gates .The nearest gates are 530 mm away from the decompression bushing. During operation,the hot runner is completely filled with melt. The pressure is thus transmitted almost uniformly up to the individual gates in the stationary melt (or during creep flow ).The holding pressure is therefore also uniformly applied. When the melt is flowing ,however, thereis a pressure drop along the flow path. A moldflow analysis conduted with the objective of providing identical pressure losses in the flowing melt up to each gate yielded different diameters for the runner channels. The primary runner channel has a diameter of 18 mm ,while the vertical secondary runners have a diameter of 6 mm in the center of the mold and one of 8 mm in the outer regions.The torpedoed\s are 110 mm long,17 mm in diameter with an insulating gap of 7.5 mm. At a hot runner manifold temperature of 260 c ,the temperature at the torpedo tip is still at least 235 c. This value is sufficient for polypropylene. Start-up even after a prolonged production inter-ruption does not present any problems. The gate inserts 21 are insulated from the mold plate by a 0.5 mm annular air pocket.A CuCrZr alloy (material no.2.1293) wsa selected for the torpedoes (3) .The torpedoes have been chemically plated with hard nickel 4 to prevent a chemical reaction between the copper and the pp and then subsequently coated with thin ;ayer of chrome to give better adhesive properties.The four hot-runner manifolds 8 to 11 have been provided with central pressure pads 17and 18 which serve to locate the manifolds and transmit the resulting forces into the adjacent mold plates .Four dowel pins in grooves prevent the manifolds from turning. The manifolds are not bolted to the adjacent nozzle plates, but are allowed to float. The distance between the torpedo retainer bushings 20 has been over dimensioned by 0.1 mm in relation to the center frame 4 to ensure that the sustem remains leak-proof even in the eyent of plate deflection or an angular displacement . It was found that, in spite of the size of the mold, the increased thermal expansion of the hot-runner system with respect to the mold frame is sufficient to provide an difficient seal . As a result of the separation into four separate manifolds with axially sliding melt conveying pipes, hermal expansion perpendicular to the mold axis did not have to be taken into account. The torpedoes themselves were shortened by 0.4 mm when cold. As they heat up ,they pxpand into the precalculated insulating ;lates 22 clad with aluminum foil to reduce radiation losses.The total volume of melt in the system is approxi-mately 840; the volume of the four sill trim moldings is 650. The ensures a short residence time for the melt in the manifold system. Changing to a different color for the sill trim does not present any problems during production and can be accomplished quickly.MOLD CONSTRUCTIONMolds for processing of thermosetting molding compounds are generally heated electrically. The heat needed for the crosslinking reaction is drawn from the mold .once in contact with the cavity surface the viscosity of the melt passes through a minimum,i.e. the melt becomes so low in viscosity that it can penetrate into very narrow gaps and produce flash. The molds must thus exhibit very tight fit ,while at the same time providing for adequate venting of the cavity. These largely oppssing requirements are the reason that formation of flast cannot be completely climinated. Molds should be designed to be extremely stiff so that formation of flash are avoided. The use of pressure sensors to determine and monitor the injection pressures, on the basis of which the mechanical properties of the mold are calculated,is recom-mended. The pressure actually required depends on the size an geometry of the molded parts. Material selection is of great importance with regard to the life wcpectancy of the molds, a subject which must already be addressed during the quoting phase what was said in this regard for thermoplastics applies analogously here. Through-hardening steels are to be preferred for the part-forming surfaces and must exhibit a resistance to tempering consistent with the relatively high operating temperatures of stick,e.g. unsaturated polyester resins, steels with >13%chrome content have proven useful, e.g.tool steel no. 1.208, since the thermosetting molding compounds are sometimes modified with abrasive fillers, special attention must be given to the resulting wear. Fillers such as stone flour, mica, glass gibers and the like , for instance ,promote wear. In wear prone regions of the mold such as the gate, for example, metal carbide inserts should be provided. Other wear-prone mold components should gener-ally be designed as easily replace inserts.EJECTION/VENTINGDepending on the geometry of molded part and type of molding compound, different amounts ofdraft for part release must be provided,usually between 1 and 3 .At the time of ejection,theroset parts exhibit very little shrinkage because of the relatively high temperature. As a result, parts are not necessarily retained on the mold cores, but rather may be held in the cavity by a vacuum. To avoid problems during production, measures must be taken to ensure that the parts can always be ejected from the same half of the mold .。
模具毕业设计外文翻译(英文+译文)
Injection MoldingThe basic concept of injection molding revolves around the ability of a thermoplastic material to be softened by heat and to harden when cooled .In most operations ,granular material (the plastic resin) is fed into one end of the cylinder (usually through a feeding device known as a hopper ),heated, and softened(plasticized or plasticized),forced out the other end of the cylinder, while it is still in the form of a melt, through a nozzle into a relatively cool mold held closed under pressure.Here,the melt cools and hardens until fully set-up. The mold is then opened, the piece ejected, and the sequence repeated.Thus, the significant elements of an injection molding machine become: 1) the way in which the melt is plasticized (softened) and forced into the mold (called the injection unit);2) the system for opening the mold and closing it under pressure (called the clamping unit);3) the type of mold used;4) the machine controls.The part of an injection-molding machine, which converts a plastic material from a sold phase to homogeneous seni-liguid phase by raising its temperature .This unit maintains the material at a present temperature and force it through the injection unit nozzle into a mold .The plunger is a combination of the injection and plasticizing device in which a heating chamber is mounted between the plunger and mold. This chamber heats the plastic material by conduction .The plunger, on each stroke; pushes unbelted plastic material into the chamber, which in turn forces plastic melt at the front of the chamber out through the nozzleThe part of an injection molding machine in which the mold is mounted, and which provides the motion and force to open and close the mold and to hold the mold close with force during injection .This unit can also provide other features necessary for the effective functioning of the molding operation .Movingplate is the member of the clamping unit, which is moved toward a stationary member. the moving section of the mold is bolted to this moving plate .This member usually includes the ejector holes and mold mounting pattern of blot holes or “T” slots .Stationary plate is the fixed member of the clamping unit on which the stationary section of the mold is bolted .This member usually includes a mold-mounting pattern of boles or “T” slots. Tie rods are member of the clamping force actuating mechanism that serve as the tension member of the clamp when it is holding the mold closed. They also serve as a gutted member for the movable plate .Ejector is a provision in the clamping unit that actuates a mechanism within the mold to eject the molded part(s) from the mold .The ejection actuating force may be applied hydraulically or pneumatically by a cylinder(s) attached to the moving plate, or mechanically by the opening stroke of the moving plate.Methods of melting and injecting the plastic differ from one machine to another and are constantly being implored .conventional machines use a cylinder and piston to do both jobs .This method simplifies machine construction but makes control of injection temperatures and pressures an inherently difficult problem .Other machines use a plasticizing extruder to melt the plastic and piston to inject it while some hare been designed to use a screw for both jobs :Nowadays, sixty percent of the machines use a reciprocating screw,35% a plunger (concentrated in the smaller machine size),and 5%a screw pot.Many of the problems connected with in ejection molding arise because the densities of polymers change so markedly with temperature and pressure. thigh temperatures, the density of a polymer is considerably cower than at room temperature, provided the pressure is the same.Therefore,if molds were filled at atmospheric pressure, “shrinkage” would make the molding deviate form the shape of the mold.To compensate for this poor effect, molds are filled at high pressure. The pressure compresses the polymer and allows more materials to flow into the mold, shrinkage is reduced and better quality moldings are produced.Cludes a mold-mounting pattern of bolt holes or “T” slots. Tie rods are members of the clamping force actuating mechanism that serve as the tension members of clamp when it is holding the mold closed. Ejector is a provision in the calming unit that actuates a mechanism within the mold to eject the molded part(s) form the mold. The ejection actuating force may be applied hydraulically or pneumatically by a cylinder(s) attached to the moving plate, or mechanically by the opening stroke of the moving plate.The function of a mold is twofold: imparting the desired shape to the plasticized polymer and cooling the injection molded part. It is basically made up of two sets of components: the cavities and cores and the base in which the cavities and cores are mounted. The mold ,which contains one or more cavities, consists of two basic parts :(1) a stationary molds half one the side where the plastic is injected,(2)Moving half on the closing or ejector side of the machine. The separation between the two mold halves is called the parting line. In some cases the cavity is partly in the stationary and partly in the moving section. The size and weight of the molded parts limit the number of cavities in the mold and also determine the machinery capacity required. The mold components and their functions are as following:(1)Mold Base-Hold cavity (cavities) in fixed, correctposition relative to machine nozzle.(2)Guide Pins-Maintain Proper alignment of entry into moldinterior.(3)Spree Bushing (spree)-Provide means of entry into moldinterior.(4)Runners-Conroy molten plastic from spree to cavities.(5)Gates-Control flow into cavities.(6)Cavity (female) and Force (male)-Control the size,shape and surface of mold article.(7)Water Channels-Control the temperature of mold surfacesto chill plastic to rigid state.(8)Side (actuated by came, gears or hydrauliccylinders)-Form side holes, slots, undercuts and threaded sections.(9)Vent-Allow the escape of trapped air and gas.(10)Ejector Mechanism (pins, blades, stripper plate)-Ejectrigid molded article form cavity or force.(11)Ejector Return Pins-Return ejector pins to retractedposition as mold closes for next cycle.The distance between the outer cavities and the primary spree must not be so long that the molten plastic loses too much heat in the runner to fill the outer cavities properly. The cavities should be so arranged around the primary spree that each receives its full and equal share of the total pressure available, through its own runner system (or the so-called balanced runner system).The requires the shortest possible distance between cavities and primary sprue, equal runner and gate dimension, and uniform culling.注射成型注射成型的基本概念是使热塑性材料在受热时熔融,冷却时硬化,在大部分加工中,粒状材料(即塑料树脂)从料筒的一端(通常通过一个叫做“料斗”的进料装置)送进,受热并熔融(即塑化或增塑),然后当材料还是溶体时,通过一个喷嘴从料筒的另一端挤到一个相对较冷的压和封闭的模子里。
模具制造中英文翻译
Modern mold makingI.The stamping die development history and status of technologyIn 1953, the Changchun First Automobile Works in China for the first time established a die shop, the car plant in 1958 began manufacturing automotive panel die. 60 years of the 20th century began producing fine blanking dies. Come a long road of development, China has formed about 300 billion (not including Hong Kong, Macao and Taiwan statistics.) Production capacity of various types of stamping dies. Formed, such as Ningbo and Zhejiang HUANGYAN region "Die village"; Guangdong Corporation and some large rapid rise of township enterprises, K el o n, M id e a, K on ka and other groups have established their own mold manufacturing center; joint ventures and wholly foreign-owned the mold companies now have thousands. With the pace with international standards continues to accelerate, increasing market competition, production and design of the mold has been growing recognition that product quality, cost, and new product development capacities. Mold manufacturing technology to measure a country's manufacturing sector has become an important indicator of the level, and largely determine the survival space. At present, China stamping die, whether in quantity or in quality, technology and other capabilities have made significant progress, but with national needs and the world advanced level, the gap is still great. In the international competition situation, I had the mold industry has rapidly developed, many specialized research centers continue to die set up, mold steel of the structure and made significant achievements, but there is still a big gap. First, imports of high-tech mold most of the large precision molds, mold and exports most of the lower middle and low-tech die, so high-tech high-grade die stamping die market, the overall satisfaction rate is lower than satisfaction rate, which mold development has lagged behind the production of stamping parts, and low-technology market to meet the rate of middle and low die stamping die is higher than the overall market to meet the rate; second is due to the price of the mold is much lower than international market prices, has some competition force, so its prospects in the international market; third in recent years, Hong Kong-and Taiwan-owned, foreign-funded enterprises in China developed rapidly in a large number of these enterprises stamping dies produced for own use no precise statistics, it is not included in the figures being.II. Modern mold manufacturing technology developmentThe development of modern technology should die mold products to meet the "short delivery time", "high precision", "good quality", "low price" request for service. Urgent need to develop to meet this requirement as a number of(1) to comprehensively promote universal DBD / DBM / DBE technologyDie DBD / DBM / DBE technology is the development direction of mold design and manufacturing. With the computer software development and progress, universal DBD / DBM / DBE technology, conditions are ripe, the businesses will increase DBD / DBM technical training and technical service efforts; further expand the scope ofDBE technology. The development of computers and networks are making DBD / DBM / DBE technology trans-regional, cross-enterprise, campus-wide in the industry as possible to promote and achieve re-integration of technical resources to enable virtual manufacturing possible.(2) High-speed millingThe development of foreign high-speed milling process in recent years, significantly improve the processing efficiency, and to get a high surface finish. In addition, the module can also be processed with high hardness, but also with low temperature rise, thermal deformation and so on. High-speed milling technology, automotive, home appliance manufacturing industry in the large cavity mold injected new vitality. It currently has more agile, intelligent, integrated direction.(3) die scanning and digitizing systemHigh-speed scanner provides scanning system and mold from the model or in kind to the processing of the scanned model of the desired number of features required, greatly reducing the manufacturing cycle in the development of mold. Some quick scan system can be quickly installed in existing CNC milling machine and machining center, for fast data acquisition, automatic generation of a variety of CNC machining process, the DBD data in different formats, for mold manufacturing "reverse engineering . "(4) the degree of standardization to improve dieDegree of standardization of the mold is increasing, estimates that the current use of standard mold coverage has reached about 30%. Developed countries is generally about 80%.(5) high-quality materials and advanced surface treatment technologyApplication of high quality steel and the corresponding surface treatment technology to improve the life of the mold it is very necessary. Mold heat treatment and surface treatment can fully mold steel material properties play a key part. Direction of development of mold heat treatment is the use of vacuum heat treatment. In addition to the mold surface should improve the development of advanced technologies such as laser surface treatment.(6) Mold PolishingAutomation, intelligent mold surface quality of mold life, the appearance of quality parts and so have a greater impact of automation and intelligence of the grinding and polishing methods replace the existing manual in order to improve the quality of the mold surface is important trends.(7) die development of automatic processing systemThis is our long-term development goals mold industry. Automatic mold machine processing system should be more than the rational combination; with accompanying plate positioning fixture or positioning; a complete equipment, tool CNC database; a complete CNC flexible synchronization system; a quality monitoringand control system. Of course, as the user to choose the right equipment, if the selection properly, not only can not make money but make the machine work into the bitter situation.III. Modern mold manufacturing technology trendsDie technology is mainly towards the future development trend of information technology, high-speed high-precision production and development. Therefore, the design technology, the development focus is to promote DBD / DBE / DBM technology, and continue to improve efficiency, especially in sheet metal forming process of the computer simulation analysis. Die DBD, DBE technology should be declared human, integration, intelligence and network direction, and improve the mold DBD, DBM system-specific level. To improve the DBD, DBE, DBM technology, establish a complete database and development of the mold expert systems and improve software usability is very important.From the processing technology, the development focused on high-speed processing and precision machining. At present, the development of highly processed high-speed milling, high speed polishing and high-speed electronic processing and rapid tooling technologies. At present, the development of precision machining parts precision mold and the surface roughness of less 1μm Pa ≤ 0.1μm variety of precision machining.IV.the modern mold manufacturing1.CAD/CAE/CAM computer-aided design, simulation, manufacturing integration CAD / CAE / CAM integration, integration technology is the most advanced modern mold making the most reasonable mode of production. Use of computer-aided design, support engineering and manufacturing systems, according to the respective mold parts designed to prepare the NC machining of parts from design to manufacturing process is an inevitable process, which is from CAD / CAE / CAM system carried out, The processing line cable input directly from the processing machine, can be used in the preparation of procedures of processing the system analog functions, will be part tool, tool holder, fixture, platform and tool speed, path, etc. are displayed, to check the program prepared correctness. In short the CAD / CAE / CAM system development and simulation of processing can not fully understand the problems identified, resulting in processing prior to prepare the complete set of processing change work, which for the efficient and accurate processing of the mold has a very important part .2. Advanced equipment in the modern mold making roleThe inevitable trend of modern mold making, machining is possible to replace the manual process, especially now that CNC lathes, multi-axis machine tools, CNC mold engraving machine, EDM machine, CNC precision grinding machines, coordinate measuring machines, scanners and other modern equipment widely used in factories, but most of these devices are basically the application of the procedures used CAD / CAE / CAM system to produce, the operator of work procedures in accordance with the provisions of work piece clamping, with a cutting tool and operation of the machine will be able to automatically complete the processing tasks,and created the ideal mold parts or complete the processing operation for the next part.3. Die materials and surface treatment technologyDue to improper selection and use of materials, resulting in premature failure of the mold, which accounts for more than 45% die failure. Price structure throughout the mold, the materials, the proportion of small, generally 20% to 30%, therefore, the choice of high quality steel and application of surface treatment technology to improve the life of the mold it is very necessary. For tool steel, the ESR technique to be used, such as the use of powder metallurgy high speed steel powders manufactured. Variety of different specifications tool steel, refined products, products of, try to shorten the delivery time is also an important trend.Mold heat treatment of the main trends: the infiltration of a single element to the multi-element penetration, complex permeability (such as TD method) development; by the general spread of the CVD, PVD, PCVD, ion penetration, ion implantation and other direction; addition, the current laser enhanced glow plasma technology and electroplating (plating) and other anti-corrosion technology to strengthen more and more attention.V.reverse engineeringReverse engineering is the first of the parts (the processing of the product) to scan the CAD data generated in multiple formats, and then in the other CAD / CAE / CAM software in the modified design, the technology is the most popular modern mold manufacturing mold manufacturing technology. mold manufacturing company dedicated to development and production of the scanning system, it can be successfully applied to reverse engineering, mold manufacturing, it can not only improve the performance of CNC machine tools, expanding the function of CNC machine tools, CNC machine tools but also improve efficiency., Renscan200, Cyclone high-speed scanner has been Qingdao H a I e r, Jinan Q I n g q i, national mold center and other units started.VI. Summary and OutlookWith the development and progress of computer software, CAD / CAE / CAM technology is getting more mature, and its application in the modern mold will become more widespread. Can be expected in the near future, mold manufacturing to separate from the machine manufacturing industry, and independent national economy to become an indispensable pillar industries, while also further promote the integration of the mold manufacturing technology, intelligence, beneficiary , efficient direction.现代模具制造一.冲压模具发展历史和技术水平状况1953年,长春第一汽车制造厂在中国首次建立了冲模车间,该汽车厂于1958年开始制造汽车覆盖件模具。
模具设计与制造专业外文翻译--冲压成形与板材冲压
模具设计与制造专业外文翻译--冲压成形与板材冲压外文原文Characteristics and Sheet Metal Forming1.The article overviewStamping is a kind of plastic forming process in which a part is produced by means of the plastic forming the material under the action of a die. Stamping is usually carried out under cold state, so it is also called stamping. Heat stamping is used only when the blank thickness is greater than 8-100mm. The blank material for stamping is usually in the form of sheet or strip, and therefore it is also called sheet metal forming. Some non-metal sheets (such as plywood, mica sheet, asbestos, leather)can also be formed by stamping.Stamping is widely used in various fields of the metalworking industry, and it plays a crucial role in the industries for manufacturing automobiles, instruments, military parts and household electrical appliances, etc.The process, equipment and die are the three foundational problems that needed to be studied in stamping.The characteristics of the sheet metal forming are as follows:(1) High material utilization(2) Capacity to produce thin-walled parts of complex shape.(3) Good interchangeability between stamping parts due to precision in shape and dimension.(4) Parts with lightweight, high-strength and fine rigidity can be obtained. (5) High productivity, easy to operate and to realize mechanization and automatization.The manufacture of the stamping die is costly, and therefore it only fits to mass production. For the manufacture of products in small batch and rich variety, the simple stamping die and the new equipment such as a stamping machining center, are usually adopted to meet the market demands.The materials for sheet metal stamping include mild steel, copper, aluminum, magnesium alloy and high-plasticity alloy-steel, etc.Stamping equipment includes plate shear punching press. The former shears plate into strips with a definite width, which would be pressed later. The later can be used both in shearing and forming.2(Characteristics of stamping formingThere are various processes of stamping forming with different working patterns and names. But these processes are similar to each other in plastic deformation. There are following conspicuous characteristics in stamping:,1,(The force per unit area perpendicular to the blank surface isnot large but is enough to cause the material plastic deformation. It is much less than the inner stresses on the plate plane directions. In most cases stamping forming can be treated approximately as that of the plane stress state to simplify vastly the theoretical analysis and the calculation of the process parameters.,2,(Due to the small relative thickness, the anti-instability capability of the blank is weak under compressive stress. As a result, the stamping process is difficult to proceed successfully without using the anti-instability device (such as blank holder). Therefore the varieties of the stamping processes dominated by tensile stress are more than dominated by compressive stress.,3,(During stamping forming, the inner stress of the blank is equal to or sometimes less than the yield stress of the material. In this point, the stamping is different from the bulk forming. During stamping forming, the influence of the hydrostatic pressure of the stress statein the deformation zone to the forming limit and the deformation resistance is not so important as to the bulk forming. In some circumstances, such influence may be neglected. Even in the case when this influence should be considered, the treating method is also different from that of bulk forming. ,4,(In stamping forming, the restrain action of the die to the blank is not severs as in the case of the bulk forming (such as die forging). In bulk forming, the constraint forming is proceeded by the die with exactly the same shape of the part. Whereas in stamping, in most cases, the blank has a certain degree of freedom, only one surface of the blank contacts with the die. In some extra cases, such as the forming of the blank on the deforming zone contact with the die. The deformation in these regions are caused and controlled by the die applying an external force to its adjacent area. Due to the characteristics of stamping deformation and mechanicsmentioned above, the stamping technique is different form the bulk metal forming:,1,(The importance or the strength and rigidity of the die in stamping forming is less than that in bulk forming because the blank can be formed without applying large pressure per unit area on its surface. Instead, the techniques of the simple die and the pneumatic and hydraulic forming are developed.2,2,(Due to the plane stress or simple strain state in comparisonwith bulk forming, more research on deformation or force and power parameters has been done. Stamping forming can be performed by more reasonable scientific methods. Based on the real time measurement and analysis on the sheet metal properties and stamping parameters, by means of computer and some modern testing apparatus, research on the intellectualized control of stamping process is also inproceeding. ,3,(It is shown that there is a close relationship between stamping forming and raw material. The research on the properties of the stamping forming, that is, forming ability and shape stability, has become a key point in stamping technology development, but also enhances the manufacturing technique of iron and steel industry, and provides a reliable foundation for increasing sheet metal quality. 3(Categories of stamping formingMany deformation processes can be done by stamping, the basic processes of the stamping can be divided into two kinds: cutting and forming.Cutting is a shearing process that one part of the blank is cut from the other. It mainly includes blanking, punching, trimming, parting and shaving, where punching and blanking are the most widely used. Forming is a process that one part of the blank has some displacement from the other. It mainly includes deep drawing, bending, local forming, bulging, flanging, necking, sizing and spinning.In substance, stamping forming is such that the plastic deformation occurs in the deformation zone of the stamping blank caused by the external force. The stress state and deformation characteristic of the deformation zone are the basic factors to decide the properties of the stamping forming. Based on the stress state and deformation characteristics of the deformation zone, the forming methods can be divided into several categories with the same forming properties and be studied systematically. The deformation zone in almost all types of stamping forming is in the plane stress state. Usually there is no force or only small force applied on the blank surface. When is assumed that the stress perpendicular to the blank surface equals to zero, two principal stresses perpendicular to each other and act on the blank surface produce the plastic deformation of the material. Due to the small thickness of the blank, it is assumed approximately the two principal stresses distribute uniformly along the thickness direction.Based on this analysis, the stress state and the deformation characteristics of the deformation zone in all kinds of stamping forming can bedenoted by the points in the coordinates of the plane principal stresses and the coordinates of the corresponding plane principal strains.4(Raw materials for stamping formingThere are a lot of raw materials used in stamping forming, and the properties of these materials may have large difference. The stamping forming can be succeeded only by determining the stamping method, the forming parameters and the die structures according to the properties and characteristics of the raw materials. The deformation of the blank during stamping forming has been investigated quite thoroughly. The relationships between the material properties decided by the chemistry component and structure of the material and the stamping forming has been established clearly. Not only the proper material can be selected based on the working condition and usage demand, but also the new material can be developed according to the demands of the blank properties during processing the stamping part. This is an important domain in stamping forming research. The research on the material properties for stamping forming is as follows:efinition of the stamping property of the material. ,1,(D,2,(Method to judge the stamping property of the material, find parameters to express the definitely material property of the stampingforming, establish the relationship between the property parameters and the practical stamping forming, and investigate the testing methods of the property parameters.,3,(Establish the relationship among the chemical component, structure, manufacturing process and stamping property.The raw materials for stamping forming mainly include various metals and nonmetal plate. Sheet metal includes both ferrous and nonferrous metals. Although a lot of sheet metals are used in stamping forming, the most widely used materials are steel, stainless steel, aluminum alloy and various composite metal plates. 5(Stamping forming property of sheet metal and its assessing method The stamping forming property of the sheet metal is the adaptation capability of the sheet metal to stamping forming. It has crucial meaning to the investigation of the stamping forming property of the sheet metal. In order to produce stamping forming parts with most scientific, economic and rational stamping forming process and forming parameters, it is necessary to understand clearly the properties of the sheet metal, so as to utilize thepotential of the sheet metal fully in the production. On the other hand, to select plate material accurately and rationally in accordance with the 4characteristics of the shape and dimension of the stamping forming part and its forming technique is also necessary so that a scientific understanding and accurate judgment to the stamping forming propertiesof the sheet metal may be achieved. There are direct and indirecttesting methods to assess the stamping property of the sheet metal.Practicality stamping test is the most direct method to assess stamping forming property of the sheet metal. This test is done exactly in the same condition as actual production by using the practical equipment and dies. Surely, this test result is most reliable. But this kind of assessing method is not comprehensively applicable, and cannotbe shared as a commonly used standard between factories.The simulation test is a kind of assessing method that after simplifying and summing up actual stamping forming methods, as well as eliminating many trivial factors, the stamping properties of the sheet metal are assessed, based on simplified axial-symmetric forming method under the same deformation and stress states between the testing plate and the actual forming states. In order to guarantee the reliability and generality of simulation results, a lot of factors are regulated in detail, such as the shape and dimension of tools for test, blank dimension and testing conditions(stamping velocity, lubrication method and blank holding force, etc). Indirect testing method is also called basic testing method its characteristic is to connect analysis and research on fundamental property and principle of the sheet metal during plastic deformation, and with the plastic deformation parameters of the sheet metal in actual stamping forming, and then to establish the relationship between the indirect testing results(indirect testing value) and the actual stamping forming property (forming parameters). Becausethe shape and dimension of the specimen and the loading pattern of the indirect testing are different from the actual stamping forming, the deformation characteristics and stress states of the indirect test are different from those of the actual one. So, the results obtained form the indirect test are not the stamping forming parameters, but are the fundamental parameters that can be used to represent the stamping forming property of the sheet metal.rdHans Gastrow Molds 130 Proven Designs . 3 edition . Munich : Hanser Publisher ,2002 .300-307 .中文译文冲压成形与板材冲压1(概述通过模具使板材产生塑性变形而获得成品零件的一次成形工艺方法叫做冲压。
模具制造科学外文文献翻译、模具类中英文翻译、外文翻译
英文翻译The Science of Die MakingThe traditional method of making large automotive sheet metal dies by model building and tracing has been replaced by CAD/CAM terminals that convert mathematical descriptions of body panel shapes into cutter paths.Teledyne Specialty Equipment’s Efficient Die and Mold facility is one of the companies on the leading edge of this transformation.by Associate EditorOnly a few years ago,the huge steel dies requited for stamping sheet metal auto body panels were built by starting with a detailed blueprint and an accurate full-scale master model of the part. The model was the source from which the tooling was designed and produced.The dies,machined from castings,were prepared from patterns made by the die manutacturers or somethimes supplied bythe car maker.Secondary scale models called”tracing aids”were made from the master model for use on duplicating machines with tracers.These machines traced the contour of the scale model with a stylus,and the information derived guided a milling cutter that carved away unwanted metal to duplicate the shape of the model in the steel casting.All that is changing.Now,companies such as Teledyne Specialty Equipment’s Effi cient Die and Mold operation in Independence,OH,work from CAD data supplied by customers to generate cutter paths for milling machines,which then automatically cut the sheetmetal dies and SMC compression molds.Although the process is uesd to make both surfaces of the tool, the draw die still requires a tryout and “benching” process.Also, the CAD data typically encompasses just the orimary surface of the tool,and some machined surfaces, such as the hosts and wear pads, are typically part of the math surface.William Nordby,vice president and business manager of dies and molds at Teledyne,says that “although no one has taken CAD/CAM to the point of building the entire tool,it will eventually go in that direction because the “big thrdd”want to compress cycle times and are trying to cut the amount of time that it takes to build the tooling.Tryout, because of the lack of development on the design end,is still a very time-consuming art,and vety much a trial-and-error process.”No More Models and Tracing AidsThe results to this new technology are impressive. For example, tolerances are tighter and hand finishing of the primary die surface with grinders has all but been eliminated. The big difference, says Gary Kral, Teledyne’s director of engineering, is that the dimensional control has radically improved. Conventional methods of making plaster molds just couldn’t hold tolerances because of day-to-day temperature and humidity variations.”For SMC molds the process is so accurate , and because there is no spring back like there is when stamping sheet metal, tryouts are not always required.SMC molds are approved by customers on a regulate basis without ever running a part .Such approvals are possible because of Teledyne’s ability to check the toolsurface based on mathematical analysis and guarantee that it is made exactly to the original design data.Because manual trials and processes have been eliminated, Teledyne has been able to consider foreign markets.” The ability to get a tool approved based on the mathe gives us the opportunity to compete in places we wouldn’t have otherwise,” says Nordby.According to Jim Church, systems manager at Teledyne, the company used to have lots of pattern makers ,and still has one model maker.” But 99.9 percent of the company’s work now is from CAD data. Instead of model makers, engineers work in front of computer monitors.”He says that improvenents in tool quality and reduction in manufacturing time are significant. Capabilities of the process were demonstrated by producing two identical tools. One was cut using conventional patterns and tracing mills, and the other tool was machined using computer generated cutting paths. Although machining time was 14 percent greater with the CAM-generated path, polishing hours were cut by 33 percent. In all ,manufacturing time decreased 16.5 percent and tool quality increased 12 percent.Teledyne’s CAD/CAM system uses state-of-the-art software that allows engineers to design dies and molds, develop CNC milling cutter paths and incorporate design changes easily. The system supports full-color, shaded three-dimensional modeling on its monitors to enhance its design and analysis capabilities. The CAD/CAM system also provides finite element analysis that can be used to improve the quality of castings , and to analyze the thermal properties of molds. Inputs virtually from any customer database can be used either directly or through translation.CMM Is CriticalTeledyne’s coordinate measuring machine(CMM),says’ Church,”is what has made a difference in terms of being able to move from the traditional manual processes of mold and die making to the automated system that Teledyne uses today.”The CMM precisely locates any point in a volume of space measuring 128 in, by 80 in, by 54 in, to an accuracy of 0.0007 in. It can measure parts, dies and molds weighing up to 40 tons. For maximum accuracy,the machine is housed in an environmentally isolated room where temperature is maintained within 2 deg.F of optimum. To isolate the CMM from vibration, it is mounted on a 100-ton concrete block supported on art cushions.According to Nordby, the CMM is used not only as a quality tool, but also as a process checking tool. “ As a tool goes through the shop, it is checked several times to validate the previous operation that was performed.” For example, after the initial surface of a mold is machined and before any finish work is done, it is run through the CMM for a complete data check to determine how close the surface is to the required geometry.The mold is checked with a very dense pattern based on flow lines of the part. Each mold is checked twice, once before benching and again after benching. Measurements taken from both halves of the mold are used to calculate theoretical stock thickness at full closure of the mold to verify its accuracy with the CAD design data.Sheet Metal Dies Are Different“Sheet metal is a different ballgame,” says Nordby, “because you have the issue of material springback and the way the metal forms in the die. What happens in the sheet metal is that you do the same kinds of things for the male punch as you would with SMC molds and you ensure that it is 100 percent to math data. But due to machined surface tolerance variations, the female half becomes the working side of the tool. And there is still a lot of development required after the tool goes into the press. The math generated surfaces apply primarily to the part surface of the tool.”EMS Tracks the Manufacturing ProcessTeledyne’s business operations also are computerized and carried over a network consisting of a V AX server and PC terminals. IMS (Effective Management Systems) software tracks orders, jobs in progress, location of arts, purchasing, receiving, and is now being upgraded to include accounting functions.Overall capabilities of the EMS system include bill-of-material planning and control, inventory management, standard costing, material history, master production scheduling, material requirements planning, customer order processing, booking and sales history, accounts receivable, labor history, shop floor control, scheduling, estimating, standard routings, capacity requirements planning, job costing, purchasing and receiving, requisitions, purchasing and receiving, requisitions, purchasing history and accounts payable.According to Frank Zugaro, Teledyne’s scheduling manager, the EMS software was chosen because of its capabilities in scheduling time and resources in a job shop environment. All information about a job is entered into inventory management to generate a structured bill of material. Then routes are attached to it and work orders are generated.The system provides daily updates of data by operator hour as well as a material log by shop order and word order. Since the database is interactive, tracking of materials received and their flow through the build procedure can be documented and cost data sent to accounting and purchasing.Gary Kral, Teledyne’s director of engineering, says that EMS is really a tracking device, and one of the systems greatest benefits is that it provides a documented record of everything involving a job and eliminates problems that could arise from verbal instructions and promises. Kral says that as the system is used more, they are finding that it pays to document more things to make it part of the permanent record. It helps keep them focused.模具制造科学传统的通过制造模具加工大型板材的方法已经被可以把实体的形状信息转换为切削路径的CAD/CAM所取代了。
模具设计与制造——外文翻译、中英文翻译
Mold design and manufactureThe mold is the manufacturing industry important craft foundation, in our country, the mold manufacture belongs to the special purpose equipment manufacturing industry. China although very already starts to make the mold and the use mold, but long-term has not formed the industry. Straight stabs 0 centuries 80's later periods, the Chinese mold industry only then drives into the development speedway. Recent years, not only the state-owned mold enterprise had the very big development, the three investments enterprise, the villages and towns (individual) the mold enterprise's development also quite rapid .Although the Chinese mold industrial development rapid, but compares with the demand, obviously falls short of demand, its main gap concentrates precisely to, large-scale, is complex, the long life mold domain. As a result of in aspect and so on mold precision, life, manufacture cycle and productivity, China and the international average horizontal and the developed country still had a bigger disparity, therefore, needed massively to import the mold every year .The Chinese mold industry except must continue to sharpen the productivity, from now on will have emphatically to the profession internal structure adjustment and the state-of-art enhancement. The structure adjustment aspect, mainly is the enterprise structure to the specialized adjustment, the product structure to center the upscale mold development, to the import and export structure improvement, center the upscale automobile cover mold forming analysis and the structure improvement, the multi-purpose compound mold and the compound processing and the laser technology in the mold design manufacture application, the high-speed cutting, the superfinishing and polished the technology, the information direction develops .The recent years, the mold profession structure adjustment and the organizational reform step enlarges, mainly displayed in, large-scale, precise, was complex, the long life, center the upscale mold and the moldstandard letter development speed is higher than the common mold product; The plastic mold and the compression casting mold proportion increases; Specialized mold factory quantity and its productivity increase; "The three investments" and the private enterprise develops rapidly; The joint stock system transformation step speeds up and so on. Distributes from the area looked, take Zhujiang Delta and Yangtze River delta as central southeast coastal area development quickly to mid-west area, south development quickly to north. At present develops quickest, the mold produces the most centralized province is Guangdong and Zhejiang, places such as Jiangsu, Shanghai, Anhui and Shandong also has a bigger development in recent years .Although our country mold total quantity had at present achieved the suitable scale, the mold level also has the very big enhancement, after but design manufacture horizontal overall rise and fall industry developed country and so on Yu De, America, date, France, Italy many. The current existence question and the disparity mainly display in following several aspects:(1) the total quantity falls short of demanddomestic mold assembling oneself rate only ,about 70%. Low-grade mold , center upscale mold assembling oneself rate only has 50% about .(2) the enterprise organizational structure, the product structure, the technical structure and the import and export structure does not gatherin our country mold production factory to be most is from the labor mold workshop which produces assembles oneself (branch factory), from produces assembles oneself the proportion to reach as high as about 60%, but the overseas mold ultra 70% is the commodity mold. The specialized mold factory mostly is "large and complete", "small and entire" organization form, but overseas mostly is "small but", "is specially small and fine". Domestic large-scale, precise, complex, the long life mold accounts for the total quantity proportion to be insufficient 30%, butoverseas in 50% above 2004 years, ratio of the mold import and export is 3.7:1, the import and export balances the after net import volume to amount to 1.32 billion US dollars, is world mold net import quantity biggest country .(3) the mold product level greatly is lower than the international standardthe production cycle actually is higher than the international water broad product level low mainly to display in the mold precision, cavity aspect and so on surface roughness, life and structure .(4) develops the ability badly, economic efficiency unsatisfactory our country mold enterprise technical personnel proportion low the level is lower, also does not take the product development, frequently is in the passive position in the market. Our country each mold staff average year creation output value approximately ,ten thousand US dollars, overseas mold industry developed country mostly 15 to10,000 US dollars, some reach as high as 25 to10,000 US dollars, relative is our country quite part of molds enterprises also continues to use the workshop type management with it, truly realizes the enterprise which the modernized enterprise manages fewTo create the above disparity the reason to be very many, the mold long-term has not obtained the value besides the history in as the product which should have, as well as the most state-owned enterprises mechanism cannot adapt the market economy, but also has the following several reasons: .(1) country to mold industry policy support dynamics also insufficientlyalthough the country already was clear about has promulgated the mold profession industrial policy, but necessary policy few, carried out dynamics to be weak. At present enjoyed the mold product increment duty enterprise nation 185, the majority enterprise still the tax burden is only overweight. The mold enterprise carries on the technologicaltransformations introduction equipment to have to pay the considerable amount the tax money, affects the technology advancement, moreover privately operated enterprise loan extremely difficult .(2) talented person serious insufficient, the scientific research development and the technical attack investment too urine mold profession is the technology, the fund, the work crowded industry, along with the time progress and the technical development, grasps the talented person which and skilled utilizes the new technology exceptionally short, the high-quality mold fitter and the enterprise management talent extremely is also anxious. Because the mold enterprise benefit unsatisfactory and takes insufficiently the scientific research development and the technical attack, the scientific research unit and the universities, colleges and institutes eye stares at is creating income, causes the mold profession invests too few in the scientific research development and the technical attack aspect, causes the mold technological development step not to be big, progresses not quick .(3) the craft equipment level to be low, also necessary is not good, the use factor lowrecent years our country engine bed profession progressed quickly, has been able to provide the quite complete precision work equipment, but compared with the overseas equipment, still had a bigger disparity. Although the domestic many enterprises have introduced many overseas advanced equipment, but the overall equipment level low are very more than the overseas many enterprises. As a result of aspect the and so on system and fund reason, introduces the equipment not not necessary, the equipment and the appendix not necessary phenomenon are extremely common, the equipment utilization rate low question cannot obtain the comparatively properly solution for a long time .(4) specialization, standardization, commercialized degree low, the cooperation abilitybecause receives "large and complete" "small and entire" the influence since long ago, mold specialization level low, the specialized labor division is not careful, the commercialized degree is low. At present domestic every year produces mold, commodity mold minister 40% About, other for from produce uses for oneself. Between the mold enterprise cooperates impeded, completes the comparatively large-scale mold complete task with difficulty. Mold standardization level low, mold standard letter use cave rare is low also to the mold quality, the cost has a more tremendous influence, specially has very tremendous influence .(5) to the mold manufacture cycle) the mold material and the mold correlation technology fallsthe mold material performance, the quality and the variety question often can affect the mold quality, the life and the cost, the domestically produced molding tool steel and overseas imports the steel products to compare has a bigger disparity. Plastic, plate, equipment energy balance, also direct influence mold level enhancement .At present, our country economy still was at the high speed development phase, on the international economical globalization development tendency is day by day obvious, this has provided the good condition and the opportunity for the our country mold industry high speed development. On the one hand, the domestic mold market will continue high speed to develop, on the other hand, the mold manufacture also gradually will shift as well as the transnational group to our country carries on the mold purchase trend to our country extremely to be also obvious. Therefore, will take a broad view the future, international, the domestic mold market overall development tendency prospect will favor, estimated the Chinese mold will obtain the high speed development under the good market environment, our country not only can become the mold great nation, moreover certainly gradually will make the powerful nation to the mold the ranks to make great strides forward. "15" period, the Chinese mold industry level not only has the very big enhancement in the quantity andthe archery target aspect, moreover the profession structure, the product level, the development innovation ability, enterprise's system and the mechanism as well as the technology advancement aspect also can obtain a bigger development .The mold technology has gathered the machinery, the electron, chemistry, optics, the material, the computer, the precise monitor and the information network and so on many disciplines, is a comprehensive nature multi-disciplinary systems engineering. The mold technology development tendency mainly is the mold product to larger-scale, preciser, more complex and a more economical direction develops, the mold product technical content unceasingly enhances, the mold manufacture cycle unceasingly reduces, the mold production faces the information, is not having the chart, is fine, the automated direction develops, the mold enterprise to the technical integration, the equipment excellent, is producing approves the brand, the management information, the management internationalization direction develops. Our country mold profession still will have to enhance from now on the general character technology had :(1) to establish in the CAD/CAE platform the advanced mold design technology, enhances modernization which the mold designed, information, intellectualization, standardized level .(2) establishes in the CAM/CAPP foundation the advanced mold processing technology and the advanced manufacture technology unifies, raises the automated level and the production efficiency which the mold processes .(3) the mold production enterprise's information management technology. For example PDM (product data management), ERP (enterprise resource management), MIS (mold manufacture management information system) and information network technology the and so on INTERMET platform application, the promotion and the development .(4) are high speed, Gao Jing, the compound mold processing technology research and the application. For example the ultra fine ramming mold manufacture technology, the precise plastic and the compression casting mold manufacture technology and so on .(5) enhances the mold production efficiency, reduces the cost and reduces the mold production cycle each kind of fast economical mold manufacture technology .(6) the advanced manufacture technology application. For example hot technology and so on flow channel technology, gas auxiliary technology, hypothesized technology, nanotechnology, rapid scanning technology, reversion project, parallel project in the mold research, the development, the processing process application .(7) the raw material the simulation technology which forms in the mold .(8) the advanced mold processing and the appropriation equipment research and the development .(9) the mold and the mold standard letter, the important auxiliary standardized technology .(10) the mold and its the product examination technology.(11) high quality, the new mold material research and the development and its the correct application .(12) the mold production enterprise's modern management technology □Mold profession in "十15" period needs to solve the key essential technology should be the mold information, the digitized technology and precise, ultra fine, high speed, the highly effective manufacture technology aspect breakthroughAlong with the national economy total quantity and the industry product technology unceasing development, all the various trades and occupations to the mold demand quantity more and more big, the specification more and more is also high.Although mold type many, but its development should be with emphasis both can meet the massive needs, and has the comparatively high-tech content, specially at present domestic still could not be self-sufficient, needs the massive imports the mold and can represent the development direction large-scale, precise, is complex, the long life mold. The mold standard letter type, the quantity, the level, the production a and so on have the significant influence to the entire mold profession development. Therefore, some important mold standard letters also must the prioritize, moreover its development speed should quickly to the mold development speed, like this be able unceasingly to raise our country mold standardization level, thus improves the mold quality, reduces the mold production cycle, reduces the cost. Because our country mold product holds the bigger price superiority in the international market, therefore regarding the exportation prospect good mold product also should take key develops. According to the above required quantity big, the technical content is high, represents the development direction, the export prospect good principle choice prioritize product, moreover chooses the product to have at present to have the certain technology base, belongs has the condition, has the product which the possibility develops .According to "十15" the mold profession development plan, "十15" the period mold product development mainly has following several kind of the automobile cover mold(1) ramming mold to occupythe mold total quantity dish with emphasis above 40%. Automobile cover mold mainly for automobile necessary, also includes for the agriculture with the vehicle, the project machinery and the farm machinery necessary cover mold, it has the very big representation in the ramming mold, the mold mostly is large and middle scale, structure complex, the specification is high. For the passenger vehicle necessary cover mold, the request is in particular higher, may represent the ramming mold the level. This kind of mold our country had the certain technology base,already for middle-grade passenger vehicle necessary, but the level is not high, the ability is insufficient, at present satisfying rate only has one about the half. Center the upscale passenger vehicle cover mold main dependence import, has become the bottleneck which the automobile develops, enormous influence vehicle type development .(2)the precise ramming moldmulti- locations level was entering the mold and fine represents the ramming mold development direction, the precision request life request has been extremely high, mainly for the electronics industry, the automobile, the instrument measuring appliance, the electrical machinery electric appliance and so on formed a complete set. These two kind of molds, domestic had the suitable foundation, and has introduced the overseas technology and the equipment, the individual enterprise produces the product has achieved the world level, but the majority of enterprises still had a bigger disparity, the supply total quantity insufficient, the import were very many(3) the large-scale precise plastic moldplastic mold accounts for the mold total quantity 10%, moreover this proportion also is rising. In the plastic mold necessary large-scale casts the mold for the automobile and the electrical appliances, necessary models for the integrated circuit seals the mold, for the electronic information industry and the machinery and the packing necessary multilayer, the multi- cavities, the multi- material qualities, the multicolor precise note , and saves water the agricultural necessary plastic different molding for the new building materials to squeeze out the mold and the pipeline and the nozzle mold and so on, at present although had the suitable technology base and fast is developing, but the technical level and overseas still had a bigger disparity, the total quantity falls short of demand, Every year import amount reaches several hundred million US dollar.(4) the main mold standard to imitateeat present domestically to have an greater output the mold standard letter mainly is the mold frame, the guidance, the throwout lever pushes the tube, the elastic part and so on. These products not only the domestic necessary massive need, the exportation prospect very is also good, should continue vigorously to develop. The nitrogen cylinder and the hot flow channel part main dependence import, should raise the level in the existing foundation, forms the standard and organization scale production.(5) the other high-tech content moldsoccupiesin the mold total quantity green 8% compression casting mold, large-scale thin wall precise compression casting technology content high, the difficulty is big. The magnesium alloy compression casting mold at present although just started, but the prospects for development were good, have the representation. The meridian rubber tire mold also is the development direction, detachable mold technology difficulty is biggest. With fast takes shape some fast pattern making technologies and the corresponding fast economical mold which the technology unifies has the very good prospects for development. These high-tech content molds in "十15" period also should the prioritize .模具设计与制造模具是制造业的重要工艺基础,在我国,模具制造属于专用设备制造业。
模具制造中英文翻译
Modern mold makingI.The stamping die development history and status of technologyIn 1953, the Changchun First Automobile Works in China for the first time established a die shop, the car plant in 1958 began manufacturing automotive panel die. 60 years of the 20th century began producing fine blanking dies. Come a long road of development, China has formed about 300 billion (not including Hong Kong, Macao and Taiwan statistics.) Production capacity of various types of stamping dies. Formed, such as Ningbo and Zhejiang HUANGYAN region "Die village"; Guangdong Corporation and some large rapid rise of township enterprises, K el o n, M id e a, K on ka and other groups have established their own mold manufacturing center; joint ventures and wholly foreign-owned the mold companies now have thousands. With the pace with international standards continues to accelerate, increasing market competition, production and design of the mold has been growing recognition that product quality, cost, and new product development capacities. Mold manufacturing technology to measure a country's manufacturing sector has become an important indicator of the level, and largely determine the survival space. At present, China stamping die, whether in quantity or in quality, technology and other capabilities have made significant progress, but with national needs and the world advanced level, the gap is still great. In the international competition situation, I had the mold industry has rapidly developed, many specialized research centers continue to die set up, mold steel of the structure and made significant achievements, but there is still a big gap. First, imports of high-tech mold most of the large precision molds, mold and exports most of the lower middle and low-tech die, so high-tech high-grade die stamping die market, the overall satisfaction rate is lower than satisfaction rate, which mold development has lagged behind the production of stamping parts, and low-technology market to meet the rate of middle and low die stamping die is higher than the overall market to meet the rate; second is due to the price of the mold is much lower than international market prices, has some competition force, so its prospects in the international market; third in recent years, Hong Kong-and Taiwan-owned, foreign-funded enterprises in China developed rapidly in a large number of these enterprises stamping dies produced for own use no precise statistics, it is not included in the figures being.II. Modern mold manufacturing technology developmentThe development of modern technology should die mold products to meet the "short delivery time", "high precision", "good quality", "low price" request for service. Urgent need to develop to meet this requirement as a number of(1) to comprehensively promote universal DBD / DBM / DBE technologyDie DBD / DBM / DBE technology is the development direction of mold design and manufacturing. With the computer software development and progress, universal DBD / DBM / DBE technology, conditions are ripe, the businesses will increase DBD / DBM technical training and technical service efforts; further expand the scope ofDBE technology. The development of computers and networks are making DBD / DBM / DBE technology trans-regional, cross-enterprise, campus-wide in the industry as possible to promote and achieve re-integration of technical resources to enable virtual manufacturing possible.(2) High-speed millingThe development of foreign high-speed milling process in recent years, significantly improve the processing efficiency, and to get a high surface finish. In addition, the module can also be processed with high hardness, but also with low temperature rise, thermal deformation and so on. High-speed milling technology, automotive, home appliance manufacturing industry in the large cavity mold injected new vitality. It currently has more agile, intelligent, integrated direction.(3) die scanning and digitizing systemHigh-speed scanner provides scanning system and mold from the model or in kind to the processing of the scanned model of the desired number of features required, greatly reducing the manufacturing cycle in the development of mold. Some quick scan system can be quickly installed in existing CNC milling machine and machining center, for fast data acquisition, automatic generation of a variety of CNC machining process, the DBD data in different formats, for mold manufacturing "reverse engineering . "(4) the degree of standardization to improve dieDegree of standardization of the mold is increasing, estimates that the current use of standard mold coverage has reached about 30%. Developed countries is generally about 80%.(5) high-quality materials and advanced surface treatment technologyApplication of high quality steel and the corresponding surface treatment technology to improve the life of the mold it is very necessary. Mold heat treatment and surface treatment can fully mold steel material properties play a key part. Direction of development of mold heat treatment is the use of vacuum heat treatment. In addition to the mold surface should improve the development of advanced technologies such as laser surface treatment.(6) Mold PolishingAutomation, intelligent mold surface quality of mold life, the appearance of quality parts and so have a greater impact of automation and intelligence of the grinding and polishing methods replace the existing manual in order to improve the quality of the mold surface is important trends.(7) die development of automatic processing systemThis is our long-term development goals mold industry. Automatic mold machine processing system should be more than the rational combination; with accompanying plate positioning fixture or positioning; a complete equipment, tool CNC database; a complete CNC flexible synchronization system; a quality monitoringand control system. Of course, as the user to choose the right equipment, if the selection properly, not only can not make money but make the machine work into the bitter situation.III. Modern mold manufacturing technology trendsDie technology is mainly towards the future development trend of information technology, high-speed high-precision production and development. Therefore, the design technology, the development focus is to promote DBD / DBE / DBM technology, and continue to improve efficiency, especially in sheet metal forming process of the computer simulation analysis. Die DBD, DBE technology should be declared human, integration, intelligence and network direction, and improve the mold DBD, DBM system-specific level. To improve the DBD, DBE, DBM technology, establish a complete database and development of the mold expert systems and improve software usability is very important.From the processing technology, the development focused on high-speed processing and precision machining. At present, the development of highly processed high-speed milling, high speed polishing and high-speed electronic processing and rapid tooling technologies. At present, the development of precision machining parts precision mold and the surface roughness of less 1μm Pa ≤ 0.1μm variety of precision machining.IV.the modern mold manufacturing1.CAD/CAE/CAM computer-aided design, simulation, manufacturing integration CAD / CAE / CAM integration, integration technology is the most advanced modern mold making the most reasonable mode of production. Use of computer-aided design, support engineering and manufacturing systems, according to the respective mold parts designed to prepare the NC machining of parts from design to manufacturing process is an inevitable process, which is from CAD / CAE / CAM system carried out, The processing line cable input directly from the processing machine, can be used in the preparation of procedures of processing the system analog functions, will be part tool, tool holder, fixture, platform and tool speed, path, etc. are displayed, to check the program prepared correctness. In short the CAD / CAE / CAM system development and simulation of processing can not fully understand the problems identified, resulting in processing prior to prepare the complete set of processing change work, which for the efficient and accurate processing of the mold has a very important part .2. Advanced equipment in the modern mold making roleThe inevitable trend of modern mold making, machining is possible to replace the manual process, especially now that CNC lathes, multi-axis machine tools, CNC mold engraving machine, EDM machine, CNC precision grinding machines, coordinate measuring machines, scanners and other modern equipment widely used in factories, but most of these devices are basically the application of the procedures used CAD / CAE / CAM system to produce, the operator of work procedures in accordance with the provisions of work piece clamping, with a cutting tool and operation of the machine will be able to automatically complete the processing tasks,and created the ideal mold parts or complete the processing operation for the next part.3. Die materials and surface treatment technologyDue to improper selection and use of materials, resulting in premature failure of the mold, which accounts for more than 45% die failure. Price structure throughout the mold, the materials, the proportion of small, generally 20% to 30%, therefore, the choice of high quality steel and application of surface treatment technology to improve the life of the mold it is very necessary. For tool steel, the ESR technique to be used, such as the use of powder metallurgy high speed steel powders manufactured. Variety of different specifications tool steel, refined products, products of, try to shorten the delivery time is also an important trend.Mold heat treatment of the main trends: the infiltration of a single element to the multi-element penetration, complex permeability (such as TD method) development; by the general spread of the CVD, PVD, PCVD, ion penetration, ion implantation and other direction; addition, the current laser enhanced glow plasma technology and electroplating (plating) and other anti-corrosion technology to strengthen more and more attention.V.reverse engineeringReverse engineering is the first of the parts (the processing of the product) to scan the CAD data generated in multiple formats, and then in the other CAD / CAE / CAM software in the modified design, the technology is the most popular modern mold manufacturing mold manufacturing technology. mold manufacturing company dedicated to development and production of the scanning system, it can be successfully applied to reverse engineering, mold manufacturing, it can not only improve the performance of CNC machine tools, expanding the function of CNC machine tools, CNC machine tools but also improve efficiency., Renscan200, Cyclone high-speed scanner has been Qingdao H a I e r, Jinan Q I n g q i, national mold center and other units started.VI. Summary and OutlookWith the development and progress of computer software, CAD / CAE / CAM technology is getting more mature, and its application in the modern mold will become more widespread. Can be expected in the near future, mold manufacturing to separate from the machine manufacturing industry, and independent national economy to become an indispensable pillar industries, while also further promote the integration of the mold manufacturing technology, intelligence, beneficiary , efficient direction.现代模具制造一.冲压模具发展历史和技术水平状况1953年,长春第一汽车制造厂在中国首次建立了冲模车间,该汽车厂于1958年开始制造汽车覆盖件模具。
英文翻译模具设计与制造
Mold design and manufactureThe mold is the manufacturing industry important craft foundation, in our country, the mold manufacture belongs to the special purpose equipment manufacturing industry. China although very already starts to make the mold and the use mold, but long-term has not formed the industry. Straight stabs 0 centuries 80's later periods, the Chinese mold industry only then drives into the development speedway. Recent years, not only the state-owned mold enterprise had the very big development, the three investments enterprise, the villages and towns (individual) the mold enterprise's development also quite rapid .Although the Chinese mold industrial development rapid, but compares with the demand, obviously falls short of demand, its main gap concentrates precisely to, large-scale, is complex, the long life mold domain. As a result of in aspect and so on mold precision, life, manufacture cycle and productivity, China and the international average horizontal and the developed country still had a bigger disparity, therefore, needed massively to import the mold every year .The Chinese mold industry except must continue to sharpen the productivity, from now on will have emphatically to the profession internal structure adjustment and the state-of-art enhancement. The structure adjustment aspect, mainly is the enterprise structure to the specialized adjustment, the product structure to center the upscale mold development, to the import and export structure improvement, center the upscale automobile cover mold forming analysis and the structure improvement, the multi-purpose compound mold and the compound processing and the laser technology in the mold design manufacture application, the high-speed cutting, the superfinishing and polished the technology, the information direction develops .The recent years, the mold profession structure adjustment and the organizational reform step enlarges, mainly displayed in, large-scale, precise, was complex, the long life, center the upscale mold and the mold standard letter development speed is higher than the common mold product; The plastic mold and the compression casting mold proportion increases; Specialized mold factory quantity and its productivity increase; "The three investments" and the private enterprise develops rapidly; The joint stock system transformation step speeds up and so on. Distributes from the area looked, take Zhujiang Delta and Yangtze River delta as central southeast coastal area development quickly to mid-west area, south development quickly to north. At present develops quickest, the mold produces the most centralized province is Guangdong and Zhejiang, places such as Jiangsu, Shanghai, Anhui and Shandong also has a bigger development in recent years .Although our country mold total quantity had at present achieved the suitable scale, the mold level also has the very big enhancement, after but design manufacture horizontal overall rise and fall industry developed country and so on Yu De, America, date, France, Italy many. The current existence question and the disparity mainly display in following several aspects:(1) the total quantity falls short of demanddomestic mold assembling oneself rate only ,about 70%. Low-grade mold , center upscale mold assembling oneself rate only has 50% about .(2) the enterprise organizational structure, the product structure, the technical structure and the import and export structure does not gatherin our country mold production factory to be most is from the labor mold workshop which produces assembles oneself (branch factory), from produces assembles oneself the proportion to reach as high as about 60%, but the overseas mold ultra 70% is the commodity mold. The specialized mold factory mostly is "large and complete", "small and entire"organization form, but overseas mostly is "small but", "is specially small and fine". Domestic large-scale, precise, complex, the long life mold accounts for the total quantity proportion to be insufficient 30%, but overseas in 50% above 2004 years, ratio of the mold import and export is 3.7:1, the import and export balances the after net import volume to amount to 1.32 billion US dollars, is world mold net import quantity biggest country .(3) the mold product level greatly is lower than the international standardthe production cycle actually is higher than the international water broad product level low mainly to display in the mold precision, cavity aspect and so on surface roughness, life and structure .(4) develops the ability badly, economic efficiency unsatisfactory our country mold enterprise technical personnel proportion lowthe level is lower, also does not take the product development, frequently is in the passive position in the market. Our country each mold staff average year creation output value approximately ,ten thousand US dollars, overseas mold industry developed country mostly 15 to10,000 US dollars, some reach as high as 25 to10,000 US dollars, relative is our country quite part of molds enterprises also continues to use the workshop type management with it, truly realizes the enterprise which the modernized enterprise manages fewTo create the above disparity the reason to be very many, the mold long-term has not obtained the value besides the history in as the product which should have, as well as the most state-owned enterprises mechanism cannot adapt the market economy, but also has the following several reasons: .(1) country to mold industry policy support dynamics also insufficientlyalthough the country already was clear about has promulgated the mold profession industrial policy, but necessary policy few, carried out dynamics to be weak. At present enjoyed the mold product increment duty enterprise nation 185, the majority enterprise still the tax burden is only overweight. The mold enterprise carries on the technological transformations introduction equipment to have to pay the considerable amount the tax money, affects the technology advancement, moreover privately operated enterprise loan extremely difficult .(2) talented person serious insufficient, the scientific research development and the technical attack investment too urinemold profession is the technology, the fund, the work crowded industry, along with the time progress and the technical development, grasps the talented person which and skilled utilizes the new technology exceptionally short, the high-quality mold fitter and the enterprise management talent extremely is also anxious. Because the mold enterprise benefit unsatisfactory and takes insufficiently the scientific research development and the technical attack, the scientific research unit and the universities, colleges and institutes eye stares at is creating income, causes the mold profession invests too few in the scientific research development and the technical attack aspect, causes the mold technological development step not to be big, progresses not quick . (3) the craft equipment level to be low, also necessary is not good, the use factor lowrecent years our country engine bed profession progressed quickly, has been able to provide the quite complete precision work equipment, but compared with the overseas equipment, still had a bigger disparity. Although the domestic many enterprises have introduced many overseas advanced equipment, but the overall equipment level low are very more than the overseas many enterprises. As a result of aspect the and so on system and fund reason, introduces the equipment not not necessary, theequipment and the appendix not necessary phenomenon are extremely common, the equipment utilization rate low question cannot obtain the comparatively properly solution for a long time .(4) specialization, standardization, commercialized degree low, the cooperation abilitybecause receives "large and complete" "small and entire" the influence since long ago, mold specialization level low, the specialized labor division is not careful, the commercialized degree is low. At present domestic every year produces mold, commodity mold minister 40% About, other for from produce uses for oneself. Between the mold enterprise cooperates impeded, completes the comparatively large-scale mold complete task with difficulty. Mold standardization level low, mold standard letter use cave rare is low also to the mold quality, the cost has a more tremendous influence, specially has very tremendous influence . (5) to the mold manufacture cycle) the mold material and the mold correlation technology fallsthe mold material performance, the quality and the variety question often can affect the mold quality, the life and the cost, the domestically produced molding tool steel and overseas imports the steel products to compare has a bigger disparity. Plastic, plate, equipment energy balance, also direct influence mold level enhancement .At present, our country economy still was at the high speed development phase, on the international economical globalization development tendency is day by day obvious, this has provided the good condition and the opportunity for the our country mold industry high speed development. On the one hand, the domestic mold market will continue high speed to develop, on the other hand, the mold manufacture also gradually will shift as well as the transnational group to our country carries on the mold purchase trend to our country extremely to be also obvious. Therefore, will take a broad view the future, international, thedomestic mold market overall development tendency prospect will favor, estimated the Chinese mold will obtain the high speed development under the good market environment, our country not only can become the mold great nation, moreover certainly gradually will make the powerful nation to the mold the ranks to make great strides forward. "15" period, the Chinese mold industry level not only has the very big enhancement in the quantity and the archery target aspect, moreover the profession structure, the product level, the development innovation ability, enterprise's system and the mechanism as well as the technology advancement aspect also can obtain a bigger development .The mold technology has gathered the machinery, the electron, chemistry, optics, the material, the computer, the precise monitor and the information network and so on many disciplines, is a comprehensive nature multi-disciplinary systems engineering. The mold technology development tendency mainly is the mold product to larger-scale, preciser, more complex and a more economical direction develops, the mold product technical content unceasingly enhances, the mold manufacture cycle unceasingly reduces, the mold production faces the information, is not having the chart, is fine, the automated direction develops, the mold enterprise to the technical integration, the equipment excellent, is producing approves the brand, the management information, the management internationalization direction develops. Our country mold profession still will have to enhance from now on the general character technology had :(1) to establish in the CAD/CAE platform the advanced mold design technology, enhances modernization which the mold designed, information, intellectualization, standardized level .(2) establishes in the CAM/CAPP foundation the advanced mold processing technology and the advanced manufacture technology unifies,raises the automated level and the production efficiency which the mold processes .(3) the mold production enterprise's information management technology. For example PDM (product data management), ERP (enterprise resource management), MIS (mold manufacture management information system) and information network technology the and so on INTERMET platform application, the promotion and the development .(4) are high speed, Gao Jing, the compound mold processing technology research and the application. For example the ultra fine ramming mold manufacture technology, the precise plastic and the compression casting mold manufacture technology and so on .(5) enhances the mold production efficiency, reduces the cost and reduces the mold production cycle each kind of fast economical mold manufacture technology .(6) the advanced manufacture technology application. For example hot technology and so on flow channel technology, gas auxiliary technology, hypothesized technology, nanotechnology, rapid scanning technology, reversion project, parallel project in the mold research, the development, the processing process application .(7) the raw material the simulation technology which forms in the mold .(8) the advanced mold processing and the appropriation equipment research and the development .(9) the mold and the mold standard letter, the important auxiliary standardized technology .(10) the mold and its the product examination technology.(11) high quality, the new mold material research and the development and its the correct application .(12) the mold production enterprise's modern management technology □Mold profession in "十15" period needs to solve the key essential technology should be the mold information, the digitized technology and precise, ultra fine, high speed, the highly effective manufacture technology aspect breakthroughAlong with the national economy total quantity and the industry product technology unceasing development, all the various trades and occupations to the mold demand quantity more and more big, the specification more and more is also high.Although mold type many, but its development should be with emphasis both can meet the massive needs, and has the comparatively high-tech content, specially at present domestic still could not beself-sufficient, needs the massive imports the mold and can represent the development direction large-scale, precise, is complex, the long life mold. The mold standard letter type, the quantity, the level, the production a and so on have the significant influence to the entire mold profession development. Therefore, some important mold standard letters also must the prioritize, moreover its development speed should quickly to the mold development speed, like this be able unceasingly to raise our country mold standardization level, thus improves the mold quality, reduces the mold production cycle, reduces the cost. Because our country mold product holds the bigger price superiority in the international market, therefore regarding the exportation prospect good mold product also should take key develops. According to the above required quantity big, the technical content is high, represents the development direction, the export prospect good principle choice prioritize product, moreover chooses the product to have at present to have the certain technology base, belongs has the condition, has the product which the possibility develops .According to "十15" the mold profession development plan, "十15" the period mold product development mainly has following several kind of the automobile cover mold(1) ramming mold to occupythe mold total quantity dish with emphasis above 40%. Automobile cover mold mainly for automobile necessary, also includes for the agriculture with the vehicle, the project machinery and the farm machinery necessary cover mold, it has the very big representation in the ramming mold, the mold mostly is large and middle scale, structure complex, the specification is high. For the passenger vehicle necessary cover mold, the request is in particular higher, may represent the ramming mold the level. This kind of mold our country had the certain technology base, already for middle-grade passenger vehicle necessary, but the level is not high, the ability is insufficient, at present satisfying rate only has one about the half. Center the upscale passenger vehicle cover mold main dependence import, has become the bottleneck which the automobile develops, enormous influence vehicle type development .(2)the precise ramming moldmulti- locations level was entering the mold and fine represents the ramming mold development direction, the precision request life request has been extremely high, mainly for the electronics industry, the automobile, the instrument measuring appliance, the electrical machinery electric appliance and so on formed a complete set. These two kind of molds, domestic had the suitable foundation, and has introduced the overseas technology and the equipment, the individual enterprise produces the product has achieved the world level, but the majority of enterprises still had a bigger disparity, the supply total quantity insufficient, the import were very many(3) the large-scale precise plastic moldplastic mold accounts for the mold total quantity 10%, moreover this proportion also is rising. In the plastic mold necessary large-scale casts the mold for the automobile and the electrical appliances, necessary models for the integrated circuit seals the mold, for the electronic information industry and the machinery and the packing necessary multilayer, the multi- cavities, the multi- material qualities, the multicolor precise note , and saves water the agricultural necessary plastic different molding for the new building materials to squeeze out the mold and the pipeline and the nozzle mold and so on, at present although had the suitable technology base and fast is developing, but the technical level and overseas still had a bigger disparity, the total quantity falls short of demand, Every year import amount reaches several hundred million US dollar.(4) the main mold standard to imitateeat present domestically to have an greater output the mold standard letter mainly is the mold frame, the guidance, the throwout lever pushes the tube, the elastic part and so on. These products not only the domestic necessary massive need, the exportation prospect very is also good, should continue vigorously to develop. The nitrogen cylinder and the hot flow channel part main dependence import, should raise the level in the existing foundation, forms the standard and organization scale production.(5) the other high-tech content moldsoccupiesin the mold total quantity green 8% compression casting mold, large-scale thin wall precise compression casting technology content high, the difficulty is big. The magnesium alloy compression casting mold at present although just started, but the prospects for development were good, have the representation. The meridian rubber tire mold also is the development direction, detachable mold technology difficulty is biggest. With fast takes shape some fast pattern making technologies and thecorresponding fast economical mold which the technology unifies has the very good prospects for development. These high-tech content molds in "十15" period also should the prioritize .模具设计与制造模具是制造业的重要工艺基础,在我国,模具制造属于专用设备制造业。
注塑模具之模具设计与制造外文文献翻译、中英文翻译
外文翻译:Injection moulding for Mold Design and ManufactureThe mold is the manufacturing industry important craft foundation, in our country, the mold manufacture belongs to the special purpose equipment manufacturing industry. China although very already starts to make the mold and the use mold, but long-term has not formed the industry. Straight stabs 0 centuries 80's later periods, the Chinese mold industry only then drives into the development speedway. Recent years, not only the state-owned mold enterprise had the very big development, the three investments enterprise, the villages and towns (individual) the mold enterprise's development also quite rapidly.Although the Chinese mold industrial development rapid, but compares with the demand, obviously falls short of demand, its main gap concentrates precisely to, large-scale, is complex, the long life mold domain. As a result of in aspect and so on mold precision, life, manufacture cycle and productivity, China and the international average horizontal and the developed country still had a bigger disparity, therefore, needed massively to import the mold every year .The Chinese mold industry except must continue to sharpen the productivity; from now on will have emphatically to the profession internal structure adjustment and the state-of-art enhancement. The structure adjustment aspect, mainly is the enterprise structure to the specialized adjustment, the product structure to center the upscale mold development, to the import and export structure improvement, center the upscale automobile cover mold forming analysis and the structure improvement, the multi-purpose compound mold and the compound processing and the laser technology in the mold design manufacture application, the high-speed cutting, the super finishing and polished the technology, the information direction develops .The recent years, the mold profession structure adjustment and the organizational reform step enlarges, mainly displayed in, large-scale, precise, was complex, the long life, center the upscale mold and the mold standard letter development speed is higher than the common mold product; The plastic mold and the compression casting moldproportion increases; Specialized mold factory quantity and its productivity increase; "The three investments" and the private enterprise develops rapidly; The joint stock system transformation step speeds up and so on. Distributes from the area looked, take Zhujiang Delta and Yangtze River delta as central southeast coastal area development quickly to mid-west area, south development quickly to north. At present develops quickest, the mold produces the most centralized province is Guangdong and Zhejiang, places such as Jiangsu, Shanghai, Anhui and Shandong also has a bigger development in recent years.Although our country mold total quantity had at present achieved the suitable scale, the mold level also has the very big enhancement, after but design manufacture horizontal overall rise and fall industry developed country and so on Yu De, America, date, France, Italy many. The current existence question and the disparity mainly display in following several aspects:(1) The total quantity falls short of demandDomestic mold assembling one rate only, about 70%. Low-grade mold, center upscale mold assembling oneself rate only has 50% about.(2) The enterprise organizational structure, the product structure, the technical structure and the import and export structure does not gatherIn our country mold production factory to be most is from the labor mold workshop which produces assembles oneself (branch factory), from produces assembles oneself the proportion to reach as high as about 60%, but the overseas mold ultra 70% is the commodity mold. The specialized mold factory mostly is "large and complete", "small and entire" organization form, but overseas mostly is "small but", "is specially small and fine". Domestic large-scale, precise, complex, the long life mold accounts for the total quantity proportion to be insufficient 30%, but overseas in 50% above 2004 years, ratio of the mold import and export is 3.7:1, the import and export balances the after net import volume to amount to 1.32 billion US dollars, is world mold net import quantity biggest country .(3) The mold product level greatly is lower than the international standardThe production cycle actually is higher than the international water broadproduct level low mainly to display in the mold precision, cavity aspect and so on surface roughness, life and structure.(4) Develops the ability badly, economic efficiency unsatisfactory our country mold enterprise technical personnel proportion lowThe level is lower, also does not take the product development, and frequently is in the passive position in the market. Our country each mold staff average year creation output value approximately, ten thousand US dollars, overseas mold industry developed country mostly 15 to10, 000 US dollars, some reach as high as 25 to10, 000 US dollars, relative is our country quite part of molds enterprises also continues to use the workshop type management with it, truly realizes the enterprise which the modernized enterprise manages fewTo create the above disparity the reason to be very many, the mold long-term has not obtained the value besides the history in as the product which should have, as well as the most state-owned enterprises mechanism cannot adapt the market economy, but also has the following several reasons: .The mold material performance, the quality and the variety question often can affect the mold quality, the life and the cost, the domestically produced molding tool steel and overseas imports the steel products to compare has a bigger disparity. Plastic,plate, equipment energy balance, also direct influence mold level enhancement.RSP ToolingRapid Solidification Process (RSP) Tooling, is a spray forming technology tailored for producing molds and dies [2-4]. The approach combines rapid solidification processing and netshape materials processing in a single step. The general concept involves converting a mold design described by a CAD file to a tooling master using a suitable rapid prototyping (RP) technology such as stereolithography. A pattern transfer is made to a castable ceramic, typically alumina or fused silica. This is followed by spray forming a thick deposit of tool steel (or other alloy) on the pattern to capture the desired shape, surface texture and detail. The resultant metal block is cooled to room temperature and separated from the pattern. Typically, the deposit’s exterior walls are machined square, allowing it to be used as an insert in a holding block such as a MUD frame [5]. The overall turnaround time for tooling is about three days, stating with a master. Molds and dies produced in this way have been used for prototype and production runs in plastic injection molding and die casting.An important benefit of RSP Tooling is that it allows molds and dies to be made early in the design cycle for a component. True prototype parts can be manufactured to assess form, fit, and function using the same process planned for production. If the part is qualified, the tooling can be run in production as conventional tooling would. Use of a digital database and RP technology allows design modifications to be easily made.Experimental ProcedureAn alumina-base ceramic (Cotronics 780 [6]) was slurry cast using a silicone rubber master die, or freeze cast using a stereolithography master. After setting up, ceramic patterns were demolded, fired in a kiln, and cooled to room temperature. H13 tool steel was induction melted under a nitrogen atmosphere, superheated about100︒C, and pressure-fed into a bench-scale converging/diverging spray nozzle, designed and constructed in-house. An inert gas atmosphere within the spray apparatus minimized in-flight oxidation of the atomized droplets as they deposited onto the tool pattern at a rate of about 200 kg/h. Gas-to-metal mass flow ratio was approximately 0.5.For tensile property and hardness evaluation, the spray-formed material was sectioned using a wire EDM and surface ground to remove a 0.05 mm thickheat-affected zone. Samples were heat treated in a furnace that was purged with nitrogen. Each sample was coated with BN and placed in a sealed metal foil packet as a precautionary measure to prevent decarburization.Artificially aged samples were soaked for 1 hour at temperatures ranging from 400 to 700︒C, and air cooled. Conventionally heat treated H13 was austenitized at 1010︒C for 30 min., air quenched, and double tempered (2 hr plus 2 hr) at 538︒C.Microhardness was measured at room temperature using a Shimadzu Type M Vickers Hardness Tester by averaging ten microindentation readings. Microstructure of the etched (3% nital) tool steel was evaluated optically using an Olympus Model PME-3 metallograph and an Amray Model 1830 scanning electron microscope. Phase composition was analyzed via energy-dispersive spectroscopy (EDS). The size distribution of overspray powder was analyzed using a Microtrac Full Range Particle Analyzer after powder samples were sieved at 200 μm to remove coarse flakes. Sample density was evaluated by water displacement using Archimedes’ principle and a Mettler balance (Model AE100).A quasi 1-D computer code developed at INEEL was used to evaluate multiphase flow behavior inside the nozzle and free jet regions. The code's basic numerical technique solves the steadystate gas flow field through an adaptive grid, conservative variables approach and treats the droplet phase in a Lagrangian manner with full aerodynamic and energetic coupling between the droplets and transport gas. The liquid metal injection system is coupled to the throat gas dynamics, and effects of heat transfer and wall friction are included. The code also includes a nonequilibriumsolidification model that permits droplet undercooling and recalescence. The code was used to map out the temperature and velocity profile of the gas and atomized droplets within the nozzle and free jet regions.Results and DiscussionSpray forming is a robust rapid tooling technology that allows tool steel molds and dies to be produced in a straightforward manner. Each was spray formed using a ceramic pattern generated from a RP master.Particle and Gas BehaviorParticle mass frequency and cumulative mass distribution plots for H13 tool steel sprays are given in Figure 1. The mass median diameter was determined to be 56 μm by interpolation of size corresponding to 50% cumulative mass. The area mean diameter and volume mean diameter were calculated to be 53 μm and 139 μm, respectively. Geometric standard deviation, d=(d84/d16)½ , is 1.8, where d84 and d16 are particle diameters corresponding to 84% and 16% cumulative mass in Figure 1.Figure1. Cumulative mass and mass frequency plots of particles in H13 tool stepsprays.Figure2 gives computational results for the multiphase velocity flow field (Figure 2a), and H13 tool steel solid fraction (Figure2b), inside the nozzle and free jetregions. Gas velocity increases until reaching the location of the shock front, at which point it precipitously decreases, eventually decaying exponentially outside the nozzle. Small droplets are easily perturbed by the velocity field, accelerating inside the nozzle and decelerating outside. After reaching their terminal velocity, larger droplets (〜150 μm) are less perturbed by the flow field due to their greater momentum.It is well known that high particle cooling rates in the spray jet (103-106 K/s) and bulk deposit (1-100 K/min) are present during spray forming [7]. Most of the particles in the spray have undergone recalescence, resulting in a solid fraction of about 0.75. Calculated solid fraction profiles of small (〜30 μm) and large (〜150 μm) droplets with distance from the nozzle inlet, are shown in Figure 2b.Spray-Formed DepositsThis high heat extraction rate reduces erosion effects at the surface of the tool pattern. This allows relatively soft, castable ceramic pattern materials to be used that would not be satisfactory candidates for conventional metal casting processes. With suitable processing conditions, fine surface detail can be successfully transferred from the pattern to spray-formed mold. Surface roughness at the molding surface is pattern dependent. Slurry-cast commercial ceramics yield a surface roughness of about 1 μm Ra, suitable for many molding applications. Deposition of tool steel onto glass plates has yielded a specular surface finish of about 0.076 μm Ra. At the current state of development, dimensional repeatability of spray-formed molds, starting with a common master, is about ±0.2%.Figure 2. Calculated particle and gas behavior in nozzle and free jet regions.(a) Velocity profile.(b) Solid fraction.ChemistryThe chemistry of H13 tool steel is designed to allow the material to withstand the temperature, pressure, abrasion, and thermal cycling associated with demanding applications such as die casting. It is the most popular die casting alloy worldwide and second most popular tool steel for plastic injection molding. The steel has low carbon content (0.4 wt.%) to promote toughness, medium chromium content (5 wt.%) to provide good resistance to high temperature softening, 1 wt% Si to improve high temperature oxidation resistance, and small molybdenum and vanadium additions (about 1%) that form stable carbides to increase resistance to erosive wear[8]. Composition analysis was performed on H13 tool steel before and after spray forming.Results, summarized in Table 1, indicate no significant variation in alloy additions.MicrostructureThe size, shape, type, and distribution of carbides found in H13 tool steel is dictated by the processing method and heat treatment. Normally the commercial steel is machined in the mill annealed condition and heat treated(austenitized/quenched/tempered) prior to use. It is typically austenitized at about 1010︒C, quenched in air or oil, and carefully tempered two or three times at 540 to 650︒C to obtain the required combination of hardness, thermal fatigue resistance, and toughness.Commercial, forged, ferritic tool steels cannot be precipitation hardened becauseafter electroslag remelting at the steel mill, ingots are cast that cool slowly and formcoarse carbides. In contrast, rapid solidification of H13 tool steel causes alloying additions to remain largely in solution and to be more uniformly distributed in the matrix [9-11]. Properties can be tailored by artificial aging or conventional heat treatment.A benefit of artificial aging is that it bypasses the specific volume changes that occur during conventional heat treatment that can lead to tool distortion. These specific volume changes occur as the matrix phase transforms from ferrite to austenite to tempered martensite and must be accounted for in the original mold design. However, they cannot always be reliably predicted. Thin sections in the insert, which may be desirable from a design and production standpoint, are oftentimes not included as the material has a tendency to slump during austenitization or distort during quenching. Tool distortion is not observed during artificial aging ofspray-formed tool steels because there is no phase transformation.注塑模具之模具设计与制造模具是制造业的重要工艺基础,在我国,模具制造属于专用设备制造业。
模具设计与制造专业外文翻译--气辅注射成型
外文原文:Gas-Assisted Injection MoldingInjection molding is a very popular operation for production of commercial plastic parts with its sophisticated control and superior surface details. However, it has limitations, such as long cycle time for parts with thick sections due to slow cooling. Also packing of thick sections can produce sink marks on the part surface. Large thin parts can have warpage because the residual stress and strain induced during filling and packing. Thus traditional injection molding can be modified to solve these kinds of problems, also to improve the quality of the part and lower the cost of production.Currently, gas-assisted injection molding is in use and being developed worldwide. In the US, the process is known as Gas-Assisted Injection Molding (GAIM); it is also called Gas Injection Technique (GIT) in Europe (see Fig.4.3.1). This process is developed for the production of hollow plastic parts with separate internal channels. It is unique because it combines the advantages of conventional injection molding and blow molding while differing from both. GAIM offers a cost effective means of producing large, smooth surfaced and rigid parts using lower clamping pressure with little or no finishing. By introducing the gas before complete filling, numerous problems such as warpage, sink marks, and high filling pressure are mostly overcome. Moreover, the process gives great benefits in terms of higher stiffness-to-weight ratio than the solid parts with the same overall dimensions due to the elimination of material placed inefficiently near the neutral axis of the cross section, thus increasing the freedom of part design.In comparison with conventional injection molding, the gas-assisted process is more critical in terms of process control, especially for multi-cavity applications. The quality of the part is determined by both tool and process variables such as degree of under-fill, gas injection conditions, and mold temperature, thus indicating the importance of process control. The process is attracting many molders due to the demand for highly automated production of gas-assisted injection molded parts.The gas-assisted injection molding process is the most rapidly growing fieldwith considerable work going on in the field of controls and the process development. Research interest is drawn towards the development of new gas injection units, the study of the process variable, the efficiency of the production process, and advantages offered by the new process. Many different companies are offering gas injection-molding units with the various options, which are mainly pressure controlled or volume controlled processes.In gas injection molding, the mold is partially filled with molten thermoplastic, and an inert gas, usually nitrogen, is injected into the plastic. Gas is injected into the molten thermoplastic material using either of two procedures. In one method, a measured volume of gas is pressurized in a container. A valve is opened to allow the gas to flow into the polymer, and a piston is activated to force all gas from the container into the mold. As the gas expands in the mold, its pressure drops. A second method holds gas pressure, rather than gas volume, constant. The gas rapidly travels down the thickest-and therefore the hottest-section of the part, advancing the melt front and filling and packing the mold. Additional plastic volume may be displaced by the pressurized gas as the material shrinks. After the plastic cools, the gas is allowed to escape, leaving a molded plastic part containing internal voids.The standard GAIM process can be divided into four partial steps. The first step is a stage of melts injection [Fig.4.3.2 (a)]. The cavity is partially filled with a defined amount of melt. The required volume is empirically determined by performing filling studies in order to avoid blowing the gas through at the flow front and to ensure an ideal blowhole volume. Typically the polymer fills thecavity between 75%~95% before the meltand gas transition.The gas inlet phase is the second stage,which is shown in Fig. 4. 3. 2(b). Gas maybe added at any point in time either duringor shortly after melts injection. The gas canenter only if the gas pressure exceeds themelt pressured. In the interior of the moldedpart, the gas expels the melt from the plasticnucleus until the remainder of the cavity iscompletely filled. Gas injection pressuresrange from 0.5~30Mpa (70~4500psi).At the gas holding pressure phase, [Fig.4.3.2(c)] the gas continues to push thepolymer melt into the extremities of thecavity of the molded article acts as a holdingpressure to compensate for path of leastresistance as it pushes through the polymer.The final stage is a gas return for recycling or a gas release to atmosphere [Fig.4. 3. 2 (d)]. After the gas holding phase, the gas pressure in the molded article is released to the outside by suitable gas return and/ or by pressure release.A. Advantages of the GAIM processGas injection provides a solution to a number of problemsthat occurs in conventional injection molding.(1) Reducing stress and warpageWith gas, the pressure is equal everywhere throughout the continuous network of hollow channels. When designed properly, these provide an internal runner system within the part, enabling the applied pressure, and therefore the internal stress gradients, to be reduced markedly. This reduces a part’s tendency to warp.(2) Elimination of sink marksSink marks resulting from ribs or bosses on the backside of a part have long been a problem. These surface marks result from the volume contraction of the melt during cooling. Sink marks can be minimized or eliminated if a hollow gas channel can be directed between the front surface of the part and the backside detail. With gas injection, the base of the rib made somewhat thicker to help direct the gas channel. With a gas channel at the base of a rib, material shrinks are away from the inside surface of the channel as the molded part cools because the material is the hottest at the center. Therefore, no sink mark occurs on the outside surface as the part shrinks during cooling.(3) Smooth surfaceUnlike structural foam, gas injection permits lighter weight and saves material ina structurally rigid part. With gas holding, a good surface quality can be achieved.(4) Reduced clamp tonnageIn conventional injection, the highest pressure occurs during the packing phase. The maximum injection pressure is significantly lower in GAIM and a controlled gas pressure through a network of hollow channels is used to fill out the mold. This means that clamp tonnage requirements can be reduced by as much as 90%.(5) Elimination of external runnersOne of the best features of gas injection is that flow runners can be built right into the part. Frequently, all external runners (both hot and cold) can be eliminated, even on a larger and complex part. These benefits include the reduced tooling costs, the lower quantities of regrind from runners, and the improvement of temperature control over the plastic melt. Often the internal runners can improve the flow pattern in the mold and eliminate or control knit-line location resulting from multiple injections from multiple injection gates. In addition to serving as flow channels, the ribs and thick sections can provide structural rigidity when required.(6)Permitting different wall thicknessA constant wall thickness is maintained in the plastic parts. With gas injection, this design rule is flexible. Different wall thicknesses are possible if gas channels are designed into the part at the transition points. This permits uniform materialflows in the mold and avoids the high stresses and warpage that normally result from this sort of geometry.(7) Cycle time ReductionCompared with structural foam, gas-injection parts do not have the same inherent insulating characteristics, so that cycle times are faster-reportedly even faster than would be conventional injection of the same part with no hollow sections.(8) Resin savingGas assist plays a direct role in part-weight saving in the conversion of current tools. The main factor in reducing weight is that the part cavity is never completely filled. Another major contributor to resin saving is scrap reduction. With proper tool design, gas assisted allows scrap-free startups and production runs.B. Disadvantages of the GAIM processAll processes have their disadvantages, but those of GAIM and GAIMIC (Gas-assisted injection molding with internal-water cooling) appear relatively minor compared with their significant advantages.(1) Large hollow sectionsGIAM is not well suited for thin-walled hollow parts such as bottles or tanks. However, the thin-wall part has also tried out for some specific applications.(2) Vent holeThe gas must be vented prior to opening the mold, leaving a hole somewhere on the part. Normally this can be placed in a non-visible location, but if appearance or function is affected or secondary operations are required, it may be necessary to seal the hole.(3) Mold temperature controlSince wall thickness along the gas flow channel is a function of cooling rate, consistent wall thickness requires precise mold temperature control.(4) Surface blushThe gas channel may leave surface blush, which arises from differences in surface gloss leaves. The tendency for blush is a function of processing conditionsand types of plastics.(5) Unique designThe unique part design and mold design required in most cases to fully utilize that GAIM might be considered by some to be a disadvantage. The gas part design takes a relatively longer time than with the conventional injection molding process.(6)Extra cost of controllerIn order to control the gas injection, the process requires extra equipment. Gas-assisted injection molding with internal cooling requires a system for controlling the gas and the water, an expense not required with traditional injection molding.C. Types of process defects in the GAIMFingering, gas bubbles, hesitation lines, burning of resin, witness line cold slug, and gas blowout are typical defects normally encountered in GAIM.Fingering, or gas permeation, is a common problem encountered in GAIM. In fingering, gas escapes from the gas channel and migrates into undesired areas of the part. Severe gas fingering can result in significant reduction n in part stiffness, impact strength and reliabitity of the final molded part. During the gas holding phase, the transitional region between the gas channel and the flat area is possible for fingers to form within the flat area. In this case, the main cause of the fingering effect is the higher its shrinkage potential, and hence the greater danger of the fingering effect. In order to largely exclude the fingering effect through design, it is necessary to implement the following criteria: a basic wall thickness of 4mm or greater should be avoided for flat areas, a material with favorable solidification behavior should be selected, and the lowest possible gas pressure should be applied.Gas bubbles are caused by fingering. When fingering occurs, gas sometimes gets trapped in the thin-wall sections of the part where the gas is unable to fully vent. These trapped gases can cause bubbles that will still be in the gas core after the mold is opened.Hesitation lines appear on the surface of a part produced by GAIM when theshort shot of resin stops in the cavity, then starts moving again as the gas completes the fill.Burning of the resin can appear on either the outer surface of the part or within the gas channel itself. Burning of the part surface can be caused by gas pressure that is too high or by insufficient venting of the mold. Burning, the resin within the hollow sections of the part is also possible. Burning within the gas channel can cause gas injection pins to become plugged.On thin-walled parts molded in certain resins, a witness line, or gloss-level change, can occur over the gas channel. Excessive gas pressure can also cause witness lines over gas channels.When gas is injected through the molding machine nozzle, cold slugs of resin may occur on the part surface. A cold slug is caused when a small amount of unmelted resin is injected into the part.Gas blowout occurs when there is not enough resin in the cavity to hold the gas inside the part. If the part is short, gas will migrate to the non-filled area of the cavity and blow through. When blowout occurs, the part will sometimes look like a short shot.Most cases of defects are produced by the interface of the gas and the melt. These problems can be overcome by internal water-cooling between the interface of the gas and the melt.中文译文:气辅注射成型注射成型是一种很普通的生产方法,用于加工那种生产时难以控制和有复杂表面的商业塑件。
模具设计与制造专业英语译文
Lesson 1 Tool Materials第一课工具材料如何为特定工具而选择专门的材料通常由工具正确操作时所具备的必要的力学性能决定。
只有在对拟用刀具的功能及需求进行了细致的研究和计算后才可以选择这些材料。
在大多数应用中,满足要求的通常不止一种材料,而最终的选择通常由材料的可获得性决定,并且要考虑经济性。
用于工具的主要材料可以分为三大类:黒色金属、有色金属和非金属。
黒色金属材料有铁作为基体金属,包括工具钢、合金钢、碳素钢和铸铁。
有色金属材料中基体金属除了铁以外还有铝、锰、锌、铅、铋、铜及各种合金元素。
非金属材料如木材、塑料、橡胶、环氧树脂、陶瓷及金钢石等,它们不含有基体金属。
为了选择工具材料,我们应当掌握材料的一些物理性能和力学性能,以便确定所选材料对工具的功能和操作会有影响。
物理性能和力学性能是指材料如何控制材料在特定条件下的所作反应的性能。
物理性能是指材料固有的性能,如果不改变材料本身,它是还会被永久改变的。
这些特性包括:重量、颜色、导热性及导电性、热膨胀率及熔点。
材料的力学性能是指通过热处理或机械加工可以永久改变的性能。
这些性能包括:强度、硬度、耐磨性、韧性、脆性、塑性、延展性、可锻性和弹性模量。
从使用的角度出发,工具钢用于把像金属、塑料及木材等基本材料加工成型。
从结构的观点出发,工具钢是碳素合金钢,它可以被淬火和回火。
理想的工具钢性能是高耐磨性和高硬度,隔热性能好以及加工材料时要有足够的强度。
有时,尺寸稳定性相当重要。
工具钢在使用上也必需经济,工具应可以通过成型或机械的方法加工成理想的形状。
由于对材料性能的需求非常特殊,工具钢通常靠细致的冶金质量控制来确定其在电炉里的冶炼。
要最大限度地使钢中的气孔、偏析、杂质以及非金属夹杂物等含量尽可能地低一些。
工具钢要进行细致的宏观和微观的检测来保证它们能满足严格的“工具”钢规格要求。
尽管工具钢在整个钢产品中只占相对很小的一部分,但它们在有用到它的其它钢产品和工程材料中占有战略地位。
模具设计与制造外文翻译
附录1 英文原文Mould Design and ManufacturingCAD and CAM are widely applied in mould design and mould making.CAD allows you to draw a model on screen ,then view it from every angle using 3-D animating and ,finally ,to test it by introducing various parameters into the digital simulation models (pressure ,temperature ,impact ,etc .)CAM ,on the other hand ,allows you to control the manufacturing quality .The advantages of these computer technologies are legion ;shorter design times (modifications can be made at the speed of the computer ).lower cost ,faster manufacturing ,etc .This new approach also allows shorter production runs ,and to make last-minute changes to the mould for a particular part.Finally ,also ,these new processes can be use to make complex parts .Computer-Aided Design (CAD) of MouldTraditionally, the creation of drawings of mould tools has been a time-consuming task that is not part of the creative process. Drawings are an organizational necessity rather than a desired part of the process .Computer-Aided Design (CAD) means using the computer and peripheral devices to simplify and enhance the design process .CAD systems offer an efficient means of design ,and can be use to create inspection equipment .CAD data also can play a critical role in selecting process sequence .A CAD system consists of three basic components ;hardware ,software,User ,The hardware components of a typical CAD system include a processor ,a system display,a keyboard, a digitizer, and a plotter. The software component of a CAD system consists of the programs which allow it to perform design and drafting functions.The user is the tool designer who uses the hardware and software to perform the design process.Based on he 3-D data of the product, the core and cavity have to be designedsrally the designer begins with a preliminary part design ,which means the work around the core and cavity could change .Modern CAD systems can support this with calculating a spot line for a defined draft direction ,splitting the part in the core and cavity side and generating the run-off or shut-off true faces .After the calculation of the optimal draft of the part, the position and direction of the cavity, slides and inserts have to be defined .Then,in the conceptual stage, the positions and the geometry of the mould –such as slides, ejection system, etc. –are roughly defined. With this information, the size and thickness of the plates can be defined and the corresponding standard mould that comes nearest to the requirements is chosen and changed accordingly –by adjusting the constraints and paramenter so that any number of plates with any size can be use in the mould. Detailing the functional components and adding the standard any size can be used in the mould. Detailing the functional compontnts and adding the standard components complete the mould.This all happens in 3D .Moreover ,the mould system provide functions for the checking, modifying and detailing of the part .Already in this early stage ,drawings and bill of materials can be created automatically.Through the use of 3D and the intelligence of the mould system, typical 2D mistakes –such as a collision between cooling and components/cavities or the wrong position of a hole –can be eliminated at the beginning. At any stage a bill of materials and drawings can be created-allowing the material to be ordered on time and always having an actual document to discuss with the customer or a bid for a mould base manufacturer .The use of a special 3D mould design system can shorten development cycles, improve mould quality ,enhance teamwork and free the designer from tedious routine work .The development cycles can be shortened only when organization and personnel measures are taken. The part design, mould design, electric design and mould manufacturing departments have to consistently work together in a tight relationship .Computer-Aided Manufacturing (CAM ) of MouldOne way to reduce the cost of manufacturing and reduce lead-time is by settingup a manufacturing system that uses equipment and personnel to their fullest potential .the foundation for this type of manufacturing system as the use of CAD data to help in madding key process decisions that ultimately improve machining precision and reduce non-productive time .This is called as computer-aided manufacturing (CAM).The objective of CAM is to produce, if possible ,sections of a mould without intermediate steps by initiating machining operations from the computer workstation .With a good CAM system, automation does not just occur within individual features. Atuomation of machining processes also occurs between all of the features make up a part, resulting in tool-path optimization. As you create features, the CAM system constructs a process plan for you .Operations are ordered based on a system analysis to reduce tool changes and the number of tools used .On the CAM sidethe trend is toward newer technologies and processes such as micro milling to support the manufacturing of high-precision injection moulds with complex 3D structures and high surface qualities. CAM software will continue to add to the depth and breadth of the machining intelligence inherent in the software until the CNC programming process becomes completely automatic. This is especially true for advanced multifunction machine tools becomes completely automatic This is especially true for advanced multifunction machine tools that require a more flexible combination of machining operations .CAM software will continue to automate more and more of manufacturing redundant work that can be handled faster and more accratrly by computers, while retaining the control that machinists need.With the emphasis in the mould making industry today on producing moulds in the most efficient manner while still maintaining quality, mold makers need to keep up with the latest software technologies-packages that will allow them to program and cut complex moulds quickly so that mould production time can be reduced .In a nutshell, the industry is moving toward improving the quality of data exchange between CAD and CAM as well as CAM to the CNC ,and CAM software is becoming more “intelligent” as it relates to machining processes-resulting in reduction in both cycle time and overall machining time .Five-axis machining also is emerging as a “must-have” on the shop floor-especially when dealing with deepcavities. And with the introduction of electronic date processing (EDP) into the mould making industry, new opportunities have arisen in mould-making to shorten production time, improve cost efficiencies and achieve higher quality.The Science of mold MakingThe traditional method of making large automotive sheet metal dies by model building and tracing has been replaced by CAD/CAM terminals that convert mathematical descriptions of body panel shapes into cutter paths.Teledyne Specialty Equipment’s Efficient Die and Mold facility is one of the companies on the leading edge of this transformation.Only a few years ago,the huge steel dies requited for stamping sheet metal auto body panels were built by starting with a detailed blueprint and an accurate full-scale master model of the part. The model was the source from which the tooling was designed and produced.The dies,machined from castings,were prepared from patterns made by the die manutacturers or something supplied by the car maker.Secondary scale models called”tracing aids” were made from the master model for use on duplicating machines with tracers.These machines traced the contour of the scale model with a stylus,and the information derived guided a milling cutter that carved away unwanted metal to duplicate the shape of the model in the steel casting.All that is changing.Now,companies such as Teledyne Specialty Equipment’s Efficient Die and Mold operation in Independence,OH,work from CAD data supplied by customers to generate cutter paths for milling machines,which then automatically cut the sheetmetal dies and SMC compression molds.Although the process is used to make both surfaces of the tool, the draw die still requires a tryout and “benching” process.Also, the CAD data typically encompasses just the orimary surface of the tool,and some machined surfaces, such as the hosts and wear pads, are typically part of the math surface.William Nordby,vice president and business manager of dies and molds at Teledyne,says that “although no one has taken CAD/CAM to the point of building theentire tool,it will eventually go in that direction because the “big thrdd”want to compress cycle times and are trying to cut the amount of time that it takes to build the tooling.Tryout, because of the lack of development on the design end,is still a very time-consuming art, and very much a trial-and-error process.”No More Models and Tracing AidsThe results to this new technology are impressive. For example, tolerances are tighter and hand finishing of the primary die surface with grinders has all but been eliminated. The big difference, says Gary Kral, Teledyne’s director of engineering, is that the dimensional control has radically improved. Conventional methods of making plaster molds just couldn’t hold tolerances because of day-to-day temperature and humidity variations.”For SMC molds the process is so accurate , and because there is no spring back like there is when stamping sheet metal, tryouts are not always required.SMC molds are approved by customers on a regulate basis without ever running a part .Such approvals are possible because of Teledyne’s ability to check the tool surface based on mathematical analysis and guarantee that it is made exactly to the original design data. Because manual trials and processes have been eliminated, Teledyne has been able to consider foreign markets.” The ability to get a tool approved based on the mathe gives us the opportunity to compete in places we wouldn’t have otherwise,” says Nordby. According to Jim Church, systems manager at Teledyne, the company used to have lots of pattern makers ,and still has one model maker.”But 99.9 percent of the company’s work now is from CAD data. Instead of model makers, engineers work in front of computer monitors.”He says that improvements in tool quality and reduction in manufacturing time are significant. Capabilities of the process were demonstrated by producing two identical tools. One was cut using conventional patterns and tracing mills, and the other tool was machined using computer generated cutting paths. Although machining time was 14 percent greater with the CAM-generated path, polishing hours were cut by 33 percent. In all ,manufacturing time decreased 16.5 percent and tool quality increased 12 percent.Teledyne’s CAD/CAM system uses state-of-the-art software that allows engineers to design dies and molds, develop CNC milling cutter paths and incorporate design changes easily. The system supports full-color, shaded three-dimensional modeling on its monitors to enhance its design and analysis capabilities. The CAD/CAM system also provides finite element analysis that can be used to improve the quality of castings , and to analyze the thermal properties of molds. Inputs virtually from any customer database can be used either directly or through translation.CMM Is CriticalTeledyne’s coordinate measuring machine(CMM),says’Church,”is what has made a difference in terms of being able to move from the traditional manual processes of mold and die making to the automated system that Teledyne uses today.”The CMM precisely locates any point in a volume of space measuring 128 in, by 80 in, by 54 in, to an accuracy of 0.0007 in. It can measure parts, dies and molds weighing up to 40 tons. For maximum accuracy,the machine is housed in an environmentally isolated room where temperature is maintained within 2 deg.F of optimum. To isolate the CMM from vibration, it is mounted on a 100-ton concrete block supported on art cushions.According to Nordby, the CMM is used not only as a quality tool, but also as a process checking tool. “ As a tool goes through the shop, it is checked several times to validate the previous operation that was performed.”For example, after the initial surface of a mold is machined and before any finish work is done, it is run through the CMM for a complete data check to determine how close the surface is to the required geometry.The mold is checked with a very dense pattern based on flow lines of the part. Each mold is checked twice, once before benching and again after benching. Measurements taken from both halves of the mold are used to calculate theoretical stock thickness at full closure of the mold to verify its accuracy with the CAD design data.Sheet Metal Dies Are Different“Sheet metal is a different ballgame,” says Nordby, “because you have the issue of material springback and the way the metal forms in the die. What happens in the sheet metal is that you do the same kinds of things for the male punch as you would with SMC molds and you ensure that it is 100 percent to math data. But due to machined surface tolerance variations, the female half becomes the working side of the tool. And there is still a lot of development required after the tool goes into the press. The math generated surfaces apply primarily to the part surface of the tool.”EMS Tracks the Manufacturing ProcessTeledyne’s business operations also are computerized and carried over a network consisting of a V AX server and PC terminals. IMS (Effective Management Systems) software tracks orders, jobs in progress, location of arts, purchasing, receiving, and is now being upgraded to include accounting functions.Overall capabilities of the EMS system include bill-of-material planning and control, inventory management, standard costing, material history, master production scheduling, material requirements planning, customer order processing, booking and sales history, accounts receivable, labor history, shop floor control, scheduling, estimating, standard routings, capacity requirements planning, job costing, purchasing and receiving, requisitions, purchasing and receiving, requisitions, purchasing history and accounts payable.According to Frank Zugaro, Teledyne’s scheduling manager, the EMS software was chosen because of its capabilities in scheduling time and resources in a job shop environment. All information about a job is entered into inventory management to generate a structured bill of material. Then routes are attached to it and work orders are generated.The system provides daily updates of data by operator hour as well as a material log by shop order and word order. Since the database is interactive, tracking of materials received and their flow through the build procedure can be documented and cost data sent to accounting and purchasing.Gary Kral, Teledyne’s director of engineering, says that EMS is really a tracking device, and one of the systems greatest benefits is that it provides a documentedrecord of everything involving a job and eliminates problems that could arise from verbal instructions and promises. Kral says that as the system is used more, they are finding that it pays to document more things to make it part of the permanent record. It helps keep them focused.2 中文翻译模具设计与制造CAD和CAM广泛用于模具的设计和制造中。
模具设计与制造专业外文翻译--注塑模具
外文原文:Injection MoldsA. Basic mold designAn injection mold consists of at least two halves that are fastened to the two platens of the injection molding machine so that they can be opened and closed. In the closed position, the product-forming surfaces of the two mold halves define the mold cavity into which the plastic melt is injected via the runner system and the gate. Cooling provisions in the mold provide for cooling and solidification of the molded product so that it can be subsequently ejected.B. Types of EjectionFor product ejection to occur ,the mold must open. The shapes of the molded product determines whether it can be ejected simply by opening the two mold halves or whether undercuts must be present. The design of a mold is dictated primarily by the shape of the product to be molded and the provisions necessary for product ejection. Injection-molded products can be classified as:○1Products without undercuts(e.g., plaques, strips, half-shells, cups).○2Products with external undercuts or lateral openings(e.g., spools and bobbins, beverage crates, threaded bolts).○3Products with internal undercuts (e.g., threaded closures, housings).○4Products with external and internal undercuts(e.g., bumper fascias, electrical and automotive instrument housings, cameras, etc.).C. Design RulesThere are many rules for designing molds. These rules and standard practices are based on logic, past experience, convenience, and economy. For designing, mold making, and molding, it is usually of advantage to follow the rules. But occasionally, it may work out better if a rule is ignored and an alternative way is selected. In this text, the most common rules are noted, but the designer will learn only from experience which way to go. The designer must ever be open to mew ideas and methods, to new molding and mold materials that may affect these rules.D. The Basic Mold1. Mold Cavity SpaceThe mold cavity space is a shape inside the mold, ”excavated”(by machining the mold material) in such a manner that when the molding material(in our case, the plastic)is forced into this space it will take on the shape of the cavity space and, therefore, the desired product The principle of a mold is almost as old as human civilization. Molds have been used to make tools, weapons, bells, statues, and household articles, by pouring liquid metals (iron, bronze) into sand forms. such molds, which are still used today in foundries ,can be used only once because the mold is destroyed to release the product after it has solidified. Today, we are looking for permanent molds that can be used over and over .Now molds are made from strong, durable materials, such as steel, or from softer aluminum or metal alloys and even from certain plastics where a long mold life is not required because the planned production is small. In injection molding the (hot) plastic is injected into the cavity space with high pressure, so the mold must be strong enough to resist the injection pressure without deforming.2 . Number of CavitiesMany molds, particularly molds for larger products, are built for only 1 cavity space(a single-cavity mold),but many molds, especially large production molds, are built with or more cavities. The reason for this is purely economical. It takes only little more time to inject several cavities than to inject one. For example, a 4-cavity mold requires only (approximately) one-fourth of the machine time of a single-cavity mold. Conversely, the production increases in proportion to the number of cavities. A mold with more cavities is more expensive to build than a single-cavity mold, but (as in our example)not necessarily 4 times as much as a single-cavity mold .But it may also require a larger machine with larger platen area and more clamping capacity, and because it will use (in this example) 4 times the amount of plastic, it may need a larger injection unit, so the machine hour cost will be higher than for a machine larger enough for the smaller mold. Today, most multicavity molds are built with a preferred number of cavities:2,4,6,8,12,16,24,32,48,64,96,128.These numbers are selected because the cavities can be easily arranged in a rectangular pattern, which is easier for designing and dimensioning, or manufacturing, and for symmetry around the center of the machine, which is highly desirable to ensure equal clamping force for each cavity. A smaller number of cavities can also be laid out in a circular pattern, even with odd numbers of cavities, such as 3, 5, 7 , 9.It is also possible to make cavity layouts for any number of cavities, provided such rules as symmetry of the projected areas around the machine centerline are observed.3. Cavity Shape and ShrinkageThe shape of the cavity is essentially the ”negative” of the shape of the desired product, with dimensional allowances added to allow for shrinking of the plastic. The shape of the cavity is usually created with chip-removing machine tolls, or with electric discharge machining (EDM), with chemical etching, or by any new method that may be available to remove metal or build it up, such as galvanic processes. It may also be created by casting (and then machining) certain metals (usually copper or zinc alloys) in plaster molds created from models of the product to be made, or by casting (and then machining) some suitable hard plastics (e.g., epoxy resins).The cavity shape can be either cut directly into the mold plates or formed by putting inserts into the plates.E. Cavity and CoreBy convention, the hollow (concave) portion of the cavity space is called the cavity. The matching, often raised (or convex) portion of the cavity space is called the core. Most plastic products are cup-shaped. This does not mean that they look like a cup, but they do have an inside and an outside. The outside of the product is formed by the cavity, the inside by the core. The alternative to the cup shape is the flat shape. In this case, there is no specific convex portion, and sometimes, the core looks like a mirror image of the cavity. Typical examples for this are plastic knives, game chips, or round disks such as records. While these items are simple in appearance, they often present serious molding problems for ejection of the product. Usually, the cavities are placed in the mold half that is mounted on the injection side, while the cores are placed in the moving half of the mold. The reason for this is that all injection molding machines provide an ejection mechanism on the moving platen and the products tend to shrink onto and cling to the core, from where they are then ejected. Most injection molding machines do not provide ejection mechanisms on the injection (“hot”) side.中文译文:注塑模具A基本模具设计一个注塑模具至少包括两半,这些固定在两个盘的注塑机,以便他们能够开启和关闭。
模具设计与制造专业英语 (1)
1.2 Lesson 2 The Purpose of Heat Treatment
The main purpose of heat treatment for die-making and mold-making materials is to control the properties of a specific metal or alloy through the alteration of the structure of the specific metal or alloy by heating it to definite temperatures and cooling at various rates. This combination of heating and controlled cooling determines not only the nature and distribution of the microconstituents, which in turn determine the properties, but also the grain size.[1]
From a use standpoint, die and mold steels are utilized in working and shaping basic materials such as metals and plastics into desired forms. From a usefulness standpoint, die steels are of the performance which are capable of being hardened and tempered and wear resistance, high hardness, sufficient anti-impact strength. Mold steels are of the performance which are capable of being hardened and tempered and heat resistance, corrosion resistance and wear resistance.
模具设计与制造专业外文翻译--注塑模CAE技术
外文原文:Injection Molding CAE Technology 0 IntroductionPlastic products from product design to production, including molding plastic products design, mold design, mold manufacturing and injection molding process parameters and several other main areas. The traditional injection mold design mainly rely on the designer's experience, while the injection molding process is very complex, plastic melt flow properties of different and ever-changing products and die structure, process conditions vary, forming various defects, mold design often require repeated trial-mode, maintenance mode can be put into production, with little of a successful, identify problems, not only to re-adjust the process parameters, or even to modify the plastic products and molds, not only time-consuming and laborious, but also reduces product development time . The use of injection molding CAE technology in mold manufacturing prior to simulate injection molding process (including filling, packing and cooling) and the early detection of problems, optimize mold design and process conditions set to reduce the number of test mode in order to improve production efficiency, has become a injection molding technology is an important direction of development.1 The history of Injection Molding CAE technologyInjection Molding CAE technology is based on plastics processing rheology and heat transfer of the basic theory, the melt in the mold cavity in the flow, heat transfer physics, mathematical model, using numerical solution method of constructing the theory, the use of computer visualization technology image, visually simulate the dynamics of the actual shape of the melt filling and cooling process, an analysis techniques.The 20th century, 60 years, the United Kingdom, the United States and Canada andother countries of the scholars, such as JRPearson (United Kingdom), JFStevenson (America), MRKamal (Canada) and KKWang (America), etc. to carry out a series of plastic melt in the mold-type cavity flow and cooling of basic research. At a reasonable simplification, based on 60 years completed a one-dimensional flow and cooling analysis programs, 70 years to complete the two-dimensional cooling analysis programs, and 80 years from the injection molding CAE technology has begun to theoretical research into the practical phase, launched a three-dimensional flow and cooling analysis and the study extended to packing, fiber orientation and warpage prediction of molecular and other fields. After 90 years carried out into the flow, packing, cooling and stress analysis, the whole process of injection molding processes are integrated research.CAE technologies, for the injection mold design provides a reliable guarantee that its application is mold design in the history of a major change.2 The role of Injection Molding CAE technologyUsing traditional methods of design of injection mold design success will rely heavily on the experience of designers, but also for complex parts gate position is reasonable or not, the location of the exhaust slot settings, to determine the location of weld lines and so very difficult. Die in delivery will normally take before the test mode after repeated changes, until the products have been qualified, which inevitably led to the extension of the production cycle, and generally difficult to obtain an optimal design and process parameters. The use of injection molding CAE technical design, mold is not true, because of mold design concept stage, can make use of CAE technology in injection molding process simulation flow, making usually only in the mold tryout phases in order to find problems, such as short shots, weld lines or holes appear in the surface appearance of parts and other issues have been avoided. While helping the designer to complete the balance of the system, such as flow channel design, exhaust ducts, setting, rationally determine the injection molding process parameters, etc., so that usually makes the modification must be repeated tryout to determine structural parameters of the mold die design and process parameters in the conceptual stage ableto determine, reduce the mold design and manufacturing cycle and improve the mold design quality.Therefore, the role of injection molding CAE software, mainly as follows:(1) Optimize design of plastic productsPlastic wall thickness, gate number and location of the design of flow channel system for the quality of plastic products have a significant impact. Depends on the experience of the past, designers using manual methods to achieve, time-consuming effort, but the use of CAE technology to quickly design the best products.(2) optimize the plastic mold designCan be cavity size, gate location and number of flow channel dimensions and cooling systems to optimize the design. On the computer simulation test mold, mold repair mold and improve quality and reduce the number of actual tryout.(3) to optimize injection process parametersSimulation of the injection process and found possible shape defects, to determine the best injection pressure, clamping force, mold temperature, melt temperature, injection time and cooling time.This shows that the injection molding CAE technology in terms of improving productivity, reduce mold design and manufacture cycle and to ensure product quality, or reduce costs, reduce labor intensity and so on, have very significant technical advantages and economic significance.3 Injection Molding CAE software types and their detailsTo date, a mature business are more injection molding CAE software, Moldflow Corporation Moldflow software and AC-Tech, Inc. (February 2000, was Moldflow Merger) and C-Mold software is an excellent representative; There are also foreign The TMCONCEPT, CADMold, Fidap, Stirm100, Polyflow and China's Taiwan region Moldex-peer software applications are relatively wide; and domestic in the "Eighth Five-Year" period began research in this area, and now Huazhong University ofTechnology HSCAE software and Zhengzhou University, Z -Mold software in China in the leading position.Moldflow software is specialized in injection molding CAE software and consulting for Moldflow's range of products, the company issued since 1976, the world's first set of injection molding CAE software, has been a leading injection molding CAE software market. To 2004, Moldflow Injection Molding CAE software in the global market share of over 75%.MoldFlow software includes three parts: MoldFlow Plastics Advisers (product optimization consultant, MPA), MoldFlow Plastics Insisht (injection molding simulation analysis, MPI), and MoldFlow Plastics Xpert (injection molding process control specialists, MPX).Under normal circumstances, the most commonly used MPI, is mainly used for injection molding process simulation to get the best number and location of the gate, reasonable flow channel system and cooling system, and cavity size, gate size, runner size and cooling systems to optimize the size and the injection molding process parameters may also be optimized.Moldflow Software Moldflow analysis techniques can be divided into three kinds, namely, Midplane, Fusion and 3D .4 Moldflow analysis of MidplaneMidplane (in the surface flow) applications began in the 20th century, the 80s. The grid is a three-node triangular element, its principle is the 3D geometric model of simplified geometric model of the neutral surface (to be created in the model grid the middle of the wall thickness), using established simulation analysis of the neutral surface, ie to flow in plane to simulate three-dimensional solid flow. The analysis of technological development has been very mature and stable, and the advantages for the analysis of speed and high efficiency.Based on the flow of surface flow simulation of injection molding technology, software applications, the longest, widest range. But the practice shows that, based on the surface flow simulation software in the application of technology that hassignificant limitations, specifically as follows:(1) The user must construct a mid-surface model. Using manual directly from the physical model structure in the surface model is very difficult and often takes a lot of time and can not be converted from other CAD models.(2) can not be described in a number of three-dimensional features. If they can not describe the inertia effect, gravitational effects on melt flow, which fail to predict jet phenomenon, melt the forefront of Quan phenomena.(3) The use of CAD phase of the product model and stages of the use of CAE analysis model is not unified, so that the inevitable second modeling, CAD and CAE systems integration can not be achieved.5 Moldflow's Fusion analysisFusion (double flow) analysis technique is based on Moldflow's patented Dual Domain of analysis techniques. Fusion launched in 2000, analysis techniques, enabling users do not need to extract the neutral surface can be analyzed, to overcome the reconstruction of the geometric model, thus greatly reducing the burden on the user modeling. Grid is also a triangular element, and its principle is to mold cavity or the products in the thickness direction is divided into two parts, finite element mesh on the surface of the cavity or the products. In the flow process, the upper and lower surface of the plastic melt at the same time two and to coordinate movement of the simulation shown .Clearly, Fusion technology, the surface of the grid is based on the neutral surface is still not solve the fundamental problem the neutral surface, so double-sided application of the principle of streaming technologies and methods applied in the surface flow with no difference in the nature, the The difference is two-sided flow using a series of related algorithms, will flow along the surface of the single-stranded melts evolved along the upper and lower surface of the coordination of the flow of dual-stream.Double-sided flow of technology's biggest advantage is that the model greatly shorten the preparation time, thus greatly reducing the burden on the user modeling, will takeseveral hours or even days of the original modeling work reduced to a few minutes. Therefore, based on double-sided flow simulation software technology, although the advent of time, only a few years, but in the world but has a huge user base, get the majority of customers for their support and praise.But the double-sided flow of technology has the following deficiencies:(1) The two-sided flow of technology does not fundamentally resolve the issue of a neutral face, they still can not describe some three-dimensional features, such as the inertial effect can not describe gravity effect on the melt flow, which fail to predict jet phenomenon, melt cutting-edge Quanyong phenomena.(2) the upper and lower surfaces corresponding to the melt flow front there are differences. As the upper and lower surface of the grid can not be one correspondence, but the grid shape, orientation and size can not be completely symmetrical, so how the upper and lower surfaces corresponding to the difference between the melt flow front control is within the scope permitted by Difficulties in the implementation of double-sided streaming technology.(3) melt is only along the upper and lower surface flows, in the thickness direction is not to make any treatment, lack of realism.6 Moldflow's 3D analysis techniquesThese two techniques have overlooked the thickness direction of the physical quantity, only two-dimensional simulation, and therefore results are not very precise. Moldflow Corporation's 3D (3D) analysis technology uses a true three-dimensional solid model flow analysis techniques, through rigorous theoretical derivation and repeated verification, the inertial effect, non-isothermal flow, taking into account factors such as finite element analysis, the melt thickness direction of the physical quantity changes will no longer be ignored, can be a more comprehensive description of the process of filling flow phenomena, so that results of the analysis more realistic conditions, applicable to all plastic products. Its three-dimensional grid is from the four-node tetrahedron unit. And using the new 3D stereoscopic display technology, can quickly model clearly shows that internal and external flow field, temperaturefield, stress field and velocity field such as analysis results. For the above-mentioned results of the analysis can also be used such as bit lines or equipotential surface display, so that physical models and external changes in the variables show more clearly the case, Moldfiow also offers animation capabilities, through 3D animation display plastic melt in the changes in the flow cavity, allowing users to more intuitively see the design and manufacturing process may encounter problems.But the 3D technology, meshing demanding, more complex equations to calculate the amount of large, long duration and the computational efficiency is low, not suitable for short development cycle and need to be repeatedly revised by CAE verification injection mold design. Therefore, the current penetration rate of the technology is not very high, but it will eventually replace the surface flow of technology and double-sided streaming technology.7 Development Trend of Injection MoldingInjection Molding CAE technology, whether in theory or in the application have made great strides, but in the following still needs further improvement and development : (1) mathematical models, numerical algorithms to gradually improve the Injection Molding CAE technology, practicality, depending on the accuracy of the mathematical model and numerical algorithm accuracy. The current commercial simulation software models do not fully consider the physical quantities in the thickness direction of the impact of the software in order to further improve the analysis accuracy and scope to further improve the existing mathematical models and algorithms.(2) the whole process of injection molding simulationAt present, the injection molding simulation software are mainly filling, flow, packing, cooling, stress and strain and warpage analysis modules, each module was developed based on independent mathematical models, these models has been simplified to a large extent, ignored of the mutual effects. However, in view of injection molding process, plastic melt filling, flow, packing and cooling are intertwined and affect eachother and, therefore, filling, flow, packing and cooling analysis module must be organically combined to carry out coupling analysis, in order to comprehensively reflect the real situation of injection molding.(3) optimization theory and algorithms, so that CAE technology "active" to optimize the designArtificial intelligence technologies, such as expert systems and neural networks on the design calculations, so that simulation can "wisdom" to choose the injection molding process parameters, product size and cooling to fix the piping layout programs to reduce manual intervention in the program.(4) a new method of injection molding simulation analysis of the current In the conventional injection molding technology, based on and the development of a number of new injection molding methods, such as gas-assisted injection, thin wall injection molding, reaction injection and co-injection . However, no specific methods for these molding simulation software, so untapped.(5) injection mold CAD / CAE / CAM integrated and network-basedThe current commercial injection molding CAE software and CAD, CAM software, data transfer between the mainly rely on the file conversion, which easily lead to data loss and errors. Therefore, in design and manufacturing process to take a single model, the establishment of injection mold CAD / CAE / CAM system, a unified database to strengthen the linkages between the three directions of future development. In order to meet the development requirements of e-commerce, this integrated system will achieve different places of the "Collaborative Design" and "virtual manufacturing."8 ConclusionDespite the adoption of a large number of practice has proved, in the plastic mold industry, the introduction of CAE technology, greatly reducing the mold design and manufacturing cycle and improve the life of the mold and manufacturing precision. At the same time, CAE technologies has also made from the traditional injection molddesign experience and skills onto the road of scientific, to a certain extent, changed the injection mold of traditional production methods, but there is no substitute for CAE technology and people's creative work, only can serve as a complementary tool to help engineers understand the problems in the program, but also difficult to provide a clear improvement program, still need to through repeated interactions (analysis - changes - re-analysis) in order to reflect the experience of the designer's right to die design go, the program is designed to determine to a large extent continue to rely on the designer's experience and level.中文译文:注塑模CAE技术0引言塑料产品从产品设计到成型生产包括塑料制品设计、模具设计、模具制造和注塑工艺参数选择等几个主要方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The mold designing and manufacturingThe mold is the manufacturing industry important craft foundation, in our country, the mold manufacture belongs to the special purpose equipment manufacturing industry. China although very already starts to make the mold and the use mold, but long-term has not formed the industry. Straight stabs 0 centuries 80's later periods, the Chinese mold industry only then drives into the development speedway. Recent years, not only the state-owned mold enterprise had the very big development, the three investments enterprise, the villages and towns (individual) the mold enterprise's development also rapid quietly.Although the Chinese mold industrial development rapid, but compares with the demand, obviously falls short of demand, its main gap concentrates precisely to, large-scale, is complex, the long life mold domain. As a result of in aspect and so on mold precision, life, manufacture cycle and productivity, China and the international average horizontal and the developed country still had a bigger disparity, therefore, needed massively to import the mold every year .The Chinese mold industry must continue to sharpen the productivity, from now on will have emphatically to the profession internal structure adjustment and the state-of-art enhancement. The structure adjustment aspect, mainly is the enterprise structure to the specialized adjustment, the product structure to center the upscale mold development, to the import and export structure improvement, center the upscale automobile cover mold forming analysis and the structure improvement, the multi-purpose compound mold and the compound processing and the laser technology in the mold design manufacture application, the high-speed cutting, the super finishing and polished the technology, the information direction develops .The recent years, the mold profession structure adjustment and the organizational reform step enlarges, mainly displayed in, large-scale, precise, was complex, the long life, center the upscale mold and the mold standard letter development speed is higher than the common mold product; The plastic mold and the compression casting mold proportion increases; Specialized mold factory quantity and its productivity increase;"The three investments" and the private enterprise develops rapidly; The joint stock system transformation step speeds up and so on. Distributes from the area looked, take Zhejiang Delta and Yangtze River delta as central southeast coastal area development quickly to mid-west area, south development quickly to north. At present develops quickest, the mold produces the most centralized province is Guangdong and Zhejiang, places such as Jiangsu, Shanghai, Anhui and Shandong also has a bigger development in recent years.Although our country mold total quantity had at present achieved the suitable scale, the mold level also has the very big enhancement, after but design manufacture horizontal overall rise and fall industry developed country and so on Yu De, America, date, France, Italy many. The current existence question and the disparity mainly display in following several aspects:(1) The total quantity falls short of demandDomestic mold assembling one rate only, about 70%. Low-grade mold, center upscale mold assembling oneself rate only has 50% about.(2) the enterprise organizational structure, the product structure, the technical structure and the import and export structure does not gatherin our country mold production factory to be most is from the labor mold workshop which produces assembles oneself (branch factory), from produces assembles oneself the proportion to reach as high as about 60%, but the overseas mold ultra 70% is the commodity mold. The specialized mold factory mostly is "large and complete", "small and entire" organization form, but overseas mostly is "small but", "is specially small and fine". Domestic large-scale, precise, complex, the long life mold accounts for the total quantity proportion to be insufficient 30%, but overseas in 50% above 2004 years, ratio of the mold import and export is 3.7:1, the import and export balances the after net import volume to amount to 1.32 billion US dollars, is world mold net import quantity biggest country .(3) The mold product level greatly is lower than the international standardThe production cycle actually is higher than the international water broad product level low mainly to display in the mold precision, cavity aspect and so on surface roughness, life and structure.(4) Develops the ability badly, economic efficiency unsatisfactory our country mold enterprise technical personnel proportion lowThe level is lower, also does not take the product development, and is frequent in the passive position in the market. Our country each mold staff average year creation output value approximately, ten thousand US dollars, overseas mold industry developed country mostly 15 to10, 000 US dollars, some reach as high as 25 to10, 000 US dollars, relative is our country quite part of molds enterprises also continues to use the workshop type management with it, truly realizes the enterprise which the modernized enterprise manages fewTo create the above disparity the reason to be very many, the mold long-term has not obtained the value besides the history in as the product which should have, as well as the most state-owned enterprises mechanism cannot adapt the market economy, but also has the following several reasons: .(1) Country to mold industry policy support dynamics also insufficiently Although the country already was clear about has promulgated the mold profession industrial policy, but necessary policy few, carried out dynamics to be weak. At present enjoyed the mold product increment duty enterprise nation 185; the majority enterprise still the tax burden is only overweight. The mold enterprise carries on the technological transformations introduction equipment to have to pay the considerable amount the tax money, affects the technology advancement, moreover privately operated enterprise loan extremely difficult.(2) Talented person serious insufficient, the scientific research development and the technical attack investment too urinemold profession is the technology, the fund, the work crowded industry, along with the time progress and the technical development, grasps the talented person which and skilled utilizes the new technology exceptionally short, the high-quality mold fitter and the enterprise management talent extremely is also anxious. Because the moldenterprise benefit unsatisfactory and takes insufficiently the scientific research development and the technical attack, the scientific research unit and the universities, colleges and institutes eye stares at is creating income, causes the mold profession invests too few in the scientific research development and the technical attack aspect, causes the mold technological development step doe not to be big, progresses does not be quick.(3) The craft equipment level is low, also is not good, the using factor is low. Recent years ,our country engine bed profession progressed quickly, has been able to provide the quite complete precision work equipment, but compared with the overseas equipment, still had a bigger disparity. Although the domestic many enterprises have introduced many overseas advanced equipment, but the overall equipment level low are very more than the overseas many enterprises. As a result of aspect the and so on system and fund reason, introduces the equipment not necessary, the equipment and the appendix not necessary phenomenon are extremely common, the equipment utilization rate low question cannot obtain the comparatively properly solution for a long time .(4) Specialization, standardization, commercialized degree low, the cooperation abilityBecause receives "large and complete" "small and entire" the influence since long ago, mold specialization level low, the specialized labor division is not careful, the commercialized degree is low. At present domestic every year produces mold, commodity mold minister 40% about, other for from produce uses for oneself. Between the molds enterprise cooperates impeded, completes the comparatively large-scale mold complete task with difficulty. Mold standardization level low, mold standard letter use cave rare is low also to the mold quality, the cost has a more tremendous influence, specially has very tremendous influence.(5) To the mold manufacture cycle) the mold material and the mold correlation technology fallThe mold material performance, the quality and the variety question often can affect the mold quality, the life and the cost, the domestically produced molding toolsteel and overseas imports the steel products to compare has a bigger disparity. Plastic, plate, equipment energy balance, also direct influence mold level enhancement.At present, our country economy still was at the high speed development phase, on the international economical globalization development tendency is day by day obvious, this has provided the good condition and the opportunity for the our country mold industry high speed development. On the one hand, the domestic mold market will continue high speed to develop, on the other hand, the mold manufacture also gradually will shift as well as the transnational group to our country carries on the mold purchase trend to our country extremely to be also obvious. Therefore, will take a broad view the future, international, the domestic mold market overall development tendency prospect will favor, estimated the Chinese mold will obtain the high speed development under the good market environment, our country not only can become the mold great nation, moreover certainly gradually will make the powerful nation to the mold the ranks to make great strides forward. "15" period, the Chinese mold industry level not only has the very big enhancement in the quantity and the archery target aspect, moreover the profession structure, the product level, the development innovation ability, enterprise's system and the mechanism as well as the technology advancement aspect also can obtain a bigger development .The mold technology has gathered the machinery, the electron, chemistry, optics, the material, the computer, the precise monitor and the information network and so on many disciplines, is a comprehensive nature multi-disciplinary systems engineering. The mold technology development tendency mainly is the mold product to larger-scale, precise, more complex and a more economical direction develops, the mold product technical content unceasingly enhances, the mold manufacture cycle unceasingly reduces, the mold production faces the information, is not having the chart, is fine, the automated direction develops, the mold enterprise to the technical integration, the equipment excellent, is producing approves the brand, the management information, the management internationalization direction develops.Mold profession in "十15" period needs to solve the key essential technology should be the mold information, the digitized technology and precise, ultra fine, high speed, the highly effective manufacture technology aspect breakthroughAlong with the national economy total quantity and the industry product technology unceasing development, all the various trades and occupations to the mold demand quantity more and more big, the specification more and more is also high.Although mold type many, but its development should be with emphasis both can meet the massive needs, and has the comparatively high-tech content, specially at present domestic still could not be self-sufficient, needs the massive imports the mold and can represent the development direction large-scale, precise, is complex, the long life mold. Standard letter type, quantity, level and the production of the mold have significant influence to the entire mold profession development. Therefore, some important mold standard letters also must prioritize, moreover its development speed should quickly to the mold development speed, like this be able unceasingly to raise our country mold standardization level, thus improves the mold quality, reduces the mold production cycle, reduces the cost. Because our country mold product holds the bigger price superiority in the international market, therefore regarding the exportation prospect good mold product also should take key develops. According to the above required quantity big, the technical content is high, represents the development direction, the export prospect good principle choice prioritize product, moreover chooses the product to have at present to have the certain technology base, belongs has the condition, has the product which the possibility develops .Die trend1. Mold CAD / CAE / CAM being integrated, three-dimensional, intelligent and network direction(1) Mold software features integratedDie software features of integrated software modules required relatively complete,while the function module using the same data model, in order to achieve Syndicated news management and sharing of information to support the mold design, manufacture, assembly, inspection, testing and production management of the entire process to achieve optimal benefits. Series such as the UK Delcam's software will include a surface / solid geometric modeling, engineering drawing complex geometry, advanced rendering industrial design, plastic mold design expert system, complex physical CAM, artistic design and sculpture automatic programming system, reverse engineering and complex systems physical line measurement systems. A higher degree of integration of the software includes: Pro / ENGINEER, UG and CATIA, etc.. Shanghai Jiao tong University, China with finite element analysis of metal plastic forming systems and Die CAD / CAM systems; Beijing Beihang Haier Software Ltd. CAXA Series software; Jilin Gold Grid Engineering Research Center of the stamping die mold CAD / CAE / CAM systems .(2) Mold design, analysis and manufacture of three-dimensionalTwo-dimensional mold of traditional structural design can no longer meet modern technical requirements of production and integration. Mold design, analysis, manufacturing three-dimensional technology, paperless software required to mold a new generation of three-dimensional, intuitive sense to design the mold, using three-dimensional digital model can be easily used in the product structure of CAE analysis, tooling manufacturability evaluation and CNC machining, forming process simulation and information management and sharing. Such as Pro / ENGINEER, UG and CATIA software such as with parametric, feature-based, all relevant characteristics, so that mold concurrent engineering possible. In addition, Cimatran company Mold expert, Delcam's Ps-mold and Hitachi Shipbuilding of Space-E/mold are professional injection mold 3D design software, interactive 3D cavity, core design, mold base design configuration and typical structure . Australian company Moldflow realistic three-dimensional flow simulation software MoldflowAdvisers been widely praised by users and applications. China Huazhong University of Science have developed similar software HSC3D4.5F and Zhengzhou University, Z-mold software. For manufacturing, knowledge-based intelligent software functionis a measure of die important sign of advanced and practical one. Such as injection molding experts Cimatron's software can automatically generate parting direction based parting line and parting surface, generate products corresponding to the core and cavity, implementation of all relevant parts mold, and for automatically generated BOM Form NC drilling process, and can intelligently process parameter setting, calibration and other processing results.(3) Mold software applications, networking trendWith the mold in the enterprise competition, cooperation, production and management, globalization, internationalization, and the rapid development of computer hardware and software technology, the Internet has made in the mold industry, virtual design, agile manufacturing technology both necessary and possible. The United States in its "21st Century Manufacturing Enterprise Strategy" that the auto industry by 2006 to achieve agile manufacturing / virtual engineering solutions to automotive development cycle shortened from 40 months to 4 months.2. mold testing, processing equipment to the precise, efficient, and multi-direction (1) mold testing equipment more sophisticated, efficientSophisticated, complex, large-scale mold development, testing equipment have become increasingly demanding. Precision Mould precision now reached 2 ~ 3μm, more domestic manufacturers have to use Italy, the United States, Japan and other countries in the high-precision coordinate measuring machine, and with digital scanning. Such as Dongfeng Motor Mould Factory not only has the capacity 3250mm ×3250mm Italian coordinate measuring machine, also has a digital photography optical scanner, the first in the domestic use of digital photography, optical scanning as a means of spatial three-dimensional access to information, enabling the establishment from the measurement of physical →model output of engineering drawings →→the whole process of mold making, reverse engineering a successful technology development and applications. This equipment include: second-generation British Renishaw high-speed scanners (CYCLON SERIES2) can be realized and contact laser probe complementary probe, laser scanner accuracy of 0.05mm, scanning probe contact accuracy of 0.02 mm. Another German companyGOM ATOS portable scanners, Japan Roland's PIX-30, PIX-4 desktop scanner and the United Kingdom Taylor Hopson's TALYSCAN150 multi-sensor, respectively Three-dimensional scanner with high speed, low-cost and functional composite and so on.(2) CNC EDMJapan Sodick linear motor servo drive using the company's AQ325L, AQ550LLS-WEDM have driven fast response, transmission and high positioning accuracy, the advantages of small thermal deformation. Switzerland Chanmier company NCEDM with P-E3 adaptive control, PCE energy control and automatic programming expert systems. Others also used the powder mixed EDM machining technology, micro-finishing pulse power and fuzzy control (FC) technologies.(3) high-speed milling machine (HSM)Milling is an important means of cavity mold. The low-temperature high-speed milling with the workpiece, cutting force is small, smooth processing, processing quality, processing efficiency (for the general milling process 5 to 10 times) and can process hard materials (<60HRC) and many other advantages. Thus in the mold processing more and more attention. Ruishikelang company UCP710-type five-axis machining center, machine tool positioning accuracy up to 8μm, home-made closed-loop vector control spindle with a maximum speed 42000r/min. Italy RAMBAUDI's high-speed milling, the processing range of up to 2500mm × 5000mm × 1800mm, speed up 20500r/min, cutting feed speed of 20m/min. HSM generally used large, medium-sized mold, such as motor cover mold, die casting mold, large plastic surface machining, the surface precision up to 0.01mm.模具设计与制造模具是制造业的重要工艺基础,在我国模具制造属于专用设备制造业。