数学建模的运筹学方法
数学建模十大经典算法( 数学建模必备资料)
建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
数学建模与运筹学
数学建模与运筹学数学建模与运筹学是运用数学的方法和技巧解决实际问题的一门学科。
它在现实生活中有着广泛的应用,不仅在工程领域中扮演着重要的角色,也在各个领域中发挥着巨大的作用。
通过对问题进行数学建模和优化,我们能够得到有效的结果和决策,帮助人们更好地应对挑战和实现目标。
1. 数学建模数学建模是将实际问题转化为数学问题的过程。
它是一种抽象思维和数学思维相结合的过程,能够将复杂的问题简化,提取出重要的因素和变量。
数学建模的核心是构建数学模型,根据模型的特点和要求进行问题的描述和求解。
数学建模广泛应用于科学研究、工程设计、经济管理等领域,为决策提供了科学的依据。
2. 运筹学运筹学是解决优化问题的一门学科,它通过数学建模和分析,寻求最优解。
运筹学包括线性规划、整数规划、动态规划、图论等方法,能够解决多种实际问题。
例如,在物流管理中,通过优化路径和资源分配,可以降低成本和提高效率;在生产计划中,通过优化生产调度和资源利用,可以提高产能和降低库存成本。
运筹学的应用可以帮助组织和企业做出更好的决策,实现资源的合理利用和效益的最大化。
3. 数学建模与运筹学的应用数学建模与运筹学广泛应用于各个领域,以下以几个典型的应用为例进行介绍。
(1)交通运输规划:通过数学建模和运筹学方法,可以优化城市道路网、航空航线和火车运行图,提高交通运输的效率和安全性。
(2)物流配送优化:数学建模和运筹学方法可以确定最优的配送路径和运输方式,降低成本、减少时间和资源的浪费。
(3)资源分配与计划:在能源领域,通过数学建模和运筹学方法,可以进行电网调度、电力优化和能源供应的规划,实现可持续发展和低碳经济。
(4)金融风险管理:数学建模和运筹学方法可以用于评估和管理金融市场的风险,帮助投资者和机构做出科学的决策。
4. 数学建模与运筹学在实践中的挑战数学建模与运筹学在实践中也面临一些挑战。
首先,实际问题往往具有复杂性和不确定性,需要进行合理的简化和假设。
运筹学大M法
运筹学大M法运筹学大M法是一种经典的运筹学方法,在数学建模中被广泛应用。
它的全称是Mixed Integer Linear Programming,即混合整数线性规划,主要解决的是有约束条件下的最优化问题。
运筹学大M法使用了约束条件、决策变量和目标函数三个要素,可以用数学形式进行表示和求解。
假设我们有一组决策变量x1,x2,...,xn,它们需要满足一些约束条件,同时要最大化或最小化目标函数f(x1,x2,...,xn)。
在大M法中,我们将相应的约束条件用等式或不等式进行表示:等式约束条件:a1*x1 + a2*x2 + ... + an*xn = b目标函数:max[f(x1,x2,...,xn)] 或 min[f(x1,x2,...,xn)]在这里,a1,a2,...,an,c1,c2,...,cn和b,d都是确定的常数。
同时,决策变量xi也可以是整数或者二进制变量。
为了求解这个最优化问题,我们需要首先将不等式约束式转化为等式形式。
在这个过程中,我们需要加入一些松弛变量(也叫做slack变量)来确保约束条件可以满足。
假设第i个不等式为:然后我们将这个不等式转化成等式形式:其中,s1是松弛变量。
类似地,我们可以将每个不等式约束条件都转化成等式形式。
在这个过程中,我们需要加入一些约束条件来限制决策变量xi的取值。
如果xi可以为任意实数,那么我们不需要这些额外的约束条件。
但是,如果xi是整数或者二进制变量,我们需要加入一些约束条件来限制它们的取值范围。
为了限制整数变量xi的取值范围,我们通常会引入两个新的变量:yi和zi。
yi表示xi是否等于下限值,zi表示xi是否等于上限值。
我们可以通过以下约束条件来实现这一点:xi >= li*yi其中,li是xi的下限,ui是xi的上限。
因此,如果yi=1,那么xi的取值就是li;如果zi=1,那么xi的取值就是ui。
如果既不是yi=1,也不是zi=1,那么xi就可以取任意整数值。
数学建模(层次分析法(AHP法))
判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。 常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。 日常生活中有许多决策问题。决策是指 在面临多种方案时需要依据一定的标准选择 某一种方案。 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6 他对市场上的6种不同类型的电冰箱进行了解 选取一些中间指标进行考察。例如电冰 指标进行考察 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等 外界信誉、售后服务等。
目标层
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
要比较各准则C1,C2,… , Cn对目标O的重要性 要比较各准则 对目标 的重要性
Ci :Cj ⇒aij
选 择 C1 旅 C2 游 C 3 地
C4 C5 C1
层次分析法(AHP法 层次分析法(AHP法)
Analytic Hierarchy Process
数学建模:第五章 运筹与优化模型
max c j x j
n
s.t aij x j bi
j 1
n
j 1
i 1.2 m
xj 0
j 1.2 n
8
二、整数规划模型
n min f c j x j j 1 n aij x j bi j 1 x j 0
对于线性规划:
22
二、货机装运
问题 某架货机有三个货舱:前仓、中仓、后仓。三个 货舱所能装载的货物的最大重量和体积都有限制,如表 3所示。并且,为了保持飞机的平衡,三个货舱中实际 装载货物的重量必须与其最大容许重量成比例。
重量限制 (吨)
前仓 中仓 后仓 10 16 8 6800 8700 5300
体积限制 (米3)
5
解:设x ij 表示 Ai (i=1.2)煤厂提供给 B j (j=1.2.3)居民区的煤量; f表示总运输费 此问题归结为:
min f 10 x11 5 x12 6 x13
s.t
x11 x12 x13 60 x21 x22 x23 100 x11 x21 50
s.t gi ( X ) 0
hi ( X ) 0
(1)
(2)
(3)
i 1,2,, m .
j 1,2,, l .
X D
其中X ( x1 , x2 ,, xn )T , D R n为可行集
f(X)为目标函数,(2)、(3)为约束条件, (2)为不等式约束,(3)为等式约束; 若只有(1)称为无约束问题。
max f x1 x2 15 x1 12 x2 85 如 5 x1 11 x , x 0 1 2 x1 , x2 为整数
运筹学 运输问题例题数学建模
运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。
运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。
本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。
同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。
运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。
在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。
这种情况下,上述数学模型可以直接应用。
产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。
这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。
这样就可以把问题转化为一个产销平衡的问题。
产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。
这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。
这样也可以把问题转化为一个产销平衡的问题。
弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。
数学建模_运筹学模型(四)
产品生产规划某医院为病人配制营养餐要使用到两种食品A 和B ,每种食品A 含蛋白质50g ,钙400mg , 热量1000单位,价值14元;食品B 含蛋白质60g ,钙200mg ,热量800单位,价值8元.若病人每天需从食物中获取蛋白质,钙及热量分别为55g ,800mg 和3000单位,问如何选购食品才能在满足营养要求条件下使花费最小?试组建线性规划模型并求解后回答:(1)问题的最优方案及最优值分别是甚麽?最优方案是否有选择余地? (2)各种营养要求的满足情况怎样?若限制蛋白质摄入量不超过100单位,会出现甚麽问题?解:本题属于简单的线性规划模型的建立与求解问题,并要求作出一点模型分析工作.按要求,先来建立模型,根据题设,设购买两种食品分别为21,x x (kg ),则有总花费数额函数21814x x z +=,自然我们希望求出这样的21,x x 取值,使得函数z 取最小值.可以写为min 21814x x z +=. 又根据营养最低要求,应有蛋白质需求条件: ,55605021≥+x x 钙的需求条件: 40080020021≥+x x , 热量的需求条件: ,3000800100021≥+x x 非负性条件: .0≥j x将上述条件合在一起,即可获得本问题的线性规划模型如下:m i n 21814x x z+= ⎪⎪⎩⎪⎪⎨⎧..t s ,0,30008001000,800200400,556050212121≥≥+≥+≥+j x x x x x x x利用图解法易于得到其最优解为),310,31(*=X 即食品A 购买31(kg ),B 购买310(kg ),最低花费=*z 394元.由此可回答所提问题:(1)最优解与最优目标值如上所述,最优方案无选择余地,因为最优解点是在后两个约束条件直线的交点上,而不是在可行域的某条边界线段上.(2)钙和热量需求得到满足(最低量),蛋白质需求超最低标准3485个单位.以上结论是将最优解代入各个约束条件得到的.若限制蛋白质摄入量不超过100单位,则第一个约束条件应修改为,55605010021≥+≥x x在原来的求解图上加上条件,100605021≤+x x 则可见可行域不存在,故无解.2.某工厂生产两种产品A 、B 分两班生产,每周生产总时间为80小时,两种产品的预测销售量、生产率和赢利如下表(1)充分利用现有能力,避免设备闲置; (2)周加班时间限制在10小时以内;(3)两种产品周生产品量应满足预测销售,满足程度的权重之比等于它们单位利润之比;(4)尽量减少加班时间. 解: (1)建立模型设:①每班上班时间为8小时,在上班时间内只能生产一种产品; ②周末加班时间内生产哪种产品不限; ③生产A 产品用x 班,生产B 产品用y 班,周加班时生产A 产品用x 1小时,生产B 产品用y 1小时.则有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤+=++≤+≤+=+且为整数0,,,101:2148:987084581011111111y x y x y x x x y y x x y y y x(2)求解现在求满足(1)中第2,3个方程可看出:8≤x ,5≥y ; 将(1)中的第1个方程代入第4个方程得:1179720128y x y -+= 现在就是在满足5≤y ,1011≤+y x 条件下,使上式两端的取值尽量接近.显然5=y ,01=x ,101=y因此 5=x制定方案为,生产A ,B 两种产品所占总时间各一半,周加班10小时全用于生产产品B .运输规划问题现要从两个仓库(发点)运送库存原棉来满足三个纺织厂(收点)的需要,数据如下表,试问在保证各纺织厂的需求都得到满足的条件下应采取哪个运输方案,才能使总运费达到最小?(运价(元/吨)如下表)解:题意即要确定从i 号仓库运到j 号工厂的原棉数量。
运筹学中求解数学模型的方法
运筹学中求解数学模型的方法
运筹学中求解数学模型的方法包括以下几种常用方法:
1. 线性规划:线性规划是一种在给定约束条件下求解线性目标函数最优解的方法。
常用的线性规划求解方法包括单纯形法、内点法等。
2. 整数规划:整数规划是线性规划的扩展,要求决策变量为整数。
常用的整数规划求解方法包括分枝定界法、割平面法等。
3. 动态规划:动态规划是求解具有重叠子问题的最优化问题的一种方法。
它将原问题分解为若干个子问题,并通过递推的方式求解子问题,最终得到原问题的最优解。
4. 随机模型求解方法:对于涉及随机变量的运筹学问题,可以使用概率论和数理统计的方法求解。
常用的方法包括随机模拟、蒙特卡洛方法等。
5. 启发式算法:启发式算法是通过模拟人类的启发式思维过程求解问题的一类算法。
常用的启发式算法包括遗传算法、模拟退火算法、禁忌搜索等。
这些算法能够在较短时间内找到较好的解,但不能保证找到最优解。
6. 网络流模型求解方法:网络流模型用于描述网络中物体、信息或流体的流动,常用于求解最小费用最大流、最短路径、最小割等问题。
求解网络流模型的方法
包括Ford-Fulkerson算法、最短路径算法、最小割算法等。
以上是运筹学中常用的求解数学模型的方法,根据具体问题的特点选择相应的方法进行求解。
数学建模的一般步骤和案例
理想和现实的比较结果及处理方法
1、利用MATLAB拟合此曲线方程,可得:V 0.084h3 0.151h2 0.058h 0.002 2、线性回归方式得到修正系数 m 1.035
3、计算得到的数据与实际测量数据吻合较好,相对误差始终很小,实际数据稍小可能是由于
探针,进出油罐管道等占一定体积及罐壁厚度造成的,为简化模型,本文忽略这部分影响。
建模是一种十分复杂的创造性劳动,现实世界中的事 物形形色色,五花八门,不可能用一些条条框框规定 出各种模型如何具体建立,这里只是大致归纳一下建 模的一般步骤和原则: 模型准备:首先要了解问题的实际背景,明确题目的 要求,收集各种必要的信息. 模型假设:为了利用数学方法,通常要对问题做必要 的、合理的假设,使问题的主要特征凸现出来,忽略 问题的次要方面。 模型构成:根据所做的假设以及事物之间的联系,构 造各种量之间的关系。 (查资料得出数学式子或算法)
横向变位 后油液面
h0 h
图11 储油罐横向变位示意图
h R ( R h0 )cos R(1 cos ) h0 cos
2、球冠体积的计算
容易计算球冠的半径为1.625m
4. 事故发生后,2、3车道堵车对小轿车车速的影响比1、2车 道堵车大,小轿车平均速度减少值多5.6m/s。 5. 1、2车道发生事故和2、3车道发生事故对小轿车的影响比 公交车的影响明显。即小轿车速度对发生事故的车道位置 更敏感。 6. 公交车各时间段速度波动对发生事故的车道位置更敏感。
第二种处理方式:
油 位 探针
注油口 出油管 1.2m
油浮子
1.2m
油
h
α
水平线
1.78m
运筹学的基本理论与方法
运筹学的基本理论与方法运筹学(Operations Research)是一门应用数学学科,旨在通过量化建模和优化方法,解决实际问题和做出最优决策。
本文将介绍运筹学的基本理论与方法,包括问题建模、优化模型、经典算法等方面。
一、问题建模运筹学的第一步是把实际问题转化为数学模型,以便进行分析和求解。
问题建模通常涉及以下几个方面:1. 目标:明确问题的目标是什么,如最大化利润、最小化成本、优化资源利用率等。
2. 决策变量:确定可以控制或调整的变量,即决策变量,如生产数量、采购量、分配方案等。
3. 约束条件:考虑问题的限制条件,如资源限制、技术限制、时间限制等。
二、优化模型基于问题建模的基础上,可以建立相应的优化模型,常见的几种常用优化模型如下:1. 线性规划:线性规划是最经典的优化模型之一,目标函数和约束条件都是线性的。
线性规划可以通过诸如单纯形法、内点法等算法求解。
2. 整数规划:整数规划是线性规划的拓展,决策变量需要取整数值。
整数规划一般通过分支定界法、割平面法等算法求解。
3. 动态规划:动态规划适用于具有决策阶段和状态转移的问题,通过将问题分解为子问题,利用最优子结构性质,建立递推关系来求解。
4. 近似算法:对于复杂优化问题,精确求解往往是不可行的,此时可以采用近似算法,如启发式算法、模拟退火算法、遗传算法等。
三、经典算法运筹学中有一些经典的算法常用于求解各类优化问题,下面介绍几个典型的算法:1. 单纯形法:单纯形法是一种求解线性规划问题的经典算法,通过不断在可行域内移动以达到最优解。
2. 分支定界法:分支定界法通常用于解整数规划问题。
通过不断划分问题的可行域,并对每个子问题求解,最终得到整数规划的最优解。
3. 模拟退火算法:模拟退火算法是一种全局优化算法,通过模拟金属退火过程来避免陷入局部最优解。
4. 遗传算法:遗传算法是一种模拟生物进化过程的优化算法,通过选择、交叉、变异等操作来搜索最优解。
四、应用领域运筹学方法在各个领域都有广泛应用,包括但不限于以下几个方面:1. 生产与物流:优化生产计划、供应链管理、仓储布局等,以提高生产效率和降低成本。
16738-数学建模-运筹学PPT完整版胡运权
线性规划问题的数学模型
Page 18
3. 线性规划数学模型的一般形式
目标函数: max (min) z c1 x1 c2 x2 cn xn
a11 x1 a12 x2 a1n xn ( ) b1
约束条件: am1 x1 am2 x2 amn xn ( ) bm
x1 0 xn 0
a11 a1m
B
(
p1
pm
)
am1
amm
称 B中每个列向量Pj ( j = 1 2 … … m) 为基向量。与基向量Pj
对应的变量xj 为基变量。除基变量以外的变量为非基变量。
线性规划问题的数学模型
Page 29
基解:某一确定的基B,令非基变量等于零,由约束条件
方程②解出基变量,称这组解为基解。在基解中变量取非0
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
max Z
2 x1
x2
3(
x
3
x3)
0x4
0x5
5 x1
x2
(
x
3
x3)
x4
7
x1 x2 ( 5x1 x2
x3 2(
x
3
x3) x3)
真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
课堂考勤 (50%)
平时作业 (50%)
运筹学在数学建模中的应用
无
最 优 (Unbounded)
解
2015年7月15日星期三7时 58分35秒
图解法
x2 A
l1
l4 约 l2 : 12x1 8x2 480 束 12x1 8x2 480 c 条 3x1 100 l3 : 3x1 100 0 l5 件 l4 : x1 0, l5 : x2 0 x1 , x2 0
min s.t.
决策变量
f ( x) hi ( x) 0, i 1,...,m g j ( x ) 0, j 1,...,l xD
n
约 束 条 件
s. t.
2015年7月15日星期三7时 58分34秒
subject to
“受约束于”之意
分析与表述问题
运 筹 学 应 用 步 骤
1954年ggdantzigdrfulkersonsmjohnson研究推销商问题货郎担问题首先提出破子圈方法和将问题分解为几个子问题之和的思想这是割平面方法和分枝定界法的萌芽1958年regomory创立割平面算法1960年ahlandagdoig对推销商问题提出分解算法紧接着ebalas等人将其发展成一般的分枝定界法从而形成独立的整数规划分支1993年wjcook平行计算研究10907064个城市的货郎担问题整数规划简史其临床表现为持续性进行性的多个智能功能域障碍的临床综合征包括记忆语言视空间能力应用辨认执行功能及计算力等认知功能的损害
建立模型
对问题求解 不满意 对模型和由模型导出的解进行检验
满意 建立起对解的有效控制
方案实施
2015年7月15日星期三7时 58分34秒
五、运筹学在数学建模竞赛中的地位
有人统计: 在全国大学生数学建模竞赛题中有40%可以用运筹 学中的优化方法解决
运筹学与最优化方法优化建模
运筹学与最优化方法优化建模运筹学是一门多学科交叉的学科,涵盖了数学、经济学、管理学等多个领域,其目的是通过数学模型和最优化方法来解决各种决策问题。
最优化建模是其中的一个重要方面,它主要是通过建立合适的数学模型,并运用最优化方法找到最佳解。
在运筹学中,最优化建模是一个非常关键的步骤。
它的目标是将实际问题转化为一个数学模型,以便于利用数学方法进行求解。
最优化建模需要对问题进行适当的抽象和简化,将问题的主要方面纳入模型,排除次要因素。
同时,还需要考虑到问题的约束条件和目标函数,以便在求解过程中能够得到一个合理的结果。
最优化建模的方法有很多种,其中最常用的是线性规划、整数规划和非线性规划等。
线性规划主要用于求解线性约束条件下的最优解,例如生产计划、资源分配等问题。
整数规划则是在线性规划的基础上,额外添加了整数变量的约束条件,用于解决一些决策变量只能取整数值的问题,如运输调度、设备配置等。
非线性规划则是应用于具有非线性约束条件的问题,包括一些经济学模型、工程优化问题等。
除了数学方法外,最优化建模还需要结合实际问题的特点进行合理的假设和简化。
这包括对决策变量的选择、约束条件的设置和目标函数的确定等。
在建模过程中,还需要考虑到一些影响因素,如风险程度、决策者的偏好以及系统的复杂性等。
这些因素的考虑对于求解出一个合理的最优解至关重要。
最优化建模的优势在于可以帮助决策者更加全面客观地分析问题,并找到最佳解决方案。
通过运用最优化建模,决策者可以在有限的时间和资源条件下,找到一个最优的决策方案。
这不仅可以提高生产效率和资源利用率,还能够降低成本和风险。
同时,最优化建模还能够帮助企业在竞争激烈的市场环境中获得竞争优势,更好地适应环境变化。
总之,最优化建模是运筹学中重要的一环,通过合适的数学模型和最优化方法,可以帮助决策者在复杂的决策环境中找到最佳解决方案。
它在各个领域都有广泛的应用,不仅可以提高决策效率和资源利用率,还能够帮助企业在竞争激烈的市场中取得竞争优势。
运筹学 方法与模型
运筹学方法与模型运筹学是运用数学、统计学和计算机科学等专业知识和技术,以科学化的方法帮助人们做出最佳决策的学科。
运筹学研究的对象包括决策分析、优化算法、模拟系统、控制论以及信息论等多个方面。
方法。
1.数学方法:运筹学在问题解决中利用了大量数学原理和方法,如线性规划、非线性规划、统计分析、概率论等。
2.统计方法:运筹学在处理大量数据时应用的方法,如数据采集、整理、分析和解释等,让人们可以据此推断数据的趋势。
3.计算机方法:运筹学借助计算机技术,使用计算机建模和仿真技术,将复杂的问题转化为简单的研究对象,并求解其最优解。
4.运筹思想:运筹学旨在找到最优策略,其思想是在各种因素和条件的制约下,达到最佳结果的决策。
这是一个重要的应用范畴。
模型。
1.线性规划模型:这是一种基本的运筹学模型,它通过建立一系列线性等式或不等式来描述形式化问题。
通过优化算法求解,找到最优解。
2.整数规划模型:整数规划模型是在线性规划的基础上,加上整数限制条件的扩展。
为求解整数规划问题,需要使用各种启发式算法、分枝限界法等。
3.随机规划模型:随机规划模型是在考虑风险或不确定性因素的情况下,寻找最优策略的模型。
4.动态规划模型:动态规划模型是用于描述决策过程的数学模型。
通过建立方程组,求解最优决策方案,它广泛应用于生产、库存、资源分配问题等领域。
总结。
运筹学作为一门独立的学科,旨在建立数学模型,找到最优决策方案。
在现代企业管理和科学研究中,它的应用越来越广泛。
运筹学所涉及的方法和模型丰富多样,它不断的激发着人们通过科学的手段来寻找最佳解决方案的创新思维。
数学建模方法详解--三种最常用算法
数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。
运筹学算法的使用方法
运筹学算法的使用方法运筹学是一门研究如何通过数学模型和优化方法来解决实际问题的学科。
它涉及到许多算法和技巧,可以帮助我们在各种场景下进行决策和规划。
本文将介绍几种常用的运筹学算法及其使用方法,帮助您更好地应用运筹学于实际问题中。
一、线性规划线性规划是运筹学中最基本也是最常用的方法之一。
它的目标是在给定的约束条件下,寻找使目标函数最大化或最小化的最佳决策方案。
线性规划的模型可以表示为以下形式:max/min Z = c₁x₁ + c₂x₂ + … + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙx₁, x₂, …, xₙ ≥ 0其中,x₁, x₂, …, xₙ为待决策的变量,c₁, c₂, …, cₙ为目标函数的系数,a₁₁, a₁₂, …, aₙₙ为约束条件的系数,b₁, b₂, …, bₙ为约束条件的边界。
要求解线性规划问题,可以使用单纯形法、内点法等算法。
二、整数规划整数规划是线性规划的一种扩展形式,它要求变量的取值必须是整数。
整数规划广泛应用于许多实际问题,如生产计划、货物配送、员工排班等。
解决整数规划问题的算法主要包括分支定界法、割平面法、动态规划法等。
这些算法可以将整数规划问题转化为线性规划问题,并通过逐步迭代来搜索最优解。
三、网络流优化网络流优化是研究网络中最大吞吐量、最短路径、最小费用等问题的一类方法。
它可以应用于交通路网规划、电力调度、物流配送等领域。
在网络流优化中,常用的算法有最小费用流算法、最大流算法、最小费用最大流算法等。
这些算法可以帮助我们找到网络中的最优方案,并且具有良好的可扩展性和效率。
四、排队论排队论是研究排队系统的数学模型和解决方法的学科。
它可以应用于餐厅、银行、交通等场景中的排队问题。
排队论的模型包括顾客到达模型、服务模型和排队模型。
运筹学数学建模7-9
a21 x1 a22 x2 L a2n xn (, )b2 , L
am1 x1
am2 x2
L
amn xn
(, )bm ,
xi 0, x j 0, i i1 ,L , ik , j j1,L , jl .
线性规划模型标准型:
线性规划模型标准型矩阵表示:
maxz= c1 x1 +c2x2 +…+cnxn
X [x1, x2,L , xn ]T ,
xi 0, i 1,L , n.
b [b1, b2 ,L , bm ]T , b 0,
1.线性规划的一般形化为标准型的一般步骤 (1) Min f = cX 转化为max z = cX
(2) ai1 x1 ai 2 x2 L ain xn bi 加松弛变量yi ai1 x1 ai2 x2 L ain xn yi bi
模型分析与假设对目标函数的贡献与x取值成正比对约束条件的贡献与x取值成正比对目标函数的贡献与x取值无关对约束条件的贡献与x取值无关每公斤的获利是与各自产量无关的常数每桶牛奶加工出a的数量和时间是与各自产量无关的常每公斤的获利是与相互产量无关的常数每桶牛奶加工出a的数量和是与时间相互产量无关的常数加工a的牛奶桶数是实数线性规划模型其临床表现为持续性进行性的多个智能功能域障碍的临床综合征包括记忆语言视空间能力应用辨认执行功能及计算力等认知功能的损害
(1) x3 = x4 x5 , x4 , x5 0 (2) x1 +x2 +x3 +x6 =7 (3) x1 x2 +x3 x7 =2
合理下料问题
设按第i种下料方式的
有长度为8米的某型号圆钢, 现需要长度为2.5米的毛坯
圆钢xi根,i=1,2,3,4
数学建模 运筹学模型(一)汇总
运筹学模型(一)本章重点:线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题复习要求:1. 进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵.2. 进一步理解数学模型的作用与特点.本章复习重点是线性规划基础模型、运输问题模型和目标规划模型. 具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单. 运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单. 你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求. 目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型. 另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型. 这之前恐怕要善于将一个实际问题转化为图论模型. 还有一个最小数的问题,该如何把一个网络中的最小数找到. 另外在个别场合可能会涉及一笔划问题.1. 营养配餐问题的数学模型m i Z n =C 1x 1+C 2x + C n x n⎧a 11x 1+a 12x 2+ +a 1n x n ≥b 1, ⎪⎪a 21x 1+a 22x 2+ +a 2n x n ≥b 2, ⎪ s ⋅t⋅⎨⎪a x +a x + +a x ≥b , m 22mn n m ⎪m 11⎪⎩x j ≥0(j =1, 2, , n或更简洁地表为m i Z n =∑C x jj =1n j⎧n ⎪∑a ij x j ≥b i ⎪j =1s ⋅t ⋅⎨⎪x ≥0(i =1, 2, , m j ⎪j =1, 2, , n ⎩其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量.2. 合理配料问题的数学模型有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品. 单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位. 问如何安排生产,使总利润达到最大?设生产第j 种产品x j 个单位(j =1,2,…,n ),则有m a Z x =C 1x 1+C 2x 2+ +C n x n⎧a 11x 1+a 12x 2+ +a 1n x n ≤b 1, ⎪⎪a 21x 1+a 22x 2+ +a 2n x n ≤b l , ⎪ s ⋅t⋅⎨⎪a x +a x + +a x ≤b , m 22mn n m ⎪m 11⎪⎩x j ≥0(j =1, 2, , n或更简单地写为m a z x =∑Cj =1n j x j⎧n ⎪∑a ij x j ≤b i ⎪j =1 s ⋅t ⋅⎨i =1, 2, , m ⎛⎫⎪x ≥0 j =1, 2, , n ⎪⎪⎪j ⎝⎭⎩3. 运输问题模型运输问题也是一种线性规划问题,只是决策变量设置为双下标变量. 假如问题具有m 个产地和n 个销地,第i 个产地用A i 表示,其产量为a i (i =1,2,…,m ),第j 个销地用B j 表示,其销量为b j (j =1,2,…,n ),从A i 运往B j 的运价为c ij ,而写成为∑a i =1m i =∑b j =1n j 表示产销平衡. 那么产销平衡运输问题的一般模型可以min Z =∑∑c ij x iji =1j =1m n⎧n ⎪∑x ij =a i ⎪j =1⎪⎪m s ⋅t ⋅⎨∑x ij =b j ⎪i =1⎪⎛i =1, 2, , m ⎫⎪x ij ≥0 j =1, 2, , n ⎪⎪⎪⎝⎭⎩4. 目标规划模型某工厂生产代号为Ⅰ、Ⅱ的两种产品,这两种产品都要经甲、乙两个车间加工,并经检验与销售两部门处理. 已知甲、乙两车间每月可用生产工时分别为120小时和150小时,每小时费用分别为80元和20元,其它数据如下表表4-1工厂领导希望给出一个可行性生产方案,使生产销售及检验等方面都能达标.问题分析与模型假设经与工厂总经理交谈,确定下列几条:p 1:检验和销售费每月不超过4600元;p 2:每月售出产品I 不少于50件;p 3:两车间的生产工时充分利用(重要性权系数按两车间每小时费用比确定);p 4:甲车间加班不超过20小时;p 5:每月售出产品Ⅱ不少于80件;p 6:两车间加班总时数要有控制(对权系数分配参照第三优先级).模型建立设x 1,x 2分别为产品Ⅰ和Ⅱ的月产量,先建立一般约束条件组,依题设50x 1+30x 2≤4600x 1≥50 售出量x 2≥80 2x 1+x 2≤120 两车间总工时x 1+3x 2≤150+ 设d 1表检验销售费偏差,则希望d 1达最小,有p 1d 1+, 相应的目标约束为 5x 1+30x 2+d 1--d 1+ = 4600; --达最小,有p 2d 2, 相应的目标约束 d 2表产品I 售量偏差,则希望d 2-+x 1+d 2-d 2=50,以d 3、d 4表两车间生产工时偏差,则由于充分利用,故希望d 320=4:1,有--p 3(4d 3+d 4 . 相应的目标约束应为 --达最小,考虑到费用比例为80:, d 4-+-+=150, -d 42x 1+x 2+d 3-d 3=120和x 1+3x 2+d 4以d 5表甲车间加班偏差,则有+-+d 3+d 5-d 5=20, p 4d 5+, 相应目标约束为以d 6表产品Ⅱ售量偏差,则希望d 6达最小,有相应约束为-+x 2+d 6-d 6=80.++++表示,考虑到权系数,有p6(4d 3+d 4, 其目标约束由于利用超生+d 4- 最后优先级p 6可利用d 3产工时,已在工时限制中体现,于是得到该问题的目标规划模型为---+-++m i z n =p 1d 1++p 2d 2+p 3(4d 3+d 4 +p 4d 5+p 5d 6+p 6(4d 3+d 4 ⎧50x 1+30x 2+d 1--d 1+⎪-+x 1+d 2-d 2⎪⎪-+2x +x +d -d 1233⎪⎪-+s ⋅t ⋅⎨x 1+3x 2+d 4-d 4⎪+-+d +d -d 355⎪⎪x 2+d 6--d 6+⎪-+⎪⎩x 1, x 2≥0, d l , d l≥0=4600=50=120=150=20=80(l =1, 2, , 65. 最小树问题一个图中若有几个顶点及其边的交替序列形成闭回路,我们就说这个图有圈;若图中所有连顶点间都有边相接,就称该图是连通的;若两个顶点间有不止一条边连接,则称该图具有多重边. 一个图被称为是树意味着该图是连通的无圈的简单图. .在具有相同顶点的树中,总赋权数最小的树称为最小树.最小树的求法有两种,一种称为“避圈法”,一种是“破圈法”,两法各具优缺点,它们具有共同的特征——去掉图中的圈并且每次都是去掉圈中边权较大的边.6. 最短路问题的数学模型最短路问题一般描述如下:在一个图(或者说网络)中,给定一个始点v s 和一个终点v t ,求v s 到v t 的一条路,使路长最短(即路的各边权数之和最小).狄克斯屈(E.D.Dijkstra )双标号法该法亦称双标号法,适用于所有权数均为非负(即一切w ij ≥0 w ij 表示顶点v i 与v j 的边的权数)的网络,能够求出网络的任一点v s 到其它各点的最短路,为目前求这类网络最短路的最好算法.该法在施行中,对每一个点v j 都要赋予一个标号,并分为固定标号P (v j )和临时标号T (v j )两种,其含义如下:P (v j )——从始点v s 到v j 的最短路长;T (v j )——从始点v s 到v j 的最短路长上界.一个点v j 的标号只能是上述两种标号之一. 若为T 标号,则需视情况修改,而一旦成为P 标号,就固定不变了.开始先给始点v s 标上P 标号0,然后检查点v s ,对其一切关联边(v s ,vj )的终点v j ,给出v j 的T 标号w ij ;再在网络的已有T 标号中选取最小者,把它改为P 标号. 以后每次都检查刚得到P 标号那点,按一定规则修改其一切关联边终点的T 标号,再在网络的所有T 标号中选取最小者并把它改为P 标号. 这样,每次都把一个T 标号点改为P 标号点,因为网络中总共有n 个结点,故最多只需n -1次就能把终点v t 改为P 标号. 这意味着已求得了v s 到v t 的最短路.狄克斯屈标号法的计算步骤如下:1°令S ={v s }为固定标号点集,=V \{v s }为临时标号点集,再令P (v i =0,v t ∈S ; 2°检查点v i ,对其一切关联边(v i , vj )的终点v j∈,计算并令 min{T (v j , P (v i +w ij }⇒T (v j3°从一切v j∈中选取并令 min{T (v j }=T (v r ⇒T (v r 选取相应的弧(v i , vr ). 再令 S {v r }⇒S , \{v r }⇒=∅,则停止,P (v j 即v s 到v j 的最短路长,特别P (v t 即v s 到v t 的最短路长,而已选出 4°若的弧即给出v s 到各点的最短路;否则令v r ⇒v i ,返2°. 注意:若只要求v s 到某一点v t 的最短路,而没要求v s 到其他各点的最短路,则上述步骤4°可改为 4°若r = t 则结束,P (v r 即为所求最短路长;否则令v r ⇒v i ,返2°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 混合配料问题
某糖果厂用原料A,B,C加工成三种不同牌号的糖果 甲、乙、丙。已知各种牌号糖果中A、B、C含量、原 料成本、各种原料的每月限制用量,三种牌号糖果的 单位加工费及售价,如表1-17所示。问该厂每月生产 这三种牌号糖果各多少kg,才能使其获利最大。试建 立这个问题的线性规划的数学模型。
原料月供应量限制
含量成分的限制
• 计算采用Matlab软件 [x,feval]=linprog(f,A,b,Aeq,beq,lb,ub)
结果:
Matlab code
f=-[0.9 1.4 1.9 0.45 0.95 1.45 -0.05 0.45 0.95]'; A=[1 0 0 1 0 0 1 0 0; 0 1 0 0 1 0 0 1 0; 0 0 1 0 0 1 0 0 1; -0.4 0.6 0.6 0 0 0 0 0 0; -0.2 -0.2 0.8 0 0 0 0 0 0; 0 0 0 -0.7 0.3 0.3 0 0 0; 0 0 0 -0.5 -0.5 0.5 0 0 0; 0 0 0 0 0 0 -0.6 -0.6 0.4]; b=[2000 2500 1200 0 0 0 0 0]'; lb=zeros(9,1); [x,feval]=linprog(f,A,b,[],[],lb)
表 1-17
原料 A
甲 ≥60% ≤20% 0.50 3.40
乙 ≥30% ≤50% 0.40 2.85
丙
原料成本 (元/kg) 2.00
每月限制 用量(kg) 2000
B
C 加工费(元/kg) 售价(元/kg ) ≤60% 0.30 2.25
1.50
1.00
2500
1200
解 用i=1,2,3分别代表原料A,B,C,用j=1,2,3分别代表
B1
A1 A2 2 8
B2
9 3
B3
3 5
B4
4 7
年生产能力
400 600
A3
A4 年需求 量
7
4 350
6
5 400
1
2 300
2
5 150
200
200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500 万元。现要决定应该建设工厂A3还是A4,才能使今后每年的总费 用最少。
• 解:这是一个物资运输问题,特点是事先不能确 定应该建A3还是A4中哪一个,因而不知道新厂投 产后的实际生产物资。为此,引入0-1变量:
计算结果
x11=0.5800e+003 x21= 0.2862e+003 x31= 0.1005e+003 x12=1.4200e+003 x22=2.2138e+003 x32= 1.0995e+003 x13=0.0000 x23=0.0000 x33= 0.0000
整数规划
( Integer Programming )
x11 x12 x13 2000 x21 x22 x23 2500 x31 x32 x33 1200 x11 0.6( x11 x21 x31 ) s.t. x31 0.2( x11 x21 x31 ) x 0.3( x x x ) 12 22 32 12 x32 0.5( x12 x22 x32 ) x33 0.6( x13 x23 x33 ) x ij 0(i 1, 2,3; j 1, 2,3)
• • • • • • • •
线性规划 整数规划 动态规划 层次分析法(决策论) 非线性规划 排队论 存贮论 对策论
Matlab软件 Optimization Toolbox
• • • • • linprog 求解线性规划 bintprog 求解0-1整数规划 fmincon 求解带约束的非线性规划 fminunc 求解无约束非线性规划 ga 采用遗传算法求能取值0或1的整数线性 规划。
计算软件: Maltab软件:求解0-1整数规划 Lingo软件:整数规划 bintprog
• 整数规划的典型例子
例2 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要再 建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
主要内容:
整数规划的特点及应用
分支定界法
•整数规划(简称:IP)
要求一部分或全部决策变量取整数值的规划问 题称为整数规划。不考虑整数条件,由余下的目标 函数和约束条件构成的规划问题称为该整数规划问 题的松弛问题。若该松弛问题是一个线性规划,则 称该整数规划为整数线性规划。
整数线性规划数学模型的一般形式:
甲、乙、丙三种糖果,xij为生产第j种糖果耗用的第i种原 料的kg数量。该厂的获利为三种牌号糖果的售价减去相应 的加工费和原料成本,三种糖果的生产量分别为: x甲,x乙,x丙
maxz (3.40 0.50)(x11 x 21 x31 ) (2.85 0.40)(x12 x 22 x32 ) (2.25 0.30)(x13 x 23 x33 ) 2.0( x11 x12 x13 ) 1.50( x 21 x 22 x 23 ) 1.0( x31 x32 x33 ) 0.9 x11 1.4 x 21 1.9 x31 0.45x12 0.95x 22 1.45x32 0.05x13 0.45x 23 0.95x33
max Z (或 min Z )
c
j 1
n
j
xj
n a ij x j bi ( i 1.2 m ) j 1 x j 0 (j 1.2 n) 且 部 分 或 全 部 为 整 数
• 整数线性规划问题的种类: 纯整数线性规划:指全部决策变量都必须取整数值的整数 线性规划。 混合整数线性规划:决策变量中有一部分必须取整数值, 另一部分可以不取整数值的整数线性规划。