高三数学文科小测27

合集下载

高三文科数学试卷电子版

高三文科数学试卷电子版

第1页 共4页 ◎ 第2页 共4页…………外………………内……………○……在※※装※※订※※线………○……第II卷(非选择题)二、填空题(共4题,每题5分,共20分)13.若(x2+a)(x+x)8的展开式中x8的系数为9,则a的值为.14.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a,b个坛子,一共堆了n层,则酒坛的总数S=ab+(a-1)(b-1)+(a-2)(b-2)+…+(a-n+1)(b-n+1).现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为.15.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f'(x1)=f'(x2)=f(b)-f(a)b-a,则称函数f(x)是[a,b]上的“中值函数”.已知函数f(x)=13x3-12x2+m是[0,m]上的“中值函数”,则实数m的取值范围是.16.设函数f(x)=exx+a(x-1)+b(a,b∈R)在区间[1,3]上总存在零点,则a2+b2的最小值为.三、解答题(共6题,共70分)17.已知数列{a n}的各项均为正数,S n为其前n项和,且4S n=a n2+2a n-3.(1)求数列{a n}的通项公式;(2)若T n=a1+1S1−a3+1S3+a5+1S5-…+(-1)n+1a2n-1+1S2n-1,比较T n与1的大小.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且2a sin(C+π6)=b+c.(1)求角A的大小;(2)若a=√7,BA⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =-3,角A的平分线交边BC于点T,求AT的长.19.垃圾是人类生产和生活中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,因此需要无害化、减量化处理.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取20个镇进行分析,得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个镇的人口(单位:万人)和该镇年垃圾产生总量(单位:吨),并计算得∑i=120x i=80,∑i=120y i=4 000,∑i=120(x i-x¯)2=80,∑i=120(y i-y¯)2=8 000,∑i=120(x i-x¯)(y i-y¯)=700.(1)请用相关系数说明该组数据中y与x之间的线性相关程度;(2)求y关于x的线性回归方程;(3)某机构有两款垃圾处理机器,其中甲款机器每台售价100万元,乙款机器每台售价80万元,下表是这两款垃圾处理机器的使用年限(整年)统计表:根据以往经验可知,某镇每年可获得政府支持的垃圾处理费用为50万元,若仅考虑购买机器的成本和每台机器的使用年限(使用年限均为整年),以频率估计概率,该镇选择购买哪一款垃圾处理机器更划算?参考公式:相关系数r=∑i=1n(x i-x¯)(y i-y¯)√∑i=1(x i-x¯)2∑i=1(y i-y¯)2,对于一组具有线性相关关系的数据(x i,y i)(i=1,2,…,n),其回归直线y^=b^x+a^的斜率和截距的最小二乘估计分别为b^=∑i=1nx i y i−nx-y-∑i=1nx i2−nx-2,a^=y-−b^x-.20.如图,已知各棱长均为2的直三棱柱ABC-A1B1C1中,E为AB的中点.(1)求证:BC1∥平面A1EC;(2)求点B1到平面A1EC的距离.21.已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为√22,且椭圆上一点到两个焦点的距离之和为2√2.(1)求椭圆C的标准方程.(2)过点S(-13,0)的动直线l交椭圆C于A,B两点,试问:在x轴上是否存在一个定点T,使得无论直线l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.22.已知函数f(x)=lnx,g(x)=-12x.(1)令F(x)=ax·f(x)-2x2·g(x),讨论F(x)的单调性;(2)设φ(x)=f(x)x-g(x),若在(√e,+∞)上存在x1,x2(x1≠x2)使不等式|φ(x1)-φ(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.第3页共4页◎第4页共4页参考答案1.D【解析】解法一 因为A ={x ||x |≤3}={x |-3≤x ≤3},(题眼)(方法点拨:含有一个绝对值的不等式的解法口诀是“大于在两边,小于在中间”,即|x |≤a 的解集是{x |-a ≤x ≤a },|x |≥a 的解集是{x |x ≤-a 或x ≥a })B ={x |x ≤2},所以A ∩B ={x |-3≤x ≤2},故选D.解法二 因为3∉B ,所以3∉(A ∩B ),故排除A,B;因为-3∈A 且-3∈B ,所以-3∈(A ∩B ),故排除C.故选D. 【备注】无 2.B【解析】解法一 z =4-3i 2-i=(4-3i)(2+i)(2-i)(2+i)=11-2i 5=115−25i,所以|z |=√(115)2+(-25)2=√5,(题眼)故选B.解法二 |z |=|4-3i2-i |=|4-3i||2-i|=√42+(-3)2√22+(-1)2=√5=√5,故选B.(方法总结:若z 1,z 2∈C ,则|z 1z 2|=|z 1|·|z 2|,|z1z 2|=|z 1||z 2|(|z 2|≠0)) 【备注】无3.A【解析】解法一 由sin x =1,得x =2k π+π2(k ∈Z ),则cos (2k π+π2)=cos π2=0,故充分性成立;又由cosx =0,得x =k π+π2(k ∈Z ),而sin(k π+π2)=1或-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,(判断充分、必要条件应分三步:(1)确定条件是什么,结论是什么;(2)尝试从条件推结论(充分性),从结论推条件(必要性);(3)确定条件和结论是什么关系)故选A.解法二 由sin x =1,得x =2k π+π2 (k ∈Z ),则cos(2k π+π2)=cos π2=0,故充分性成立;又cos 3π2=0,sin 3π2=-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,故选A. 【备注】无 4.A【解析】由题可知,数列{a n }是首项为29、公比为12的等比数列,所以S n =29[1-(12)n ]1-12=210-210-n,T n =29×28×…×210-n=29+8+…+(10-n )=2n(19-n)2,由T n >S n ,得2n(19-n)2>210-210-n,由n(19-n)2≥10,可得n 2-19n +20≤0,结合n ∈N *,可得2≤n ≤17,n ∈N *.当n =1时,S 1=T 1,不满足题意;当n ≥18时,n(19-n)2≤9,T n ≤29,S n =210-210-n>210-1>29,所以T n <S n ,不满足题意.综上,使得T n >S n 成立的n 的最大正整数值为17. 【备注】无 5.B【解析】依题意,1=a 2+b 2-2a ·b =1+1-2a ·b ,故a ·b =12,所以(a -b )·(b -c )=a ·b -b 2-(a -b )·c =(b -a )·c -12=|b -a ||c |·cos<b -a ,c >-12≤1-12=12,当且仅当b -a 与c 同向时取等号.所以(a -b )·(b -c )的最大值为12.故选B.【备注】无 6.D【解析】由已知可得∠xOP =∠P 0OP -∠P 0Ox =π2t -π3,所以由三角函数的定义可得y =3sin∠xOP =3sin(π2t -π3),故选D.【备注】无 7.B【解析】本题主要考查古典概型、排列与组合等知识,考查的学科素养是理性思维、数学应用. “礼、乐、射、御、书、数”六节课程不考虑限制因素有A 66=720(种)排法,其中“数”排在前两节,“礼”和“乐”相邻排课的排课方法可以分两类:①“数”排在第一节,“礼”和“乐”两门课程相邻排课,则有C 41A 22A 33=48(种)排法;②“数”排在第二节,“礼”和“乐”两门课程相邻排课,则有C 31A 22A 33=36(种)排法.(方法总结:解决排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置))故“数”排在前两节,“礼”和“乐”相邻排课的排法共有48+36=84(种),所以“数”排在前两节,“礼”和“乐”相邻排课的概率P =84720=760,故选B. 【备注】无 8.C【解析】解法一 由已知可得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.在平面ACC 1A 1内,过点C 1作C 1H ⊥PC ,垂足为H ,如图.由CC 1⊥底面ABC ,可得CC 1⊥BC ,因为AC ⊥BC ,AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,所以BC ⊥C 1H ,又C 1H ⊥PC ,PC ∩BC =C ,所以C 1H ⊥平面PBC ,连接BH ,故∠C 1BH 就是直线BC 1与平面PBC 所成的角.在矩形ACC 1A 1中,CP =√CA 2+AP 2=√42+22=2√5,sin∠C 1CH =cos∠PCA =AC CP =2√5=√5=C 1H CC 1=C 1H 3,故C 1H =3×√5=√5.故在△BC 1H中,sin∠C 1BH =C 1HBC 1=√53√2=√105,所以直线BC 1与平面PBC 所成角的正弦值等于√105.故选C.解法二 由已知得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.如图,以C 为坐标原点,分别以CB⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ ,C C_1的方向为x ,y ,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,4,2),B (3,0,0),C 1(0,0,3),则CB⃗⃗⃗⃗⃗ =(3,0,0),CP ⃗⃗⃗⃗⃗ =(0,4,2),B ⃗ C_1=(-3,0,3).设平面BCP 的法向量为n =(x ,y ,z ),则由{n ⊥CB⃗⃗⃗⃗⃗ ,n ⊥CP⃗⃗⃗⃗ 可得{n·CB ⃗⃗⃗⃗⃗ =3x =0,n·CP ⃗⃗⃗⃗ =4y +2z =0,即{x =0,2y +z =0,得x =0,令y =1,得z =-2,所以n =(0,1,-2)为平面BCP 的一个法向量.设直线BC 1与平面PBC 所成的角为θ,则sin θ=|cos<n ,B ⃗ C_1>|=|n·B⃗⃗ C_1||n||B⃗⃗ C_1|=√(-3)2+32×√12+(-2)2=√105.故选C.【备注】求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角.(2)向量法,sin θ=|cos<AB ⃗⃗⃗⃗⃗ ,n >|=|AB ⃗⃗⃗⃗⃗⃗·n||AB ⃗⃗⃗⃗⃗⃗||n|(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).9.B【解析】本题主要考查集合以及自定义问题的解题方法;G =N,⊕为整数的加法时,对任意a,b ∈N ,都有a ⊕b ∈N ,取c =0,对一切a ∈G ,都有a ⊕c =c ⊕a =a ,G 关于运算⊕为“融洽集”. 【备注】无 10.D【解析】对于A,甲街道的测评分数的极差为98-75=23,乙街道的测评分数的极差为99-73=26,所以A 错误;对于B,甲街道的测评分数的平均数为75+79+82+84+86+87+90+91+93+9810=86.5,乙街道的测评分数的平均数为73+81+81+83+87+88+95+96+97+9910=88,所以B 错误;对于C,由题中表可知乙街道测评分数的众数为81,所以C 错误;对于D,甲街道的测评分数的中位数为86+872=86.5,乙街道的测评分数的中位数为87+882=87.5,所以乙的中位数大,所以D 正确. 故选D. 【备注】无 11.A【解析】本题考查函数的图象与性质,数形结合思想的应用,考查考生分析问题、解决问题的能力. 解法一 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,显然x ≠-3,当x ≠0且x ≠−3时,由|x |-a (x 3+3x 2)=0,得a =|x|x 3+3x 2,设g (x )=|x|x 3+3x 2,则g (x )的图象与直线y =a 有3个不同的交点.当x >0时,g (x )=1x 2+3x ,易知g (x )在(0,+∞)上单调递减,且g (x )∈(0,+∞).当x <0且x ≠-3时,g (x )=-1x 2+3x,g'(x )=2x+3(x 2+3x)2,令g'(x )>0,得-32<x <0,令g'(x )<0,得−3<x <−32或x <−3,所以函数g (x )在(−∞,−3)和(−3,−32)上单调递减,在(−32,0)上单调递增,且当x 从左边趋近于0和从右边趋近于−3时,g (x )→+∞,当x 从左边趋近于-3时,g (x )→−∞,当x →−∞时,g (x )→0,可作出函数g (x )的大致图象,如图所示,由图可知,a >49.综上,实数a 的取值范围是(49,+∞).解法二 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,当x ≠0时,由|x |-a (x 3+3x 2)=0,得1|x|=a (x +3),则该方程有3个不同的根.在同一坐标系内作出函数y =1|x|和y =a (x +3)的图象,如图所示.易知a >0,当y =a (x +3)与曲线y =1|x|的左支相切时,由-1x=a (x +3)得ax 2+3ax +1=0,Δ=(3a )2-4a =0,得a =49.由图可知,当a >49时,直线y =a (x +3)与曲线y =1|x|有3个不同的交点,即方程1|x|=a (x +3)有3个不同的根.综上,实数a 的取值范围是(49,+∞).【备注】【方法点拨】利用方程的根或函数零点求参数范围的方法及步骤:(1)常规思路:已知方程的根或函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图象一定要准确,这种数形结合的方法能够帮助我们直观解题.(2)常用方法:①直接法——直接根据题设条件构建关于参数的不等式,通过解不等式确定参数范围;②分离参数法——先将参数分离,转化成求函数的值域问题加以解决;③数形结合法——先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.(3)一般步骤:①转化——把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况;②列式——根据零点存在性定理或结合函数图象列式;③结论——求出参数的取值范围或根据图象得出参数的取值范围 12.B【解析】因为圆x 2+y 2=a 2与双曲线的渐近线在第一象限的交点为M ,所以∠A 1MA 2=90°,tan∠MOA 2=ba,所以∠PMA 2=90°.因为△MPA 2是等腰三角形,所以∠MA 2P =45°.因为∠PA 2M 的平分线与y 轴平行,所以∠OA 2M =∠PA 2x ,又∠OA 2M +∠A 2MO +∠MOA 2=180°,∠OA 2M =∠A 2MO ,所以∠MOA 2=∠MA 2P =45°,(题眼)所以b a=tan∠MOA 2=1,所以C 的离心率e =c a =√a 2+b 2a 2=√1+b 2a 2=√2.故选B.【备注】无 13.1【解析】二项式(x +1x )8的展开式中,含x 6的项为C 81x 7(1x )1=8x 6,含x 8的项为C 80x 8(1x )0=x 8,所以(x 2+a )(x +1x)8的展开式中,x 8的系数为8+a =9,解得a =1.【备注】无 14.220【解析】根据题目中已给模型类比和联想,得出第一层、第二层、第三层、…、第十层的酒坛数,然后即可求解.每一层酒坛按照正三角形排列,从上往下数,最上面一层的酒坛数为1,第二层的酒坛数为1+2,第三层的酒坛数为1+2+3,第四层的酒坛数为1+2+3+4,…,由此规律,最下面一层的酒坛数为1+2+3+…+10,所以酒坛的总数为1+(1+2)+(1+2+3)+…+(1+2+3+…+10)=1+3+6+…+55=220. 【备注】无 15.(34,32)【解析】由题意,知f '(x )=x 2-x 在[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f '(x 1)=f '(x 2)=f(m)-f(0)m=13m 2-12m ,所以方程x 2-x =13m 2-12m 在(0,m )上有两个不相等的解.令g (x )=x 2-x-13m 2+12m (0<x <m ),则{Δ=1+43m 2-2m >0,g(0)=-13m 2+12m >0,g(m)=23m 2-12m >0,解得34<m <32.【备注】无16.e 48 【解析】设x 0为函数f (x )在区间[1,3]上的零点,则e x 0x 0+a (x 0-1)+b =0,所以点(a ,b )在直线(x 0-1)x +y +e x 0x 0=0上,(题眼)而a 2+b 2表示坐标原点到点(a ,b )的距离的平方,其值不小于坐标原点到直线(x 0-1)x +y +e x 0x 0=0的距离的平方,(名师点拨:直线外一点到直线上的点的距离大于等于该点到直线的距离)即a 2+b 2≥e 2x 0x 02(x 0-1)2+12=e 2x 0x 04-2x 03+2x 02.令g (x )=e 2xx 4-2x 3+2x 2,x ∈[1,3],则g'(x )=2e 2x (x 4-2x 3+2x 2)-e 2x (4x 3-6x 2+4x)(x 4-2x 3+x 2)2=2x(x-1)2(x-2)e 2x (x 4-2x 3+x 2)2,则当1≤x <2时,g'(x )<0,当2<x ≤3时,g'(x )>0,所以函数g (x )在区间[1,2)上单调递减,在区间(2,3]上单调递增,所以g (x )min =g (2)=e 48,所以a 2+b 2≥e 48,所以a 2+b 2的最小值为e 48. 【备注】无17.解:(1)令n =1,则4a 1=a 12+2a 1-3,即a 12-2a 1-3=0,解得a 1=-1(舍去)或a 1=3.因为4S n =a n 2+2a n -3 ①,所以4S n +1=a n+12+2a n +1-3 ②,②-①,得4a n +1=a n+12+2a n +1-a n 2-2a n ,整理得(a n +1+a n )(a n +1-a n -2)=0, 因为a n >0,所以a n +1-a n =2,所以数列{a n }是首项为3、公差为2的等差数列,所以a n =3+(n -1)×2=2n +1.(2)由(1)可得,S n =(n +2)n ,a 2n -1=4n -1,S 2n -1=(2n +1)(2n -1), 所以a 2n-1+1S 2n-1=4n (2n+1)(2n-1)=12n-1+12n+1.当n 为偶数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…-(12n-1+12n+1) =1-12n+1<1; 当n 为奇数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…+(12n-1+12n+1)=1+12n+1>1.综上,当n 为偶数时,T n <1;当n 为奇数时,T n >1. 【解析】无 【备注】无 18.无【解析】(1)由已知及正弦定理,得2sin A sin(C +π6)=sin B +sin C ,所以sin A cos C +√3sin A sin C =sinB +sin C.(有两角和或差的正弦(余弦)形式,并且其中有一个角是特殊角时,常常将其展开) 因为A +B +C =π,所以sin B =sin(A +C ),所以sin A cos C +√3sin A sin C =sin(A +C )+sin C ,则sin A cos C +√3sin A sin C =sin A cos C +cos A sin C +sin C ,即√3sin A sin C =sin C cos A +sin C.因为sin C ≠0,所以√3sin A =cos A +1,即sin(A -π6)=12. 因为0<A <π,所以A =π3.(2)由BA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3可知cb cos 2π3=-3,因此bc =6. 由a 2=b 2+c 2-2bc cos∠BAC =(b +c )2-2bc -bc =7,可得b +c =√7+3×6=5. 由S △ABC =S △ABT +S △ACT 得,12bc sin π3=12c ·AT ·sin π6+12b ·AT ·sin π6,(与角平分线相关的问题,常常利用三角形的面积来解决)因此AT =bcsinπ3(b+c)sinπ6=6×√325×12=6√35. 【备注】无19.解:(1)由题意知,相关系数r =∑i=120(x i -x ¯)(y i -y ¯)√∑i=1(x i -x ¯)2∑i=1(y i -y ¯)2=√80×8 000=78=0.875, 因为y 与x 的相关系数接近于1,所以y 与x 之间具有较强的线性相关关系.(2)由题意可得,b ^=∑i=120(x i -x ¯)(y i -y ¯)∑i=120(x i-x ¯)2=70080=8.75,a ^=y -−b ^x -=4 00020-8.75×8020=200-8.75×4=165,所以y ^=8.75x +165.(将变量x ,y 的平均值代入线性回归方程,求得a ^)(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X (单位:万元)的分布列为E (X )=-50×0.1+0×0.4+50×0.3+100×0.2=30(万元).购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y (单位:万元)的分布列为E (Y )=-30×0.3+20×0.4+70×0.2+120×0.1=25(万元).因为E (X )>E (Y ),所以该镇选择购买一台甲款垃圾处理机器更划算.(根据已知数据,分别计算随机变量X 和Y 的分布列、期望,期望越大,说明节约费用的平均值越大,也就越划算)【解析】本题主要考查变量相关性分析、线性回归方程的求解、概率的计算以及随机变量期望的意义和求法,考查的学科素养是理性思维、数学应用.第(1)问,由已知数据,代入相关系数公式,求得相关系数r 即可判断x 和y 的相关程度;第(2)问,根据最小二乘估计公式,求得b ^,a ^的值,从而确定y 关于x 的线性回归方程;第(3)问,根据统计数据计算随机变量X 和Y 的分布列,并分别求期望,由期望的意义可知,数值越大表示节约的垃圾处理费用的平均值越大,从而确定购买哪一款垃圾处理机器. 【备注】无20.(1)如图,连接AC 1交A 1C 于点O ,连接OE ,则BC 1∥OE.(题眼)BC 1∥OEOE ⊂平面A 1EC BC 1⊄平面A 1EC }⇒BC 1∥平面A 1EC.(运用直线与平面平行的判定定理时,关键是找到平面内与已知直线平行的直线)(2)如图,连接A 1B ,则V A 1-ACE =12V A 1-ABC =12×13V ABC-A 1B 1C 1=12×13×√34×22×2=√33.(题眼) 根据直三棱柱的性质,易得A 1A ⊥平面ABC ,因为CE ⊂平面ABC ,所以AA 1⊥CE .因为E 为AB 的中点,△ABC 为正三角形,所以CE ⊥AB. 又AA 1∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,所以CE ⊥平面ABB 1A 1, 因为A 1E ⊂平面ABB 1A 1,所以A 1E ⊥CE .在Rt△A 1CE 中,A 1E ⊥CE ,A 1C =2√2,A 1E =√5,EC =√3,所以S △A 1CE =12×√5×√3=√152. 设点A 到平面A 1EC 的距离为h ,则点B 1到平面A 1EC 的距离为2h .因为V A 1-ACE =V A-A 1CE =13×S △A 1CE ×h ,(点到平面的距离可转化为几何体的体积问题,借助等体积法来解决.等体积法:轮换三棱锥的顶点,体积不变;利用此特性,把三棱锥的顶点转换到易于求出底面积和高的位置是常用方法) 所以h =2√55,即点A 到平面A 1EC 的距离为2√55, 因此点B 1到平面A 1EC的距离为4√55.【解析】无【备注】高考文科数学对立体几何解答题的考查主要设置两小问:第(1)问通常考查空间直线、平面间的位置关系的证明;第(2)问通常考查几何体体积的计算,或利用等体积法求点到平面的距离.21.解:(1)由椭圆的定义可得2a =2√2,则a =√2, ∵椭圆C 的离心率e =ca =√22,∴c =1,则b =√a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),(由于存在直线l 与x 轴重合的情形,故需进行分类讨论) 由{x =my-13y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立,则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T ,则TA ⊥TB ,TA⃗⃗⃗⃗⃗ =(my 1-t -13,y 1),TB ⃗⃗⃗⃗⃗ =(my 2-t -13,y 2), 则TA ⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(my 1-t -13)(my 2-t -13)+y 1y 2 =(m 2+1)y 1y 2-m (t +13)(y 1+y 2)+(t +13)2=-16(m 2+1)-m(t+13)×12m18m 2+9+(t +13)2=(t +13)2-(12t+20)m 2+1618m 2+9=0,∵点T 为定点,∴t 为定值,∴12t+2018=169,(分析式子结构,要使此式子的取值与m 无关,必须要将含有m 的相关代数式约去,通常采用分子与分母的对应项成比例即可解决) 解得t =1,此时TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(43)2-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0).综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .【解析】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,考查的学科素养是理性思维、数学探索.(1)首先由椭圆的定义求得a 的值,然后根据离心率的公式求得c 的值,从而求得b 的值,进而得到椭圆C 的标准方程;(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),与椭圆方程联立,得到y 1+y 2,y 1y 2,由题意得出TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =0,然后根据平面向量数量积的坐标运算及T 为定点求得t 的值,当直线l 与x 轴重合时,验证即可,最后可得出结论. 【备注】无22.(1)∵F (x )=ax ·f (x )-2x 2·g (x ),∴F (x )=x +ax ·ln x , ∴F'(x )=1+a +a ln x .①当a =0时,F (x )=x ,函数F (x )在(0,+∞)上单调递增;②当a >0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递增,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )<0,当x ∈(e -1-1a ,+∞)时,F'(x )>0,所以当a >0时,F (x )在(0,e -1-1a )上单调递减,在(e-1-1a,+∞)上单调递增;③当a <0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递减,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )>0,当x ∈(e -1-1a ,+∞)时,F'(x )<0,∴F (x )在(0,e -1-1a )上单调递增,在(e -1-1a ,+∞)上单调递减. (2)由题意知,φ(x )=lnx x+12x,∴φ'(x )=1-lnx x 2−12x 2=1-2lnx 2x 2,令φ'(x )=0,得x =√e ,∴x >√e时,φ'(x )<0,∴φ(x )在(√e ,+∞)上单调递减.不妨设x 2>x 1>√e ,则φ(x 1)>φ(x 2),则不等式|φ(x 1)-φ(x 2)|≥k |ln x 1-ln x 2|等价于φ(x 1)-φ(x 2)≥k (ln x 2-ln x 1),即φ(x 1)+k ln x 1≥φ(x 2)+k ln x 2.令m (x )=φ(x )+k ln x ,则m (x )在(√e ,+∞)上存在单调递减区间, 即m'(x )=φ'(x )+kx=-2lnx+2kx+12x 2<0在(√e ,+∞)上有解,即-2ln x +2kx +1<0在(√e ,+∞)上有解,即在(√e ,+∞)上,k <(2lnx-12x)max .令n (x )=2lnx-12x(x >√e ),则n'(x )=3-2lnx 2x 2(x >√e ),由 n'(x )=0得x =e 32, ∴函数n (x )=2lnx-12x在(√e ,e 32)上单调递增,在(e 32,+∞)上单调递减.∴n (x )max =n (e 32)=2ln e 32-12e 32=e -32,∴k <e -32.故k 的取值范围为(-∞,e -32).【解析】本题考查利用导数研究函数的单调性和最值,考查分类讨论思想、化归与转化思想的灵活应用,考查考生的运算求解能力以及运用所学知识分析问题和解决问题的能力.(1)通过对函数求导,对参数进行分类讨论,来讨论函数的单调性;(2)依据函数的单调性将不等式转化为函数存在单调递减区间,最后转化为函数的最值问题来解决.【备注】【素养落地】本题将函数、不等式等知识融合起来,借助导数研究函数的性质,考查逻辑推理、数学运算等核心素养.【技巧点拨】解决本题第(2)问的关键是化归与转化思想的应用,先利用函数的单调性将不等式转化为φ(x1)+k ln x1≥φ(x2)+k ln x2,然后根据式子的结构特征构造函数m(x)=φ(x)+k ln x,将m(x)在(√e,+∞))max.上存在单调递减区间转化为m'(x)<0在(√e,+∞)上有解,进而转化为k<(2lnx-12x。

高三文科数学模拟试题含答案

高三文科数学模拟试题含答案

高三文科数学模拟试题含答案高三文科数学模拟试题本试卷共150分,考试时间120分钟。

第Ⅰ卷(选择题,共50分)一、选择题(共10小题,每小题5分,共50分。

在每小题中,只有一项是符合题目要求的)1.复数3+ i的虚部是()。

A。

2.B。

-1.C。

2i。

D。

-i2.已知集合A={-3,-2,0,1,2},集合B={x|x+2<0},则A∩(CRB) =()。

A。

{-3,-2,0}。

B。

{0,1,2}。

C。

{-2,0,1,2}。

D。

{-3,-2,0,1,2}3.已知向量a=(2,1),b=(1,x),若2a-b与a+3b共线,则x=()。

A。

2.B。

11/22.C。

-1.D。

-24.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()。

A。

4π/3.B。

π。

C。

3π/2.D。

2π5.将函数f(x)=sin2x的图像向右平移π/6个单位,得到函数g(x)的图像,则它的一个对称中心是()。

A。

(π/6,0)。

B。

(π/3,0)。

C。

(π/2,0)。

D。

(π,0)6.执行如图所示的程序框图,输出的s值为()。

开始是否输出结束A。

-10.B。

-3.C。

4.D。

57.已知圆C:x^2+2x+y^2=1的一条斜率为1的切线l1,若与l1垂直的直线l2平分该圆,则直线l2的方程为()。

A。

x-y+1=0.B。

x-y-1=0.C。

x+y-1=0.D。

x+y+1=08.在等差数列{an}中,an>0,且a1+a2+⋯+a10=30,则a5⋅a6的最大值是()。

A。

4.B。

6.C。

9.D。

369.已知变量x,y满足约束条件2x-y≤2,x-y+1≥0,设z=x^2+y^2,则z的最小值是()。

A。

1.B。

2.C。

11.D。

3210.定义在R上的奇函数f(x),当x≥0时,f(x)=2,当x<0时,f(x)=1-|x-3|,则函数F(x)=f(x)-a(0<a<1)的所有零点之和为()。

河南省许济洛平2022-2023学年高三第三次质量检测文科数学试题含答案

河南省许济洛平2022-2023学年高三第三次质量检测文科数学试题含答案

许济洛平2022~2023学年高三第三次质量检测文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{}220A x x x =--≤,{}01B x x =<<,则() U A B ⋂=ð().A .(],1-∞-B .()[),12,-∞⋃+∞C .()[),01,-∞⋃+∞D .(),1-∞-2.已知复数i 1i m -+为纯虚数,则实数m 的值为().A .B .1-CD .13.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,2AO AE = ,则BE = ().A .3144AB AD -+ B .1344AB AD + C .1344AB AD -+ D .3144AB AD + 4.若如图所示的程序框图输出的结果为720S =,则图中空白框中应填入().A .7?k ≤B .7?h >C .8?k ≤D .8?k >5.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为[)0,50、[)50,100、[)100,150、[)150,200、[)200,300和[]300,500六档,分别对应“优”、“良”、“轻度污染”、“中度污染”、“重度污染”和“严重污染”六个等级.如图是某市2月1日至14日连续14天的空气质量指数趋势图,则下面说法中正确的是().A .这14天中有5天空气质量为“中度污染”B .从2日到5日空气质量越来越好C .这14天中空气质量指数的中位数是214D .连续三天中空气质量指数方差最小是5日到7日6.设tan α,tan β是方程240x ++=的两根,且ππ,,22αβ⎛⎫∈- ⎪⎝⎭,则αβ+=().A .π3B .2π3-C .π3或2π3-D .2π37.已知三棱锥S ABC -中,SA ⊥底面ABC ,若4SA =,6AB AC BC ===,则三棱锥S ABC -的外接球的体积为().A .332π3B .256π3C .128π3D .64π38.将函数()2πsin sin 3f x x x ⎛⎫=++ ⎪⎝⎭的图像上所有点的横坐标变为原来的12,纵坐标不变,再把所得图像向左平移()0ϕϕ>个单位长度,得到函数()g x 的图像.若对任意的x ∈R ,均有()π6g x g ⎛⎫≤ ⎪⎝⎭,则ϕ的最小值为().A .7π12B .3π4C .11π12D .5π49.著名物理学家牛顿在17世纪提出了牛顿冷却定律,描述温度高于周围环境的物体向周围媒质传递热量逐渐冷却时所遵循的规律.统计学家发现网络热搜度也遵循这样的规律,即随着时间的推移,热搜度会逐渐降低.假设事件的初始热搜度为()000N N >,经过t (天)时间之后的热搜度变为()0t N t N e α-=,其中α为冷却系数.若设某事件的冷却系数0.3α=,则该事件的热搜度降到初始的50%以下需要的天数t 至少为().(ln 20.693≈,t 取整数)A .7B .6C .4D .310.已知函数()21x f x =-,记()0.5log 3f =,()5log 3b f =,()lg 6c f =,则a ,b ,c 的大小关系为().A .a b c<<B .a c b <<C .b c a <<D .c b a <<11.如图,双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为1F ,2F ,以1F 为圆心,1OF 为半径作圆1F ,过2F 作圆1F 的切线,切点为T .延长2F T 交E 的左支于P 点,若M 为线段2PF 的中点,且2MO MT a +=,则双曲线E 的离心率为().A B .C .2D 12.已知向量a ,b 是夹角为60︒的单位向量,若对任意的1x ,()2,x m ∈+∞,且12x x <,122112ln ln x x x x a b x x ->-- ,则m 的取值范围是().A .1,e e ⎡⎫⎪⎢⎣⎭B .1,e ⎡⎫+∞⎪⎢⎣⎭C .[),e +∞D .)2,e ⎡+∞⎣二、填空题:本题共4个小题,每小题5分,共20分.13.在区间()0,3内随机取一个数x ,使得()()ln 1ln 3x x -<-成立的概率为__________.14.已知抛物线()2:20C y px p =>的焦点为F ,点,02p A ⎛⎫- ⎪⎝⎭,点M 在抛物线C 上,且AM =,则sin MFA ∠=__________.15.定义在R 上的函数()f x 满足()()12f x f x +=,且当[]0,1x ∈时,()121f x x =--.若对任意(],x t ∈-∞,都有()2f x ≤,则t 的取值范围是__________.16.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,b =,且222sin sin sin sin sin A C A C B ++=,则ABC △面积的最大值为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{}n a 满足11a =,11220n n n n a a a a ++⋅+-=.(1)证明:1n a ⎧⎫⎨⎬⎩⎭为等差数列;(2)设1n n n b a a +=⋅,求数列{}n b 的前n 项和n T .某校即将举办春季运动会,组委会对一项新增的运动项目进行了调查,以了解学生对该项目是否有兴趣.组委会随机抽取1000人进行问卷调查,经统计知男女生人数之比为3:2,对该项目没有兴趣的学生有480人,其中女生占13.(1)完成22⨯列联表,并判断能否有99.9%的把握认为对该项目有兴趣与性别有关?有兴趣没有兴趣总计男女总计(2)若从对该运动项目没有兴趣的学生中按性别用分层抽样的方法抽取6人,再从这6人中随机选出2人进一步了解没有兴趣的原因,求选出的2人均为男生的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.1000.0500.0250.0100.0010k 2.706 3.841 5.024 6.63510.82819.(12分)如图,四棱锥P ABCD -的底面为矩形,PA PD ⊥,PA PD =,侧面PAD ⊥底面ABCD ,E 是AB 上的动点(不含A 、B 点).(1)证明:平面PAE ⊥平面PDE ;(2)若4AD =,AB =,当E 为AB 的中点时,求点C 到平面PDE 的距离.已知函数()()22ln 0a f x x a x=+>,()32g x x x =-.(1)当1a =时,求函数()f x 的单调区间;(2)若对于任意的(]10,2x ∈,都存在[]21,2x ∈,使得()()112x f x g x ≥成立,试求a 的取值范围.21.(12分)已知对称轴都在坐标轴上的椭圆C 过点1,24A ⎛⎫ ⎪ ⎪⎝⎭与点()2,0B ,过点()1,0的直线l 与椭圆C 交于P ,Q 两点,直线BP ,BQ 分别交直线3x =于E ,F 两点.(1)求椭圆C 的标准方程;(2)PE QF ⋅ 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为5x t y ⎧=⎪⎨=+⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=.(1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)设点M的直角坐标为),直线l 与曲线C 交于A ,B 两点,求11MAMB+的值.23.[选修4-5:不等式选讲](10分)已知函数()3f x x a x a =+++.(1)当1a =-时,求不等式()4f x <的解集;(2)若()f x 的最小值为2,且()()24a m a m n -+=,求221n m +的最小值.。

高三数学试题(文科)参考答案

高三数学试题(文科)参考答案

2010年高考考前仿真模拟高三数学试题(文科)参考答案 2010.5一、选择题:本大题共12小题,每小题5分,共60分. AADCB DABDC AB二、填空题:本大题共4个小题,每小题4分,共16分.13. 8 14.A=10S 15. 2 16. ①②④三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)(1cos 2)()622x f x x +=-)36x π=++, ………………3分故f (x )的最小正周期π=T . …………………………………………………………4分由ππππk x k 2622≤+≤+-得f (x )的单调递增区间为()Z k k k ∈--]12,127[ππππ.……6分 (II)由()3f α=-)336πα++=-,故cos(2)16πα+=-. ……………………………………………………8分又由02πα<<得2666πππαπ<+<+,因此26παπ+=,∴512πα=. …………………………………………………………10分则15tan tantan(3)212643πππα+==+==+. ………………………………12分18.(本小题满分12分)解:(Ⅰ)在直角梯形ABCD 中,AC=22,取AB 中点E,连接CE,则四边形AECD为正方形, ………2分∴AE=CE=2,又BE=221=AB ,则ABC ∆为等腰直角三角形,∴BC AC ⊥, …………………………4分 又 ⊥PA 平面ABCD,⊂BC 平面ABCD , ∴BC PA ⊥,由A PA AC =⋂得⊥BC 平面PAC, ⊂PC 平面PAC,所以PC BC ⊥. ………6分(Ⅱ)取P A 的中点G ,连结FG 、DG , 则1////2G F A B D C ,∴//G F D C . ……8分∴四边形DCFG 为平行四边形,DG//CF. ……10分 又D G ⊂平面PAD ,C F ⊄平面PAD ,∴CF//平面PAD. ………………………………12分19.(本小题满分12分) 解:(Ⅰ)由表知,4500.08t ==, ………………………………2分10.040.380.320.080.18y =----=,500.042x =⨯=,500.3819z =⨯=. ………………………………6分 (Ⅱ)由题知,第一组有2名同学,设为,a b ,第五组有4名同学,设为,,,A B C D . 则,m n 可能的结果为:(,),(,),(,),(,),(,),a b a A a B a C a D (,),(,),(,),(,),b A b B b C b D(,),(,),(,),(,),(,)A B A C A D B D C D 共15种, ………………………………8分其中使1m n ->成立的有:(,),(,),(,),(,),(,),(,),(,),(,)a A a B a C a D b A b B b C b D 共8种,……………………10分所以,所求事件的概率为815. ………………………………12分20.(本小题满分12分)解:(Ⅰ)()113,213n n n n a S n n a S n +-=-+≥=--+ 时, , …………2分 ,12,111-=-=-∴++n n n n n a a a a a 即112(1),(2,),n n a an n +∴-=-≥∈N * ……………………………4分2221(1)232n n n a a --∴-=-=∙=n a ⎩⎨⎧≥+∙=-2,1231,22n n n ……………………………6分 (Ⅱ)113322n n n S a n n -+=+-=∙+- ,123-∙=∴n n n b ………………………………………………8分⎪⎭⎫⎝⎛++++=∴-1222322131n n n T⎪⎭⎫⎝⎛++++=nn n T 2232221312132 相减得,⎪⎭⎫⎝⎛-++++=-n n n n T 22121211312112 ,……………………………10分 n n n nT 23221134∙-⎪⎭⎫ ⎝⎛-=∴﹤34. ……………………………12分∴结论成立. 21.(本小题满分12分) 解:(Ⅰ)设与22142xy+=相似的椭圆的方程22221x y ab+=则有222461a b ab⎧=⎪⎪⎨⎪+=⎪⎩ ………………3分 解得2216,8a b ==.所求方程是221168xy+=. ………………6分(Ⅱ) 当射线l的斜率不存在时(0,(0,A B ±.设点P 坐标P(0,0)y ,则204y =,02y =±.即P(0,2±). ………………8分当射线l 的斜率存在时,设其方程y kx =,P(,)x y 由11(,)A x y ,22(,)B x y 则112211142y kx x y =⎧⎪⎨+=⎪⎩ 得2122212412412x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩||O A ∴=同理||O B =………………10分当l 的斜率不存在时,||||4O A O B == ,当l 的斜率存在时,2228(1)4||||41212b OA OB kk+==+++ ,4||||8OA OB ∴<≤ ,综上,||||OA OB 的最大值是8,最小值是4. ………………12分 22.(本小题满分14分)解:(I)函数()f x 的定义域为(0,)+∞. …………………………1分 当0a =时,1()2ln f x x x=+,∴222121()x f x xxx-'=-=.…………………2分由()0f x '=得12x =.()f x ,()f x '随x 变化如下表:故,m in 1()()22ln 22f x f ==-,没有极大值. …………………………4分(II )由题意,222(2)1()ax a x f x x+--'=.令()0f x '=得11x a=-,212x =. ………………………6分若0a >,由()0f x '≤得1(0,]2x ∈;由()0f x '≥得1[,)2x ∈+∞. …………7分若0a <,①当2a <-时,112a-<,1(0,]x a∈-或1[,)2x ∈+∞,()0f x '≤;11[,]2x a ∈-,()0f x '≥.②当2a =-时,()0f x '≤. ③当20a -<<时,112a ->,1(0,]2x ∈或1[,)x a∈-+∞,()0f x '≤;11[,]2x a∈--,()0f x '≥.综上,当0a >时,函数的单调递减区间为1(0,]2,单调递增区间为1[,)2+∞;当2a <-时,函数的单调递减区间为1(0,]a -,1[,)2+∞,单调递增区间为11[,]2a -;当20a -<<时,函数的单调递减区间为1(0,]2,1[,)a -+∞,单调递增区间为11[,]2a--.…………………………10分(Ⅲ) 当2a =时,1()4f x x x=+,2241()x f x x-'=.∵11[,6]2x n n∈++,∴()0f x '≥.∴m in 1()()42f x f ==,m ax 1()(6)f x f n n=++. …………………………12分由题意,11()4(6)2m f f n n<++恒成立.令168k n n=++≥,且()f k 在1[6,)n n+++∞上单调递增,m in 1()328f k =,因此1328m <,而m 是正整数,故32m ≤,所以,32m =时,存在123212a a a ==== ,12348m m m m a a a a ++++====时,对所有n 满足题意.∴32m ax m =. …………………………………14分。

2023届呼市高三年级质量普查调研考试—段考(文科数学)试卷真题+参考答案+详细解析

2023届呼市高三年级质量普查调研考试—段考(文科数学)试卷真题+参考答案+详细解析

2023届呼和浩特市高三年级质量普查调研考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、考生号、座位号涂写在答题卡上.本试卷满分150分,考试时间120分钟.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}x A x =>,集合{1,2,3,4}B =,那么集合(A B = )A .{2}B .{1,2}C .{2,3,4}D .{3,4}2.若(1)1i z -=,则下列说法正确的是( )A .复数zB .1z i =-C .复数z 的虚部为i -D .复数z 在复平面内对应的点在第二象限 3.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点(5,)P m -,且12sin 13α=-,则1cos2(sin 2αα-= )A .512B .512-C .125D .125-4.已知||2a =,||1b =,(2)()1a b a b +-=,则a 与b 的夹角为( ) A .6π B .4π C .2π D .34π 5.设123a -=,131()2b -=,21log 3c =,则( )A .a c b <<B .c a b <<C .b c a <<D .a b c <<6.数列{}n a 中,如果472n a n =-,则n S 取最大值时,n 等于( ) A .23B .24C .25D .267.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 是其渐近线上的一点,若||AF 的最小值为3a ,则该双曲线的离心率为( )A .10B .22C .3D .38.小明同学学以致用,欲测量学校教学楼的高度,他采用了如图所示的方式来进行测量,小明同学在运动场上选取相距20米的C ,D 两观测点,且C ,D 与教学楼底部B 在同一水平面上,在C ,D 两观测点处测得教学楼顶部A 的仰角分别为45︒,30︒,并测得120BCD ∠=︒,则教学楼AB 的高度是( )A .20米B .202米C .153米D .25米9.已知函数[]y x =称为高斯函数,其中不超过实数x 的最大整数称为x 的整数部分,记作[]x ,如图,则输出的S 值为( )A .42B .43C .44D .4510.曲线sin 2cos y x x =+在点(,2)π-处的切线方程为( ) A .20x y π---= B .2220x y π---= C .2220x y π+-+=D .20x y π+-+=11.已知函数2()23f x x mx m =--,则“2m >”是“()0f x <对[1,3]x ∈恒成立”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件12.定义在R 上的函数()y f x =的图象关于点3(,0)4-成中心对称,对任意的实数x 都有3()()2f x f x =-+,且(1)1f -=,(0)2f =-,则(1)(2)(3)(2021)f f f f ++++的值为( )A .2B .1C .1-D .2-第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~21题为必考题,每个试题考生都必须作答;第22题~第23题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分,共20分.13.若实数x ,y 满足10101x y x y x -+⎧⎪++⎨⎪⎩,则2z x y =-的最大值是 .14.已知圆C 与圆2210100x y x y +++=相切于原点,且过点(0,4)A -,则圆C 的标准方程为 . 15.函数()2sin()(0f x x ωϕω=+>,||)2πϕ<的部分图象如图所示,则下列关于()f x 的结论正确的序号为 .①()f x 的最小正周期为π; ②()f x 的图象关于直线6x π=对称;③若1x ,2(,)63x ππ∈-且12()()f x f x =,则12()3f x x +=;④()f x 的图象向左平移(0)θθ>个单位得到()g x 的图象,若()g x 图象的一个对称中心是(,0)6π,则θ的最小值为6π.16.如图,已知P 是半径为1圆心角为23π的一段圆弧AB 上的一点,若2AC CB =,则PA PC ⋅的取值范围是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)如图,在梯形ABCD 中,//AB CD ,34BCD π∠=,10BD =,2CD =.(1)求sin CBD ∠的值;(2)若ABD ∆的面积为4,求AD 的长.18.(12分)已知数列{}n a 满足112323(1)22(*)n n a a a na n n N ++++⋯+=-⋅+∈. (1)求数列{}n a 的通项公式; (2)设1(1)(1)n n n n a b a a +=++,数列{}n b 的前n 项和为n S ,求证:13n S <.19.(12分)用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的12,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数()f x . (1)试规定(0)f 的值,并解释其实际意义;(2)试根据假定写出函数()f x 应该满足的条件和具有的性质(至少3条); (3)设21()1f x x=+.现有(0)a a >单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.20.(12分)已知函数()2x f x xe ax a =-+. (1)当12a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围.21.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,椭圆的右焦点F 与抛物线24y x =的焦点重合.(1)求椭圆C 的方程;(2)A ,B 是椭圆的左,右顶点,过点F 且斜率不为0的直线交椭圆C 于点M ,N ,直线AM 与直线4x =交于点P ,记PA ,PF ,BN 的斜率分别为1k ,2k ,3k ,1322k k k +是否为定值?并说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为3x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的方程为ρθ=. (1)求圆C 的参数方程;(2)设圆C 与直线l 交于点A ,B ,求弦长||AB 的长.23.[选修4-5:不等式选讲](10分)已知0m ,函数()2|1||2|f x x x m =--+的最大值为4. (1)求实数m 的值;(2)若实数a ,b ,c 满足2a b c m -+=,求222a b c ++的最小值.2023届呼和浩特市高三年级质量普查调研考试文科数学参考答案及评分标准【选择题&填空题答案速查】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}x A x =>,集合{1,2,3,4}B =,那么集合(A B = )A .{2}B .{1,2}C .{2,3,4}D .{3,4}【解析】{|24}{|2}x A x x x =>=>,{1,2,3,4}B =,{3,4}AB ∴=.故选:D .【评注】本题考查描述法、列举法的定义,以及交集的运算. 2.若(1)1i z -=,则下列说法正确的是( )A .复数zB .1z i =-C .复数z 的虚部为i -D .复数z 在复平面内对应的点在第二象限【评注】本题考查的知识要点:复数的运算,复数的共轭运算,复数的模,复数表示的几何意义,主要考查学生的运算能力和数学思维能力,属于基础题.3.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点(5,)P m -,且12sin 13α=-,则1cos2(sin 2αα-= )A .512B .512-C .125D .125-【解析】因为角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点(5,)P m -,且【评注】本题考查了任意角的三角函数的定义,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.4.已知||2a =,||1b =,(2)()1a b a b +-=,则a 与b 的夹角为( ) A .6π B .4π C .2π D .34π (2)()1a b a b +-=,2221a a b b +-=,||2a =,||1b =,解1a b =,所2,2||||a b a b a b >==,又因为,[0,]a b π<>∈,故a 与b 的夹角为【评注】本题考查向量的数量积的求法,是基本知识的考查. 5.设123a -=,131()2b -=,21log 3c =,则( )A .a c b <<B .c a b <<C .b c a <<D .a b c <<【解析】03a <=【评注】本题考查数值大小的比较,注意中间量的应用,基本知识的考查. 6.数列{}n a 中,如果472n a n =-,则n S 取最大值时,n 等于( ) A .23B .24C .25D .26法一(邻项变号法),145a =>数列{}n a ,结合二次函数的性质可得前23项的和最大【评注】本题主要考查了等差数列的前n 项的和,解题的关键是判断出数列中正数的项.7.已知双曲线22221(0,0)x y a b ab-=>>的右焦点为F ,点A 是其渐近线上的一点,若||AF 的最小值为3a ,则该双曲线的离心率为( )A B .C .3D【解析】由题可知,双曲线渐近线为0bx ay ±=,则右焦点(,0)F c 到渐近线的距离为【评注】本题考查双曲线的简单性质的应用及焦渐距、离心率的求解,考查计算能力.8.小明同学学以致用,欲测量学校教学楼的高度,他采用了如图所示的方式来进行测量,小明同学在运动场上选取相距20米的C ,D 两观测点,且C ,D 与教学楼底部B 在同一水平面上,在C ,D 两观测点处测得教学楼顶部A 的仰角分别为45︒,30︒,并测得120BCD ∠=︒,则教学楼AB 的高度是( )A .20米B .C .米D .25米【评注】本题考查了解三角形、余弦定理的应用问题,也考查了推理能力与计算能力,属中档题. 9.已知函数[]y x =称为高斯函数,其中不超过实数x 的最大整数称为x 的整数部分,记作[]x ,如图,则输出的S 值为( )A .42B .43C .44D .45【解析】当03i <<时,3log 0i =;39i <时,3log 1i =;927i <时,3log 2i =;27i =时,3log 3i =,所以61182345S =⨯+⨯+=.故选:D .【评注】本题考查了程序框图的运行过程与累加求和问题,是基础题. 10.曲线sin 2cos y x x =+在点(,2)π-处的切线方程为( )A .20x y π---=B .2220x y π---=C .2220x y π+-+=D .20x y π+-+=【解析】sin 2cos y x x =+,cos 2sin y x x ∴'=-,∴曲线sin 2cos y x x =+在点(,2)π-处的切线的斜率1k =-, ∴曲线sin 2cos y x x =+在点(,2)π-处的切线的方程2()y x π+=--,即20x y π+-+=.故选:D .【评注】本题主要考查利用导数研究曲线上某点切线方程、直线方程的应用等基础知识,考查运算求解能力,属于基础题.11.已知函数2()23f x x mx m =--,则“2m >”是“()0f x <对[1,3]x ∈恒成立”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件【解析】若()0f x <对[1,3]x ∈恒成立,则(1)240(3)1860f m f m =-<⎧⎨=-<⎩,解得3m >,2m >不能推出3m >,充分性不成立, 3m >能推出2m >,必要性成立,故“2m >”是“()0f x <对[1,3]x ∈恒成立”的必要不充分条件.故选:C . 【评注】本题主要考查充分条件、必要条件的定义,属于基础题.12.定义在R 上的函数()y f x =的图象关于点3(,0)4-成中心对称,对任意的实数x 都有3()()2f x f x =-+,且(1)1f -=,(0)2f =-,则(1)(2)(3)(2021)f f f f ++++的值为( )A .2B .1C .1-D .2-2(2021)f ++【评注】本题考查函数的周期性与对称性的综合应用,注意分析函数的周期,属于基础题.第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~21题为必考题,每个试题考生都必须作答;第22题~第23题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分,共20分.13.若实数x ,y 满足10101x y x y x -+⎧⎪++⎨⎪⎩,则2z x y =-的最大值是 4 .【解析】由约束条件作出可行域如图,联立110x x y =⎧⎨++=⎩,解得(1,2)A -,由2z x y =-,得2y x z =-,由图可知,当直线2y x z =-过A 时,直线在y 轴上的截距最小,z 有最大值为21(2)4⨯--=.故答案为:4. 【评注】本题考查简单的线性规划,考查数形结合思想,是基础题.14.已知圆C 与圆2210100x y x y +++=相切于原点,且过点(0,4)A -,则圆C 的标准方程为22(2)(2)8x y +++= .【解析】圆C 的标准方程为:222()()x a y b r -+-=,其圆心为(,)C a b ,半径为(0)r r >,【评注】此题考查了直线与圆相交的性质,涉及的知识有圆的标准方程,垂径定理,勾股定理,两圆相切的性质,属于中档题.15.函数()2sin()(0f x x ωϕω=+>,||)2πϕ<的部分图象如图所示,则下列关于()f x 的结论正确的序号为①③④ .①()f x 的最小正周期为π; ②()f x 的图象关于直线6x π=对称;③若1x ,2(,)63x ππ∈-且12()()f x f x =,则12()f x x +=④()f x 的图象向左平移(0)θθ>个单位得到()g x 的图象,若()g x 图象的一个对称中心是(,0)6π,则θ的最小值为6π.【评注】本题考查了三角函数的图象,重点考查了三角函数的性质,属基础题. 16.如图,已知P 是半径为1圆心角为23π的一段圆弧AB 上的一点,若2AC CB =,则PA PC ⋅的取值范围是 [1 .【解析】建立如图所示的平面直角坐标系,203πθ,则1(2PA PC ⋅=-1(cos )(cos 226θ+203πθ,则,即PA PC ⋅的取值范围是,故答案为:【评注】本题考查了平面向量数量积的坐标运算,属基础题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)如图,在梯形ABCD 中,//AB CD ,34BCD π∠=,BD =CD =(1)求sin CBD ∠的值;(2)若ABD ∆的面积为4,求AD 的长.【评注】本题主要考查了正弦定理,余弦定理及和差角公式在求解三角形中的应用,属于中档题.18.(12分)已知数列{}n a 满足112323(1)22(*)n n a a a na n n N ++++⋯+=-⋅+∈. (1)求数列{}n a 的通项公式; (2)设1(1)(1)n n n n a b a a +=++,数列{}n b 的前n 项和为n S ,求证:13n S <.)解:122a a ++2n 时,有223a a ++两式相减得:(1)2na n =-⋅2n , 1n =时,有2=也适合上式,)证明:由(121n =-+11113<+.【评注】本题主要考查数列通项公式的求法及裂项相消法在数列求和及不等式证明中的应用,属于中档题. 19.(12分)用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的12,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数()f x . (1)试规定(0)f 的值,并解释其实际意义;(2)试根据假定写出函数()f x 应该满足的条件和具有的性质(至少3条); (3)设21()1f x x =+.现有(0)a a >单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.)1x .设仅清洗一次,222((1)(a a a =+洗方法具有相同的效果;当【评注】本小题主要考查函数模型的选择与应用、不等式的解示及比较法比较大小等,属于基础题.考查根据实际问题建立数学模型,以及运用函数的知识解决实际问题的能力.20.(12分)已知函数()2x f x xe ax a =-+. (1)当12a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围. 上单调递增,)(1,)+∞.【评注】本题考查了函数的单调性、最值问题,隐零点的虚设与代换,考查导数的应用,属于难题.21.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,椭圆的右焦点F与抛物线24y x =的焦点重合.(1)求椭圆C 的方程;(2)A ,B 是椭圆的左,右顶点,过点F 且斜率不为0的直线交椭圆C 于点M ,N ,直线AM 与直线4x =交于点P ,记PA ,PF ,BN 的斜率分别为1k ,2k ,3k ,1322k k k +是否为定值?并说明理由.【评注】本题考查求椭圆的方程及椭圆的性质的应用,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,直线l的参数方程为3xy⎧=⎪⎪⎨⎪=⎪⎩(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρθ=.(1)求圆C的参数方程;(2)设圆C与直线l交于点A,B,求弦长||AB的长.【评注】本题考查极坐标方程与直角坐标方程的转化方法,直线的参数方程的几何意义等,重点考查学生对基础概念的理解和计算能力,属于中档题.23.[选修4-5:不等式选讲](10分)已知0m,函数()2|1||2|f x x x m=--+的最大值为4.(1)求实数m的值;(2)若实数a,b,c满足2a b c m-+=,求222a b c++的最小值.||(22)x-m,()|2|f x m∴+=()2maxf x m∴=,又(f x(2)根据柯西不等式得:](2a b-+,2a b-+223c,当121a b c==-,即13a=,时取等号,22a b∴+的最小值为【评注】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.。

重庆市2014—2015学年高三文科数学小题训练(20套)(含答案)

重庆市2014—2015学年高三文科数学小题训练(20套)(含答案)

重庆市高三文科数学小题训练(1)一、选择题(每题5分,共50分)1.已知sinα=45,并且α是第二象限的角,那么tanα的值等于()A.–43B.–34C.34D.432.已知函数f (x)在区间[a,b]上单调,且f (a)•f (b)<0,则方程f (x)=0在区间[a,b]内()A.至少有一实根B.至多有一实根C.没有实根D.必有惟一实根3.已知A={x |52x-< -1},若C A B={x | x+4 < -x},则集合B=()A.{x |-2≤x < 3} B.{x |-2 < x≤3}C.{x |-2 < x < 3} D.{x |-2≤x≤3}4.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为()A.2,B.,2 C.4,2 D.25.若右图中的直线l1, l2, l3的斜率为k1, k2, k3 则()A.k1< k2 < k3B.k3< k1 < k2C.k2< k1 < k3D.k3< k2 < k16.函数y=log2|x+1|的图象是()A.B.C.D.7.程序框图如下:如果上述程序运行的结果为S=132,那么判断框中应填入()A.10?k≤B.10?k≥C.11?k≤D.11?k≥8.若平面向量a=(1 , -2)与b的夹角是180º,且| b b等于()A.(-3 , 6) B.(3 , -6) C.(6 , -3) D.(-6 , 3)9.已知点A(1, -2, 11),B(4, 2, 3),C(6, -1, 4),则△ABC的形状是()A.直角三角形B.正三角形C.等腰三角形D.等腰直角三角形10.如果数据x1、x2、…、x n的平均值为x,方差为S2,则3x1+5、3x2+5、…、3x n+5 的平均值和方差分别为()A.x和S2B.3x+5和9S2C.3x+5和S2D.3x+5和9S2+30S+25二、填空题(每题5分,共20分)11.若双曲线的渐近线方程为3y x=±,一个焦点是,则双曲线的方程是_ _.12.曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为_ _.13.(选做)如图在杨辉三角中从上往下数共有n行,在这些数中非1的数字之和为_ _.11 11 2 11 3 3 11 4 6 4 114.过原点且倾斜角为60的直线被圆2240x y y+-=所截的弦长为_________15.(选做)设函数()f x的定义域为D,如果对于任意的1x D∈,存在唯一的2x D∈,使12()()2f x f xc+=(c为常数)成立,则称函数()f x在D上的均值为c给出下列四个函数:1)3y x=;(2)4siny x=;(3)lgy x=;(4)2xy=,则满足在其定义域上均值为2的函数的序号是_________三、解答题(本题13分)16.数列{}n a满足121,2a a==,且*21()2n nna aa n N+++=∈(1)求{}na的通项公式;(2)数列{}nb满足*)nb n N=∈,求数列{}nb的前n项和nS 主视图俯视图左视图l1重庆市高三文科数学小题训练(2)一、选择题(每题5分,共50分)1.已知集合22{|4},{|230}M x x N x x x =<=--<,则集合MN =( )A .{|2x x <-}B .{|3x x >}C .{|12x x -<<}D .{|23x x <<}2. 要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A .5个B .10个C .20个D .45个3.“1sin 2A =”是“A =30º”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.复数11z i =-的共轭复数是( )A .1122i +B .1122i - C .1i - D .1i +5.一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是( ) A .异面 B. 相交 C. 平行 D. 不确定 6.函数cos2sin cos y x x x =+的最小正周期T =( ) A .π B .2π C .2πD .4π7.设向量a 和b 的长度分别为4和3,夹角为60°,则|a +b |的值为( ) A .37B .13C D8.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .49.面积为S 的△ABC ,D 是BC 的中点,向△ABC 内部投一点,那么点落在△ABD 内的概率为( )A .13B .12C .14D .1610.给出下面的程序框图,那么,输出的数是( )A .2450B .2550C .5050D .4900二、填空题(每题5分,共20分)11.函数212log (2)y x x =-的定义域是 ,单调递减区间是___________.12.过原点作曲线x y e =的切线,则切点的坐标为 ,切线的斜率为 .13.(选做)已知等差数列有一性质:若{}n a 是等差数列,则通项为12nn a a b n+=的数列{}n b 也是等差数列,类似上述命题,相应的等比数列有性质:若{}n a 是等比数列(0)n a >,则通项为n b =____________的数列{}n b 也是等比数列.14.已知:z =2,x y -式中变量,x y 满足的束条件,1,2y x x y x ≤⎧⎪+≥⎨⎪≤⎩则z 的最大值为____15.(选做)已知向量(,sin )a cosx x =,(cos ,sin )b y y =,若76y x π=+,则向量a 与()a b +的 夹角等于_____三、解答题(本题13分) 16.已知tan2α=2,求:(1)tan(4πα+的值; (2)6sin cos 3sin 2cos αααα+-的值.重庆市高三文科数学小题训练(3)一、选择题(每题5分,共50分)1.设集合{|1A x =-≤x ≤2},B ={x |0≤x ≤4},则A ∩B =( )A .[0,2]B .[1,2]C .[0,4]D .[1,4]2.计算31ii-=+( )A .1+2iB . 1–2iC .2+iD .2–i3.如果点P (sin cos ,2cos )θθθ位于第三象限,那么角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.原命题:“设a 、b 、c R ∈,若22ac bc >则a b >”的逆命题、否命题、逆否命题真命题共有( )A .0个B .1个C .2个D .3个 5.已知平面向量(21,3),(2,)a m b m =+=,且a ∥b ,则实数m 的值等于( )A .2或32-B .32 C .2-或32 D .27-6.等差数列{}n a 中,10120S = ,那么29a a +的值是( )A . 12B . 24C .16D . 48 7.如图,该程序运行后输出的结果为( ) A .36 B .56 C .55 D .458.如果椭圆221169x y +=上一点P 到它的右焦点是3, 那么点P 到左焦点的距离为( )A .5B .1C .15D .89.某次考试,班长算出了全班40人数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么M :N 为( )A .40:41B .41:40C .2D .110.(选做)设奇函数f (x )在[]1,1-上是增函数,且1)1(-=-f .若函数,f (x )≤122+-at t 对所有的x ∈[]1,1-都成立,则当a ∈[]1,1-时,t 的取值范围是( )A .一2≤t ≤2B . 12-≤t ≤12C .t ≤一2或t = 0或t ≥2D .t ≤12-或t=0或t ≥12二、填空题(每题5分,共20分)11.规定记号“⊗”表示一种运算,即2(,)a b ab a b a b ⊗=++为正实数,若13k ⊗=,则k 的值为 . 12.过曲线32y x x =+上一点(1,3)的切线方程是___________13.设a ,b ,c 是空间的三条直线,下面给出四个命题: ①若a b ⊥,b c ⊥,则//a c ;②若a 、b 是异面直线,b 、c 是异面直线,则a 、c 也是异面直线;③若a 和b 相交,b 和c 相交,则a 和c 也相交;④若a 和b 共面,b 和c 共面,则a 和c 也共面. 其中真命题的个数是________个.14.圆C 的方程为 1)1(22=+-y x ,设O 为坐标原点,点00()M x y ,在C 上运动,点()P x y ,是线段OM 的中点,则点P 的轨迹方程为 . 15.(选做)定义一种运算“*”,对于正整数n 满足以下运算性质:(1)1*1=1,(2)(n +1)*1=3(n *1),则n *1用含n 的代数式表示是 三、解答题(本题13分)16.已知(sin ,3cos )a x x =,(cos ,cos )b x x =,()f x a b =⋅. (1)若a b ⊥,求x 的解集;(2)求()f x 的周期及增区间.重庆市高三文科数学小题训练(4)一、选择题(每题5分,共50分)1. 已知复数12z i =+,21z i =-,则在12z z z =⋅复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是( )A .13B .16 C .23 D .123.已知命题tan 1p x R x ∃∈=:,使,命题2320q x x -+<:的解集是{|12}x x <<,下列结论:①命题“p q ∧”是真命题; ②命题“p q ∧⌝”是假命题;③命题“p q ⌝∨”是真命题; ④命题“p q ⌝∨⌝”是假命题其中正确的是( )A .②③B .①②④C .①③④D .①②③④4.已知tan 2θ=,则sin()cos()2sin()sin()2πθπθπθπθ+--=---( ) A .2B .-2C .0D .235.1lg 0x x -=有解的区域是( )A .(0,1]B .(1,10]C .(10,100]D .(100,)+∞6.已知向量(12)a =,,(4)b x =,,若向量a b ∥,则x =( )A .12-B .12C .2-D .2 7.已知两点(2,0),(0,2)A B -,点C 是圆2220x y x +-=上任意一点,则ABC ∆面积的最小值是( )A.3-B.3+C.3-D8.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )A .1B .12C .13D .169.设函数()f x 的定义域为R,且对,,x y R ∈恒有()()(),f xy f x f y =+若()83,f f==则( )A.12-B.1C.12D.1410.已知抛物线28y x =,过点(2,0)A )作倾斜角为3π的直线l ,若l 与抛物线交于B 、C 两点,弦BC 的中点P到y 轴的距离为( ) A .103B .163C .323D.二、填空题(每题5分,共20分)11.在约束条件012210x y x y >⎧⎪≤⎨⎪-+≤⎩下,目标函数2S x y =+的最大值为_________.12.已知集合{}123A =,,,使{}123AB =,,的集合B 的个数是_________.13.(选做)在ABC ∆中,若,,AB AC AC b BC a ⊥==,则ABC ∆的外接圆半径r =,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R =_______.14.已知点P 是椭圆2214x y +=上的在第一象限内的点,又(2,0)A 、(0,1)B ,O 是原点,则四边形OAPB 的面积的最大值是_________.15.(选做)设函数()f x 的定义域为R.若存在与x 无关的正常数M ,使()f x ≤M x 对一切实数x 均成立,则称()f x 为有界泛函.在函数2()2,(),()2,()sin x f x x g x x h x v x x x ====中,属于有界泛函的有 三、解答题(本题13分)16.已知32()31f x ax x x =+-+,a R ∈. (1)当3a =-时,求证:()f x 在R 上是减函数;(2)如果对x R ∀∈不等式()4f x x '≤恒成立,求实数a 的取值范围.左视图主视图重庆市高三文科数学小题训练(5)一、选择题(每题5分,共50分)1.已知21{|log ,1},{|(),1}2x A y y x x B y y x ==<==>,则A B =( )A .φB .(,0-∞)C .1(0,)2D .(1,2-∞)2.3(1)(2)i i i --+=( )A .3i +B .3i --C .3i -+D .3i -3.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是( ) A .15B .30C .31D .644.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( )A .75°B .60°C .45°D .30°5.已知平面上三点A 、B 、C 满足3AB =,4BC =,5CA =,则AB BC BC CA CA AB ⋅+⋅+⋅的值等于( )A .25B .24C .25-D .24-6.点P 在曲线323y x x =-+上移动,在点P 处的切线的倾斜角为α,则α的取值范围是( ) A .[0,)2π B .3[0,)[,)24πππ C .3[,)4ππ D .3[0,)(,]224πππ7.在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.若函数f(x)=x 2+bx+c 的图象的顶点在第四象限,则函数f /(x)的图象是( )A .B .C .D .9.(选做)已知函数y =f (x ),x ∈{}3,2,1,y ∈{}1,0,1-,满足条件f (3)=f (1)+f (2)的映射的个数是( ) A .2 B .4 C .6 D .710.椭圆221ax by +=与直线1y x =-交于A 、B 两点,过原点与线段AB ab值为() ABCD 二、填空题(每题5分,共20分)11 .A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程为12.调查某单位职工健康状况,其青年人数为300,中年人数为150,老年人数为100,现考虑采用分层抽样,抽取容量为22的样本,则青年、中年、老年各层中应抽取的个体数分别为_____________13.在条件02021x y x y ≤≤⎧⎪≤≤⎨⎪-≥⎩下, 22(1)(1)Z x y =-+-的取值范围是 .14.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b]上的面积,已知函数y =sinn x 在[0,nπ]上的面积为2n (n ∈N * ),则y =sin3x 在[0,23π]上的面积为 15.(选做)已知a y a y a a x 3|2|,10=-=≠>与函数且的图象有两个交点,则a 的取值范围是 三、解答题(本题13分)16.已知函数f (x )=2a cos 2x +b sin x cos x ,且f (0)=2,f(3π)=12. (1)求f (x )的最大值与最小值;(2)若Z k k ∈≠-,πβα,且)()(βαf f =,求)tan(βα+的值.重庆市高三文科数学小题训练(6)一、选择题(每题5分,共50分)1.化简31ii-=+( )A .1+2iB .12i -C .2+iD .2i - 2.若110a b<<,则下列结论不正确...的是( ) A .22a b < B .2ab b < C .2b aa b+> D .a b a b -=-3.已知直线a 、b 和平面M ,则//a b 的一个必要不充分条件是( ) A .////a M b M , B .a M b M ⊥⊥,C . //a M b M ⊂,D .a b 、与平面M 成等角 4.下列四个个命题,其中正确的命题是( ) A .函数y =tan x 在其定义域内是增函数 B .函数y =|sin(2x +3π)|的最小正周期是πC .函数y =cos x 在每个区间[72,24k k ππππ++](Z k ∈)上是增函数D .函数y =tan(x +4π)是奇函数5.已知等比数列{}n a 的前n 项和为1136n n S x -=⋅-,则x 的值为( ) A .13B . 13-C .12D .12-6.已知()f x 定义在(,0)-∞上是减函数,且(1)(3)f m f m -<-,则m 的取值范围是( )A .m <2B .0<m <1C .0<m <2D .1<m <27.将直线0x +=绕原点按顺时针方向旋转30︒,所得直线与圆22(2)3x y -+=的位置关系是( )A .直线与圆相切B .直线与圆相交但不过圆心C .直线与圆相离D .直线过圆心8.与直线41y x =-平行的曲线32y x x =+-的切线方程是( )A .40x y -=B .440x y --=或420x y --=C .420x y --=D .40x y -=或440x y --=9.一组数据8,12,x ,11,9的平均数是10,则这样数据的方差是( )A .2 BC .D10.(选做)椭圆M :2222x y a b+=1 (a >b >0) 的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且12PF PF ⋅ 的最大值的取值范围是[2c 2,3c2],其中c =. 则椭圆M 的离心率e 的取值范围是( )A.B .[C .D .11[,)32二、填空题(每题5分,共20分) 11. 已知单位向量i 和j 的夹角为60º,那么 (2j -i )•i = .12.圆心在)3,2(-点,且被直线0832=-+y x 截得的弦长为34的圆的标准方程为13.设(,)P x y 是下图中四边形内的点或四边形边界上的点(即x 、y 满足的约束条件), 则2z x y =+的最大值是__________.14.棱长为1 cm 的小正方体组成如图所示的几何体, 那么这个几何体的表面积是 2cm .15.(选做)已知目标函数y x z +=在线性约束条件⎪⎩⎪⎨⎧≤≤-≤-+a y y x y x 0203下,取得最大值时的最优解有且只有一个,则实数a 的取值范围是 三、解答题(本题13分)16.小明、小华用4张扑克牌(分别是黑桃2、黑桃4,黑桃5、梅花5)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回,各抽一张. (1)若小明恰好抽到黑桃4;①请绘制出这种情况的树状图;②求小华抽出的牌的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之,则小明负,你认为这个游戏是否公平,说明你的理由.重庆市高三文科数学小题训练(7)一、选择题(每题5分,共50分)1.设集合A={x | x},a =3,那么( )A .a AB .a ∉AC .{a }∈AD .{a } A 2.向量a = (1,2),b = (x ,1),c = a + b ,d = a - b ,若c //d ,则实数x 的值等于( )A .12 B .12- C .16 D .16- 3. 方程lg 30x x +-=的根所在的区间是( ).A .(1,2)B .(2,3)C .(3,4)D .(0,1)4.已知2sin cos αα=,则2cos2sin 21cos ααα++的值是( )A .3B .6C .12D .325.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( )A .810B .840C .870D .900x1)<的图象的大致形状是() 7.设三棱锥的3个侧面两两互相垂直,且侧棱长均为 )A .48πB .36πC .32πD .12π8.(选做)实数,x y 满足(6)(6)014x y x y x -++-≥⎧⎨≤≤⎩,则yx 的最大值是( )A .52B .7C .5D .8 9.一个盒子中装有标号为1,2,3,4,5的5张标签,随机地选取两张标签,标签的选取是无放回的,两张标签上的数字为相邻整数的概率( )A .25 B .35 C .825 D .92510.设动点A , B (不重合)在椭圆22916144x y +=上,椭圆的中心为O ,且0OA OB ⋅=,则O 到弦AB 的距离OH 等于( )A .203B .154C .125D .415二、填空题(每题5分,共20分) 11.复数21ii-+(i 是虚数单位)的实部为 . 12.某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分. 13.在如下程序框图中,输入0()cos f x x =,则输出的是__________. 14.当xx x xx f x 22sin sin cos cos )(,40-=<<函数时π的最小值是 15.(选做)若向量()()2,3,2,x x x -==,且a ,b 的夹角是钝角,则x 的取值范围是________ 三、解答题(本题13分)16.已知a 和b 都是非零向量,且222a b a b +==. (1)求a 和b 的夹角 (2)求a 和a b -的夹角⊂ ≠⊂ ≠重庆市高三文科数学小题训练(8)一、选择题(每题5分,共50分) 1.2(1)i i -等于( )A . 22i -B .22i +C .2-D .22.如图,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是( )①长方体 ②圆锥 ③三棱锥 ④圆柱 A .④③② B . ②①③ C . ①②③ D . ③②④3.给出下列函数①3y x x =-,②sin cos ,y x x x =+③sin cos ,y x x =④22,x x y -=+其中是偶函数的有( ) A .1个 B .2个 C .3 个 D .4个4.已知等差数列{}n a 的前n 项和为n S ,若4588,10,S a a ==则=( ) A .18 B .36 C .54 D .725.设全集U 是实数集R ,{}2|4M x x >=,{}|13N x x =<<,则图中阴影部分所表示的集合是( )A .{}|21x x -≤<B .{}|22x x -≤≤C .{}|12x x <≤D .{}|2x x <6.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和棋的概率为( ) A .60% B .30% C .10% D .50%7.以线段AB :20(02)x y x +-=≤≤为直径的圆的方程为( ) A .22(1)(1)2x y +++= B .22(1)(1)2x y -+-= C .22(1)(1)8x y +++= D .22(1)(1)8x y -+-= 8.下面程序运行后,输出的值是( )A . 42B . 43C .44D .459. (cos2,sin ),(1,2sin 1),(,)2a b πααααπ==-∈,若2,tan()54a b πα=+=则( )A .13B .27 C .17 D .2310.(选做)台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 二、填空题(每题5分,共20分)11.已知椭圆中心在原点,一个焦点为(F -,且长轴是短轴长的2倍,则该椭圆的标准方程是 .12.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体健康状况,需从他们中抽取一个容量为36的样本,抽取样本的合适方法是 .13.关于函数21()lg (0),x f x x x+=≠有下列命题:①其图像关于y 轴对称;②当x >0时,()f x 是增函数;当x<0时,()f x 是减函数;③()f x 的最小值是lg 2;④当102x x -<<>或时,()f x 是增函数;⑤()f x 无最大值,也无最小值.其中所有正确结论的序号是 . 14.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是15.(选做)已知非零向量AB 和AC 满足()0AB AC BC ABAC+⋅=且12AB AC ABAC⋅=,则ABC ∆的形状为 三、解答题(本题13分)16.某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年总收入为50万元,设使用x 年后数控机床的盈利额为y 万元. (1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值) (3)使用若干年后,对机床的处理方案有两种:(i )当年平均盈利额达到最大值时,以30万元价格处理该机床; (ii )当盈利额达到最大值时,以12万元价格处理该机床。

高三文科数学模拟考试(含答案解析)

高三文科数学模拟考试(含答案解析)

伊川县实验高中2014-2015学年期中模拟考试高三年级数学(文)试卷一、选择题:(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |2x +x -6<0},N ={x |1≤x ≤3},则M ∩N 等于( )A .[2,3]B .[1,2]C .(2,3]D .[1,2) 2.复数z =32ii-++的共轭复数是( ) A .2+i B .2-i C .-1+i D .-1-i 3.直线xcos140°+ysin40°=0的倾斜角是( )A .40°B .50°C .130°D .140°4若sin cos sin cos αααα+-=12,则tan2α=( )A .34-B .34C .43-D .435.阅读右图的程序框图.若输入m =4,n =6,则输出a 、i 分别等于( )A .12,2B .12,3C .24,3D .24,2 6.设a ,b ,c 是空间三条直线,α,β是空间两个平面, 则下列命题中成立的是( ) A .若c ∥α,c ∥β,则α∥β B .若b ⊂α,c ∥α,则b ∥cC .b ⊂α,且c 是a 在α内的射影,若b ⊥c ,则a ⊥bD .当b ⊥α,b ⊥β时,则α⊥β7.设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=12log (1)x -,则函数f (x )在(1,2)上( )A .是增函数,且f (x )<0B .是增函数,且f (x )>0C .是减函数,且f (x )<0D .是减函数,且f (x )>0 8.一空间几何体按比例绘制的三视图如图所示(单位:m )则该几何体的体积(单位:m 3)为( )A .72 B .92 C .73 D .94 9.向量a =(x ,2),b =(4,y ),若a ⊥b ,则39y x+的最小值为( )A .2 D .210.点P 在曲线y =3x -x +2上移动,在点P 处的切线的倾斜角为α,则α的取值范围是( )A .[0,2π] B .[0,2π)∪[4π3,π) C .[4π3,π) D .(2π,4π3]11.设点P 是双曲线2221x a b2y -=(a >0,b >0)与圆222x a b 2+y =+在第一象限的交点,其中F 1,F 2分别是双曲线的左、右焦点,且|PF 1|=2|PF 2|,则双曲线的离心率为( )A 12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边.已知a ,b ,c 成等比数列,且22a c - =ac -bc ,则sin b Bc的值为( )A .2 B .12 C .3 D .3二、填空题(本大题共4小题,每小题5分,共20分)13.在等比数列{n a }中,如果5a 和9a 是一元二次方程2x +7x +9=0的两个根,则4a 7a 10a 的值为_________.14. 在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +=则角A的大小为 _ .15、设椭圆的两个焦点分别为12,F F ,过2F 作椭圆长轴的垂线交椭圆于一点P ,若12F PF ∆为等腰三角形,则该椭圆的离心率是________.P16.若点 P (x ,y为坐标原点,则OA OP ⋅的最大值_______三、解答题(本大题共6小题。

高三文科数学试卷(含答案)经典题

高三文科数学试卷(含答案)经典题

高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是反函数图像上的点是A .(2)aa , B .1(2)2-,C .(2)a a ,D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为右图为某几何体三视图,按图中所给数据,该几何体的体积为A .64+163B . 16+334C .163D . 16 4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为项和为21,则=++543a a a ( )A .33 B .72 C .84 D .189 5. 将函数)32sin(p+=x y 的图像向右平移12p=x 个单位后所得的图像的一个对称轴是:个单位后所得的图像的一个对称轴是:A. 6p=x B. 4p=x C. 3p=x D. 2p=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆落在圆1022=+y x 内(含边界)的概率为内(含边界)的概率为A .61 B .41 C .92D .3677.下列有关命题的说法正确的是.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件”的充分不必要条件 B .“2=x ”是“0652=+-x x ”的必要不充分条件.”的必要不充分条件. C .命题“x R $Î,使得210x x ++<”的否定是:“x R "Î, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.”的逆否命题为真命题.P T O ,m)三点共线, 则m的值为 ..程序框图(即算法流程图)如图所示,其输出结果是 . a b b a a b 2的值为 .p所得的弦长为所得的弦长为. pp .开始开始 a =1 a =3a +1 a >100? 结束结束是否a =a +1 输出a33]3型号型号 甲样式甲样式 乙样式乙样式 丙样式丙样式 500ml2000 z 3000 700ml3000 4500 5000 A B C 2a0AF F F 13OF QN MQ a b a 21n +722p)ppp3122p]1 333222,0),(2,0),2a a --22,a 2)2a a a -22a -22a -222123a a -- QN MQ )33x x-1a£ïíïx=>上恒成立,0x >\只要24aa ì£ïí解:(1)由121n n na a a +=+得:1112n na a +-=且111a=,所以知:数列1n a ìüíýîþ是以1为首项,以2为公差的等差数列,为公差的等差数列, …………2分所以所以1112(1)21,21n nn n a a n =+-=-=-得:; ------------4分(2)由211n n b a =+得:212112,n n n n b b n=-+=\= , 从而:11(1)n n b b n n +=+ ------------6分则 122311111223(1)n n n T b b b b b b n n +=+++=+++´´+=11111111()()()()1223341n n -+-+-++-+ 1111nn n =-=++ ------------9分(3)已知)1()1)(1)(1(12531-++++=n nb b b b P 246213521n n =····- 22212(4)(4)1,221n nn n n n +<-\<- 设:nn T n 2124523+´´´= ,则n n T P >从而:nn n n T P P n n n 2121223423122+´-´´´´=> 21n =+故:故: 21n T n >+ ------------14分。

(完整版)高三文科数学试题

(完整版)高三文科数学试题

高三文科数学试题(考试时间为120 分钟,共150 分)第Ⅰ卷一、选择题:本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.1. 已知会集M x ( x 2)(x 1)0 , N x x 10 ,则 M N =()A .(1,2)B.(11), C .(2,1) D .(2, 1)2..复数5i()2i1A .2 iB .1 2i C.2 i D .1 2i3. 在独立性检验中,统计量K 2有两个临界值: 3.841 和 6.635 ;当K2> 3.841 时,有 95%的掌握说明两个事件有关,当K2> 6.635时,有 99% 的掌握说明两个事件有关,当K 2 3.841时,认为两个事件没关 .在一项打鼾与患心脏病的检查中,共检查了2000 人,经计算的 K 2=20.87,依照这一数据解析,认为打鼾与患心脏病之间()A .有 95%的掌握认为两者有关B .约有 95% 的打鼾者患心脏病C .有 99%的掌握认为两者有关D .约有 99% 的打鼾者患心脏病4.已知椭圆x2y2F 1、 F2, M 是椭圆上一点, N 是 MF 1的中点,161 的左右焦点分别为12若 ON1,则 MF1的长等于()A 、 2B、 4C、 6 D 、 5x+ y≥05. 在平面直角坐标系中,不等式组x- y+ 4≥0表示的平面地域面积是()x≤19A . 3B . 6C .2D. 96. l 是某 参加 2007 年高考的学 生身高条形 , 从左到右的各 条 形 表 示的 学 生 人 数 依 次A 1 ,、 A 2 、 ⋯ 、 A 10 。

(如 A 2表示身高 ( 位: cm) 在 [150 ,155) 内的学生人数 ) . 2 是 l 中身高在必然范 内学生人数的一个算法流程 . 要 身高在160 ~ 180cm( 含 160cm ,不含 180cm) 的 学生人数,那么在流程 中的判断 框内 填写的条件是A.i<9B.i<8C.i<7D.i<6()7.一个几何体的三 如 所示,其中正 是一个正三角形, 个几何体的 ( )A .外接球的半径3B .表面731331 11C .体3D .外接球的表面 4163正视图 侧视图8.一个球的表面 等于,它的一个截面的半径,球心到 截面的距离( )A .3B .C . 1D . 31俯视图225π 5π9.已知角 α的 上一点的坐sin6 ,cos 6, 角 α的最小正()5π2π5π11πA. 6B. 3C. 3D. 610 . 双曲 x2y 21(a 0, b 0) 的左焦点 F ( c,0)( c 0)作 x 2y 2 a 2 的切a 2b 24 ,切点 E ,延 FE 交双曲 右支于点P ,若 OFOP2OE , 双曲 的离心率()A .2B .10C . 10D . 105211.a1 , 关于 x 的不等式 a( x a)( x1) 0 的解集是 ()a(A) { x | xa ,或 x 1}(B) { x | x a}(C) { x | xa ,或 x 1 }(D) { x | x 1}aaa 12. 已知 a n3( n N * ) , 数列 { a n } 的前 n 和 S n ,即 S na 1 a 2a n ,2n5使 S n0 的 n 的最大()第Ⅱ卷本卷包括必考和考两部分。

高三文科数学试卷带答案

高三文科数学试卷带答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. 3/5C. √9/16D. √2答案:D解析:无理数是不能表示为两个整数比的实数,只有√2是无理数。

2. 函数y=2x+1在定义域内是()A. 增函数B. 减函数C. 奇函数D. 偶函数答案:A解析:函数的斜率为正,所以是增函数。

3. 已知向量a=(2, -3),向量b=(4, 6),则向量a与向量b的夹角是()A. 0°B. 90°C. 180°D. 120°答案:D解析:向量a与向量b的点积为24 + (-3)6 = -12,向量a的模长为√(2^2 + (-3)^2) = √13,向量b的模长为√(4^2 + 6^2) = √52。

点积公式为a·b =|a||b|cosθ,所以cosθ = -12/(√13√52) ≈ -0.5,夹角θ ≈ 120°。

4. 已知函数f(x) = x^2 - 4x + 3,其对称轴是()A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:二次函数的对称轴为x = -b/2a,所以对称轴为x = -(-4)/21 = 2。

5. 已知等差数列{an}的第一项为2,公差为3,则第10项是()A. 25B. 28C. 31D. 34答案:D解析:等差数列的通项公式为an = a1 + (n-1)d,所以第10项为2 + (10-1)3 = 2 + 27 = 29。

6. 若复数z满足|z-1| = |z+1|,则z在复平面上的位置是()A. 实轴B. 虚轴C. 第一象限D. 第二象限答案:A解析:|z-1| = |z+1|表示z到点1和点-1的距离相等,因此z在实轴上。

7. 已知圆C的方程为x^2 + y^2 = 25,点P(3, 4)到圆C的最短距离是()A. 4B. 5C. 6D. 7答案:B解析:圆心到点P的距离为√(3^2 + 4^2) = 5,圆的半径为5,所以最短距离为5 - 5 = 0。

2021年高三数学(文科)高考总复习阶段测试卷(第28周) 含答案

2021年高三数学(文科)高考总复习阶段测试卷(第28周) 含答案

2021年高三数学(文科)高考总复习阶段测试卷(第28周)含答案说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.总分150分,考试时间120分钟.注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、考号、考试科目用2B铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案.3.将第Ⅰ卷选择题的答案涂在答题卡上,第Ⅱ卷每题的答案写在答题纸的指定位置.4.考试结束,将答题纸和答题卡一并交回,答案写在试卷上视为无效答案.参考公式:圆锥表面积公式:(是圆锥底面半径,是母线)圆锥体积公式:(是圆锥底面半径,是高)球体积公式:(R是球的半径)第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合,,则()A.B.C.D.2.命题“存在R,0”的否定是()A.不存在R,>0 B.存在R,0C.对任意的R,0 D.对任意的R,>03.已知:,则的大小关系为()A.B.C.D.4.有一个几何体的三视图及其尺寸如下(单位:cm),则该几何体的体积为:()C.cm3 D.cm3()D.“”的()B.必要不充分条件D.既不充分也不必要条件()A.B.C.D.8.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是()A.B.C.D.9.已知数列是正项等比数列,是等差数列,且,则()A.B.C.D.10.已知向量,,那么= ()A.B.C.D.111.定义两种运算:,,则函数()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数12.已知定义在上的函数满足,且,,有穷数列()的前项和等于, 则n等于()A.4 B.5 C.6 D.7第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上.)13.函数的定义域为____________________.14.已知m>0,n>0,向量,且,则的最小值是 .15.对于函数,在使成立的所有常数中,我们把的最大值-1叫做的下确界,则函数的下确界为 .16.已知中,所对的边长分别为,则下列条件中能推出为锐角三角形的条件是_________. (把正确答案的序号都写在横线上)①. ②.③,. ④.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)设函数,(Ⅰ)不等式的解集为,求的值;(Ⅱ)在(Ⅰ)的条件下,试求不等式的解集.18.(本题满分12分)已知函数.(I)求函数的最小正周期;(II)若不等式在上恒成立,求实数的取值范围.19.(本题满分12分)设数列的前项和为,对,都有成立,(Ⅰ) 求数列的通项公式;(Ⅱ)设数列,试求数列的前项和.20.(本题满分12分)如图,在平面直角坐标系中,点在轴的正半轴上,直线的倾斜角为,,设,.(Ⅰ)用表示;(Ⅱ)若,求的值.21.(本题满分12分)已知数列的各项都为正数,,前项和满足().(Ⅰ)求数列的通项公式;(Ⅱ)令(),数列的前项和为,若对任意正整数都成立,求实数的取值范围.22. (本题满分12分)已知函数().(Ⅰ)若,求在上的最大值;(Ⅱ)若,求的单调区间.参考答案:1.【答案】D【分析】根据集合的含义,把集合具体求出来,再根据集合的运算法则进行计算。

2023年甘肃省高考数学二诊试卷(文科)+答案解析(附后)

2023年甘肃省高考数学二诊试卷(文科)+答案解析(附后)

2023年甘肃省高考数学二诊试卷(文科)1. 复数( )A. B. C. D.2. 已知集合,,则( )A. B. C. D.3. 命题p:已知一条直线a及两个不同的平面,,若,则“”是“”的充分条件;命题q:有两个面相互平行,其余各面均为梯形的多面体是棱台.则下列为真命题的是( )A. B. C. D.4. 函数的图象大致是( )A. B.C. D.5. 已知椭圆的方程为,离心率,则下列选项中不满足条件的为( )A. B. C. D.6. 刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也.”意思是说:把一块长方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的.如图所示的三视图是一个鳖臑的三视图,则其分割前的长方体的体积为( )A. 2B. 4C. 12D. 247. n位校验码是一种由n个“0”或“1”构成的数字传输单元,分为奇校验码和偶校验码,若一个校验码中有奇数个“1”,则称其为奇校验码,如5位校验码“01101”中有3个“1”,该校验码为奇校验码.那么4位校验码中的奇校验码的个数是( )A. 4B. 6C. 8D. 108. 若,则( )A. B. 3 C. D.9. 2022年8月,中科院院士陈发虎带领他的团队开始了第二次青藏高原综合科学考察.在科考期间,陈院士为同行的科研人员讲解专业知识,在空气稀薄的高原上开设了“院士课堂”.已知某地大气压强与海平面大气压强之比为b,b与该地海拔高度单位:米满足关系:为常数,e为自然对数的底若科考队算得A地,海拔8700米的B地,则A地与珠峰峰顶高度差约为( )A. B. C. D.10. 如图所示,边长为2的正三角形ABC中,,,则( )A.B.C. 1D. 211. 过抛物线的焦点F作直线l交抛物线于A,B两点,若以AB为直径的圆经过点,则弦长( )A. 8B. 6C. 5D. 412. 若,则以下不等式成立的是其中e为自然对数的底( )A. B.C. D.13. 为庆祝中国共产党第二十次代表大会胜利闭幕,某高中学校在学生中开展了“学精神,悟思想,谈收获”的二十大精神宣讲主题活动.为了解该校学生参加主题学习活动的具体情况,校团委利用分层抽样的方法从三个年级中抽取了260人进行问卷调查,其中高一、高二年级各抽取了85人.已知该校高三年级共有720名学生,则该校共有学生______ 人.14. 若圆O:过双曲线的实轴顶点,且圆O与直线l:相切,则该双曲线的渐近线方程为______ .15. 已知函数满足:当时,,且对任意都成立,则方程的实根个数是______ .16. 我国古代数学名著《孙子算经》卷下的第26题是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”此题所表达的数学涵义是:一个正整数,被3除余2,被5除余3,被7除余2,这个正整数是多少?这就是举世闻名的“中国剩余定理”.若分别将所有被3除余2的正整数和所有被7除余2的正整数按从小到大的顺序组成数列和,并依次取出数列和的公共项组成数列,则______ ;若数列满足,数列的前n项和为,则______ . 17. 的内角A,B,C的对边分别为a,b,c,,且_____.求的面积;若,求在①,②这两个条件中任选一个,补充在横线中,并解答.注:如果选择多个条件分别解答,按第一个解答计分.18. 某省农科院为支持省政府改善民生,保证冬季蔬菜的市场供应举措,深入开展了反季节蔬菜的相关研究,其中一项是冬季大棚内的昼夜温差与反季节蔬菜种子发芽数个之间的关系,经过一段时间观测,获得了下列一组数据值为观察值:温差89 1 01112发芽数个2324262730在所给坐标系中,根据表中数据绘制散点图,并判断y与x是否具有明显的线性相关关系不需要说明理由;用直线l的方程来拟合这组数据的相关关系,若直线l过散点图中的中间点即点,且使发芽数的每一个观察值与直线l上对应点的纵坐标的差的平方之和最小,求出直线l的方程;用中求出的直线方程预测当温度差为时,蔬菜种子发芽的个数.19. 已知四棱锥中,底面ABCD为平行四边形,底面ABCD,若,,E,F分别为,的重心.求证:平面PBC;当时,求E到平面PCD的距离.20. 已知椭圆C:的长轴长为4,A,B是其左、右顶点,M是椭圆上异于A,B的动点,且求椭圆C的方程;若P为直线上一点,PA,PB分别与椭圆交于C,D两点.①证明:直线CD过椭圆右焦点;②椭圆的左焦点为,求的周长是否为定值,若是,求出该定值,若不是,请说明理由.21. 已知函数当时,求的零点个数;设函数,讨论的单调性.22. 在平面直角坐标系中xOy,曲线的参数方程为:为参数,且,P为曲线上任意一点,若将点P绕坐标原点顺时针旋转得到点Q,点Q的轨迹为曲线以原点O为极点,x轴非负半轴为极轴建立极坐标系,求曲线的极坐标方程;已知点,直线与曲线交于A,B两点,求的值.23. 已知求不等式的解集;若,且,恒成立,求m的最大值.答案和解析1.【答案】B【解析】解:复数,故选利用两个复数代数形式的乘法法则,虚数单位i的幂运算性质,求得结果.本题主要考查两个复数代数形式的乘法法则,虚数单位i的幂运算性质,属于基础题.2.【答案】D【解析】解:集合,,则故选:求出集合A,利用交集定义能求出本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3.【答案】B【解析】解:对于命题p,若,,则由面面垂直的判定定理可得,所以“”是“”的充分条件,故命题p为真命题,对于命题q,由棱台的定义可知,棱台各个侧棱的延长线交于一定,故命题q为假命题,所以为假命题,为真命题,为假命题,为假命题.故选:先判断命题p,q的真假,再利用复合命题真假判断方法,逐个分析各个选项即可.本题主要考查了面面垂直的判定定理,考查了复合命题的真假判断,属于基础题.4.【答案】D【解析】解:函数,恒成立,排除选项B、C;当,并且时,,排除选项A;故选:利用函数的值域,排除选项,结合x的取值,判断y的值,即可推出函数的图象.本题考查函数图象的判断,函数的值域,是判断函数的图象的常用方法,是基础题.5.【答案】C【解析】解:由,可得,,,故离心率,故A正确;由,可得,,,故离心率,故B正确;由,可得,,,故离心率,故C不正确;由,可得,可得,,,故离心率,故D正确.故选:根据椭圆的几何性质,求解即可判断每个选项的正确性.本题考查椭圆的离心率,属基础题.6.【答案】D【解析】解:由题意可知三视图的直观图是,并且,,,所以长方体的体积为:故选:利用三视图的数据,判断长方体的棱长,然后求解长方体的体积即可.本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键,是基础题.7.【答案】C【解析】解:根据题意,4位校验码中的奇校验码,即一个4位校验码中有奇数个“1”,若其中有1个“1”,有种情况,若其中有3个“1”,有种情况,则4位校验码中的奇校验码的个数是故选:根据题意,按“1”的个数分2种情况讨论,由加法原理计算可得答案.本题考查排列组合的应用,涉及分类计数原理的应用,属于基础题.8.【答案】C【解析】解:,故选:利用两角和差的余弦公式展开,再利用同角关系即可得.本题考查三角函数的求值,考查两角和差公式,同角关系,属于基础题.9.【答案】B【解析】解:设A地海拔高度为,珠峰峰顶处海拔高度为,由已知得,,所以,即,依题意得,,所以故选:设A地海拔高度为,珠峰峰顶处海拔高度为,由题意可得,再利用指数幂的运算性质求出的值即可.本题主要考查了函数的实际应用,考查了指数幂的运算性质,属于基础题.10.【答案】D【解析】解:,则,,,故选:根据已知提条件,结合向量的线性运算,以及平面向量的数量积公式,即可求解.本题主要考查平面向量的数量积运算,考查转化能力,属于中档题.11.【答案】A【解析】解:已知抛物线方程为,则抛物线的焦点为,过抛物线的焦点F作直线l交抛物线于A,B两点,不妨设直线AB的方程为,联立,消x可得,设,,则,,又以AB为直径的圆经过点,则,即,即,即,即,则,即,所以弦长故选:由抛物线的性质,结合直线与抛物线的位置关系求解即可.本题考查了抛物线的性质,重点考查了直线与抛物线的位置关系,属中档题.12.【答案】A【解析】解:因为,所以,令,则,当时,,单调递增,所以,故,A正确,所以,B错误;由可得,C错误;,D错误.故选:由题意得,令,对其求导,结合导数分析函数单调性,再由单调性即可比较函数值大小.本题主要考查了导数与单调性关系在不等式大小比较中的应用,属于中档题.13.【答案】2080【解析】解:由题意可得抽取的高三年级总人数为人,设该校共有x个学生,则抽取比例为,所以,解得人.故答案为:先求出高三年级抽取的人数,然后设该校总人数为x,利用分层抽样的性质建立方程即可求解.本题考查了分层抽样的性质,属于基础题.14.【答案】【解析】解:圆O:的圆心,半径为,因为圆O:过双曲线的实轴顶点,所以,又圆O与直线l:相切,所以,则,所以双曲线的渐近线方程为故答案为:由题可知,利用圆心O到直线的距离等于半径可得b的值,从而可得双曲线的渐近线方程.本题主要考查了双曲线的性质,直线与圆的位置关系,属于基础题.15.【答案】6【解析】解:由于,则函数的周期为4,又当时,,则可作出函数的大致图象如下,由,可得,由图象可知,当时,函数与函数仅有3个交点,由对称性可知,当时,函数与函数也仅有3个交点,所以方程有6个不同的实数根,即方程的实根个数是故答案为:易知函数的周期4,方程的实根个数即为函数与函数的交点个数,作出函数图象,结合图象即可得出答案.本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.16.【答案】【解析】解:由题意可得,,不妨令,则,即,即为7的倍数,即,,即公共项数列为,,,…,则;又,则,则故答案为:;由等差数列的通项公式的求法,结合裂项求和法求解即可.本题考查了等差数列的通项公式的求法,重点考查了裂项求和法,属中档题.17.【答案】解:若选①:,由余弦定理可得,所以,又,所以,可得,所以的面积;若,,由正弦定理为三角形ABC外接圆半径,可得,可得,可得,所以若选②:,由题意可得,又,所以,可得,所以的面积;若,,由正弦定理为三角形ABC外接圆半径,可得,可得,可得,所以【解析】若选①:由题意利用余弦定理可得,利用同角三角函数基本关系式可求的值,可得,利用三角形的面积公式即可求解;由题意利用正弦定理,进而可求b的值.若选②:利用平面向量数量积的运算可求得,利用同角三角函数基本关系式可求的值,可得,利用三角形的面积公式即可求解;由题意利用正弦定理,进而可求b的值.本题考查了余弦定理,同角三角函数基本关系式,三角形的面积公式,正弦定理,平面向量数量积的运算在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:作出数据分布的散点图,如图所示,由散点图知五个点明显分布在某条直线的附近,因此由散点图可以判断y与x有明显的线性相关关系;设直线l的方程为,即,则五个x值对应的直线上的纵坐标分别为,,26,,,若设观察值与纵坐标差的平方和为D,则,所以当时D取最小值,此时直线l的方程为;由直线l的方程为,令,可得个,所以可预测当温度差为时,蔬菜种子发芽的个数约为【解析】作出数据分布的散点图,根据散点图知五个点明显分布在某条直线的附近,即可得到结论;设直线l的方程,求得纵坐标分别为,,26,,,利用方差的公式,结合二次函数的性质,求得k的值,即可求解;由直线l的方程为,令,求得y的值,即可得到预测结果.本题考查了散点图和回归方程的计算,属于中档题.19.【答案】解:证明:延长PE交AB于M,延长PF交CD于N,,F分别为,的重心,,N分别为AB,CD的中点,且,又底面ABCD为平行四边形,,又平面PBC,平面PBC,平面PBC;设E到平面PCD的距离为,M到平面PCD的距离,由可知且,则,由题意可得:,平面PCD,平面PCD,平面PCD,在棱AB上,到平面PCD的距离等于A到平面PCD的距离,底面ABCD,底面ABCD,,又,,PA,平面PAD,平面PAD,且平面PAD,,由题意知:,,,,,在等腰中,可得,,对于三棱锥的体积可得:,则,解得,到平面PCD的距离为【解析】延长PE交AB于M,延长PF交CD于N,根据等分点与三角形底边平行关系先证明线线平行,再证明线面平行;因为,设E到平面PCD的距离为,M到平面PCD的距离,则,然后利用等体积法求出即可.本题考查线面平行的证明,考查点到面的距离的求法,属中档题.20.【答案】解:由已知得:,,,设,因为M在椭圆上,所以①,因为,将①式代入,得,得,所以椭圆;①证明:设,则,同理可得,联立方程,得,则,同理联立方程,可得,则,又椭圆的右焦点为,所以,因为,说明C,D,三点共线,即直线CD恒过点;周长为定值,因为直线CD恒过点,根据椭圆的定义,所以的周长为【解析】由题意可得,,,设,可得,进而根据题意即可求解;①设,联立直线和椭圆方程,求得,进而得到,再根据向量共线的定义即可得证;②根据椭圆的定义即可求解.本题考查了直线与椭圆的综合应用,属于中档题.21.【答案】解:当时,,则,当,,函数在上单调递减;当,,函数在上单调递增,所以,又,,所以存在,,使得,即的零点个数为函数,定义域为,,当时,,函数在上单调递增;当时,令,由于,①当时,,,函数在单调递减;②当时,,,,函数在上单调递减;③当时,,设,是方程的两个根,且,则,,由,当时,,,函数在上单调递减;当时,,,函数在上单调递增;当时,,,函数在上单调递减,综上所述:当时,函数在上单调递增;当时,函数在上单调递减;当时,函数在,上单调递减,在上单调递增.【解析】求导得到单调区间,计算,确定,,得到零点个数;求导得到导函数,考虑和两种情况,设,根据二次函数根的分布得到函数的单调区间,分类讨论计算得到答案.本题考查了利用导数解决函数的零点问题,求函数的单调区间,意在考查学生的计算能力,转化能力和综合应用能力,其中分类讨论的思想是解题的关键,分类讨论的方法是常考的方法,需要熟练掌握.22.【答案】解:曲线的参数方程为:为参数,且,可知曲线是以为圆心,2为半径的圆在x轴即上方的部分.转换为极坐标方程为,;P 为曲线上任意一点,若将点P绕坐标原点顺时针旋转得到点Q,设点,则,代入曲线,得到;故曲线的极坐标方程为,曲线的极坐标方程为,,转换为直角坐标方程为,已知点,直线经过点F,所以直线的参数方程为为参数,代入,得到,所以,,故【解析】直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换;利用一元二次方程根和系数关系求出结果.本题考查的知识要点:参数方程,极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系,主要考查学生的理解能力和计算能力,属于中档题.23.【答案】解:因为,时,不等式可化为,解得,此时;时,不等式可化为,解得,此时;时,不等式可化为,解得,此时;所以不等式的解集是;因为,且,所以,即,所以,所以,又,所以m的最大值是【解析】利用分段讨论法去掉绝对值,再求不等式的解集;由题意求得,求出的最小值,即可求出m的取值范围,求得m的最大值.本题考查了含有绝对值的不等式解法与应用问题,是中档题.。

高三数学(文科)试题

高三数学(文科)试题

2010年高考仿真模拟高三数学试题(文科) 2010.5本试卷共4页,分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.(特别强调:为方便本次阅卷,每位考生在认真填涂 “数学”答题卡的前提下,再将Ⅰ卷选择题答案重涂在另一答题卡上.)如需改动,用橡皮擦干净后,再改涂在其它答案标号.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合P ={1,2,3,4},集合Q ={3,4,5} ,全集U =R ,则集合P u Q ð=A. {1,2}B. {3,4}C. {1}D. {-2,-1,0,1,2} 2.已知x ,y ∈R ,i 为虚数单位,且(1)2x i y i --=+,则(1)x y i -+的值为 A.4- B. 4 C. 1- D. 13. 如图表示甲、乙两名篮球运动员的每场比赛得分情况的茎叶图,则甲得分的众数与乙得分的中位数之和为A. 57B. 58C.39D.40 4. 已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①α∥β⇒l ⊥m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥β 其中正确命题的序号是A. ①②③B. ②③④C. ①③D. ②④5. 已知1()x f x a =,2()af x x =,3()log a f x x =,(0a >且1a ≠),在同一坐标系中画出其中两个函数在第Ⅰ象限的图象,正确的是A B C D6. 一等腰三角形的周长是底边长的5倍,那么顶角的余弦值为 A.518B.34C.2D.787.函数 1 (30)82sin() (0)3kx x y x x πωφ+-<⎧⎪=⎨+⎪⎩≤≤≤的图象如图,则A.11,,326k πωφ===B.11,,323k πωφ===C.1,2,36k πωφ=-==D. 3,2,3k πωφ=-==8.如图所示是以建筑物的三视图,现需将其外壁用油漆刷一遍,若每平方米用漆0.2k g ,则共需油漆大约公斤数为(尺寸如图所示,单位:米 π取3)A. 20B. 22.2 C . 111 D. 110 9. 抛物线212y x =-的准线与双曲线22193xy-=的两渐近线围成的三角形的面积为A.B. C. 2D.10. 已知a .b ∈R ,那么 “122<+b a ” 是“ ab +1>a +b ”的A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件 11. 在圆x y x 522=+内,过点(25,23)有n 条弦的长度成等差数列,最小弦长为数列的首项1a ,最大弦长为n a ,若公差为d ∈[61,31],那么n 的取值集合为A. {4,5,6,7}B. {4,5,6}C. {3,4,5,6}D. { 3.4.5,6,7} 12. 设x , y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z =ax +by (a .>0,b >0),最大值为12,则b a 32+的最小值为A.724 B.625 C. 5D. 4第Ⅱ卷 (非选择题 共90分)注意事项:1.第Ⅱ卷包括填空题和解答题共两个大题.2.第Ⅱ卷所有题目的答案考生需用黑色签字笔答在 “数学”答题卡指定的位置. 二、填空题:本大题共4个小题,每小题4分,共16分. 13.已知等差数列{}n a 的公差为(0)d d ≠,且36101332a a a a +++=,若8m a =,则m = . 14.如图是为计算10个数的平均数而设计的算法框图, 请你把图中缺失的部分补充完整________.15,1=0,O B O A O B ==点C 在AOB ∠内,045=∠AOC ,设,(,),O C m O A nO B m n =+∈R 则mn=_______. 16. 已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x +6)=f (x )+f (3)且当x 1,x 2∈[0,3],x 1≠x 2时,有2121)()(x x x f x f -->0成立,给出四个命题:① f (3)=0; ② 直线x =-6是函数y =f (x )的图像的一条对称轴; ③ 函数y =f (x )在[-9,-6]上为增函数; ④ 函数y =f (x )在[-9,9]上有四个零点. 其中所有正确命题的序号为______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)设x x x x f cos sin 32cos 6)(2-=.(Ⅰ)求)(x f 的最小正周期及单调递增区间;(Ⅱ)若锐角α满足()3f α=-tan α的值.18.(本小题满分12分)如图所示,在棱锥P -ABC D 中, ⊥PA 平面ABCD ,底面ABCD 为直角梯形,且AB //CD ,90=∠BAD ,PA =AD =DC =2,AB =4. (Ⅰ)求证:PC BC ⊥;(Ⅱ)若F 为PB 的中点,求证:CF //平面P AD .19.(本小题满分12分)某班全部t 名学生在一次百米测试中,成绩全部介于13秒和18秒之间.将测试结果按如下方式分为五组:第一组[13,14);第二组[14,15);…;第五组[17,18],右表是按上述分组方式得到的频率分布表.(Ⅰ)求t 及上表中的,,x y z 的值;(Ⅱ)设m ,n 是从第一组或第五组中任意抽取的两名学生的百米测试成绩,求事件“1m n ->”的概率.20.(本小题满分12分)已知数列{}n a 的前n 项和为1,n n n S a S +=且—n +3,n 1,2a ∈=+N .(Ⅰ)求数列{}n a 的通项; (Ⅱ)设()2n nnb n S n =∈-++N 的前n 项和为nT,证明:n T <34.21.(本小题满分12分) 若椭圆1E :2222111x y ab+=和椭圆2E :2222221x y ab+=满足2211(0)a b m m a b ==>,则称这两个椭圆相似,m 是相似比.(Ⅰ)求过(且与椭圆22142xy+=相似的椭圆的方程;(Ⅱ)设过原点的一条射线l 分别于(I )中的两椭圆交于A 、B 两点(点A 在线段OB 上). 求OA OB ⋅的最大值和最小值.22.(本小题满分14分) 设函数1()(2)ln 2f x a x ax x=-++.(Ⅰ)当0a =时,求()f x 的极值; (Ⅱ)当0a ≠时,求()f x 的单调区间;(Ⅲ)当2a =时,对任意的正整数n ,在区间11[,6]2n n++上总有4m +个数使得1231234()()()()()()()()m m m m m f a f a f a f a f a f a f a f a +++++++<+++成立,试求正整数m的最大值.。

江西高三模拟考试(文科)数学试卷附答案解析

江西高三模拟考试(文科)数学试卷附答案解析

江西高三模拟考试(文科)数学试卷附答案解析班级:___________姓名:___________考号:__________一、单选题1.设集合{}2560A x x x =--<和{}4,2,0,2,4B =--,则A B =( )A .{}0,2B .{}2,0-C .2,0,2D .{}0,2,42.复数1z 在复平面内对应的点为()1,3,22z i =-+(i 为虚数单位),则复数12z z 的虚部为( ). A .75B .75-C .7i 5D .7i 5-3.在ABC ∆中AB =AC=1,B=30°,和ABC S ∆=,则C = A .60或120B .30C .60D .454.已知x 与y 的数据如表所示,根据表中数据,利用最小二乘法求得y 关于x 的线性回归方程为0.7 1.05y x =+,则m 的值是( )A .3.8B .3.85C .3.9D .4.05.已知tan 2x =,则sin cos 1x x +=( ) A .25B .75C .2D .36.已知直线:210l x y k +++=被圆22:4C x y +=所截得的弦长为4,则k 为( ) A .1-B .2-C .0D .27.若0a >,0b >且24a b +=,则4ab的最小值为( ) A .2B .12C .4D .148.已知命题:p 已知实数,a b ,则0ab >是0a >且0b >的必要不充分条件,命题:q 在曲线cos y x =上存在 ( ) A .p 是假命题 B .q 是真命题 C .()p q ∧⌝是真命题D .()p q ⌝∧是真命题9.执行如图所示的程序框图,若输出i 的值为7,则框图中①处可以填入( )A .7S >?B .15S >?C .21S >?D .28S >?10.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F 椭圆C 在第一象限存在点M ,使得112=MF F F ,直线1F M 与y 轴交于点A ,且2F A 是21MF F ∠的角平分线,则椭圆C 的离心率为( )A B C .12D 11.已知函数()()22e (e =--x xf x x x a )有三个零点,则实数a 的取值范围是( )A .(0,1e -)B .(0,2e -)C .(0,1)D .(0,e )12.在棱长为2的正方体ABCD —A 1B 1C 1D 1中E 是正方形BB 1C 1C 的中心,M 为C 1D 1的中点,过A 1M 的平面α与直线DE 垂直,则平面α截正方体ABCD —A 1B 1C 1D 1所得的截面面积为( )A .B .CD .3二、填空题13.已知向量(),2AB m =,()1,3AC =和()4,2BD =--,若B ,C ,D 三点共线,则m =______.14.双曲线2219x y -=的渐近线方程为__________.15.已知f (x )=sin 6x πω⎛⎫+ ⎪⎝⎭(ω>0),f (6π)=f (3π),且f (x )在区间63ππ⎛⎫ ⎪⎝⎭,上有最小值,无最大值,则ω=_____.16.已知过点(0,1)M 的直线与抛物线22(0)x py p =>交于不同的A ,B 两点,以A ,B 为切点的两条切线交于点N ,若0NA NB ⋅=,则p 的值为__________.三、解答题17.已知数列{}n a 的前n 项和为n S ,且()21n n S a n *=-∈N .(1)求数列{}n a 的通项公式;(2)设13log n n b a =,n C ={}n C 的前n 项和n T18.如图,三棱柱111ABC A B C 各棱长均为2,且13C CA π∠=.(1)求证1AC BC ⊥;(2)若1BC 与平面ABC 所成的角为6π,求三棱柱111ABC A B C 的体积. 19.某工厂生产的产品是经过三道工序加工而成的,这三道工序互不影响,已知生产该产品三道工序的次品率分别为(1)求该产品的次品率;(2)从该工厂生产的大量产品中随机抽取三件,记次品的件数为X ,求随机变量X 的分布列与期望()E X . 20.已知椭圆()2222:10x y C a b a b +=>>,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.21.已知函数()f x 对任意实数x 、y 恒有()()()f x y f x f y +=+,当x>0时f (x )<0,且(1)2f =-. (1)判断()f x 的奇偶性;(2)求()f x 在区间[-3,3]上的最大值;(3)若2()22f x m am <-+对所有的[][]1,1,1,1x a ∈-∈-恒成立,求实数m 的取值范围.22.数学上有很多美丽的曲线令人赏心悦目,例如,极坐标方程()1cos a ρθ=+(0a >)表示的曲线为心形线,它对称优美,形状接近心目中的爱心图形.以极点O 为原点,极轴为x 轴的正半轴建立直角坐标系,直线l的参数方程为1,2x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求直线l 的极坐标方程和心形线的直角坐标方程;(2)已知点P 的极坐标为()2,0,若P 为心形线上的点,直线l 与心形线交于A ,B 两点(异于O 点),求ABP 的面积.23.已知函数()2|1|||(R)f x x x a a =-+-∈. (1)若()f x 的最小值为1,求a 的值;(2)若()||6f x a x <+恒成立,求a 的取值范围.参考答案与解析1.D【分析】求出集合A 中元素范围,然后求A B ⋂即可.【详解】{}{}256016A x x x x x =--<=-<<,又{}4,2,0,2,4B =--{}0,2,4A B ∴=.故选:D. 2.B【解析】根据题意,先得到113z i =+,再由复数的除法运算求出12z z ,即可得出其虚部. 【详解】因为复数1z 在复平面内对应的点为()1,3,所以113z i =+ 又22z i =-+所以()()()()1213213263171722241555i i z i i i i i z i i i +--+++--+===-=-=--+-+--+因此其虚部为75-.故选:B.【点睛】本题主要考查求复数的虚部,考查复数的除法运算,涉及复数的几何意义,属于基础题型. 3.C【分析】由三角形面积公式可得A ,进而可得解.【详解】在ABC ∆中AB 1AC =与30B =12ABC S AB ACsinA ∆=⋅=,可得1sinA =,所以90A = 所以18060C A B =--=【点睛】本题主要考查了三角形的面积公式,属于基础题. 4.D【分析】计算样本中心,将样本中心 710,24m +⎛⎫⎪⎝⎭代入线性回归方程中即可求解. 【详解】因为()17234542x =⨯+++= ()1102.5 3.0 4.544m y m +=⨯+++=.所以样本中心为710,24m +⎛⎫⎪⎝⎭,将其代入回归方程0.7 1.05y x =+得1070.7 1.0542m +=⨯+,解得4m =. 故选:D . 5.B【分析】利用同角三角函数的平方关系、商数关系,将目标式化为2tan 1tan 1xx ++,结合已知即可求值.【详解】222sin cos tan 27sin cos 1111sin cos tan 155x x x x x x x x +=+=+=+=++. 故选:B . 6.A【分析】利用点线距离公式求弦心距,再由弦长与半径、弦心距的几何关系列方程求参数k . 【详解】设圆心()0,0到直线:210l x y k +++=的距离为d ,则由点到直线的距离公式得|1|d k ==+由题意得:42==1k =-.故选:A 7.A【分析】利用基本不等式可求出2ab ≤,即可得出所求. 【详解】0a > 0b >42a b ∴=+≥2a b =,即1,2a b ==时等号成立所以2ab ≤,则42ab≥,即4ab 的最小值为2.故选:A. 8.C【分析】首先判断命题,p q 的真假,再判断选项.【详解】00ab a >⇒> 且0b >,反过来0a >且00b ab >⇒>,所以0ab >是0a > 且0b >的必要不充分条件,所以命题p 是真命题cos y x =,[]sin 1,1y x '=-∈-根据导数的几何意义可知曲线cos y x =所以命题q是假命题根据复合命题的真假判断可知()p q ∧⌝是真命题. 故选:C 9.C故选:C. 10.B【分析】根据题意和椭圆定义可得到2MF ,AM 和a ,c 的关系式,再根据122MF F MF A ∽△△,可得到关于a ,c 的齐次式,进而可求得椭圆C 的离心率e . 【详解】由题意得1122F M F F c == 又由椭圆定义得222MF a c =- 记12MF F θ∠=则212AF F MF A θ∠=∠= 121222F F M F MF MAF θ∠=∠=∠= 则2122AF AF a c ==- 所以42AM c a =- 故122MF F MF A ∽△△则2122MF AMF F MF = 则2a c c a c a c --=-,即222010c ac a e e e +-=⇔+-=⇒=(负值已舍). 故选:B . 11.A【分析】令()()()22ee 0=--=xxf x x x a ,得到22e 0-=x x或e 0x x a -=,令()22e =-xg x x ,易知有一个零点,转化为则e 0x x a -=有两个根求解.【详解】令()()()22ee 0=--=xxf x x x a所以22e 0-=x x 或e 0x x a -=令()22e =-xg x x ,则()()2e '=-x g x x令()2(e )=-x h x x ,则()2(1)e '=-xh x当(,0)x ∈-∞时()0h x '>,h (x )在(-∞,0)上单调递增; 当,()0x ∈+∞时()0h x '<,h (x )在(0,+∞)上单调递减 所以()(0)20h x h ≤=-<,即()0g x '< 所以g (x )在R 上单调递减,又()2110g e-=->,g (0)=20-< 所以存在0(1,0)x ∈-使得()00g x =所以方程e 0x x a -=有两个异于0x 的实数根,则xxa e = 令()x x k x e =,则()1xx e xk -=' 当(,1)x ∞∈-时()0k x '>,k (x )在(-∞,1)上单调递增;当(1,)x ∈+∞时()0k x '<,k (x )在(1,+∞)上单调递减,且()0k x >.所以()1()1k x k e≤= 所以()xxk x e =与y a =的部分图象大致如图所示由图知10a e<< 故选:A . 12.B【解析】确定平面1A MCN 即为平面α,四边形1A MCN 是菱形,计算面积得到答案.【详解】如图,在正方体1111ABCD A B C D -中记AB 的中点为N ,连接1,,MC CN NA 则平面1A MCN 即为平面α.证明如下: 由正方体的性质可知1A MNC ,则1A ,,,M C N 四点共面记1CC 的中点为F ,连接DF ,易证DF MC ⊥. 连接EF ,则EF MC ⊥EFDF F =,EF DF ⊂,平面DEF所以MC ⊥平面DEF又DE ⊂平面DEF ,则DE MC ⊥.同理可证,DE NC ⊥ NC MC C =则DE ⊥平面1A MCN 所以平面1A MCN 即平面α四边形1A MCN 即平面α截正方体1111ABCD A B C D -所得的截面. 因为正方体的棱长为2,易知四边形1A MCN 是菱形其对角线1AC = MN =所以其面积12S =⨯=故选:B【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力. 13.1-【分析】根据给定条件,求出向量BC 坐标,再利用共线向量的坐标表示计算作答. 【详解】因为向量(),2AB m =,()1,3AC =则(1,1)BC AC AB m =-=-,而()4,2BD =-- 又B ,C ,D 三点共线,则有//BC BD ,因此2(1)4m --=-,解得1m =- 所以1m =-. 故答案为:-1 14.30x y ±-=【分析】根据焦点在横轴上双曲线的渐近线方程的形式直接求出双曲线2219x y -=的渐近线方程.【详解】通过双曲线方程可知双曲线的焦点在横轴上,3,1a b ==,所以双曲线2219x y -=的渐近线方程为:1303b y x y x x y a =±⇒=±⇒±-=. 故答案为30x y ±-=【点睛】本题考查了求双曲线的渐近线方程,通过双曲线方程判断双曲线的焦点的位置是解题的关键. 15.163【分析】由题意可得函数的图象关于直线4x π=对称,再根据()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,可得3462πππω+=,由此求得ω的值. 【详解】对于函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,由63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭得函数图象关于6324x πππ+==对称 又()f x 在区间,63ππ⎛⎫⎪⎝⎭有最小值,无最大值可得()32462k k Z πππωπ+=+∈,即()1683k k Z ω=+∈,又342Tππ-≤,即12ω≤ 所以163ω=. 故答案为163. 【点睛】本题主要考查正弦函数的图象的对称性,正弦函数的最值,属于中档题. 16.2【分析】设()()1122,,,A x y B x y ,设直线AB 的方程为1y kx =+,利用“设而不求法”得到122x x p =-.利用导数求出两条切线斜率为1x p 和2x p,得到121x x p p ⋅=-,即可求出p =2.【详解】设()()1122,,,A x y B x y ,且设直线AB 的方程为1y kx =+,代入抛物线的方程得2220x pkx p --=,则122x x p =-.又22x py =,得22x y p=,则x y p '=,所以两条切线斜率分别为1x p 和2x p .由0NA NB ⋅=,知NA NB ⊥,则121x x p p ⋅=-,所以221pp -=-,即p =2. 故答案为:2 17.(1)13n n a =(2)1n T =【分析】(1)由n a 与n S 关系可推导证得数列{}n a 为等比数列,由等比数列通项公式可得n a ; (2)由(1)可推导得到,n n b C ,采用裂项相消法可求得n T . (1)当1n =时111221a S a =-=,解得:113a =;当2n ≥时1122211n n n n n a S S a a --=-=--+,即113n n a a -=∴数列{}n a 是以13为首项,13为公比的等比数列,1133nn n a ⎛⎫∴== ⎪⎝⎭. (2)由(1)得:131log 3n n b n ⎛⎫== ⎪⎝⎭n C ∴==11n T ∴=⋅⋅⋅=18.(1)证明见解析【分析】(1)通过线面垂直的性质定理证明线线垂直;(2)由(1)知AC ⊥平面1BDC ,则进一步知平面1BDC ⊥平面ABC ,故过1C 作平面ABC 的垂线,垂足为E ,则1C E ⊥平面ABC ,求出1C E 的大小即可求解.【详解】(1)证明:取AC 的中点D ,连接BD ,1C D 和1C A ,则BD AC ⊥因为12CC CA ==,13C CA π∠=所以1ACC △为等边三角形又D 为AC 的中点,所以1C D AC ⊥ 因为1C D BD D =,1,C D BD ⊂平面1BDC ,所以AC ⊥平面1BDC ,.又1BC ⊂平面1BDC ,所以1AC BC ⊥.(2)由(1)知AC ⊥平面1BDC ,又AC ⊂平面ABC ,所以平面1BDC ⊥平面ABC平面1BDC 平面ABC BD =,故过1C 作平面ABC 的垂线,垂足为E ,则E 一定在直线BD 上,因为1BC 与平面ABC 所成的角为6π,所以16C BD π∠= 由题意知1C D BD =,所以123C DB π∠=所以13BC == 所以113sin 62C E BC π==.(或:由题意知1C D BD =13C DE π∠=,所以113sin 32C E CD π===)所以11322sin 232ABC V S C E π=⋅=⨯⨯⨯⨯=△19.(1)14(2)分布列见解析,()34E X =【分析】(1)利用相互独立事件的乘法概率计算公式能求出产品为正品的概率,即可由对立事件求次品概率(2)由题意得X 0=,1,2,3,分别求出其相对应的概率,能求出X 的分布列和数学期望.【详解】(1)产品正品的概率为:11131111011124P ⎛⎫⎛⎫⎛⎫=---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 所以为次品的概率为31144-= (2)由题意得X 0=,1,2,3,且13,4X B ⎛⎫~ ⎪⎝⎭3327(0)464P X ⎛⎫=== ⎪⎝⎭ 2133127(1)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 223319(2)C 4464P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ 311(3)464P X ⎛⎫=== ⎪⎝⎭ X ∴的分布列如下:∴()27279130123646464644E X =⨯+⨯+⨯+⨯=. 20.(1)221124x y += (2)证明详见解析,定点坐标3122⎛⎫ ⎪⎝⎭,-【分析】(1)根据已知条件列方程组,由此求得222,,a b c ,从而求得椭圆C 的方程.(2)根据直线MN 的斜率进行分类讨论,结合根与系数关系以及·0AM AN =求得定点坐标.【详解】(1)由题意可得:22222911c aab a bc ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2221248a b c ===,, 故椭圆方程为221124x y +=. (2)设点()()1122,,,M x y N x y若直线MN 斜率存在时设直线MN 的方程为:y kx m =+代入椭圆方程消去y 并整理得:()2221363120k x kmx m +++-= 可得122613km x x k +=-+ 212231213m x x k -=+ 因为AM AN ⊥,所以·0AM AN =,即()()()()121233110x x y y --+--=根据1122,kx m y kx m y =+=+有()()()()221212121239110x x x x k x x k m x x m -++++-++-=整理可得: ()()()()22121213190k x x km k x x m ++--++-+= 所以()()()222223126131901313m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭ 整理化简得2299210k km m m ++--=则有()()321310k m k m +++-=得3210k m ++=或310k m +-=若3210k m ++=,则直线MN 的方程为:3122y k x ⎛⎫=-- ⎪⎝⎭,恒过3122⎛⎫- ⎪⎝⎭, 若310k m +-=,则直线MN 的方程为:()31y k x =-+,过A 点,舍去.所以直线MN 过定点P 3122⎛⎫- ⎪⎝⎭, 当直线MN 的斜率不存在时可得()11,N x y -由·0AM AN =得:()()()()121233110x x y y --+--=得()1221210x y -+-=()2211310x y -+-=,结合22111124x y += 解得:132x = 或23x =(舍去),此时直线MN 方程为32x =,过点P 3122⎛⎫- ⎪⎝⎭,. 综上,直线MN 过定点P 3122⎛⎫- ⎪⎝⎭,. 21.(1)奇函数(2)6(3){2,m m 或者2}m <-【分析】(1)令x =y =0⇒f (0)=0,再令y =﹣x ,⇒f (﹣x )=﹣f (x );(2)设x 1,x 2∈R ,且x 1<x 2,结合条件用单调性的定义证明函数f (x )为R 上的增函数,从而得到()f x 在区间[-3,3]上的最大值;(3)根据函数f (x )≤m 2﹣2am ﹣2对所有的x ∈[﹣1,1],a ∈[﹣1,1]恒成立,说明f (x )的最大值2小于右边,因此先将右边看作a 的函数,m 为参数系数,解不等式组,即可得出m 的取值范围.【详解】(1)取x=y=0,则f (0+0)=f (0)+f (0);则f (0)=0;取y =﹣x ,则f (x ﹣x )=f (x )+f (﹣x )∴f (﹣x )=﹣f (x )对任意x ∈R 恒成立∴f (x )为奇函数;(2)任取x 1,x 2∈(﹣∞,+∞)且x 1<x 2,则x 2﹣x 1>0;∴f (x2)+f (﹣x1)=f (x2﹣x1)<0; ∴f (x2)<﹣f (﹣x1)又∵f (x )为奇函数∴f (x 1)>f (x 2);∴f (x )在(﹣∞,+∞)上是减函数;∴对任意x ∈[﹣3,3],恒有f (x )≤f (﹣3)而f (3)=f (2+1)=f (2)+f (1)=3f (1)=﹣2×3=﹣6; ∴f (﹣3)=﹣f (3)=6;∴f (x )在[﹣3,3]上的最大值为6;(3)由(2)可知函数()f x 在[]1,1-的最大值为()12f -=所以要使()222f x m am <-+对所有的[][]1,1,1,1x a ∈-∈-恒成立只需要()()2max 2212m am f x f -+>=-=即220m am ->对所有[]1,1a ∈-恒成立令()[]22,1,1g a m am a =-∈-,则()()1010g g ⎧->⎪⎨>⎪⎩即222020m m m m ⎧+>⎨->⎩解得22m m ><-,或者 所以实数m 的取值范围是{}2,2m m m <-或者【点睛】本题考查了抽象函数的奇偶性、单调性与函数的值域、不等式恒成立等知识点,属于中档题,解题时应该注意题中的主元与次元的处理.22.(1)极坐标方程为π3θ=或4π3θ=;()()222222x y ax a x y +-=+【分析】(1)先消去参数t 得到直线l 的普通方程,进而得到极坐标方程,由()1cos a ρθ=+,得到2cos a a ρρρθ=+,即22x y ax +=求解.(2)将()2,0代入方程()1cos a ρθ=+得到1a =,进而得到1cos ρθ=+,分别与直线l 的极坐标方程联立,求得A ,B 坐标求解.【详解】(1)解:消去参数t 得到直线l 的普通方程为y = 所以极坐标方程为π3θ=或4π3θ=; (π3θ=(ρ∈R 也正确)由()1cos a ρθ=+,得2cos a a ρρρθ=+,即22x y ax +=化简得心形线的直角坐标方程为()()222222x y ax a x y +-=+. (2)将()2,0代入方程()1cos a ρθ=+,得1a =∴1cos ρθ=+.由π,31cos ,θρθ⎧=⎪⎨⎪=+⎩得3π,23A ⎛⎫ ⎪⎝⎭ 由4π,31cos ,θρθ⎧=⎪⎨⎪=+⎩得14π,23B ⎛⎫ ⎪⎝⎭∴13π112π2sin 2sin 223223ABP AOP BOP S S S =+=⨯⨯+⨯⨯=△△△23.(1)0或2(2)[)3,4【分析】(1)根据1()(1)1x a x x a x a -+-≥---=-结合取等条件即可得解;(2)把()||6f x a x <+恒成立,转化为()2160g x x x a a x =-+---<恒成立,分情况讨论去绝对值符号,从而可得出答案.【详解】(1)因为1()(1)1x a x x a x a -+-≥---=-,当且仅当()(1)0x a x --≤时取等号()2|1||||1||1||1|f x x x a x a a =-+-≥-+-≥-,当且仅当1x =时取等号 所以11a -=,解得0a =或2a =故a 的值为0或2;(2)令g()2|1|||6x x x a a x =-+---,由题意知()0g x <恒成立 当{1x x x ∈≥且}x a ≥时 ()()()g()21638x x x a ax a x a =-+---=---,要使得()0g x <恒成立则30,a -≤可得3,a ≥当3a ≥时()()()()()34,034,0118,138,a x a x a x a x g x a x a x a a x a x a ⎧-+-<⎪-++-≤<⎪=⎨-+-≤<⎪⎪---≥⎩因为()0g x <恒成立, 则max ()0g x <,由图像可知()max ()0g x g = 所以()g()g 040x a ≤=-<,所以4a < 综上可知实数a 的取值范围为[)3,4.。

高三年级数学文科试题

高三年级数学文科试题

高三年级数学文科试题一、选择题(本大题共10小题,每小题5分,共50分)1.若,a b R ∈,i 是虚数单位,且(2)1a b i i +-=+,则a b +的值为A .1B .2C .3D .42.已知命题:,20x p x R ∀∈>,那么命题p ⌝为A .,20x x R ∃∈<B .20x x R ∀∈<,C .,20x x R ∃∈≤D .20x x R ∀∈,≤ 3.已知直线1:l y x =,若直线12l l ⊥,则直线2l 的倾斜角为A . ππ()4k k Z +∈ B .π2 C .3ππ()4k k Z +∈ D .3π44.平面向量a 与b 的夹角为60,(2,0)a =,1b =,则2a b +=A .3B .23C .4D .125.不等式组(3)()004x y x y x -++⎧⎨⎩≥≤≤表示的平面区域是A .矩形B .三角形C .直角梯形D .等腰梯形6.设a R ∈,函数()x x f x e ae -=+的导函数是()f x ',且()f x '是奇函数,则a 的值为A .1-B .12-C .1D .127.某中学高三年级从甲、乙两个班级各选出7名学生 参加数学竞赛,他们取得的成绩(满分100分)的 茎叶图如右图,其中甲班学生成绩的平均分是85, 乙班学生成绩的中位数是83,则x +y 的值为 A .7 B .8 C .9 D .1688.《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一,书中有这样的一道题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的1份为第7题图乙甲y x 611926118056798A .53B .116C .56D .1039. 从221x y m n-=(其中{},2,5,4m n ∈--)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在y 轴上的双曲线方程的概率为( )A .12B .47C .23D .3410.已知函数21(0)()log (0)x x f x x x +⎧=⎨>⎩≤,,则函数[()]1y f f x =+的零点个数是A .4B .3C . 2D .1二、填空题(本大题共5小题,每小题7分,共35分,请将答案填在答题卡对应题号的位置上)11.已知集合{1,2,3,4,5,6}U =,}6,4,2,1{=M ,则U M =ð . 12.已知4cos 5θ=-,且tan 0θ<,则sin θ= .13.某高三年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若用分层抽样的方法选取30人参加一项活动,则从身高在[160,170)内的学生中选取的人数应为 .14.某地区恩格尔系数(%)y 与年份x 的统计数据如下表:年份x 2004 2005 2006 2007 恩格尔系数y (%)4745.543.541从散点图可以看出y 与x 线性相关,且可得回归直线方程为ˆˆ4055.25ybx =+,据此模型可预测2013年该地区的恩格尔系数(%)为 .15.某几何体的三视图如图所示,则该几何体的体积的最大值为 .O yx 0.0350.0200.0100.005190180170160150140第13题图 第15题图 61侧视图俯视图正视图16.已知实数[0,10]x ∈,若执行如下左图所示的程序框图,则输出的x 不小于 47的概率为 .17.右下表中数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为),(*N j i a ij ∈,则:(Ⅰ)99a = ; (Ⅱ)表中数82共出现 次.三、解答题(本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤) 18.(本小题满分12分)已知A 、B 、C 为ABC ∆的三个内角且向量3(1,cos )(3sin cos ,)2222C C C m n ==+与共线。

高三数学十二月份阶段性检测题 (文科)h

高三数学十二月份阶段性检测题 (文科)h

高三数学十二月份阶段性检测题 (文科)一、选择题1.设全集U 是实数集R ,{|||2},{|13}M x x N x x =≥=<<,则图中阴影部分所表示的集合是 (B)A .{|21}x x -<<B .{|12}x x <<C .{|22}x x -<<D .{|2}x x <2.已知向量(1,2),(cos ,sin ),//,tan()4a b a b πααα==+=且则 DA .13 B .13- C .3 D .-3 3.已知命题p :∃x ∈⎣⎡⎦⎤0,π2,cos2x +cos x -m =0为真命题,则实数m 的取值范围是( C )A.⎣⎡⎦⎤-98,-1 B.⎣⎡⎦⎤-98,2 C .[-1,2]D.⎣⎡⎭⎫-98,+∞ 45.已知实数y x ,满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为1-,则实数m 等于( C ) A .3B .4C .5D .76. 圆心在抛物线y 2=2x(y >0)上,并且与抛物线的准线及x 轴都相切的圆的方程是( D )A .x 2+y 2一x 一2y 一41=0 B .x 2+y 2+x -2y+1=0 C .x 2+y 2一x 一2y+1=0 D .x 2+y 2一x 一2y+41=07. 已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( D )A .2B . 3C .4 D . 58.下面程序框图运行后,如果输出的函数值在区间[-2,12]内,则输入的实数x 的取值范围是( B )A .(-∞,-1]B .(-∞,-1]∪[14,2]C .(-∞,0)∪[14,2]D .[14,2]9.函数xxx y sin 2sin 3cos 42---=的最大值是( C )A .37-B .3-C .37D . 110.设⎩⎨⎧-=-)1(3)(x f x f x(0)(0)x x ≤> , 若a x x f +=)(有且仅有三个解,则实数a 的取值范围是( D )A. )1,(-∞B. ]1,(-∞C.]2,(-∞D.)2,(-∞ 二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上.) 11.在复平面内,复数i3-i(i 是虚数单位)对应的点在第二 象限 12.在等比数列{}n a 中,若3339,22a S ==,则公比q 的值等于 112-或 13. 在△ABC 中,a ,b ,c 分别为∠A 、∠B 、∠C 、的对边,若向量(,1)m a b =- 和(,1)n b c =-平行,且54sin =B ,当△ABC 的面积为23时,则b=2 14. 函数33)(x x x f -=在区间),12(2a a -上有最小值,则实数a 的取值范围是(]2,1- 15.给出下列命题:① 函数)23sin(x y +=π的图像向左2π个单位得到的函数是偶函数; ②若对,R x ∈∀函数f (x )满足)()2(x f x f -=+,则4是该函数的一个周期。

山东省青岛市第二十七中学2019-2020学年高三数学文模拟试卷含解析

山东省青岛市第二十七中学2019-2020学年高三数学文模拟试卷含解析

山东省青岛市第二十七中学2019-2020学年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设等比数列的前n项和为S n,若S10:S5=1:2,则S15:S5为A. 1:2 B. 1:3 C. 2:3 D. 3:4参考答案:D2. 已知数列是首项为2,公差为1的等差数列,是首项为1,公比为2的等比数列,则数列前10项的和等于()A.511 B.512 C.1023D.1033参考答案:D3. 已知平面向量满足,且,则向量的夹角为()A. B. C. D.参考答案:D【分析】展开,利用向量的数量积公式,解得,进而求解的值. 【详解】因为,解得,由,得,所以.故选D【点睛】本题考查了平面向量的数量积以及向量的夹角,考查了运算求解能力;在解题时要注意两向量夹角的范围是.4. 方程满足且,则实数a的取值范围是()A. B.C. D.参考答案:D5. 已知sin(α﹣)=,则cos()=()A.﹣B.C.﹣D.参考答案:A【考点】两角和与差的余弦函数.【专题】计算题;三角函数的求值.【分析】运用﹣α、﹣α的诱导公式,计算即可得到.【解答】解:sin(α﹣)=,即为sin(﹣α)=﹣,即有sin[﹣(+α)]=﹣,即cos()=﹣.故选A.【点评】本题考查三角函数的求值,考查三角函数的诱导公式的运用,考查运算能力,属于基础题.6. 的零点所在区间为( )(A)(B)(C)(D)参考答案:B7. 若曲线为焦点在x轴上的椭圆,则实数a,b满足()A. B.C. D.参考答案:C试题分析:将方程变为标准方程为,由已知得,,则,选C.8. 对于定义域为[0,1]的函数,如果同时满足以下三个条件:①对任意的,总有②③若,,都有成立;则称函数为理想函数. 下面有三个命题:(1)若函数为理想函数,则;(2)函数是理想函数;(3)若函数是理想函数,假定存在,使得,且,则;其中正确的命题个数有A.3个 B.2个 C.1个 D.0个参考答案:【知识点】命题的真假判断与应用.A2【答案解析】A 解析:(1)取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),可得f (0)≥f(0)+f(0)即f(0)≤0,由已知?x∈[0,1],总有f(x)≥0可得f(0)≥0,∴f(0)=0(2)显然f(x)=2x﹣1在[0,1]上满足f(x)≥0;②f(1)=1.若x1≥0,x2≥0,且x1+x2≤1,则有f(x1+x2)﹣[f(x1)+f(x2)]=2x1+x2﹣1﹣[(2x1﹣1)+(2x2﹣1)]=(2x2﹣1)(2x1﹣1)≥0,故f(x)=2x﹣1满足条件①②③,所以f(x)=2x﹣1为理想函数.(3)由条件③知,任给m、n∈[0,1],当m<n时,由m<n知n﹣m∈[0,1],∴f(n)=f(n﹣m+m)≥f(n﹣m)+f(m)≥f(m).若f(x0)>x0,则f(x0)≤f[f(x0)]=x0,前后矛盾;若:f(x0)<x0,则f(x0)≥f[f(x0)]=x0,前后矛盾.故f(x0)=x0.∴三个命题都正确,故选D.【思路点拨】(1)首先,根据理想函数的概念,可以采用赋值法,可考虑取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),可得f(0)≥f(0)+f(0),由已知f(0)≥0,可得f(0)=0;(2)要判断函数g(x)=2x﹣1,(x∈[0,1])在区间[0,1]上是否为“理想函数,只要检验函数g(x)=2x﹣1,是否满足理想函数的三个条件即可;(3)由条件③知,任给m、n∈[0,1],当m<n时,由m<n知n﹣m∈[0,1],f(n)=f (n﹣m+m)≥f(n﹣m)+f(m)≥f(m).由此能够推导出f(x0)=x0.,根据f[f(x0)]=x0,则f(x0)=x0.9. 已知集合,,则()A.B.C. D.参考答案:10. 为了得到函数的图象,可以把函数的图象( ) A.向左平移3个单位长度B.向右平移3个单位长度C.向左平移1个单位长度D.向右平移1个单位长度参考答案:D【考点】指数函数的图像变换.【专题】转化思想.【分析】将题目中:“函数”的式子化成(x﹣1),对照与函数的关系即可得.【解答】解:∵函数化成:(x﹣1),∴可以把函数的图象向右平移1个单位长度得到函数的图象.故选D.【点评】本题主要考查指数运算以函数图象的平移规律,图形的平移只改变图形的位置,而不改变图形的形状和大小.二、填空题:本大题共7小题,每小题4分,共28分11. 已知复数z=,是z的共轭复数,则z?= .参考答案:【考点】复数代数形式的混合运算.【专题】计算题.【分析】化简可得复数z,进而可得其共轭复数,然后再计算即可.【解答】解:化简得z=======,故=,所以z?=()()==故答案为:【点评】本题考查复数的代数形式的混合运算,化简复数z是解决问题的关键,属基础题.12. 已知n∈{-1,0,1,2,3},若(-)n>(-)n,则n=__________.参考答案:-1或2略13. 已知为抛物线的焦点,点A,B在该抛物线上且位于x轴的两侧,(其中O为坐标原点),则△AFO与△BFO面积之和的最小值是.参考答案:14. 在圆x2+y2=4所围成的区域内随机取一个点P(x,y),则| x |+| y| ≤ 2的概率为.参考答案:15. 不等式的解为_________.参考答案:16. 已知集合,则▲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学文科小测27
班级 姓名 成绩
( )1.已知集合A ={1,2,3,4},集合B ={2,3,4,5,6},则A ∪B =
A 、{1,2,3,4} C 、{1,2,3,4,5,6}
C 、{2,3,4,5,6}
D 、{3,4}
( )2. 复数z 满足z +1=2+i (i 为虚数单位),则z (1-i )=
A 、2
B 、0
C 、1+i
D 、i
( )3.“2a a -=0”是“函数
3()f x x x a =-+是增函数”的 A 、充要条件 B 、充分而不必要条件
C 、必要不充分条件
D 、既不充分也不必要条件
( )4.在△ABC 中,∠A =3π,AB =2,且△ABC
的面积为,则边AC 的长为 A 、1 B
、 C 、2 D 、1
( )5.在线段AB 上任取一点P ,以P 为顶点,B 为焦点作抛物线,则该抛物线的准
线与线段AB 有交点的概率是
A 、13
B 、12
C 、23
D 、34
( )6.一个几何体的三视图如图所示,其中主视图和左视图都是边长为2的正三角形,俯视图为圆,那么该几何体的表面积为
A 、6π
B 、4π
C 、3π
D 、2π
7.已知向量m =(x ,1),n =(1,2),且m ∥n ,则x =
8.设变量x ,y 满足约束条件4200
x y x y x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,则其目标函数z =2x +y 的最大值为 9.函数f (x )=|x -2|-lnx 在定义域内的零点个数为
10
.在极坐标系中,直线sin ρθ=与圆2cos ρθ=相交的弦长为。

相关文档
最新文档