弹性力学概念汇总
弹性力学知识点总结
弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
弹性力学知识点总结
一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。
弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。
1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。
林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。
而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。
二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。
应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。
在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。
2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。
应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。
在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。
2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。
弹性模量是指在正应变下的应力大小,通常用E表示。
弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。
3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。
弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。
3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。
剪切模量描述了材料在受力作用下的形变情况。
3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。
弹性力学概念汇总
1、五个基本假定在建立弹性力学基本方程时有什么用途?答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。
均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的.因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。
进一步地说,就是物体的弹性常数也不随方向而变化.小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。
在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理.2、试分析简支梁受均布荷载时,平面截面假设是否成立?解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。
而在材料力学中没有严格考虑上述条件,因而得出的是近似解答.例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。
所以,严格来说,不成立。
3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2—15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2—15),将会发生什么问题?解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。
弹性力学概念汇总
1、五个基本假定在建立弹性力学基本方程时有什么用途答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。
均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。
因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。
进一步地说,就是物体的弹性常数也不随方向而变化。
小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。
在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。
2、试分析简支梁受均布荷载时,平面截面假设是否成立解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。
而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。
例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。
所以,严格来说,不成立。
3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。
弹性力学基本概念和考点汇总
弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。
它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。
在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。
1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。
而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。
2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。
第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。
3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。
而应变能是指物体在受力过程中,由于形变而转换成的能量。
4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。
它可以表示为应力等于弹性模量乘以应变。
5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。
在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。
6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。
在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。
7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。
在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。
8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。
在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。
9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。
在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。
以上是弹性力学中的一些基本概念和考点的汇总。
掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。
弹力知识点归纳
弹力知识点归纳引言:弹力是一个十分重要的物理现象,它广泛应用于许多领域,包括工程、运动、材料科学等。
了解弹性材料的特性和应用,可以帮助我们更好地理解和利用这一物理现象。
本文将对弹力的基本概念、计算方法和应用领域进行归纳总结。
一、弹力的定义与基本概念弹力是物体发生形变后由于恢复力而恢复到原始状态的性质。
在物理学中,弹性力可以通过胡克定律进行描述,即弹性力正比于物体受力的变化量。
弹性力的大小可以通过弹性系数来衡量,常用的弹性系数有切线弹性系数、体积弹性系数等。
二、弹力的计算方法1. 切线弹性力计算:切线弹性力是指垂直于物体表面的弹性力。
根据胡克定律,切线弹性力可以通过以下公式计算:F = k * x,其中F为切线弹性力,k为切线弹性系数,x为物体形变的距离。
2. 体积弹性力计算:体积弹性力是指物体在三个维度上的弹性力。
体积弹性力的计算方法与切线弹性力类似,只是需要考虑三个维度的形变距离。
三、弹力的应用领域1. 工程领域:在工程中,弹力的应用广泛,例如在建筑结构中,需要考虑材料的弹性特性来确保结构的稳定性和安全性。
此外,工程中还经常使用弹簧和气压装置等弹性元件来实现机械运动和控制系统。
2. 运动领域:弹力在运动中起着关键作用。
例如,弹力可以帮助运动员或运动器械达到更高的跳跃高度;弹力还可以用于体育用品,如篮球、网球等球类的反弹性能。
3. 材料科学:材料科学中的弹力研究主要关注材料的弹性特性,以改进材料的功能性和可持续性。
弹力学可以用来研究材料的弯曲、扭转、拉伸等变形以及应力分布。
4. 医学领域:在医学领域,弹力学常常应用于骨骼、关节和肌肉等组织的研究中。
例如,弹性模量可以帮助评估骨骼的健康状况;在生物力学研究中,根据组织材料的弹性特性,可以研究人体运动机理和运动损伤的康复方法。
结论:弹力作为一种物理现象,对于我们的生活和科学研究都具有重要的意义。
了解弹力的定义、计算方法和应用领域,可以让我们更好地理解物体的变形和恢复过程,并且在实践中有更准确的预测和应用。
弹性力学基本概念
弹性力学基本概念弹性力学是力学的一个分支领域,研究材料在受力时的弹性变形和恢复变形的行为规律。
本文将介绍弹性力学的基本概念,包括应力、应变、胡克定律和杨氏模量等。
一、应力和应变在弹性力学中,应力和应变是两个基本的物理量,用来描述物体在受力时的变形情况。
应力是单位面积上的力,通常用希腊字母σ表示。
应力可以分为正应力和剪应力两种。
正应力是指垂直于受力面的力,它可以通过力的大小和受力面的面积计算得到。
正应力的单位是帕斯卡(Pa),1Pa等于1牛顿/平方米。
剪应力是指平行于受力面的力,它也可以通过力的大小和受力面的面积计算得到。
剪应力的单位也是帕斯卡(Pa)。
应变是物体由于受力而发生的变形程度,通常用希腊字母ε表示。
应变可以分为线性应变和剪切应变两种。
线性应变是指物体在受力下发生的长度变化与原长度之比。
线性应变的计算公式为:ε = ΔL / L,其中ΔL表示长度变化,L表示原长度。
剪切应变是指物体在受到剪应力时,各层之间相对位置的变化。
剪切应变的计算公式为:γ = Δx / h,其中Δx表示位置变化,h表示物体的厚度。
二、胡克定律胡克定律是弹性力学的基本定律之一,描述了材料的应力和应变之间的关系。
胡克定律可以用公式表示为:σ = Eε,其中σ表示应力,E表示杨氏模量,ε表示应变。
杨氏模量是衡量材料硬度和刚度的重要物理量,表示单位应力下材料的单位应变。
杨氏模量的单位是帕斯卡(Pa)。
胡克定律表明,当材料处于弹性变形状态时,应力和应变之间成正比。
杨氏模量越大,材料的刚度越高,抵抗变形的能力也越强。
三、弹性常数除了杨氏模量,弹性力学还有其他一些描述材料力学性质的常数。
泊松比是描述材料在受到正应力时,在垂直方向上的应变情况的比值。
泊松比的计算公式为:ν = -ε_2 / ε_1,其中ε_1表示垂直方向上的线性应变,ε_2表示平行方向上的线性应变。
弹性体模量是描述材料在受力时的刚度的物理量,定义为单位体积的材料在受力时所发生的应变与应力之比。
弹性力学原理
弹性力学原理引言:弹性力学原理是工程力学的一个重要分支,研究材料在外力作用下的弹性变形和应力分布规律。
本文将探讨弹性力学原理的基本概念、公式和应用,以及一些实际工程中常见的弹性力学问题。
1. 弹性力学基本概念1.1 应力和应变弹性力学研究的核心概念是应力和应变。
应力是单位面积上的内力,表示材料受力状态的强度和方向。
应变是单位长度上的变形量,表示材料受到外力作用后的形变程度。
1.2 弹性恢复弹性力学的基本原则是材料在外力作用下会发生弹性变形,即承受外力后会产生形变,但在作用力消失后会完全恢复到原来的状态。
这个特性使得弹性材料非常适合许多工程应用。
2. 弹性力学公式2.1 长度变化和应力关系弹性力学公式中最基本的是胡克定律,它描述了材料在拉伸等均匀变形情况下的应力和应变之间的关系。
胡克定律可以用公式表示为σ = Eε,其中σ是应力,E是弹性模量,ε是应变。
2.2 弯曲弹性力学在弯曲问题中,弹性力学公式需要考虑横截面的形状和材料的性质。
弯曲弹性力学在结构设计中起着重要的作用,可以用公式M = EIθ 表示,其中M是弯矩,E是弹性模量,I是截面惯性矩,θ是单位长度的转角。
3. 弹性力学应用3.1 结构设计弹性力学原理在结构设计中有广泛的应用,可以通过计算应力和应变来确定材料的安全强度和结构的合理性。
例如,根据桥梁的设计要求和材料的性质,可以计算出合适的截面尺寸和材料类型,以确保桥梁在负荷下不会发生过度的弯曲或破坏。
3.2 材料研究弹性力学原理在材料研究中也起着重要的作用。
通过测量材料的应变和应力,可以获得材料的弹性性质和力学特性。
这些信息可以用于开发新的材料或改进现有材料的性能。
3.3 软件模拟随着计算机技术的发展,弹性力学原理被应用于软件模拟和计算机辅助设计。
通过建立弹性力学模型,可以在计算机上模拟各种力学行为,并进行虚拟测试和分析。
这些技术在工程设计和产品开发中起到了关键作用。
结论:弹性力学原理是工程力学领域中的核心内容,研究材料在外力作用下的弹性变形和应力分布规律。
弹性力学基本概念和考点汇总
弹性⼒学基本概念和考点汇总基本概念:(1)⾯⼒、体⼒与应⼒、应变、位移的概念及正负号规定(2)切应⼒互等定理:作⽤在两个互相垂直的⾯上,并且垂直于改两⾯交线的切应⼒是互等的(⼤⼩相等,正负号也相同)。
(3)弹性⼒学的基本假定:连续性、完全弹性、均匀性、各向同性和⼩变形。
(4)平⾯应⼒与平⾯应变;设有很薄的等厚度薄板,只在板边上受有平⾏于板⾯并且不沿厚度变化的⾯⼒或约束。
同时,体⼒也平⾏与板⾯并且不沿厚度⽅向变化。
这时,0,0,0z zx zy σττ===,由切应⼒互等,0,0,0z xz yz σττ===,这样只剩下平⾏于xy ⾯的三个平⾯应⼒分量,即,,x y xy yxσσττ=,所以这种问题称为平⾯应⼒问题。
设有很长的柱形体,它的横截⾯不沿长度变化,在柱⾯上受有平⾏于横截⾯且不沿长度变化的⾯⼒或约束,同时,体⼒也平⾏于横截⾯且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应⼒互等,0,0xz yz ττ==。
由胡克定律,0,0zx zy γγ==,⼜由于z ⽅向的位移w 处处为零,即0z ε=。
因此,只剩下平⾏于xy ⾯的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平⾯应变问题。
(5)⼀点的应⼒状态;过⼀个点所有平⾯上应⼒情况的集合,称为⼀点的应⼒状态。
(6)圣维南原理;(提边界条件)如果把物体的⼀⼩部分边界上的⾯⼒,变换为分布不同但静⼒等效的⾯⼒(主失相同,主矩也相同),那么,近处的应⼒分布将有显著的改变,但是远处所受到的影响可以忽略不计。
(7)轴对称;在空间问题中,如果弹性体的⼏何形状、约束情况,以及所受的外⼒作⽤,都是对称于某⼀轴(通过该轴的任⼀平⾯都是对称⾯),则所有的应⼒、变形和位移也就对称于这⼀轴。
这种问题称为空间轴对称问题。
⼀、平衡微分⽅程:(1) 平⾯问题的平衡微分⽅程;00yxx x xy yy f x yf x yτστσ??++=++=??(记)(2) 平⾯问题的平衡微分⽅程(极坐标);10210f f ρρ?ρ?ρ?ρ?ρ?σ?τσσ?ρρ??ρσ?ττρρρ-+++=+++=1、平衡⽅程仅反映物体部的平衡,当应⼒分量满⾜平衡⽅程,则物体部是平衡的。
大学弹力力学知识点总结
大学弹力力学知识点总结弹性力学是力学的一个分支,主要研究物体在外力作用下的形变和应力,以及这些形变和应力之间的关系。
在这一领域中,我们主要研究弹性体的性质,包括拉伸、压缩、扭转和弯曲等。
弹性力学不仅在工程领域有着广泛的应用,也是现代物理学、材料学和地质学等领域的基础。
1.基本概念在弹性力学中,我们首先需要了解一些基本概念,包括应力、应变、杨氏模量和泊松比等。
应力是单位面积上的外力,通常用符号σ表示。
应力可以分为正应力、剪切应力等。
应变是单位长度上的形变量,通常用符号ε表示。
应变也可以分为正应变、剪切应变等。
杨氏模量是描述材料刚度的参数,通常用符号E表示。
杨氏模量越大,说明材料越难以变形。
泊松比描述了材料在垂直拉伸时横向收缩的程度,通常用符号ν表示。
2.拉伸在弹性力学中,拉伸是一个非常重要的概念,它描述了物体在外力作用下的长度变化。
拉伸实验通常利用应变计来测量物体的应变,从而得到应力-应变曲线。
根据应力-应变曲线,我们可以得到杨氏模量和屈服强度等重要参数。
3.压缩压缩是拉伸的逆过程,它描述了物体在外力作用下的长度减小。
同样,通过压缩实验可以得到物体的杨氏模量和屈服强度等参数。
4.扭转扭转是指物体在外力作用下的扭转形变。
扭转实验可以得到物体的剪切模量。
5.弯曲弯曲是物体在外力作用下产生的弯曲形变。
在弯曲实验中,我们通常关注的是杨氏模量和截面惯性矩等参数。
弯曲实验还可以用来研究材料的疲劳性能。
6.弹性体的稳定性在弹性力学中,我们还需要研究弹性体的稳定性问题。
通常情况下,我们关注的是杆的稳定性和壳的稳定性。
通过分析弹性体的形变和应力分布,我们可以得到弹性体的稳定性条件。
7.应力分析应力分析是弹性力学的重要内容,它主要研究物体内部的应力分布。
应力分析可以帮助我们理解物体在外力作用下的形变特性,以及预测物体的破坏情况。
总之,弹性力学是一门重要的力学分支,它不仅在工程领域有着广泛的应用,也在物理、材料和地质等领域发挥着重要作用。
弹性力学概念
力学:研究弹性体由于受外力,边界约束或温度改变等作用而发生的应力、形变和位移。
弹性力学的研究对象:为一般及复杂形状的构件、实体结构、板、壳等。
(是各种弹性体,包括杆件,平面体、空间体、板和壳体等。
弹性力学研究的对象比较广泛,可以适用于土木、水利、机械等工程中各种结构的分析。
)弹性力学的任务在边界条件下,从平衡微分方程、几何方程和物理方程求解应力、应变和位移等未知函数研究方法已知条件:1物体的几何形状,即边界面方程2物体的材料参数3所受外力的情况4所受的约束情况。
求解的未知函数:应力、应变和位移。
解法:在弹性体区域内,根据微分体上力的平衡条件建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件建立物理方程弹性体边界上,根据面力条件,建立应力边界条件;根据约束条件建立位移边界条件然后在边界条件下,求解弹性体区域内的微分方程,得出应力、形变和位移弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的)(1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。
(用处:物体的弹性参数,如弹性模量E,不会随位置坐标的变化而变化)(2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。
(用处:弹性体的所用物理量均可用连续的函数去表示)(3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关系。
(用处:可以使用线性虎克定律来表示应力与应变的关系)(4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。
(用处:物体的弹性参数可以取为常数)(5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。
(用处:可以在某些方程的推导中略去位移和形变的高阶微量。
即简化几何方程,简化平衡微分方程)上述这些假定,确定了弹性力学的研究范畴:研究理想弹性体的小变形状态外力是其他物体作用于研究对象的力(分为体力和面力)体力是作用于物体体积内的外力(如重力和惯性力)面力是作用于物体表面上的外力(如液体压力和接触力)内力假想将物体截开,则截面两边有互相作用的力,称为内力切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的(大小等正负号相同)形变就是物体形状的改变。
工程力学中的弹性力学分析
工程力学中的弹性力学分析弹性力学是工程力学中的一个重要分支,研究物体在外力作用下的变形和应力分布规律。
它的应用广泛,涉及到许多领域,如结构设计、材料科学等。
本文将介绍弹性力学的基本概念、应力和应变的关系以及一些常见的弹性力学分析方法。
一、弹性力学的基本概念1.1 响应函数在弹性力学中,响应函数描述了物体对外力的响应。
它是外力和物体的变形之间的关系,通常用应力-应变关系表示。
响应函数的形式根据物体的几何形状和材料的性质而定。
1.2 弹性力学模型弹性力学模型用于描述物体的变形行为。
常见的模型有胡克定律、泊松比等。
胡克定律指出应力和应变成正比,泊松比描述了材料在受拉伸或压缩时横向收缩或扩张的程度。
1.3 应力集中与材料破坏应力集中是指物体中某一点受到的应力远大于其周围区域的应力。
当应力集中超过了材料的极限强度时,材料可能发生破坏。
弹性力学分析常考虑应力集中和材料的极限强度,以保证结构的安全性。
二、应力和应变的关系应力和应变是弹性力学中的核心概念,用于描述物体受力后的变形行为。
应力是单位面积上的力,可以分为正应力、剪应力等。
应变是物体长度或体积相对变化的度量,可以分为线性应变、剪应变等。
三、常见的弹性力学分析方法3.1 静力学方法静力学方法是最基本的弹性力学分析方法之一,根据力平衡定律和物体的几何特征来求解应力和位移。
通常适用于简单的静力学问题,如梁的弯曲和轴的伸缩。
3.2 弹性势能法弹性势能法是一种能量方法,将物体的变形看作是内能的变化。
通过最小化弹性势能的原理,可以得到物体的平衡位置和应力分布。
这种方法适用于复杂的弹性力学问题,如结构的稳定性分析。
3.3 有限元方法有限元方法是一种数值分析方法,将实际物体离散为有限数量的单元,通过求解单元边界的约束条件来获得整个物体的应力和位移分布。
这种方法适用于复杂的几何形状和材料非均匀性的问题。
四、弹性力学在工程中的应用弹性力学在工程领域有广泛的应用。
例如,在结构设计中,弹性力学分析用于确定结构的强度和稳定性。
公共基础知识弹性力学基础知识概述
《弹性力学基础知识概述》一、引言弹性力学作为固体力学的一个重要分支,主要研究弹性体在外力作用下的应力、应变和位移。
弹性力学的理论和方法在工程结构设计、材料科学、地球物理学等众多领域都有着广泛的应用。
本文将对弹性力学的基础知识进行全面的阐述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 弹性体弹性体是指在外力作用下,能够产生弹性变形,当外力去除后,能够完全恢复到原来形状和尺寸的物体。
弹性体的变形通常是微小的,其应力与应变之间存在着一定的关系。
2. 应力应力是指单位面积上所承受的力。
在弹性力学中,应力通常分为正应力和切应力。
正应力是垂直于作用面的应力,切应力是平行于作用面的应力。
应力的单位是帕斯卡(Pa)。
3. 应变应变是指物体在受力作用下,形状和尺寸的改变量与原来形状和尺寸的比值。
应变通常分为正应变和切应变。
正应变是长度的改变量与原来长度的比值,切应变是角度的改变量。
应变是无量纲的量。
4. 弹性模量弹性模量是衡量材料弹性性质的指标,它表示材料在受力作用下产生弹性变形的难易程度。
弹性模量通常分为杨氏模量、剪切模量和体积模量。
杨氏模量是正应力与正应变的比值,剪切模量是切应力与切应变的比值,体积模量是体积应力与体积应变的比值。
三、核心理论1. 平衡方程平衡方程是弹性力学的基本方程之一,它描述了弹性体在受力作用下的平衡状态。
平衡方程可以表示为:$\sigma_{ij,j}+f_i=0$其中,$\sigma_{ij}$是应力张量,$f_i$是体积力,$j$表示对坐标的偏导数。
2. 几何方程几何方程描述了弹性体在受力作用下的变形情况。
几何方程可以表示为:$\epsilon_{ij}=\frac{1}{2}(u_{i,j}+u_{j,i})$其中,$\epsilon_{ij}$是应变张量,$u_i$是位移矢量,$j$表示对坐标的偏导数。
3. 物理方程物理方程描述了应力与应变之间的关系。
弹性力学知识点总结
弹性力学知识点总结弹性力学是力学的一个重要分支,研究固体物体的变形和回复过程。
在本文中,将对弹性力学的几个重要概念和原理进行总结和介绍。
1. 弹性模量弹性模量是衡量固体物体抵抗形变的能力的物理量。
根据胡克定律,弹性模量E可以通过应力σ和应变ε的比值得到:E = σ/ε。
其中,应力表示受力物体单位面积上的力的大小,应变表示物体在应力作用下产生的形变程度。
2. 胡克定律胡克定律是弹性力学的基本原理,描述了理想弹性体在弹性应变范围内的力学行为。
根据胡克定律,应变与应力成正比。
即ε = σ/E,其中E为杨氏模量。
3. 杨氏模量杨氏模量是衡量固体材料抗拉性能的物理量,表示固体在单位面积上受到的拉力与单位长度的伸长量之比。
杨氏模量的定义为:E =F/AΔL/L0,其中F为受力物体的拉力,A为受力物体的横截面积,ΔL为拉伸后的长度增量,L0为原始长度。
4. 泊松比泊松比是衡量固体材料体积收缩性的物理量。
泊松比定义为物体在一轴方向上受力引起的形变量与垂直方向上的形变量之比。
公式表示为:μ = -εlateral/εaxial。
5. 应力-应变关系弹性力学中的应力-应变关系描述了材料在受力作用下的力学行为。
对于弹性材料,应力与应变成线性关系,即应力和应变成比例。
6. 弹性极限弹性极限是指固体材料可以弹性变形的最大程度。
超过弹性极限后,材料将会发生塑性变形。
7. 弹性势能弹性势能是指物体在形变后能够恢复到初始状态的能力。
弹性势能可以通过应变能来表示,其大小等于物体在受力作用下形变所储存的能量。
8. 弹性波传播弹性波是在固体中传播的一种机械波。
根据介质的不同,弹性波可以分为纵波和横波。
9. 斯内尔定律斯内尔定律描述了弹性力学体系中应力与应变之间的关系。
根据斯内尔定律,弹性变形是由应力和应变之间的线性关系所描述的。
10. 压力容器设计弹性力学在压力容器设计中起着重要作用。
根据弹性力学的原理,可以计算压力容器在不同压力下的变形情况,从而设计出满足安全要求的容器结构。
弹性力学的基本概念
弹性力学的基本概念弹性力学是工程力学中的一个重要分支,研究的是物体在受到外力作用后,产生的形变和应力,并且在外力作用撤去后能够恢复到原来的形态的一种力学学科。
弹性力学的研究对象包括杆件、梁、板、壳、轮胎等结构体和波动现象等。
弹性力学的基本概念包括:1. 应力应力是物体内部抵抗外部力作用的一种表现形式,指的是单位面积上的力,在弹性力学中通常用符号σ表示。
应力是与受力区域的形状和受力方向有关的,包括拉应力、压应力、剪应力等。
2. 应变应变是指物体在受到外力作用时,产生的形变程度,通常用符号ε表示。
应变可以分为线性应变和非线性应变,其中线性应变通常用胡克定律表示。
3. 模量模量是衡量物体材料性质的指标,包括弹性模量、剪切模量等。
弹性模量是物体在外力作用下,产生形变时单位应力的比例因子,通常用符号E表示。
不同材料的弹性模量不同,例如钢材的弹性模量比橡胶大,说明钢材的刚性更高。
4. 弹性极限弹性极限是指物体在受到应力作用时,达到最大的应力值,此时物体开始发生塑性变形。
弹性极限是物体强度的一个重要参数,在设计和使用中需要特别考虑。
5. 断裂强度断裂强度是指物体在受到意外应力作用时,在未达到弹性极限之前就发生破裂的应力值。
断裂强度是物体材料强度的一个重要指标,通常在设计和选材时需要考虑。
6. 安全系数安全系数是指为保证物体在工作时不发生失效,所采用的强度设计值与实际强度之间的比值。
安全系数是一个重要的设计参量,在设计和制造物体时需要保证一定的安全系数。
总之,弹性力学是工程力学中非常重要的分支,它的基本概念包括应力、应变、模量、弹性极限、断裂强度和安全系数等。
这些基本概念对于工程设计和材料选择具有重要的指导意义。
弹性力学的基本概念与应用
弹性力学的基本概念与应用弹性力学是力学的一个分支,研究固体材料在外力作用下的形变和应力分布规律,以及材料的弹性恢复性能。
本文将介绍弹性力学的基本概念和应用,并探讨其在现实生活中的重要性。
一、弹性力学的基本概念弹性力学研究的主要内容包括应力、应变、胡克定律以及材料的弹性恢复性能。
应力是指固体材料单位面积内的内力,是对材料对外力作用的反应。
应力可以分为正应力和剪应力。
正应力指作用垂直于材料截面的力引起的应力,剪应力指作用于材料截面平行于截面的力引起的应力。
应变是指物体在受力作用下发生的形变,是描述材料变形程度的物理量。
应变也可以分为正应变和剪应变。
正应变指物体在受到力的拉伸或压缩时引起的长度变化与原始长度之比,剪应变指物体在受到力的剪切时引起的形变与原始长度之比。
胡克定律是弹性力学的基本定律之一,描述了弹性材料的应力与应变之间的关系。
胡克定律认为,在弹性变形范围内,应力与应变成正比。
这个比例常数就是弹性模量,用E来表示。
胡克定律的数学表达式为:应力 = 弹性模量 ×应变。
弹性恢复性能是指材料在受力后能够恢复原状的性质。
这是弹性力学研究的核心问题之一。
材料的弹性恢复性能可以通过弹性模量和杨氏模量来刻画。
弹性模量是描述固体材料整体抗拉或抗压性能的物理量,而杨氏模量是描述固体材料在压缩或拉伸时改变形状的能力的物理量。
二、弹性力学的应用弹性力学在工程领域中有着广泛的应用,以下将从结构设计、材料选择和力学分析三个方面介绍其应用。
1. 结构设计:弹性力学的概念和原理在结构设计中发挥着重要作用。
通过研究材料的弹性模量和弹性恢复性能,设计结构可以更好地满足相应的荷载需求,并实现材料和结构的优化。
2. 材料选择:弹性力学的理论可以指导工程师选择合适的材料。
通过分析材料的弹性模量和杨氏模量等参数,可以确定材料的力学性能和应力分布规律,从而选择最适合的材料,提高结构的性能和寿命。
3. 力学分析:弹性力学的原理在力学分析中发挥着重要作用。
弹性力学基本概念和考点汇总情况
弹性力学基本概念和考点汇总情况弹性力学是研究物体在外力作用下的形变和应力的学科。
它是力学中的一个重要分支,广泛应用于工程、材料科学、地震学等领域。
下面将对弹性力学的基本概念和考点进行汇总。
一、基本概念:1.应力和应变:应力是单位面积上的力,应变是物体由于受力而产生的形变。
2.弹性体和塑性体:弹性体在受力后可以恢复原状,而塑性体则会产生永久形变。
3.弹性恢复:物体在受到外力作用后产生形变,当外力消失后,物体能够恢复原来的形状和大小。
4.长度变化和体积变化:物体在受到外力作用后会发生长度变化和体积变化。
5.压力和剪切力:压力作用于物体表面,剪切力发生在物体内部的平面上。
二、弹性力学的考点:1.应力和应变关系:-分析应变和应力的关系,如线性弹性和非线性弹性的应力-应变关系。
-弹性模量的计算和应用,包括杨氏模量、剪切模量和泊松比等。
-计算应变能和应变能密度,了解能量守恒原理与应变能的关系。
2.弹性体的本构关系:-了解弹性体的本构方程,如胡克定律和弹性体的线弹性本构方程。
-掌握材料的弹性性质,如拉伸、压缩和剪切等。
-了解各种材料的弹性极限、屈服点、强度等。
3.弹性体的稳定性:-分析物体在外力作用下的稳定和不稳定状态。
-掌握杆的屈曲和板的稳定等相关知识。
4.弹性波和振动:-了解弹性波在介质中的传播规律,如纵波和横波的传播方式。
-分析弹性体的固有频率和振动模态。
-掌握弹性体的共振现象和振动衰减。
5.弹性体的应力分析:-分析物体在外力作用下的应力分布和变形情况。
-掌握应力分析的基本方法,如平衡方程和应变关系等。
-了解应力集中和应力分布的影响因素。
总之,弹性力学是力学中的一个重要分支,涵盖了应力和应变、弹性体的本构关系、弹性体的稳定性、弹性波和振动、应力分析等多个方面的知识。
掌握这些基本概念和考点,对于理解和应用弹性力学的原理和方法具有重要意义。
弹性力学复习资料
弹性力学复习资料弹性力学复习资料弹性力学是力学的一个分支,研究物体在受力作用下的形变和应力分布。
它在工程学、物理学和材料科学等领域有着广泛的应用。
本文将为大家提供一份弹性力学的复习资料,帮助大家更好地理解和掌握这一领域的知识。
一、基本概念1. 应力和应变:应力是单位面积上的力,应变是物体形变相对于初始状态的变化量。
常见的应力类型有拉应力、压应力和剪应力,而应变主要分为线性弹性应变和非线性应变。
2. 弹性模量:弹性模量是衡量物体弹性性质的一个重要参数,常见的有杨氏模量、剪切模量和泊松比。
杨氏模量描述了物体在拉伸或压缩时的应力和应变关系,剪切模量描述了物体在受剪切力作用下的应力和应变关系,泊松比描述了物体在拉伸或压缩时横向收缩或膨胀的程度。
3. 弹性极限和屈服点:弹性极限是指物体在受力作用下能够恢复到原来形状的最大应力,屈服点是指物体开始发生塑性变形的应力点。
二、弹性力学的基本方程1. 长度与应变的关系:根据胡克定律,线弹性材料的应力与应变成正比。
即应力等于弹性模量乘以应变。
2. 应力与变形的关系:根据杨氏模量的定义,应力等于弹性模量乘以应变。
对于拉伸和压缩变形,应力与变形成正比;对于剪切变形,应力与剪切变形成正比。
3. 应力的平衡方程:在弹性力学中,物体受力平衡的条件是应力张量的散度等于零。
4. 应力的边界条件:在边界上,物体的应力与外界施加的力相等。
三、常见的弹性体模型1. 线弹性体模型:最简单的线弹性体模型是胡克弹性体模型,它假设物体的应力与应变成正比。
然而,实际材料的应力-应变关系通常是非线性的,因此还有其他的线弹性体模型,如非线性弹性体模型和弹塑性体模型。
2. 弹性体的应力分析:对于各向同性的弹性体,可以通过应力分析求解物体的应力分布情况。
常见的应力分析方法有解析法和数值法,如有限元法和边界元法。
四、应用领域1. 结构工程:弹性力学在结构工程中有着广泛的应用,用于分析和设计各种建筑物和桥梁的强度和稳定性。
弹性定理知识点总结
弹性定理知识点总结1. 弹性定理的基本概念弹性定理是固体力学中的一个基本原理,描述了弹性体在受力时的变形规律。
弹性体是指在外力作用下发生变形,但在去除外力后能够完全恢复原状的物质。
弹性定理认为,当一个弹性体受到力F时,它的变形量x与力F成正比,即弹性体的变形量是力的函数。
这种描述可以用数学公式表示为F=kx,其中F是受力,k是弹性系数,x是变形量。
弹性定理的基本概念可以用一个简单的例子来说明。
当我们拉动一个弹簧时,弹簧的长度会发生变化,而这种变化的大小与我们施加的力的大小成正比。
这种变化的规律可以用弹性定理来描述,即拉伸力F与弹簧的伸长量x成正比,其比例系数就是弹簧的弹性系数k。
2. 弹性定理的数学表示弹性定理可以用数学公式F=kx来表示,其中F是受力,k是弹性系数,x是变形量。
这个数学公式揭示了弹性体的变形规律,即受力与变形量成正比。
F=kx的数学表示也可以通过微积分的方法推导出来,在初等数学中我们学到了弹性势能函数的求导和积分,这就是用来解释弹性定理的数学工具。
弹性定理的数学表示可以进一步扩展到三维空间中,即一个弹性体受到外力时,在各个方向上的变形与受力也成正比。
这时公式可以表示为F=K∆L,其中K是弹性系数矩阵,∆L是位置矢量的变化量。
弹性系数矩阵K描述了弹性体在各个方向上的变形规律,它是一个对称矩阵,反映了弹性体的各向同性。
弹性系数矩阵K的具体含义可以通过广义胡克定律来解释,这是根据矩阵代数的理论推导出来的。
3. 弹性定理的应用范围弹性定理的应用范围非常广泛,包括弹簧、橡胶、金属等材料的弹性变形,以及地震波的传播等。
弹性定理可以用来解释各种物体受力时的变形规律,也可以用来计算物体在受力时的变形量。
在工程领域中,弹性定理的应用非常普遍,例如在建筑结构设计、材料强度分析、机械设计等方面都会用到弹性定理。
弹性定理还可以用来解释弹性体在受力时的振动特性。
当一个弹性体受到外力时,它会产生振动,这种振动的频率和幅度可以通过弹性定理来计算。
弹性力学基本概念总结
弹性力学基本概念总结弹性力学是研究物体在受力作用下产生的变形与应力分布规律的科学。
在弹性力学中,存在一些基本的概念,这些概念对于理解物体的弹性变形和力学响应非常重要。
本文将对弹性力学中的一些基本概念进行总结。
一、应力和应变1. 应力应力是单位面积上的力,用符号σ表示。
在弹性力学中,常用的应力有拉伸应力、压缩应力和剪切应力。
拉伸应力表示物体在拉伸力作用下的应力,压缩应力表示物体在压缩力作用下的应力,剪切应力表示物体在层叠力作用下的应力。
2. 应变应变是物体在受力作用下发生的变形程度,用符号ε表示。
与应力类似,应变也有拉伸应变、压缩应变和剪切应变。
拉伸应变表示物体在拉伸力作用下的应变,压缩应变表示物体在压缩力作用下的应变,剪切应变表示物体在层叠力作用下的应变。
二、胡克定律胡克定律是弹性力学的基础定律之一,它描述了弹性固体的线弹性响应。
根据胡克定律,应力与应变之间的关系可以用以下公式表示:σ = Eε其中,σ为应力,E为杨氏模量,ε为应变。
胡克定律表明,线弹性材料的应力与应变成正比。
三、杨氏模量和剪切模量1. 杨氏模量杨氏模量是衡量材料抵抗拉伸应力的能力的物理量。
它表示了单位应力下的应变程度。
杨氏模量用符号E表示,单位是帕斯卡(Pa)。
杨氏模量越大,材料越具有抵抗拉伸应力的能力。
2. 剪切模量剪切模量是衡量材料抵抗剪切应力的能力的物理量。
它表示了单位剪切应力下的剪切应变程度。
剪切模量用符号G表示,单位也是帕斯卡(Pa)。
剪切模量越大,材料越具有抵抗剪切应力的能力。
四、弹性极限和屈服点1. 弹性极限弹性极限是材料在弹性变形过程中能够承受的最大应力。
当应力超过弹性极限时,材料将发生剧烈的塑性变形或破裂。
2. 屈服点屈服点是材料在受力过程中的一个关键点。
在屈服点之前,材料仅发生弹性变形,应力与应变成正比。
而在屈服点之后,材料开始发生塑性变形,应变增加的同时应力逐渐减小。
五、弹性体和弹性力学模型1. 弹性体弹性体是指在受力作用下产生弹性变形,但在去除外力后可以恢复原状的物体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、五个基本假定在建立弹性力学基本方程时有什么用途?
答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。
均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。
因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化
各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。
进一步地说,就是物体的弹性常数也不随方向而变化。
小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。
在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。
2、试分析简支梁受均布荷载时,平面截面假设是否成立?
解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。
而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。
例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。
所以,严格来说,不成立。
3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?
解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。
这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。
将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。
如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。
教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。
4、在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么?
答:1、在导出平面问题的平衡微分方程和几何方程时应用的基本假定是:物体的连续性,小变形和均匀性。
在两种平面问题中,平衡微分方程和几何方程都适用。
2、在导出平面问题的物理方程时应用的基本假定是:物体的连续性,完全弹性,均匀性,小变形和各向同性,即物体为小变形的理想弹性体。
在两种平面问题中的物理方程不一样,如果将平面应力问题的物理方程中的E换为换为,就得到平面应变问题的物理方程。
5、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。
在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。
在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。
弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。
另一份答案:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立平衡微分方程、几何方程和物理方程;在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。
在研究内容方面:材料力学研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题;结构力学在
材料力学基础上研究杆系结构(如桁架、刚架等);弹性力学研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。
在研究方法方面:理力考虑整体的平衡(只决定整体的V运动状态);材力考虑有限体ΔV的平衡,结果是近似的;弹力考虑微分体dV 的平,结果比较精确。
6、简述弹性力学的研究方法。
答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。
此外,在弹性体的边界上还要建立边界条件。
在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。
求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。
7、弹性力学中应力如何表示?正负如何规定?
答:弹性力学中正应力用表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。
并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
8、简述按应力求解平面问题时的逆解法。
答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。
9、试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
10、弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征?
答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:
平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。
只有平面应力分量存在,且仅为x,y的函数。
平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u和v,只有平面应变分量存在,且仅为x,y的函数。
11、材料各向同性的含义是什么?“各向同性”在弹性力学物理方程中的表现是什么?答:材料的各向同性假定物体的物理性质在各个方向上均相同。
因此,物体的弹性常数不随方向而变化。
在弹性力学物理方程中,由于材料的各向同性,三个弹性常数,包括弹性模量E,切变模量G和泊松系数(泊松比)μ都不随方向而改变(在各个方向上相同)。
12、位移法求解的条件是什么?怎样判断一组位移分量是否为某一问题的真实位移?答:按位移法求解时,u,v 必须满足求解域内的平衡微分方程,位移边界条件和应力边界条件。
平衡微分方程、位移边界条件和(用位移表示的)应力边界条件既是求解的条件,也是校核u,v是否正确的条件。