指数与指数幂的运算教学设计

合集下载

指数与指数幂的运算教学设计

指数与指数幂的运算教学设计

课题指数与指数幂的运算(一)(一)教学目标1.知识与技能(1)理解n次方根与根式的概念;(2)能够正确运用根式性质进行化简、求值;(3)了解分类讨论思想在解题中的应用。

2.过程与方法通过对恐龙化石视频的观看,对它的历史有了些了解。

自然而然地引入C14的衰变问题,进而得到分数指数幂的原型。

然后通过与初中所学的知识(平方根、立方根)进行类比,得出n次方根的概念,进而学习根式的性质。

3.情感、态度与价值观通过观看恐龙视频,感知恐龙的历史,激发学生探索数学知识的兴趣;通过与初中所学的知识(平方根、立方根)的比较,以及完成两个表格,自我探究或是讨论,归纳出所学知识的规律。

并体会初中知识与高中知识其实是一个从浅至深的联系,又有一个质的飞跃区别。

并逐步培养学生严谨的学习态度。

(二)教学重点、难点1.教学重点:(1)n次方根与根式概念的理解;(2)理解两个公式,并运用这两个公式进行根式的运算。

2.教学难点:根式概念的理解与两个公式的推导过程。

(三)教学资源资源:计算机辅助系统。

(四)教学设计思路本节是一堂概念课。

为了增加课堂的趣味性,观看恐龙化石视频,引入根式的原型。

为突破根式概念的理解这一难点,采用类比的方法,从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念。

在讲解过程中,强调说明根式是n次方根的一种表示形式。

并通过两个表格由学生自我建构根式性质的知识。

接着通过例题讲解,基础训练,能力提升,来巩固知识。

最后解答开篇之问。

1.本教学的开篇由视频引入。

通过观看恐龙化石的视频,让学生对其有所了解以后,以问题:恐龙生活在哪个时间,自然地引入了根式的存在意义。

2.对于方根概念(知识探究一)的教学,采用的是从学生的最近发展区入题,即学生已经学过了平方根、立方根,然后由学生通过类比得到,4次方根,5次方根,6次方根的意义所在,最后由学生定义出n 次方根的概念。

3.对于根式的性质(知识探究二)的教学,完全是由学生自主完成表格1,然后通过观察各行各列之间的关系得到根式的表示与性质。

《指数与指数幂的运算》教学设计(精品)

《指数与指数幂的运算》教学设计(精品)

指数与指数幂的运算(一)(一)教学目标1.知识与技能(1)理解n次方根与根式的概念;(2)正确运用根式运算性质化简、求值;(3)了解分类讨论思想在解题中的应用.2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出n次方根的概念,进而学习根式的性质.3.情感、态度与价值观(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(2)培养学生认识、接受新事物的能力.(二)教学重点、难点1.教学重点:(1)根式概念的理解;(2)掌握并运用根式的运算性质.2.教学难点:根式概念的理解.(三)教学方法本节概念性较强,为突破根式概念的理解这一难点,使学生易于接受,故可以从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念,在得出根式概念后,要引导学生注意它与n次方根的关系,并强调说明根式是n次方根的一种表示形式,加强学生对概念的理解,并引导学生主动参与了教学活动.故本节课可以采用类比发现,学生合作交流,自主探索的教学方法.(四)教学过程备选例题例1 计算下列各式的值. (1)33)(a ;(2) (1n >,且n N *∈) (3)(1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-; 当n =3π-. (3)=||x y -, 当x y ≥时,x y -; 当x y <时,y x -.【小结】(1)当n 为奇数时,a a n n =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n n(2)不注意n 的奇偶性对式子n n a 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.例2 求值:【分析】需把各项被开方数变为完全平方形式,然后再利用根式运算性质;【解析】==||2|2=+--=--2(2=【小结】开方后带上绝对值,然后根据正负去掉绝对值.2.1.1 指数与指数幂的运算(二)(一)教学目标1.知识与技能(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法通过与初中所学的知识进行类比,得出分数指数幂的概念,和指数幂的性质.3.情感、态度与价值观(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.(二)教学重点、难点1.教学重点:(1)分数指数幂的理解;(2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂概念的理解(三)教学方法发现教学法1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.2.在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内.由此让学生体会发现规律,并由特殊推广到一般的研究方法.(四)教学过程例1计算(1).)01.0(41225325.02120-⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛--(1)5.1213241)91()6449()27()0001.0(---+-+; 【解析】(1)原式1122141149100⎛⎫⎛⎫=+⨯- ⎪ ⎪⎝⎭⎝⎭11111.61015=+-=(2)原式=232212323414])21[(])87[()3()1.0(---+-+ =3121)31()87(31.0---+-+ =73142778910=+-+. 【小结】一般地,进行指数幂运算时,化负指数为正指数,化小数为分数进行运算,便于进行乘除、乘方、开方运算,可以达到化繁为简的目的.例2 化简下列各式: (1)313315383327----÷÷a a a a a a ;(2)33323323134)21(248a ab a abb ba a ⨯-÷++-.【解析】 (1)原式=321233153832327----÷÷a aa aa a=323732-÷÷a a a =312213732)()(-÷÷a a a=326732326732---÷=÷÷aa aa a=632a a =;(2)原式=313131313231313231224)8(a a b a a b a b b a a ⨯⋅-÷++-3131313132313132323131323131312424)42)(2(a b a a b a b b b a a b a a ⋅-⋅++++-=a a a a =⋅⋅=313131.【小结】(1)指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.(2)根据一般先转化成分数指数幂,然后再利用有理指数幂的运算性质进行运算. 在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解. 如8)2(])2[()2(2162166==-=-.(3)利用分数指数幂进行根式计算时,结果可化为根式形式或保留分数指数幂的形式,但不能既有根式又有分数指数幂.2.1.1 指数与指数幂的运算(三)(一)教学目标 1.知识与技能:能熟练地运用有理指数幂运算性质进行化简,求值. 2.过程与方法:通过训练点评,让学生更能熟练指数幂运算性质. 3.情感、态度、价值观(1)培养学生观察、分析问题的能力;(2)培养学生严谨的思维和科学正确的计算能力. (二)教学重点、难点1.重点:运用有理指数幂性质进行化简,求值.2.难点:有理指数幂性质的灵活应用.(三)教学方法1.启发学生认识根式与分数指数幂实质是相同的.并能熟练应用有理指数幂的运算性质对根式与分数指数幂进行互化.2.引导学生在化简求值的过程中,注意将根式转化为分数指数幂的形式和积累一些常用技巧.如凑完全平方、分解因式、化小数为分数等等.另外,在运用有理指数幂的运算性质化简变形时,应注意根据底数进行分类,以精简解题的过程.(四)教学过程备选例题 例1 已知32121=+-aa ,求下列各式的值.;+-1)1(a a;)2(22-+a a33221122(3).a a a a----【分析】从已知条件中解出a 的值,然后再代入求值,这种方法是不可取的,而应设法从整体寻求结果与条件32121=+-aa 的联系,进而整体代入求值.【解析】(1)将32121=+-a a 两边平方,得.921=++-a a 即.71=+-a a(2)将上式平方,有.49222=++-a a.4722=+∴-a a(3)由于3213212323)()(---=-a a aa∴33221122a a a a----1111122221122()()a a a a a a a a-----++⋅=-118.a a -=++=【小结】对“条件求值”问题一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.例2 化简.111113131313132---+++++-x xx x x x x x【分析】根据本题的特点,须注意到)1()1(1)(13132313331++⋅-=-=-x x x x x ,=+1x 1121333333()1(1)(1),x x x x +=+-+1111112333333[()1](1)(1)x x x x x x x -=-=-+,应对原式进行因式分解. 【解析】原式111)(1)(1)(31313231313331312313331---+++++-=x x x x x x x x x1213332133(1)(1)()1x x x x x -++=++12133313(1)(1)1x x x x +-+++1)1)(1(31313131-+--x x x x121213333311x x x x x =-+-+-- 13.x =-【小结】解这类题,要注意运用下列公式:11112222,a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭ 2111122222,a b a a b b ⎛⎫±=±+ ⎪⎝⎭112112333333.a b a a b b a b ⎛⎫⎛⎫±+=± ⎪⎪⎝⎭⎝⎭。

指数与指数幂的运算教案

指数与指数幂的运算教案

2.1.1指数与指数幂的运算(2课时)第一课时根式 教学目标: 1. 理解n 次方根、根式、分数指数幕的概念;2. 正确运用根式运算性质和有理指数幕的运算性质;3培养学生认识、接受新事物和用联系观点看问题的能力。

教学重点: 根式的概念、分数指数幕的概念和运算性质 教学难点:根式概念和分数指数幕概念的理解 教学方法:学导式教学过程:(I )复习回顾 引例:填空(II )讲授新课(1) a n =a_a\IKnN);a 0=1 (a= 0); -Q a 1 * n (a 0, n ∙ N ) am n m n⑵ a a a (m,n ∈ Z);(a m )n =a mn (m,n ∈ Z); (ab)n =a n b n (n ∈ Z) (3) 9 = (4) (-.a)2 (a -0); ∖a 2 =1■引入:(1)填空(1), (2)复习了整数指数幕的概念和运算性质(其中:因为a"÷a n可看作a m a』,所以a「a n =a m』可以归入性质a m∙a^a mn;又因为(-)n可看作bna m a』,所以(a)n =a n可以归入性质(ab)n =a nb n(n∈Z)),这是为下面学习分b b数指数幕的概念和性质做准备。

为了学习分数指数幕,先要学习n次根式(n ∙ N* )的概念。

(2)填空(3),(4)复习了平方根、立方根这两个概念。

如:2 2=> 2, -2叫4的平方根22=4,(-2)2=423=8 = 2 叫8 的立方根;(-2)3=-8 =■-2叫-8的立方根25=32 =⅛ 2叫32的5次方根… 2n=a n 2叫a的n次方根分析:若22=4,则2叫4的平方根;若23=8, 2叫做8的立方根;若25=32 ,则2叫做32的5次方根,类似地,若2n=a,则2叫a的n次方根。

由此,可有:2.n次方根的定义:(板书)般地,如果χn=a ,那么X叫做a的n次方根(n th root),其中n 1 ,且n N问题1: n次方根的定义给出了,X如何用a表示呢?X =n a是否正确?分析过程:例1•根据n次方根的概念,分别求出27的3次方根,-32的5次方根,a6的3次方根。

《指数与指数幂的运算》教学设计

《指数与指数幂的运算》教学设计

210
(25 )2
25
10
22;
3 312
3 (34)3
34
12
33;
12
4 a12 4 (a3)4 a3 a 4 ;
10
5 a10 5 (a2)5 a2 a 5 .
结论:当根式的被开方数的指数能被根指数整
除时,根式可以表示为分数指数幂的形式.
你能表示下列式子吗?
3
5 43 45;
3 75
5
73;
2
3 a2 a3;
9
7 a9 a7.
总结:当根式的被开方数的指数不能被根指 数整除时,根式可以写成分数指数幂的形式.
1.规定:正数的正分数指数幂的意义:
m
a n n am (a 0, m, n N , 且n 1)
2.规定:正数的负分数指数幂的意义:
m
an
1
m
an
1 n am
1
36
2 3 113216
111 236
236.
(2)( 3 25 125) 4 5
23
1
(53 52 )54
2131
53 54 52 54
21 31
5
5
53 4 52 4 512 54
12 55 54 5.
(1) [(
8)
2 3
(3
102
9
)2]
105.
(2)
(
81 625
)
3 4
[(3)2
3
]2
(3)
3
(
3a 3 27b3
)4
9
(4) a 2 4 b3
(1) [(

2.1.1指数与指数幂的运算教案

2.1.1指数与指数幂的运算教案

2.1.1指数与指数幂的运算教案篇一:2.1.1指数与指数幂的运算教案指数与指数幂的运算申请资格种类:高级中学教师资格学科:数学测试人姓名:课题名称:第二章第一节指数函数第一课时指数与指数幂的运算一、教学内容分析指数函数是基本初等函数之一,应用非常广泛。

它是在上一章节学习了函数的概念和基本性质后第一个较为系统研究的基本初等函数。

教科书通过实际问题引入分数指数幂,说明了扩张指数范围的必要性,为此先将平方根和立方根的概念扩充到n次方根,将二次根式的概念扩充到一般根式的概念,然后进一步介绍了分数指数幂及其运算性质,最后结合一个实例,通过有理数指数幂逼近无理数指数幂的方法介绍了无理数指数幂的意义,从而将指数的取值范围扩充到实数。

本节是下一节学习指数函数的基础。

二、教学对象分析授课对象为高一学生。

首先,这个年龄段的学生学习兴趣浓厚、思维活跃和求知欲强。

其次,学生在初中学习阶段已经接触到平方根与立方根、整数指数幂及其运算性质等知识点,为本节学习奠定了知识的基础。

最后,本节的学习过程中对学生观察力、逻辑能力、抽象能力有一定要求,这对该阶段的学生可能会造出一定的困难。

三、教学目标四、教学重点和难点本节的教学重点是理解有理数指数幂的意义、掌握幂的运算。

本节的教学难点是理解根式的概念、掌握根式与分数指数幂之间的转化、理解无理数指数幂的意义。

五、教学方法根据本节课的特点,采用问题探究、引导发现和归纳概括相结合的教学方法。

六、教学过程设计(一)导入新课1、引导学生回忆函数的概念,说明学习函数的必要性,引出实例。

2、以实例引入,让学生体会其中的函数模型的同时,激发学生探究分数指数幂的兴趣与欲望。

问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。

根据此规律,人们想获得了生物体内碳14含量P与死亡年数t的关系。

引导学生得出关系式:t?1?5730P???2??总结关系式能解决实际问题,让学生体会数学的应用价值,同时指出为了更好地解决实际问题必须进一步深入学习函数。

高中数学指数与指数幂的运算教案

高中数学指数与指数幂的运算教案

高中数学指数与指数幂的运算教案一、教学目标•理解指数幂的基本概念,掌握指数幂运算法则。

•掌握指数幂运算中的乘方运算法则、除法运算法则、幂运算法则等基本准则。

•掌握如何进行数学题目的化简与计算。

二、教学重点•理解指数幂的概念,掌握乘方运算、除法运算和幂运算的基本法则。

•熟练掌握指数幂的运算方法,能够灵活运用到数学题目计算及求解中。

三、教学内容1. 指数幂的基本概念•定义:指数是乘积的简写,指数幂就是一个数自乘的多次运算。

例如 aⁿ,其中 a 是底数,n 是指数。

•概念:底数与指数是幂的构成要素。

•特征:指数幂的幂次表示底数连续乘法的次数,指数为 0 的指数幂表示为 1。

•记忆技巧:底数 a 和指数 n 都可以从“按次数”这个概念入手去记。

2. 指数幂运算法则2.1 乘法运算法则指数相加,底数不变。

aⁿ × aⁿʸ = aⁿ⁺ʸ。

例如:2² × 2³ = 2⁵2.2 除法运算法则指数相减,底数不变。

aⁿ ÷ aⁿʸ = aⁿ⁻ʸ,其中 n 〉y。

例如:5⁴ ÷ 5² = 5²2.3 幂运算法则底数相同,指数相加。

aⁿ⁺ʸ = (aⁿ)ⁿʸ。

例如:2³⁺² = (2³)² = 8² = 643. 题目解析题目1$0.5^6 \\times 0.5^3 = 0.5^{6+3} = 0.5^9$题目2$4^3 \\div 4^2 = 4^{3-2} = 4^1 = 4$题目3$(3^4)^3 = (3^{4\\times3}) = 3^{12}$四、教学方法1.以练习为主,通过大量的例题和训练来加深学生对指数幂的认识。

2.实践与归纳相结合,提高学生思维水平与解题能力。

五、教学过程1.复习知识点和概念。

2.讲解指数幂运算法则,通过例题讲解并学生操作,带领学生掌握基本的指数幂运算方法。

《指数与指数幂的运算》教案新部编本

《指数与指数幂的运算》教案新部编本

精选教课教课设计设计| Excellent teaching plan教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校精选教课教课设计设计| Excellent teaching plan《指数与指数幂的运算》教课设计一、教材剖析本节是高中数学新人教版必修 1 的第二章 2.1 指数函数的内容二、三维目标1.知识与技术(1)理解 n 次方根与根式的观点;(2)正确运用根式运算性质化简、求值;(3)认识分类议论思想在解题中的应用.2.过程与方法经过与初中所学的知识(平方根、立方根)进行类比,得出n 次方根的观点,从而学习根式的性质 .3.感情、态度与价值观(1)经过运算训练,养成学生谨慎治学,谨小慎微的学习习惯;(2)培育学生认识、接受新事物的能力三、教课要点教课要点:( 1)根式观点的理解;( 2)掌握并运用根式的运算性质四、教课难点教课难点:根式观点的理解五、教课策略发现教课法1.经历由利用根式的运算性质对根式的化简,注意发现并概括其变形特色,从而由特殊情况概括出一般规律.2.在学生掌握了有理指数幂的运算性质后,进一步推行到实数范围内.由此让学生领会发现规律,并由特别推行到一般的研究方法.六、教课准备回首初中时的整数指数幂及运算性质,a n a a a a, a0 1 (a0)七、教课环节教教课内容师生互动设计意学图环精选教课教课设计设计| Excellent teaching plan 节提回首初中时的整数指数幂及运算性质.出问a n a a a a, a0 1 ( a 0)题00无心义a n1( a 0)a na m a n a m n ; (a m )n a mn(a n )m a mn , (ab)n a n b n什么叫实数?有理数,无理数统称实数.复察看以下式子,并总结出规律: a >0习① 5 a10 5 (a2)5a210a 5引② a8(a4 ) 2a48入a2③ 4 a12 4 (a3)4a312 a 4④ 5 a105a210a 5 (a2 )5小结:当根式的被开方数的指数能被根指数整除时,根式能够写成分数作为指数的形式,(分数指数幂形式)根式的被开方数不可以被根指数整除时,根式能否也能够写成分数指数幂的形式.如:3 a22a 3(a0) 1b b2(b0)4 c55c4(c0)m即:n a m a n (a 0, n N * ,n 1)老师发问,学习学生回答 .新知前的简单复习,不单能唤起学生的记忆,并且为学习新课作好了知识上的准备 .老师指引学生“当根式的被开数学方数的指数能被根指数整除时,根中引进一式能够写成分数作为指数的形式,个新的概(分数指数幂形式)”联想“根式的念或法例被开方数不可以被根指数整除时,根时,总希式能否也能够写成分数指数幂的形望它与已式 .”从而推行到正数的分数指数幂有的观点的意义 .或法例是相容的 .形为此,我们规定正数的分数指数幂的意学生计算、结构、猜想,同意沟通让学成义为:议论,报告结论.教师巡视指导.生经历从概“特别一精选教课教课设计设计| Excellent teaching plan念mn a m (a 0, m, n N * )一般”,a n“概括一正数的定负分数指数幂的意义与负整猜想”,数幂的意义相同 .是培育学m1*即: a n生“合情m (a 0, m, n N )a n推理”能规定: 0 的正分数指数幂等于0,0 的负力的有效分数指数幂无心义 .方式,同说明:规定好分数指数幂后,根式与分时学生也数指数幂是能够交换的,分数指数幂不过根经历了指式的一种新的写法,而不是数幂的再n111发现过a m a m a m a m (a0)程,有益于培育学生的创建能力.深因为整数指数幂,分数指数幂都存心让学生议论、研究,教师指引.经过本化义,所以,有理数指数幂是存心义的,整数环节的教概指数幂的运算性质,能够推行到有理数指数学,进一念幂,即:步领会上( 1)a r a s a r s (a0, r , s Q )一环节的( 2)( a r)S a rs (a0, r , s Q )设计意图.(3)( a b)r a r b r (Q 0, b 0, r Q)若 a >0,P是一个无理数,则P该怎样理解?为认识决这个问题,指引学生先阅读课本 P57——P58.即: 2 的不足近似值,从由小于 2 的方向迫近 2 , 2 的剩余近似值从大于2的方向迫近 2 .所以,当 2 不足近似值从小于 2 的方向迫近时, 52的近似值从小于 52的方向精选教课教课设计设计 | Excellent teaching plan迫近5 2 .当2 的剩余似值从大于 2 的方向逼近2 时,5 2 的近似值从大于 5 2 的方向逼近 5 2 ,( 如课本图所示 )2所以, 5是一个确立的实数 .a p (a 0, p 是一个无理数 ) 是一个确定的实数,有理数指数幂的性质相同合用于无理数指数幂 .无理指数幂的意义, 是用有理指数幂的不足近似值和剩余近似值无穷地迫近以确立大小 .思虑: 2 3 的含义是什么?由以上剖析,可知道,有理数指数幂,无理数指数幂存心义,且它们运算性质相同,实数指数幂存心义,也有相同的运算性质,即:rsrsa aa (a 0, r R, s R)rsrs(a )a (a 0, r R, s R)rrr(a b) a b (a 0, r R)应例题用例 1( P 56 ,例 2)求值举211) 5;( 383;25 2;(16) 4. 例2 81例 2( P 56,例 3)用分数指数幂的形式表或以下各式( a > 0)a 3 . a ; a2 3a 2;a 3a .剖析:先把根式化为分数指数幂,再由运算性质来运算 .117解: a 3 . a a 3 a23a 2;a2学生思虑,口答,教师板演、评论.例 1解:22① 83(23)33 222 4 ;2311② 252 (52) 22 ( 1 )11 52 5;5③ (1)5(21)52经过这二个例题的解答,稳固所学的分数指数幂与根式的互化,以及分数指数幂的求值,提高运算能精选教课教课设计设计| Excellent teaching plan22 28 2 1 ( 5)32 ;a 2 3 a 2 a 2 a 3 a3a 3;3 3162 4( )④ () 4( )4144 12813a 3aa a 3 a 3 (a 3 ) 2 a 3 .2 327().讲堂练习: P 59 练习 第 1,2,3, 4 题38例 2 剖析:先把根式化为分数增补练习:(2n 1 )4 ( 1)2 n 1指数幂,再由运算性质来运算 .11. 计算:n2 的结果;解: a 3 . a a3a 224 817若 a 3 3,a10384,32. a 2a 2 ;12求 a 3 [(a 10) 7 ]n 3的值 .a 2 3 a 2a 2 a 3a 32 2 8a3a 3 ;a 314aa a 3a 341 2( a 3 ) 2 a 3 .练习答案:24 n 4 2 2n 11.解:原式 = 22 n2 6= 29 =512 ;1]n 32.解:原式 = 3 [(128) 7 = 32n 3.归1.分数指数是根式的另一种写法 .先让学生单独回想,而后师生纳2.无理数指数幂表示一个确立的实数.共同总结.总3.掌握好分数指数幂的运算性质,其结与整数指数幂的运算性质是一致的.课作业: 2.1 第二课时 习案 学生独立达成后力.稳固本节学习成就,使学生逐渐养成爱总结、会总结的习惯和能力.稳固新知精选教课教课设计设计| Excellent teaching plan作提高业能力。

高一数学必修1教材《指数与指数幂的运算》教学设计

高一数学必修1教材《指数与指数幂的运算》教学设计

2.1.1指数与指数幂的运算 第1课时《根式》一、 教学目标1、知识目标:理解n 次方根和n 次根式的概念及其性质,能根据性质进行简单的根式计算。

2、能力目标:通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力。

3、情感态度与价值观:通过对根式的化简,使学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想。

二、 教学重点:n 次方根的概念及其取值规律教学难点:n 次方根的概念及其运算根据的研究.三、 过程与方法:教学方法:启发探索式.(一)、预习自学1、指数幂的定义 :a 的正整数指数幂=na (其中R a n N n ∈>∈,1,*)a 的零次幂=0a (其中a ) a 的负整数指数幂=-n a (其中a )2、平方根与立方根的定义:(1)平方根:如果 ,那么 叫做 的平方根。

正数a的平方根有 个,它们 ,记作 ,0的平方根是 ,负数 。

(2)立方根:如果 ,那么 叫做 的立方根。

正数a 的立方根是一个 ,负数a 的立方根是一个 ,0的立方根是 ,实数a 的立方根记作 。

3、n 次方根的概念:一般的,如果 其中( ) 当n 是奇数时 , 记作当n 时偶数时 记作 负数 0的 ,记作 4、根式的概念:(1)定义:(2)性质 ⅰ) =n na )( ,ⅱ)当n 为奇数时=n n a ,n 为偶数时=n n a5、预习书P50例16、小试牛刀:化简下列各式:(1)38- (2))(222b a b ab a <+-(3)66)2(+x (4))1()31(2<--x xx (二)质疑、解疑1、式子n a 中a 的取值范围由什么决定?2、式子n a 的符号一定是正的吗?有什么规律?3、式子nn a )(中a 的取值范围是实数集R 吗?化简结果是什么?4、式子n n a 中a 的取值范围是实数集R 吗?化简结果一定是非负的吗?(三)实践1、根式有意义的条件:求347311aaa a ++-+-的值2、根式的化简与求值(1)计算 3048334160625.0--+π(2)如果,5-<m 化简251012)6(244++++--m m m m(3)设,33<<-x 求961222++-+-x x x x 的值(四)师生小结(五)验收:优化设计活页卷62页四、 课后反思2.1.1指数与指数幂的运算 第2课时《分数指数幂》一、教学目标1、 知识目标:能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化。

指数与指数幂的运算教案

指数与指数幂的运算教案

指数与指数幂的运算(一)课题:指数与指数幂的运算课型:新授课教学方法:讲授法与探究法教学媒体选择:多媒体教学教学目标:1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.教学流程图:教学过程设计:一.新课引入:(一)本章知识结构介绍(二)问题引入1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系:(1)当生物死亡了5730年后,它体内的碳14含量P 的值为 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为(3) 当生物死亡了6000年后,它体内的碳14含量P 的值为 (4)当生物死亡了10000年后,它体内的碳14含量P 的值为2.回顾整数指数幂的运算性质 整数指数幂的运算性质:3.思考:这些运算性质对分数指数幂是否适用呢?12212⎛⎫ ⎪⎝⎭6000573012⎛⎫⎪⎝⎭10000573012⎛⎫ ⎪⎝⎭【师】这就是我们今天所要学习的内容《指数与指数幂的运算》【板书】2.1.1 指数与指数幂的运算二.根式的概念:【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.【师】现在我们请同学来总结n次方根的概念..1.根式的概念【板书】概念即如果一个数的n次方等于a(n>1,且n∈N*),那么这个数叫做a 的n次方根.【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.【板书】表格n n是奇数n是偶数a的符号a<0 a>0 a<0 a>0 a的n次方无意义根【师】通过这个表格,我们知道负数没有偶次方根.那么0的n 次方根是什么?【学生】0的n 次方根是0.【师】现在我们来对 这个符号作一说明.例1.求下列各式的值【注】本题较为简单,由学生口答即可,此处过程省略. 三.n 次方根的性质【注】对于1提问学生a 的取值范围,让学生思考便能得出结论. 【注】对于2,少举几个例子让学生观察,并起来说他们的结论.44(3)(3);π-2(2)(10);-2(4)()().a b a b ->33(8);-(1)根指数被开方数根式1.n次方根的性质四.分数指数幂例:【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗?【师】如果成立那么它的意义是什么,我们有这样的规定.(一)分数指数幂的意义:1.我们规定正数的正分数指数幂的意义是:2.我们规定正数的负分数指数幂的意义是:3.0的正分数指数幂等于0,0的负分数指数幂没有意义.(二)指数幂运算性质的推广:五.例题例2.求值例3.用分数指数幂的形式表示下列各式(其中a>0)例4.计算下列各式(式中字母都是正数)【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.六.课堂小结1.根式的定义;2.n次方根的性质;3.分数指数幂.七.课后作业P59习题2.1 A组1.2.4. 八.课后反思。

指数与指数幂的运算 教案

指数与指数幂的运算 教案

2、1指数函数2.1.1指数与指数幂的运算一、教学目标:Ⅰ、教学与与技能目标:1.n 次方根定义.根式概念.2、分数指数幂的概念.有理指数幂的运算性质.Ⅱ、 过程与方法目标:1、理解n 次方根定义.理解根式的概念. 理解分数指数幂的概念2.正确运用根式运算性质化简、求值.掌握有理指数幂的运算性质.3.会对根式、分数指数幂进行互化. 了解分类讨论思想在解题中的应用 Ⅲ、 情感态度与价值观目标掌握由特殊到一般的归纳方法.培养学生用联系观点看问题.二、教学重点:1、根式概念. 分数指数幂的概念.2、分数指数幂的运算性质.教学难点:根式概念的理解.对分数指数幂概念的理解.三、教学过程:Ⅰ、复习回顾:本节是指数与指数函数的入门课,概念性较强,为突破根式概念理解这一教学难点,关键在于使学生理解n 次方根定义,故结合学生在初中已经熟悉的平方根、立方根的概念,由特殊逐渐地过渡到一般的n 次方根定义,使学生易于接受,并且引导学生主动参与了教学活动.并强调说明根式是n 次方根的一种表示形式.Ⅱ.指导探究:1.n 次方根的定义(板书)若x n =a (n >1且n ∈N *),则x 叫a 的n 次方根.比较平方根、立方根 .得:偶次方根有下列性质:在实数范围内,正数的偶次方根有两个且互为相反数,负数没有偶次方根;奇次方根有下列性质:在实数范围内,正数的奇次方根是正数,负数的奇次方根是负数.这样,我们便可得到n 次方根的性质2.n 次方根的性质(板书)x =⎪⎩⎪⎨⎧=±+=kn a k n a n n 2,12,(k ∈N *) 其中n a 叫根式,n 叫根指数,a 叫被开方数.注:根式是n 次方根的一种表示形式,并且,由n 次方根的定义,我们可以得到根式的运算性质.3.根式的运算性质(板书) ①(n a )n =a ②n n a =⎩⎨⎧.|,|;,为偶数为奇数n a n a[例1]求下列各式的值 (1)33)8(- (2)2)10(- (3)44)3(π- (4)2)(b a -(a >b )解:(1) 33)8(-=-8 (2) 2)10(-=|-10| (3) 44)3(π-=|3-π|=π-3 (4) 2)(b a -=|a -b |=a -b (a >b )根指数n 为奇数的题目较易处理,而例题侧重于根指数n 为偶数的运算,说明此类题目容易出错,应引起大家的注意.为使大家进一步熟悉根式性质的运用,我们来做练习题.Ⅱ.课堂练习 (1)532- (2)4)3(- (3)2)32(-(4)625-Ⅲ.正数的正分数指数幂的意义1、n m n ma a = (a >0,m ,n ∈N *,且n >1)注意两点,一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定.2.规定(板书) (1) nm n ma a 1=- (a >0,m ,n ∈N *,且n >1)(2)0的正分数指数幂等于0.(3)0的负分数指数幂无意义.3.有理指数幂的运算性质(板书)(1)a r ·a s =a r +s (a >0,r ,s ∈Q )(2)(a r )s =a r ·s (a >0,r ,s ∈Q )(3)(a ·b )r =a r ·b r (a >0,b >0,r ∈Q )说明:若a >0,p 是一个无理数,则a p 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用,有关概念和证明在本书从略.Ⅳ.例题讲解[例2]求值:832,10021-,(41)-3,(8116)43-.[例3]用分数指数幂的形式表示下列各式:a 2·a ,a 3·32a ,a a (式中a >0)Ⅴ.课堂练习课本P 54练习 1、2Ⅵ.课时小结通过本节学习,大家要能在理解根式概念的基础上,正确运用根式的运算性质解题. 过本节学习,要求大家理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质.七.布置作业:课本59页A 组1,2,4(一)求下列各式的值: (1)327-(2)2)4(-π (3)6a(4)2)31(x x -- (5)432981⨯ (6)23×35.1×6122.用分数指数幂表示下列分式(其中各式字母均为正数)(1)43a a ⋅(2)a a a (3)322b a ab +(4)4233)(b a + 3.求下列各式的值:(1)|2|21(2)(4964)21- (3)1000043- (4)(27125)32-八、板书设计(略)九、教学反思:。

指数与指数幂的运算(教案)

指数与指数幂的运算(教案)

2.1.1(1)指数与指数幂的运算(根式)
教学目标 知识与技能目标:
理解根式的概念及性质,能进行根式的运算,提高根式的运算能力。

过程与方法目标:
通过由特殊到一般,由平方根、立方根,采用类比的方法过渡到n 次方根;
通过对“当n 是偶数时,⎩⎨⎧<≥-==)0()
0(||a a a a a a n n ”的理解 ,培养学生分类讨论的意识。

情感、态度、价值观目标:
通过运算训练,培养学生严谨的思维,一丝不苟的学习习惯。

教学重点:对根式概念、性质的理解,运用根式的性质化简、运算。

教学难点:当n 是偶数时,⎩⎨⎧<≥-==)0()
0(||a a a a a a n n 的得出及运用。

教学过程:
板书设计:
2.1指数函数
2.1.1指数与指数幂的运算(一)
定义例1 例3
性质例2
教学反思:(课后完善)。

《指数与指数幂的运算》教案-人教A版高中数学必修一

《指数与指数幂的运算》教案-人教A版高中数学必修一

指数与指数幂的运算学习目标:1.知识与技能(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握有理数指数幂的运算性质并能熟练运用;2.过程与方法通过与初中学的知识进行类比,得出分数指数幂的概念,和有理数指数幂的运算性质。

3.情感、态度、价值观(1)让学生感受由特殊到一般的数学思想方法(正整数指数幂正分数指数幂负分数指数幂有理数指数幂无理数指数幂);(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美. 教学重点:掌握并运用分数指数幂的运算性质 难点: 有关分数指数幂和根式的计算 教学过程:一、复习引入: 提问:初中时的整数指数幂,运算性质? 00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义 ,1(0)n n a a a -=≠0的正整数指数幂等于00的零指数幂、负整数指数幂没有意义当,m n Z ∈时 ;()m n m n m n mn a a a a a +⋅== ;(),()n m mn n n n a a ab a b == . 二、新课讲解:探究分数指数幂的意义(1)观察以下式子,并总结出规律:a >0,①510a 510; ②8a =24)(a =a4=a 28; ③412a =443)(a =a3=a 412; ④210a =225)(a =a5=a 210. 小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式.问:根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a ==>12(0)b b ==>54(0)c c ==>*(0,,1)m n a a n N n =>∈> 为此,我们规定正数的分数指数幂的意义为:a mn (a>0,m,n ∈N*,n>1). 提出问题: ①负整数指数幂的意义是怎样规定的?②你能得出负分数指数幂的意义吗?③你认为应怎样规定零的分数指数幂的意义? ④分数指数幂的意义中,为什么规定a >0,去掉这个规定会产生什么样的后果? ⑤既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢? 结果:①负整数指数幂的意义是:a-n=n a 1(a ≠0),n ∈N*.②规定:正数的负分数指数幂的意义是a m n -=m n a 1=n m a 1(a>0,m,n ∈N*,n>1).③规定:零的正分数次幂等于零,零的负分数指数幂没有意义.④若没有a >0这个条件会怎样呢?如(-1)3162具有同样意义的两个式子出现了截然不同的结果,因此在把根式化成分数指数时,切记要使底数大于零.⑤规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算(1)(0,,)r s r s a a a a r s Q +⋅=>∈(2)()(0,,)r S rs a a a r s Q =>∈ (3)()(0,0,)r r r a b a b Q b r Q ⋅=>>∈ 二、课堂练习: 我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题:(1)做课本P54练习题1 、题2;(2)做课本P51例题2、例题3小结:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.三、课堂小结:(1)分数指数幂的意义就是:正数的正分数指数幂的意义是a m n =n a m(a>0,m,n ∈N*,n>1),正数的负分数指数幂的意义是a m n -=m n a 1=n m a 1(a>0,m,n ∈N*,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.(3)有理数指数幂的运算性质:对任意的有理数r 、s,均有下面的运算性质:),0,0()(),,0()(),,0(Q r b a b a ab Q s r a a a Q s r a a a a r r r rs s r s r s r ∈>>=∈>=∈>=+ 四、课后作业:1、课本P52例题4、例题5,P54练习3;2、自主学习课本P52---P53无理数指数幂.。

【参考教案】《指数与指数幂的运算》(人教)

【参考教案】《指数与指数幂的运算》(人教)

《指数与指数幂的运算》从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。

进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。

【知识与能力目标】1、掌握n次方根及根式的概念,正确运用根式的运算性质进行根式的运算;2、了解分式指数幂的含义,学会根式与分数指数幂之间的相互转化;3、理解有理数指数幂和无理数指数幂的含义及其运算性质。

【过程与方法目标】具体习题,灵活运用根式运算。

由整数指数幂的运算性质理解有理数指数幂的运算性质。

【情感态度价值观目标】1、通过学习n次方根的概念及根式的运算,提高学生的运算能力和逻辑思维。

2、通过分数指数幂的学习,让学生体会严谨的求学态度。

【教学重点】根式与分数指数幂之间的互相转化。

【教学难点】根式运算与有理数指数幂的运算。

通过本节导学案的使用,引导学生复习回顾初中相关知识,做好衔接,为新知识的学习奠定基础。

(一)创设情景,揭示课题1、以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性。

2、由实例引入,了解指数概念提出的背景,体会引入指数的必要性;(1)据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%。

那么在2010年, 我国的GDP 可望为2000年的多少倍?(2)当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的系573012tp⎛⎫= ⎪⎝⎭,那么当生物体死亡了1万年后,它体内碳14的含量为多少?(3)对1.07310,10000573012p⎛⎫= ⎪⎝⎭这两个数的意义如何?怎样运算?3、初中根式的概念思考1:4的平方根是什么?任何一个实数都有平方根吗?一个数的平方根有几个?思考2:-27的立方根是什么?任何一个实数都有立方根吗?一个数的立方根有几个?思考3:一般地,实常数a的平方根、立方根是什么概念?思考4:如果x4=a,x5=a,x6=a,参照上面的说法,这里的x分别叫什么名称?思考5:推广到一般情形,a的n次方根是一个什么概念?试给出其定义。

指数与指数幂的运算教学设计

指数与指数幂的运算教学设计

指数与指数幂的运算教学设计教学设计:指数与指数幂的运算一、教学目标1.知识与技能:-理解指数的概念;-掌握指数幂与指数的运算规则;-能够用运算规则计算简单的指数幂与指数运算;-能够解决一些实际问题。

2.过程与方法:-采用启发引导和演绎法讲解指数与指数幂的概念和运算规则;-结合实际问题进行训练和应用;-培养学生的逻辑思维和抽象推理能力;-通过合作学习和小组活动提高学生的学习兴趣和合作意识。

3.情感态度价值观:-培养学生的数学兴趣和创新精神;-培养学生的逻辑思维和抽象推理能力;-加强学生的团队协作和沟通能力。

二、教学重点和难点1.教学重点:-指数的概念和运算规则;-指数幂的概念和运算规则。

2.教学难点:-运用运算规则解决一些实际问题。

三、教学准备1.教学材料:教科书、习题集、挂图等;2.教学工具:黑板、彩色粉笔、计算器等;3.教学环境:课堂、实验室等;4.学生准备:认真预习教材内容。

四、教学过程本教学设计采用扩展和巩固知识点相结合的教学方法,具体分为以下几个步骤:步骤一:导入(5分钟)利用个案讨论的方式引入指数的概念和应用。

例如,陈述一个实际问题:“假设你投资1000元,年利率为3%,每年复利计算,5年后你的本金和利息总共是多少?”让学生思考并讨论。

步骤二:探究指数的概念与性质(15分钟)1.通过观察和分析,引导学生总结指数的概念和性质。

例如,通过做一些实际问题,引导学生找到指数的共同规律和特点,如指数是正整数、底数相同则指数相加等。

2.教师给出正确的定义和公式,并对概念进行解释和说明。

步骤三:研究指数幂的意义(20分钟)1.通过具体例子,引导学生理解指数幂的概念和意义。

例如,计算2的3次方,是指底数2乘以自己三次的结果。

2.结合实际问题,让学生分组进行小组活动,解决有关指数幂的实际问题,并向全班汇报和分享。

步骤四:掌握指数幂的运算规则(20分钟)1.通过实际例子和计算,引导学生总结指数幂的运算规则。

《指数与指数幂的运算(第1课时)》教学设计

《指数与指数幂的运算(第1课时)》教学设计

指数函数指数与指数幂的运算(第一课时)(胡文娟)一、教学目标(一)核心素养通过指数运算符号的使用与运算法则的总结,培育学生数学抽象、数学运算、逻辑推理的核心素养,为指数函数学习打下坚实基础.(二)学习目标1.理解根式的概念并掌握运用根式的性质进行化简.2.理解分数指数幂的概念.3.掌握根式与分数指数幂之间的互化.(三)学习重点1.根式与分数指数幂概念的理解.2.分数指数幂的运算性质.(四)学习难点根式与分数指数幂的互化.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第49页至第51页,填空:一般地,如果ax n=,那么x叫做a的n次方根,其中1>n,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数.式子n a 叫做根式.这里n 叫做根指数,a 叫做被开方数. (2)计算下列各式 ①364-;②44)6(1-;③)0,0(55≥≥+b a b a )(观察上面的计算结果,你得到的结论是:(用字母表达).详解:①44)4()4(6433-=-⨯-⨯-=-)(; ②61)6(1)6(1)6(1)6(161)6(144444=-⨯-⨯-⨯-=⎪⎭⎫ ⎝⎛-=-; ③()()()()()b a b a b a b a b a b a b a +=+⋅+⋅+⋅+⋅+=+555)( 结论:n 为奇数,R a a a n n ∈=,;n 为偶数,⎩⎨⎧<-≥=0,0a a a a a n n ,.2.预习自测(1)若x 表示实数,则下列说法正确的是()A .x 一定是根式B .x -一定不是根式C .56x 一定是根式 D .3x -只有当0≥x 才是根式【知识点】根式的定义. 【数学思想】【解题过程】根据根式定义可得C 正确.【思路点拨】根据根式的定义直接判断. 【答案】C .(2)=-552)(() A .4 B .2 C .4- D .2-【知识点】根式的化简. 【数学思想】【解题过程】()()()()()2222222555-=-⋅-⋅-⋅-⋅-=-)(. 【思路点拨】根据根式的运算性质直接进行计算. 【答案】D .(3)将235写为根式,则正确的是( )A .325B .35C .523 D .35【知识点】根式与分数指数幂的互化. 【数学思想】 【解题过程】32355=【思路点拨】运用根式与分数指数幂的互化关系. 【答案】D .(4)将536写为分数指数幂的形式,则正确的是()A .356 B .536 C .156 D .26【知识点】根式与分数指数幂的互化. 【数学思想】 【解题过程】535366=【思路点拨】运用根式与分数指数幂的互化关系.【答案】B.二课堂设计1.知识回顾(1)平方根一般地,如果一个数的平方等于a,那么这个数叫做a的平方根(squareroot)或二次方根.(2)立方根一般地,如果一个数的立方等于a,那么这个数叫做a的立方根(cuberoot)或三次方根.(3)正数有两个平方根,他们互为相反数,其中正的平方根称为算术平方根;0的平方根是0;负数没有平方根.任何一个数都有唯一一个立方根,并且这个立方根的符号与原数相同.2.问题探究探究一根式的概念与根式的化简●活动①回顾理解方根与根式的概念在初中,我们学习过二次方根概念:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根(squareroot)或二次方根.其中,a叫做被开方数.当a≥0时,a表示a的算术平方根.我们也学习过三次方根的概念:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根(cuberoot)或三次方根.提问:如果一个数的4次方等于a ,那么这时候这个数叫做什么呢这个数叫做a 的四次方根.追问:如果一个数的n 次方等于a ,那么这时候这个数又叫做什么呢(抢答)一般地,如果a x n =,那么叫做a 的n 次方根,其中n >1,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.【设计意图】通过回顾已学知识,从特殊到一般,让学生自己总结归纳,加深学生对根式的理解.●活动②根式的性质*,1)n n ∈N >表示n a 的n 次方根,等式a a n n =一定成立吗如果不一定成立,那么n n a 等于什么(分小组讨论)若00a ==n 为奇数时,a a n n =n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a n n也就是说,当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数;当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数.追问:a a n n=)(一定成立吗很明显,当根式有意义的情况下a a n n=)(一定成立.综上,根式的性质有:00)1(=n ,a a n n=))(2(,a a n n =)3((n为大于1的奇数),⎩⎨⎧<-≥==)0()0()4(a a a a a a nn(n为大于1的偶数).【设计意图】通过学生自主讨论探究归纳总结,得出根式的化简方法,加深印象.探究二分数指数幂的概念★ ●活动①探究分数指数幂的概念当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系5730)21(tP =,考古学家根据这个式子可以知道,生物死亡t 年后,体内碳14含量P 的值.例如:当生物死亡了5730,2×5730,3×5730,……年后,它体内碳14的含量P 分别为21,2)21(,3)21(,……当生物死亡了6000年,10000年,100000年后,根据上式,它体内碳14的含量P分别为57306000)21(,573010000)21(,5730100000)21(.问题:以上三个数的含义到底是什么呢考古学家正式利用有理数指数幂的知识,计算出生物死亡6000年,10000年,100000年后体内碳14含量P 的值.例如,当t =6000时,600057301()0.4842p ==≈(精确到),即生物死亡6000年后,其体内碳14的含量约为原来的%.归纳:分数指数幂是一个数的指数为分数.【设计意图】从生活中的实际例子到数学语言,从特殊到一般,体会概念的提炼,抽象过程.探究三根式与分数指数幂的互化 ●活动①根式与分数指数幂的互化5102552510)(aa a a===,4123443412)(a a a a===问题:(1)从上两个例子你能发现什么结论结论:当根式的被开方数的指数能被根指数整除时,根式可以写成根指数被开方数的指数a的形式(2))(0,,4532>c c b a 如何表示 3232aa =,21bb =,4545c c =规定)1,,,0(*>∈>=n N n m a a a n m nm你能得出正数的负分数指数幂的根式表示形式吗?1*()0,,,1)m m nn aa a m n N n --==>∈>正数的分数指数幂是45c 327-±3327333-=-=-)(552)()(b a b a -+-)(2b a -0)(2b a -ba -√(a -b)2+√(a -5)55=|a -b |+(a -b )={a -b+a -b=2(a -b ),a>b b -a+a -b=0,a<bx -2964422+--+-x x x x 52-x 12--x 1-x25-x -202≥-x 2≤x442+-x x x x -=-=222)(x x x x -=-=+-339622)(1-=⎩⎨⎧<-≥==0,0,a a a a a a nn21<a ()4212-a 12-a 12--a a 21-a 21--21<a 012<-a ()a a a 2112122142-=-=-)(n⎩⎨⎧<-≥==0,0,a a a a a a nn )0(21≠-=-x x x )()0(3162<=y y y )0,()(4343≠=-y x xy y x )(331x x -=)0(21≠-=-x x x )0(3162<-=y y y )(331x x =7717)(m n mn=31242)2(-=-43433)(y x y x +=+833)43(23=777)(-m n mn =31242)2(=-5.03132)972()27125()027.0(-+14106)31()16174()23(30----⋅+09.0)35()35()3.0(233323=-+=3903322==-=09.0√3−9203115.03)27102(1.0)972(π-++--313125.01041027.010)833(81)87(3)0081.0(⨯-⎥⎦⎤⎢⎣⎡+⨯⎥⎦⎤⎢⎣⎡⨯----53113103+73412=+=+=983)323(31310)103(10)23(1331)103(133334444-=-+⨯-=⨯-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⨯-=1131298-a x n =*N ∈n n a )1,N ,,0(*>∈>=n n m a a a n m nm1*()0,,N ,1)m m nn aa a m n n --==>∈>aa nn =⎩⎨⎧<-≥==0,0,a a a a a a nn)1,N ,,0(*>∈>=n n m a a a n m nm *0,,N ,1)m naa m n n -=>∈>,n 的位置切勿记反.(三)课后作业基础型自主突破1.设a n n m ,1,,>N ∈*是正实数,则下列各式中正确的有(). ①n mnmaa=;②10=a;③nmnm aa1=-A .3个B .2个C .1个D .0个【知识点】根式与分数指数幂的互化,分数指数幂. 【数学思想】【解题过程】由分数指数幂的概念判断.【思路点拨】弄清根式与分数指数幂之间的互化关系. 【答案】A .2.已知432=-x 则x 等于()A .8±B .81±C .443D .322±【知识点】根式的化简运算,根式与分数指数幂的互化.【数学思想】【解题过程】814143232332±=±=±==---)(x x【思路点拨】掌握根式的化简运算以及根式与分数指数幂之间的互化关系.【答案】B .3.下列说法中正确的个数是()①-2是16的四次方根 ②正数的n 次方根有两个 ③a 的n 次方根就是na④a a n n =(≥a 0)A .0B .1C .2D .3【知识点】n 次方根和n 次根式的概念. 【数学思想】分类讨论思想.【解题过程】①是正确的,由4(2)16-=可验证;②不正确,要对n 分奇偶讨论;③不正确,a 的n 次方根可能有一个值,可能有两个值,而n a 只表示一个确定的值,它叫根式;④正确,根据根式运算的依据,当n 为奇数时,n n a =a 是正确的,当n 为偶数时,若a ≥0,则有n n a =a .综上,当a ≥0时,无论n 为何值均有n n a =a 成立.【思路点拨】根据方根与根式的定义直接进行判断. 【答案】C .4.若式子4321--)(x 有意义,则x 的取值范围是()A .R x ∈B .21≠x C .21>x D .21<x 【知识点】根式与分数指数幂的互化. 【数学思想】分类讨论思想.【解题过程】434321121)()(x x -=--,若4321--)(x 有意义,则021>-x ,即21<x . 【思路点拨】化分数指数幂为根式,由根式内的代数式大于0求得x 的范围.【答案】D .5.计算下列各式:(1)44481⨯(2)63125.132⨯⨯【知识点】根式与分数指数幂的互化,根式的化简求值.【数学思想】【解题过程】(1)62323481444444=⨯=⨯=⨯; (2)633362363322332232332125.132⨯⨯⨯=⨯⨯⨯=⨯⨯ 6323332613121=⨯=⨯⨯⨯=. 【思路点拨】运用根式的化简法则进行求解.【答案】(1)6;(2)6.6.化简625625++-=________.【知识点】根式的化简.【数学思想】 【解题过程】32232362562522=++-=++-)()(.【思路点拨】根号里面的部分用完全平方公式化简,再根据根式的化简得出结果. 【答案】32.能力型师生共研7.a a a n n n n 2)(=+时,实数a 和正整数n 所应满足的条件.【知识点】根式与分数指数幂的互化及其化简运算.【数学思想】分类讨论思想 【解题过程】由a a a n n n n 2)(=+,若n 为奇数,a a a a a n n n n 2)(=+=+,上式成立;若n 为偶数,则a ≥0,a a a a a n n n n 2)(=+=+,上式成立.【思路点拨】利用指数的运算法则,对n 为奇数或偶数进行讨论.【答案】n R a ,∈为正奇数或a ≥0,n 为正偶数.8.已知*N ∈n ,化简()(111112n ----+++++++=_____.【知识点】根式的化简运算.【数学思想】转化与化归思想.【解题过程】原式)21)(21(21-+-=(n +++ 1112312-+=-+++-+-=n n n 【思路点拨】运用以前所学过的分母有理化将原式化简,将复杂问题简单化. 【答案】11-+n .探究型多维突破9.已知32323232-+=+-=y x ,,求下列各式的值. (1)xy y x +; (2)22y xy x +-.【知识点】根式的化简求值.【数学思想】转化与化归思想.【解题过程】(1)194347347347347)32(32)32(322222=-+++-=-+++-=+)()(x y y x ; (2)19332323232323232322222=-++-+⋅+--+-=+-)()(y xy x 【思路点拨】直接将已知的等式带入要求的式子中,在运用根式的性质将式子化简.【答案】(1)194;(2)193.10.若0,0>>y x 且满足y xy x 152=-,求y xy x yxy x +-++322的值.【知识点】根式与分数指数幂的互化及其化简求值.【数学思想】转化与化归思想. 【解题过程】y xy x 152=-即为()()035=+-y x y x ,因为0,0>>y x ,故05=-y x ,所以y x 25=,321632525325225232222==+-++⨯=+-++y yy y y yy y y xy x y xy x .【思路点拨】运用分数指数幂进行根式计算.【答案】3.自助餐1.式子a a 1-经过计算可得到()A .a -B .aC .-aD .-a -【知识点】根式的化简.【数学思想】【解题过程】由原式知a <0,因此2a =|a |=-a ,故a =a -,于是a a 1-=-)1(2a a -=-a -.【思路点拨】负数的偶次方根等于其相反数.【答案】D .2.下列说法正确的是().A .64的6次方根是2B .664的运算结果是2±C .1>n 且*N ∈n 时,a a n n =)(对于任意实数a 都成立D .1>n 且*N ∈n 时,式子n n a 对于任意实数a 都有意义【知识点】方根与根式的概念,根式的化简.【数学思想】分类讨论思想.【解题过程】A 选项考察的是正数的偶次方根有两个,且互为相反数,B 选项的运算结果应该是2,C 选项当a 为负数则不成立.【思路点拨】根据方根与根式的概念,根式的化简进行判断.【答案】D .3.当8<x <10时,=-+-22)10()8(x x __________.【知识点】根式的化简.【数学思想】 【解题过程】2)8(-x 8-=x 8-=x ,2)10(-x x x -=-=1010.【思路点拨】当n 为偶数时,n n a =a .【答案】2.4.化简:=-+20122011)23()23(____________.【知识点】根式的化简求值.【数学思想】 【解题过程】原式20112222⎡⎤=+⋅-⋅=-⎣⎦))).【思路点拨】根据根式的运算性质直接进行计算. 【答案】32-.5.求使下列等式成立的x 的取值范围.(1)1212--=--x x x x (2)2)2()4)(2(2+-=--x x x x【知识点】根式的化简运算.【数学思想】【解题过程】(1)12--x x 成立的条件为⎩⎨⎧>-≥-0102x x 或⎩⎨⎧<-≤-0102x x ,解得2≥x 或1<x ,而12--x x 成立的条件为⎩⎨⎧>-≥-0102x x ,解得2≥x ,所以等式成立条件为2≥x .(2)原等式可变形为2)2()2()2(2+-=+-x x x x ,而使得a a -=2成立的条件是0≤a ,结合偶次根式的定义域即可得到⎩⎨⎧≥+≤-0202x x ,解得22≤≤-x . 【思路点拨】明确a a n n =成立的条件.【答案】(1)2≥x ;(2)22≤≤-x .6.计算下列各式(式中字母都是正数)(1)0143231)12(3256)71(027.0-+-+----- (2)23241)32()827(0081.0+-- 【知识点】根式与分数指数幂的互化化简求值.【数学思想】转化与化归思想.【解题过程】(1)原式[]191316449310131)4()7()103(43421313=+-+-=+-+--⎥⎦⎤⎢⎣⎡=--- (2)原式103949410394)23(10394)23()103(2323414=+-=+-=+⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-- 【思路点拨】正确运用根式与分数指数幂的互化法则.【答案】(1)19;(2)103.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
课题名称:指数与指数幂的运算
姓名:曾小林学科年级:必修一教材版本:人教A版
新授课
教学方法:讲授法与探究法
教学媒体选择:多媒体教学
学习者分析:
1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础
2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入。

学习任务分析:
1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值
2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化。

3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算。

教学目标阐明:
1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化。

2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力。

3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面。

教学流程图:
本章知识结构的介绍
新课引入
探究根式的概念
探究n次方根的性质
例1加深对n次方根的理解
分数指数幂的意义和规定
指数幂运算规律的推广
教学过程设计: 一.新课引入:
(一)本章知识结构介绍
(二)问题引入 1.问题:
当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系:
5730
21t P ⎪

⎫ ⎝⎛=
(1)当生物死亡了5730年后,它体内的碳14含量P 的值为
2
1 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为2
21⎪⎭

⎝⎛
(3)当生物死亡了6000年后,它体内的碳14含量P 的值为5730
600021⎪

⎫ ⎝⎛
(4)当生物死亡了10000年后,它体内的碳14含量P 的值为5730
1000021⎪⎭
⎫ ⎝⎛
三.学习过程: ⎪
⎪⎪
⎪⎪⎩⎪⎪
⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨
⎧幂函数对数函数及其性质对数也对数运算
对数函数指数函数及其性质指数与指数幂的运算指数函数基本初等函数
一、课前导读:认真阅读课本P48~P53(A)
1、正整数指数幂具有以下性质:

m n
a a⋅= (m、n∈N+)②()m n
a
= (m、n∈N+)
③()n
ab
= (n∈N+)
2、根式
n次方根:如果
n
x a
=(n>1且n∈N+)那么x叫做a的。

记作
根n a
n叫,
a叫。

n次方根的性质:①当n为奇数时,n n
a

②当n为偶数时,n n a

n
=
3、分数指数幂的意义:
①正数的正分数指数幂的意义:
m
n
a=
②正数的负分数指数幂的意义:
m
n
a-=
③ 0的正分数指数幂等于,0的负分数指数幂。

4、规定了分数指数幂的意义后,指数的概念就从整数指数幂推广到有理数,其幂的运算性质同样适用。

5、无理数指数幂
a∂(a>0,∂为无理数)是一个确定的,有理数指数幂的运算性质同样适用于无理数指数幂。

6、完成课本54页的练习。

二、典例探究:
例1、求下列各式的值:(A)
(1)
2
(81)
-327
-4
4(3)
π
-22
2
a a
b b
-+
例2、求值,化简(B)
⑴、
21
0.5
33
277
(0.027)()(2)
1259
-
+-
⑵、
23
a b
b a

a>0,b>0)
三、巩固检测:
化简:1、
6
3
23 1.512

2
32
a a
⋅(a>0)
3、下列运算结果中正确的是()
A、
236
a a a
⋅= B、2332
()()
a a
-=-
C、
20
(1)0
x-=
D、
236
()
x x
-=-
四、拓展提升:
1、已知
2,9,
x y xy x y
+==<,求值
11
22
11
22
x y
x y
-
+。

2、已知,
1
21)
m-
=-

1
21)
n-
=+
,则
11
(1)(1)
m n
--
-++
= 。

3、分数指数幂表示
3
a a a
为。

相关文档
最新文档