八年级(上)数学《实数》测试题
八年级数学上册第二章实数测试题含答案解析
第二章实数检测题(本检测题满分:100分:时间:90分钟)一、选择题(每小题3分:共30分)1.(2016·天津中考)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.(2015·安徽中考)与1+最接近的整数是()A.4B.3C.2D.13.(2015·南京中考)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4.(2016·浙江衢州中考)在:﹣1:﹣3:0这四个实数中:最小的是()A. B.﹣1 C.﹣3 D.05.(2015·重庆中考)化简12的结果是()A.43B.23C.32D.266.若a:b为实数:且满足|a-2|+2b-=0:则b-a的值为()A.2 B.0 C.-2 D.以上都不对7.若a:b均为正整数:且a>7:b>32:则a+b的最小值是()A.3B.4C.5D.68.已知3a=-1:b=1:212c⎛⎫-⎪⎝⎭=0:则abc的值为()A.0 B.-1 C.-12D.129.(2016·黑龙江大庆中考)已知实数a、b在数轴上对应的点如图所示:则下列式子正确的是()第9题图A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>010.有一个数值转换器:原理如图所示:当输入的x=64时:输出的y等于()是有理数A.2 B.8 C.2D.2二、填空题(每小题3分:共24分)11.(2015·南京中考)4的平方根是_________;4的算术平方根是__________.12.(2016·福州中考)若二次根式在实数范围内有意义:则x 的取值范围是 .13.已知:若 3.65≈1.910:36.5≈6.042:则365000≈ :±0.000365≈ .14.绝对值小于π的整数有 .15.已知|a -5|+3b +=0:那么a -b = .16.已知a :b 为两个连续的整数:且a >28>b :则a +b = . 17.(福州中考)计算:(2+1)(2-1)=________. 18.(2016·山东威海中考) 化简:= .三、解答题(共46分) 19.(6分)已知:求的值.20.(6分)若5+7的小数部分是a :5-7的小数部分是b :求ab +5b 的值. 21.(6分)先阅读下面的解题过程:然后再解答: 形如n m 2±的化简:只要我们找到两个数a :b :使m b a =+:n ab =:即m b a =+22)()(:n b a =⋅:那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+:这里7=m :12=n : 因为::即7)3()4(22=+:1234=⨯: 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小:并说明理由: (1)与6: (2)与.23.(6分)大家知道是无理数:而无理数是无限不循环小数:因此的小数部分我们不能全部写出来:于是小平用-1来表示的小数部分:你同意小平的表示方法吗? 事实上小平的表示方法是有道理的:因为的整数部分是1:用这个数减去其整数部分:差就是小数部分. 请解答:已知:5+的小数部分是:5-的整数部分是b :求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+:(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+:();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值:(2)nn ++11(n 为正整数)的值:(3++⋅⋅⋅+的值.第二章 实数检测题参考答案一、选择题1.C 解析: 19介于16和25之间:∵ 16<19<25:∴∴ 45:∴的值在4和5之间.故选C.2.B 解析:∵ 4.84<5<5.29:∴即2.22.3:∴ 1+2.2<11+2.3:即3.2<13.3:∴ 与1最接近的整数是3.3.C 解析:22 2.25 2.3, 2.2 2.3, 1.21 1.3,<<∴<<∴<<∴ 0.60.65<<:故选C .4.C 解析:根据实数的大小比较法则(正数都大于0:负数都小于0:正数大 于一切负数:两个负数比较大小:绝对值大的反而小)比较即可. ∵ ﹣3<﹣1<0<:∴ 最小的实数是﹣3:故选C . 5.B 解析:212432323=⨯=⨯=.6.C 解析:∵ |a -2|+2b -=0:∴ a =2:b =0:∴ b -a =0-2=-2.故选C .7.C 解析:∵ a :b 均为正整数:且a >7:b >32:∴ a 的最小值是3:b 的最小值是2: 则a +b 的最小值是5.故选C .8.C 解析:∵ 3a =-1:b =1:212c ⎛⎫- ⎪⎝⎭=0:∴ a =-1:b =1:c =12:∴ abc =-12.故选C . 9.D 解析:根据实数a 、b 在数轴上对应的点的位置可知1<a <2:﹣1<b <0:∴ ab <0:a +b >0:|a |>|b |:a ﹣b >0.故选D .10.D 解析:由图得64的算术平方根是8:8的算术平方根是22.故选D .二、填空题11.2± 2 解析:∵ ()2224,24,=-=∴ 4的平方根是2±:4的算术平方根是2.12.x ≥﹣1 解析:若二次根式在实数范围内有意义:则x +1≥0:解得x ≥﹣1.13.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2:±0.000365=±43.6510-⨯ ≈±0.019 1. 14. ±3:±2:±1:0 解析:π≈3.14:大于-π的负整数有:-3:-2:-1:小于π的正整数有:3:2:1:0的绝对值也小于π.15. 8 解析:由|a -5|+3b +=0:得a =5:b =-3:所以a -b =5-(-3) =8. 16.11 解析:∵ a >28>b : a :b 为两个连续的整数: 又25<28<36:∴ a =6:b =5:∴ a +b =11. 17. 1 解析:根据平方差公式进行计算:(2+1)(2-1)=()22-12=2-1=1.18.2 解析:先把二次根式化简:再合并同类二次根式:得18-832-222==.三、解答题19.解:因为::即: 所以.故:从而:所以:所以.20.解:∵ 2<7<3:∴ 7<5+7<8:∴ a =7-2. 又可得2<5-7<3:∴ b =3-7.将a =7-2:b =3-7代入ab +5b 中:得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意:可知:因为:所以.22.分析:(1)可把6转化成带根号的形式:再比较它们的被开方数:即可比较大小:(2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36:35<36:∴ 35<6. (2)∵ -5+1≈-2.236+1=-1.236:-22≈-0.707:1.236>0.707: ∴ -5+1<-22.23.解:∵ 4<5<9:∴ 2<<3:∴ 7<5+<8:∴ =-2.又∵ -2>->-3:∴ 5-2>5->5-3:∴ 2<5-<3:∴ b =2: ∴ +b =-2+2=.24. 解:(1)原式=623332223-+⨯ (2)原式=()266321343-+--- =6236623-+ =432213--.=1362323-.11(76)25.17 6.76(76)(76)⨯-==-++-解:()(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++=-11001+10=9.。
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。
八年级数学上《第2章实数》单元测试含答案解析
《第2章实数》一、精心选一选1.在(﹣)0,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有()A.2个B.3个C.4个D.5个2.下列说法:①﹣64的立方根是4;②49的算术平方根是±7;③的立方根是;④的平方根是.其中正确的说法有()A.1个B.2个C.3个D.4个3.下列运算中错误的有()个①=4;② =±;③ =﹣3;④ =3;⑤± =3.A.4 B.3 C.2 D.14.当的值为最小值时,a的取值为()A.﹣1 B.0 C.D.15.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与26.边长为2的正方形的对角线长是()A.B.2 C.2 D.47.满足<x<的整数x是()A.﹣2,﹣1,0,1,2,3 B.﹣1,0,1,2C.﹣2,﹣1,0,1,2,3 D.﹣1,0,1,2,38.若与|b+1|互为相反数,则的值为b﹣a=()A.B. +1 C.﹣1 D.1﹣二、耐心填一填9.比较下列实数的大小(在空格中填上>、<或=)①;②;③.10.平方根等于本身的数是.11.的算术平方根是;1的立方根是;5的平方根是.12.如图,在网格图中的小正方形边长为1,则图中的△ABC的面积等于.13.估算的值(误差小于1)应为.14.写出一个无理数,使它与的积是有理数:.15.化简: =.16.我们知道黄老师又用计算器求得:=, =,=…,则计算等于.三、计算下列各题17. 3×2.18.计算:﹣2.19.(﹣)2.20.3﹣﹣.21.0+(﹣)﹣2﹣|5﹣|﹣2.22.(+2)2009(﹣2)202X.23.求x值:(x﹣1)2=25.24.求x值:2x3=16.四、解答下列各题25.已知,a、b互为倒数,c、d互为相反数,求的值.26.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求a+2b的平方根.27.若x、y都是实数,且y=++8,求x+y的值.28.分析探索题:细心观察如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的等式Sn=;(2)推算出OA10=.(3)求出 S12+S22+S32+…+S102的值.《第2章实数》参考答案与试题解析一、精心选一选1.在(﹣)0,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有()A.2个B.3个C.4个D.5个【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:(﹣)0=1, =2, =3,则无理数有:,0.010010001…,,,共4个.故选C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.下列说法:①﹣64的立方根是4;②49的算术平方根是±7;③的立方根是;④的平方根是.其中正确的说法有()A.1个B.2个C.3个D.4个【考点】立方根;平方根;算术平方根.【分析】根据立方根、平方根、算术平方根的定义求出每个的值,再根据结果判断即可.【解答】解:∵﹣64的立方根是﹣4,∴①错误;∵49的算术平方根是7,∴②错误;∵的立方根是,∴③正确;∵的平方根是±,∴④错误,即正确的有1个,故选A.【点评】本题考查了对立方根、平方根、算术平方根的定义的应用,主要考查学生的计算能力.3.下列运算中错误的有()个①=4;② =±;③ =﹣3;④ =3;⑤± =3.A.4 B.3 C.2 D.1【考点】算术平方根;平方根.【分析】根据平方根和算术平方根的定义进行一一排查即可.【解答】解:① =4,正确;②=±,应等于,故②错误;③无意义,故③错误;④=3,正确;⑤±应等于±3,故⑤错误.故选B.【点评】本题考查了数的算术平方根,以及平方根,一个正数的平方根有两个,它们互为相反数,那个正的平方根即为这这数的算术平方根.4.当的值为最小值时,a的取值为()A.﹣1 B.0 C.D.1【考点】算术平方根.【分析】由于≥0,由此得到4a+1=0取最小值,这样即可得出a的值.【解答】解:取最小值,即4a+1=0.得a=,故选C.【点评】本题考查的是知识点有:算术平方根恒大于等于0,且只有最小值,为0;没有最大值.5.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【考点】实数的性质.【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.6.边长为2的正方形的对角线长是()A.B.2 C.2 D.4【考点】算术平方根.【分析】根据勾股定理,可得对角线的长,根据开方运算,可得答案.【解答】解:对角线平方的长是8,边长为2的正方形的对角线长是2,故选:C.【点评】本题考查了算术平方根,利用了开方运算.7.满足<x<的整数x是()A.﹣2,﹣1,0,1,2,3 B.﹣1,0,1,2C.﹣2,﹣1,0,1,2,3 D.﹣1,0,1,2,3【考点】估算无理数的大小.【分析】利用与的取值范围进而得出整数x.【解答】解:∵<x<,∴整数x是:﹣1,0,1,2,故选:B.【点评】此题主要考查了估计无理数的大小,得出与的取值范围是解题关键.8.若与|b+1|互为相反数,则的值为b﹣a=()A.B. +1 C.﹣1 D.1﹣【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵(a+)2与|b+1|互为相反数,∴(a+)2+|b+1|=0,∴a+=0,b+1=0,解得a=﹣,b=﹣1,∴b﹣a=﹣1﹣(﹣)=﹣1.故选C.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.二、耐心填一填9.比较下列实数的大小(在空格中填上>、<或=)①<;②>;③<.【考点】实数大小比较.【分析】①利用绝对值大的反而小,首先比较两数的绝对值,进而比较即可得出答案;②利用分母相同的两数比较分子即可得出大小关系;③将根号外的因式移到根号内部,进而得出答案.【解答】解:①∵||=,||=,>,∴﹣<,②∵﹣1>1,∴>;③∵=, =,∴<,即<.故答案为:①<,②>,③<.【点评】此题主要考查了实数比较大小,正确掌握实数比较的大小法则是解题关键.10.平方根等于本身的数是0 .【考点】有理数的乘方.【分析】根据平方的特性从三个特殊数0,±1中找.【解答】解:∵02=0,∴平方根等于本身的是0;故答案是:0【点评】这类问题要记准三个特殊的数:0,±1.11.的算术平方根是 2 ;1的立方根是 1 ;5的平方根是±.【考点】立方根;平方根;算术平方根.【分析】首先可求得=4,继而可得的算术平方根是2,然后直接利用立方根与平方根的定义求解可即可求得答案.【解答】解:∵ =4,∴的算术平方根是2;∴1的立方根是1,5的平方根是±.故答案为:2,1,±.【点评】此题考查了立方根与平方根的定义.此题比较简单,注意熟记定义是解此题的关键.12.如图,在网格图中的小正方形边长为1,则图中的△ABC的面积等于 5 .【考点】三角形的面积.【专题】网格型.【分析】利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.【解答】解:△ABC的面积=3×4﹣×2×4﹣×1×3﹣×1×3=12﹣4﹣1.5﹣1.5=12﹣7=5.故答案为:5.【点评】本题考查了三角形的面积,利用矩形的面积减去直角三角形的面积求网格结构中三角形的面积的方法是常用的方法之一,要熟练掌握并灵活运用.13.估算的值(误差小于1)应为7或8 .【考点】估算无理数的大小.【分析】由于49<56<64,根据算术平方根的定义得到7<<8,因此可估算约为7或8.【解答】解:∵49<56<64,∴7<<8,∴的值(误差小于1)应为7或8.故答案为7或8.【点评】本题考查了估算无理数的大小:利用算术平方根的定义估算无理数的大小.14.写出一个无理数,使它与的积是有理数:.【考点】无理数.【专题】开放型.【分析】根据平方根的定义,×=2是有理数,于是可知3,4,﹣5…与的积均为有理数.【解答】解:∵无理数的平方是有理数,∴3,4,﹣5…等与相乘,结果都是有理数.【点评】此题主要考查了无理数的定义和性质,解题时因为任何无理数都是它本身的有理化因式,据此构造合适的无理数即可.15.化简: = π﹣3 .【考点】二次根式的性质与化简;二次根式的定义.【专题】常规题型.【分析】二次根式的性质: =a(a≥0),根据性质可以对上式化简.【解答】解: ==π﹣3.故答案是:π﹣3.【点评】本题考查的是二次根式的性质和化简,根据二次根式的性质,对代数式进行化简.16.我们知道黄老师又用计算器求得:= 55 , = 555 , = 5555 …,则计算等于.【考点】计算器—数的开方.【专题】规律型.【分析】利用计算器可计算=55, =555,=5555…,观察得到3、4、5在每个等式中出现的次数相同,于是有=.【解答】解:∵ =55, =555,=5555…,∴=.故答案为=.【点评】本题考查了计算器﹣数的开方:用计算器得到任何正数的算术平方根,计算器不同,按键的顺序可能不同.也考查了从特殊到一般解决规律型题目的方法.三、计算下列各题17.3×2.【考点】二次根式的乘除法.【分析】根据二次根式的乘法法则求解.【解答】解:原式=6=30.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则.18.计算:﹣2.【考点】实数的运算.【分析】首先利用根式的计算法则化简,然后利用实数的计算法则即可求出结果.【解答】解:原式====1.【点评】此题主要考查了二次根式的计算,一般计算结果要使分母中不含有根号,解题关键是运用二次根式的运算法则.19.(﹣)2.【考点】二次根式的混合运算.【专题】计算题.【分析】根据完全平方公式计算.【解答】解:原式=5﹣4+=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20.3﹣﹣.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=6﹣3﹣=.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.21.0+(﹣)﹣2﹣|5﹣|﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,合并即可得到结果.【解答】解:原式=1+4﹣5+﹣2=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(+2)2009(﹣2)202X.【考点】二次根式的混合运算.【专题】计算题.【分析】先根据积的乘方得到原式=[(+2)(﹣2)]2009•(﹣2),然后根据平方差公式计算.【解答】解:原式=[(+2)(﹣2)]2009•(﹣2)=(3﹣4)2009•(﹣2)=﹣(﹣2)=2﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.23.求x值:(x﹣1)2=25.【考点】平方根.【分析】根据开方运算,可得方程的解.【解答】解:开方,得x﹣1=5或x﹣1=﹣5,解得x=6,或x=﹣4.【点评】本题考查了平方根,开方运算是解题关键.24.求x值:2x3=16.【考点】立方根.【分析】根据开立方运算,可得方程的解.【解答】解:方程两边都除以2,得x3=8,开方,得x=2.【点评】本题考查了立方根,利用了开立方运算.四、解答下列各题25.已知,a、b互为倒数,c、d互为相反数,求的值.【考点】实数的运算.【分析】由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.【解答】解:依题意得,ab=1,c+d=0;∴==﹣1+0+1=0.【点评】本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.26.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求a+2b的平方根.【考点】平方根;算术平方根.【分析】根据平方根的定义列式求出b,再根据算术平方根的定义列式求出a,然后求出a+2b的值,再根据平方根的定义解答.【解答】解:∵2b+1的平方根为±3,∴2b+1=32=9,解得b=4,∵3a+2b﹣1的算术平方根为4,∴3a+2b﹣1=42=16,解得a=3,∴a+2b=3+2×4=11,∴a+2b的平方根是±.【点评】本题考查了平方根与算术平方根的定义,是基础题,熟记概念是解题的关键.27.若x、y都是实数,且y=++8,求x+y的值.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x,再求出y,然后相加即可得解.【解答】解:由题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+y=3+8=11.【点评】本题考查的知识点为:二次根式的被开方数是非负数.28.分析探索题:细心观察如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的等式Sn=;(2)推算出OA10=.(3)求出 S12+S22+S32+…+S102的值.【考点】勾股定理;算术平方根.【专题】规律型.【分析】(1)此题要利用直角三角形的面积公式,观察上述结论,会发现,第n个图形的一直角边就是,然后利用面积公式可得.(2)由同述OA 2=,0A 3=…可知OA 10=.(3)S 12+S 22+S 32+…+S 102的值就是把面积的平方相加就可.【解答】解:(1)+1=n+1 Sn=(n 是正整数); 故答案是:;(2)∵OA 12=1,OA 22=()2+1=2, OA 32=()2+1=3, OA 42=()2+1=4, ∴OA 12=,OA 2=,OA 3=,…∴OA 10=; 故答案是:;(3)S 12+S 22+S 32+…+S 102=()2+()2+()2+…+()2=(1+2+3+…+10) =.即:S 12+S 22+S 32+…+S 102=.【点评】此题考查了勾股定理、算术平方根.解题的关键是观察,观察题中给出的结论,由此结论找出规律进行计算.千万不可盲目计算.。
八年级上册数学实数练习题
实数单元习题练习(三)一、选择题:(48分) 1. 9的平方根是 ( )A 、3B 、-3C 、 3D 、81 2. 下列各数中,不是无理数的是 ( )A 、7B 、0.5C 、2πD 、…)个之间依次多两个115(3. 下列说法正确的是( )A 、有理数只是有限小数B 、无理数是无限小数 …C 、无限小数是无理数D 、3π是分数 4. 下列说法错误的是( )A 、1的平方根是1B 、–1的立方根是-1C 、2是2的平方根D 、–3是2)3(-的平方根 5. 若规定误差小于1, 那么60的估算值为( ) A 、3 B 、7 C 、8 D 、7或8 6. 和数轴上的点一一对应的是( )A 、整数B 、有理数C 、无理数D 、实数 %7. 下列说法正确的是( )A 、064.0-的立方根是B 、9-的平方根是3±C 、16的立方根是316D 、的立方根是 8. 若a 和a -都有意义,则a 的值是( )A 、0≥aB 、0≤aC 、0=aD 、0≠a 9. 边长为1的正方形的对角线长是( )A 、整数B 、分数C 、有理数D 、不是有理数 10.38-=( )*A 、2B 、-2C 、±2D 、不存在11.2a a =-,则实数a 在数轴上的对应点一定在( )A 、原点左侧B 、原点右侧C 、原点或原点左侧D 、原点或原点右侧 12.下列说法中正确的是( )A 、实数2a -是负数 B 、a a =2C 、a -一定是正数D 、实数a -的绝对值是a二. 填空题:(32分)13. 9的算术平方根是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 . |14. –1的立方根是 ,271的立方根是 , 9的立方根是 . 15.2的相反数是 , 倒数是 , -36的绝对值是 .16. 比较大小;6 .(填“>”或“<”)17. =-2)4( ;=-33)6( ; 2)196(= .18.37-的相反数是 ;32-= .19.若2b +5的立方根,则a = ,b = .20.a 的两个平方根是方程223=+y x 的一组解,则a = ,2a 的立方根是 . 三、解答题:(20分) }21.求下列各数的平方根和算术平方根:① 1; ② ③ 256 ④8125:22. 求下列各数的立方根: ①21627; ②610--.23.求下列各式的值: $①44.1; ②3027.0-; ③610-; ④649;⑤44.1-21.1; ⑦)32(2+{附加题:(20分)24.若21(2)0x y -+-=,求x y z ++的值。
北师大版八年级数学上册第二章《实数》测试题及答案
八年级上学期第二章《实数》单元测试及答案一、选择(每小题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.下列说法中正确的是().(A)4是8的算术平方根(B)16的平方根是4(C)是6的平方根(D)没有平方根2.下列各式中错误的是().(A)(B)(C)(D)3.若,则().(A)-0。
7 (B)±0.7 (C)0.7 (D)0。
494.的立方根是().(A)-4 (B)±4 (C)±2 (D)-25.,则的值是().(A)(B)(C)(D)6.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).共有()个是错误的.(A)1 (B)2 (C)3 (D)4+的值为()7.x是9的平方根,y是64的立方根,则x yA.3 B.7 C.3,7 D.1,7-=+-)82x1x1x1A. x ≥1B. x ≥—1C.—1≤x ≤1 D 。
x ≥1或x ≤—19. 计算515202145+-所得的和结果是( ) A .0 B .5- C .5 D .5310. x --23 (x ≤2)的最大值是( )A .6B .5C .4D .3二、填空(每小题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的) 1.若,则是的__________,是的___________.2.9的算术平方根是__________,的平方根是___________. 3.下列各数:①3。
141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0。
3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中.其中是有理数的有_______;是无理数的有_______.(填序号)4.的立方根是__________,125的立方根是___________.5.若某数的立方等于-0。
八年级数学上册 第二章 实数单元测试(含答案)
第二章实数单元测试一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.42.下列各式中正确的是()A.=±4B. =4C. =3D. =53.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数5.的算术平方根是()A.4B.±4C.2D.±26.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<1009.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.5:8B.3:4C.9:16D.1:2二.填空题.11.比较下列实数的大小(填上>或<符号=)①______12;②______0、5;③﹣+1______﹣.12.在数轴上表示﹣的点离原点的距离是______.13.已知|x|的算术平方根是8,那么x的立方根是______.14.若m、n互为相反数,则|m﹣5+n|=______.15.如果的平方根等于±2,那么a=______.16.计算+=______.17.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______.18.若0<a<1,且,则=______.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.四、求x值:20.求x值(1)2x2=8 (2)x2﹣=0 (3)(2x﹣1)3=﹣8 (4)340+512x3=﹣3.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?22.已知: =0,求实数a,b的值.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.参考答案一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.4【解答】解:下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,无理数是:,0、1010010001…,0、451452453454…,共3个.故选C.2.下列各式中正确的是()A.=±4B. =4C. =3D. =5【解答】解:A、,错误;B、,正确;C、负数没有算术平方根,错误;D、,错误;故选B.3.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定【解答】解:由题意得:<0,故可得()没有平方根.故选C.4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数【解答】解:根据实数与数轴上的点是一一对应关系.5.的算术平方根是()A.4B.±4C.2D.±2【解答】解:∵(±2)2=4=,∴的算术平方根是2.故选C.6.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、(﹣2)0=1,故本选项错误;D、2﹣1=,故本选项正确.故选D.7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数【解答】解:A、(﹣3)2=9,9算术平方根是3,错误;B、=15,15的平方根是±,错误;C、当x=2时,x=0,正确;D、是无理数,错误,故选C8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<100【解答】解:∵正方形的面积为11,而3<x<4.故选B.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a【解答】解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是()A.5:8B.3:4C.9:16D.1:2【解答】解:方法1:利用割补法可看出阴影部分的面积是10个小正方形组成的,所以阴影部分面积与正方形ABCD的面积比是10:16=5:8;方法2: =,()2:42=10:16=5:8.故选A.二.填空题.11.比较下列实数的大小(填上>或<符号=)①<12②>0、5③﹣+1 <﹣.【解答】解:① =140,122=144,∵140<144,∴<12.②∵﹣0、5=﹣1>1﹣1=0,∴>0、5.③∵﹣+1<﹣2+1=﹣1,∴﹣+1<﹣1,又∵﹣>﹣1,∴﹣+1<﹣.故答案为:<、>、<.12.在数轴上表示﹣的点离原点的距离是.【解答】解:数轴上表示﹣的点离原点的距离是|﹣|即;故答案为.13.已知|x|的算术平方根是8,那么x的立方根是4或﹣4 . 【解答】解:由题意得:|x|=64,即x=64或﹣64,则64或﹣64的立方根为4或﹣4.故答案为:4或﹣4.14.若m、n互为相反数,则|m﹣5+n|= 5 .【解答】解:m、n互为相反数,|m﹣5+n|=|﹣5|=5,故答案为:5.15.如果的平方根等于±2,那么a= 16 .【解答】解:∵(±2)2=4,∴=4,∴a=()2=16. 故答案为:16.16.计算+= 1 .【解答】解:原式=3π﹣9+10﹣3π =1.故答案为:1.17.点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A ,B 两点的距离为 4 .【解答】解:∵A 在数轴上表示的数为,点B 在数轴上表示的数为,∴A,B 两点的距离是:|3﹣(﹣)|=4, 故答案为:4.18.若0<a <1,且,则= ﹣2 . 【解答】解:∵a+=6,∴(﹣)2=a ﹣2+=6﹣2=4, ∵0<a <1,∴0<<1,>1,∴﹣=﹣=﹣2.故答案为:﹣2.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.【解答】解:(1)原式=2+4﹣=5;(2)原式==×=8×9=72;(3)原式=+3×3=;(4)原式=9+﹣2=8.四、求x值:20.求x值(1)2x2=8(2)x2﹣=0(3)(2x﹣1)3=﹣8(4)340+512x3=﹣3.【解答】解:(1)方程变形得:x2=4,开方得:x=2或x=﹣2;(2)方程变形得:x2=,开方得:x=±;(3)(2x﹣1)3=﹣8,开立方得:2x﹣1=﹣2,解得:x=﹣;(4)x3=﹣,开立方得:x=﹣.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?【解答】解:根据一个正数有两个平方根,它们互为相反数得:3x﹣4+2﹣x=0,即得:x=1,即3x﹣4=﹣1,则a=(﹣1)2=1.22.已知: =0,求实数a,b的值.【解答】解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.。
苏教版数学八年级上册第4章《实数》检测卷(含答案)
八年级上册第4章《实数》检测卷满分120分姓名:___________班级:___________学号:___________一.选择题(共8小题,满分24分,每小题3分)1.在3.14159,4,1.1010010001…,4.,π,中,无理数有()A.1个B.2个C.3个D.4个2.以下说法正确的是()A.两个无理数之和一定是无理数B.带根号的数都是无理数C.无理数都是无限小数D.所有的有理数都可以在数轴上表示,数轴上所有的点都表示有理数.3.用四舍五入法将0.00519精确到千分位的近似数是()A.0.0052 B.0.005 C.0.0051 D.0.00519 4.下列说法正确的是()A.实数与数轴上的点一一对应B.无理数与数轴上的点一一对应C.整数与数轴上的点一一对应D.有理数与数轴上的点一一对应5.a2的算术平方根是2,则a的值为()A.±2 B.2 C.4 D.±4 6.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9 7.实数a、b、c满足a<b且ac>bc,它们在数轴上的对应点的位置可以是()A.B.C.D.8.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣7二.填空题(共8小题,满分32分,每小题4分)9.实数81的平方根是.10.计算:=.11.比较2和大小:2 (填“>”、“<“或“=”).12.一个正数的两个平方根是a﹣4和3,则a=.13.将1299万取近似值保留三位有效数字为,该近似数精确到位.14.若的整数部分为a,小数部分为b,则a﹣b=.15.若+|b+1|=0,则(a+b)2020=.16.对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=.三.解答题(共8小题,满分64分)17.(6分)计算:.18.(8分)求下列各式中x的值:(1)25x2﹣36=0;(2)x3﹣3=;19.(6分)已知2a﹣1的一个平方根是3,3a+b﹣1的一个平方根是﹣4,求a+2b的平方根.20.(8分)阅读材料:图中是小马同学的作业,老师看了后,找来小马问道:“小马同学,你标在数轴上的两个点对应题中的两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找的非常准确,遗憾的是没有完成全部解答.”请你帮小马同学完成本次作业.请把实数0,﹣π,﹣2,,1表示在数轴上,并比较它们的大小(用<号连接).解:21.(8分)车工小王加工生产了两根轴,当它把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?22.(8分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求m的值.(2)求|m﹣1|+m+6的值.23.(10分)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i+1=3+i;i3=i2×i=﹣1×i=﹣ii4=i2×i2=﹣1×(﹣1)=1根据以上信息,完成下列问题:(1)填空:3i3=;(2)计算:(1+i)×(3﹣4i)+i5;(3)计算:i+i2+i3+i4+ (i2022)24.(10分)如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,求当x多少秒时,OM=ON.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,当两个长方形重叠部分的面积为6时,求长方形ABCD运动的时间.参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:在3.14159,4,1.1010010001…,4.,π,中,无理数有1.1010010001…,π共2个.故选:B.2.解:A、两个无理数之和一定是无理数,错误,例如+(﹣)=0;B、带根号的数都是无理数,错误,例如;C、无理数都是无限小数,正确;D、所有的有理数都可以在数轴上表示,数轴上所有的点都表示有理数,错误,实数与数轴上的点一一对应.故选:C.3.解:0.00519精确到千分位的近似数是0.005.故选:B.4.解:数轴不仅表示有理数,也可以表示无理数,例如:如图,矩形OABC,OA=1,OC=2,则OB =,以O为圆心,OB为半径画弧交数轴于点D,则点D所表示的数为:,同理,可以在数轴上表示其它的无理数,因此数轴上的点与实数一一对应,故选:A.5.解:∵a2的算术平方根是2,∴a2=4,则a=±2,故选:A.6.解:∵≈2.646,∴与最接近的是2.6,故选:B.7.解:A由图可知,因为a>b,不符合题意,所以A选项不正确;B由图可知,因为a<b<0,c<0,根据不等式的性质ac>bc,所以B选项正确;C由图可知,因为a<b<0,c>0,根据不等式的性质ac<bc,所以C选项不正确;D由图可知,因为a>b,不符合题意,所以D选项不正确.故选:B.8.解:∵|a|=4,,且a+b<0,∴a=﹣4,b=﹣3或a=﹣4,b=3,则a﹣b=﹣1或﹣7.故选:D.二.填空题(共8小题,满分32分,每小题4分)9.解:实数81的平方根是:±=±9.故答案为:±9.10.解:=﹣0.1.故答案为:﹣0.1.11.解:∵1<3<4,∴<<,∴1<<2,∴2>,故答案为:>.12.结:由题意得a﹣4+3=0,解得a=1,故答案为1.13.解:根据分析得:将1 299万取近似值保留三位有效数字为1.30×107,该近似数精确到十万位.14.解:∵92<93<102,∴,∴a=9,b=,∴a﹣b=9﹣()=18﹣.故答案为:18﹣.15.解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.16.解:∵m*n=(m+2)2﹣2n,∴2*a=(2+2)2﹣2a=16﹣2a,4*(﹣3)=(4+2)2﹣2×(﹣3)=42,∵2*a=4*(﹣3),∴16﹣2a=42,解得a=﹣13,故答案为:﹣13.三.解答题(共8小题,满分64分)17.解:=5﹣1+2+(﹣4)=2.18.解:(1)方程整理得:x2=,开方得:x=±;(2)方程整理得:x3=,开立方得:x=.19.解:∵2a﹣1的平方根为±3,3a+b﹣1的平方根为±4,∴2a﹣1=9,3a+b﹣1=16,解得:a=5,b=2,∴a+2b=5+4=9,∴a+2b的平方根为±3.20.解:根据题意,在数轴上分别表示各数如下:∴.21.解:(1)车间工人把2.60m看成了2.6m,近似数2.6m的要求是精确到0.1m;而近似数2.60m的要求是精确到0.01m,所以轴长为2.60m的车间工人加工完原轴的范围是2.595m≤x<2.605m,(2)由(1)知原轴的范围是2.595m≤x<2.605m,故轴长为2.56m与2.62m的产品不合格.22.解:(1)由题意A点和B点的距离为2,A点的坐标为,因此B点坐标m=2.(2)把m的值代入得:|m﹣1|+m+6=|2﹣1|+2﹣+6,=|1|+8﹣,=﹣1+8﹣,=7.23.解:(1)3i3=3×i×(﹣1)=﹣3i,故答案为﹣3i;(2)原式=3﹣4i+3i﹣4i2=3﹣i﹣4×(﹣1)=3﹣i+4=7﹣i;(3)原式=[i+(﹣1)+i×(﹣1)+1]×505+(﹣1)=0+(﹣1)=﹣1.24.解:(1)∵长方形EFGH的长EH是8个单位长度,且点E在数轴上表示∴点H在数轴上表示的数是5+8=13∵E、D两点之间的距离为12点D表示的数为5﹣12=﹣7∵长方形ABCD的长AD是4个单位长∴点A在数轴上表示的数是﹣7﹣4=﹣11故答案为:13,﹣11;(2)由题意知,线段AD的中点为M,则M表示的数为﹣9,线段EH上一点N且EN=EH,则N 表示的数为7;由M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,则经过x秒后,M点表示的数为4x﹣9,N点表示的数为7﹣3x,∵OM=ON,∴|4x﹣9|=|7﹣3x|,∴4x﹣9=7﹣3x,或4x﹣9=3x﹣7,∴x=,或x=2,∴x=秒或x=2秒时,OM=ON;(3)∵在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,两个长方形重叠部分的面积为6,∴重叠部分的的长方形的长为3,∴①当点D运动到E点右边3个单位时,两个长方形重叠部分的面积为6,此时长方形ABCD运动的时间为:(DE+3)÷2=(12+3)÷2=(秒),②当点A运动到H点右边3个单位时,两个长方形重叠部分的面积为6,此时长方形ABCD运动的时间为:(AD+DE+EH﹣3)÷2=(4+12+8﹣3)÷2=(秒),综上,长方形ABCD运动的时间为秒或秒.。
八年级数学(上)第二章《实数》测试题
八年级数学(上)第二章《实数》复习题1、3的平方根是 ;16的算术平方根是 ;8的立方根是 ;327-= 。
2、9的算术平方根是 ;–1的立方根是 ,271的立方根是 , 9的立方根是 。
3、2的相反数是 ,倒数是 , -36的绝对值是 。
4、37-的相反数是 ;绝对值等于3的数是 ;3的倒数是 。
5、比较大小:;310。
-2; 215- 21;112 53。
6、=-2)4( ;=-33)6( ; 2)196(= 。
7、估计60的大小约等于 或 (误差小于1)。
8、若03)2(12=-+-+-z y x ,则z y x ++= 。
9、化简:=-2)3(π 。
若1<x <4,则化简()()2214---x x = ; 10、如图,在网格图中的小正方形边长为1,则图中的ABC ∆的面积等于 。
11、如图,图中的线段AE 的长度为 。
12、如上图,小正方形边长为1,线段=AB ,=CD ,EF = 。
13、 已知a 、b 为两个连续的整数,且a b <,则a b += .14、一个正数的平方根为m -2与63+m ,则=m ,这个正数是 .15、要使式子2-x 有意义,则x 的取值范围是。
16、已知:若1.9106.042≈,±≈ .17、有一个数值转换器,原理如图所示:当输入的x =64时,输出的y 等于( )A .2B .8C .D .18、下列无理数中,在-2与1之间的是( )A .-B .-C .D .19、满足53<<-x 的整数x 是( )A 、3,2,1,0,1,2--B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1-215-20、下列计算结果正确的是( )A 、066.043.0≈ B 、30895≈ C 、4.602536≈ D 、969003≈21、下列各式中,正确的是( )A 、2)2(2-=- B 、9)3(2=- C 、 393-=- D 、39±=± 22、求下列各式的值:①44.1; ②3027.0-; ③610-; ④25241+; ⑤327102---.23、化简: ①12 ②3221 ③81 ④23 ⑤346 ⑥5.424、计算:①5312-⨯ ②2)352(- ③2)75)(75(++-⑤8145032-- ⑥)31)(21(-+ ⑦0)31(33122-++⑧862⨯-82734⨯+ ⑨21418122-+- ⑩284)23()21(01--+-⨯-25、解方程:①2542=x ②27)1(32=-x ; ③01258133=+x26、已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值。
(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)
一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。
八年级(上)数学《实数》测试题
八年级(上)数学《实数》测试题姓名: 班级: 得分:一.选择题(每题3分,共30分) 1.81的算术平方根是( )A .9 B.-9 C. ±9 D. 3 2. 下列各数中,不是无理数的是 ( ) A.7 B. 0.5 C. 2πD. 0.151151115…3. 下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D. 3π是分数4. 下列说法错误的是( ) A. 1的平方根是±1 B. –1的立方根是–1C.2是2的算术平方根 D. –3是2)3(-的平方根5. 和数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数 6. 下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C.16的立方根是316D.0.01的立方根是0.0000017. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a8. 边长为1的正方形的对角线长是( ) 整数 B. 分数 C. 有理数 D. 不是有理数92a a =-,则实数a 在数轴上的对应点一定在 ()A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧 10.下列说法中正确的是 ( )A. 实数2a -是负数 B. a a =2C.a -一定是正数D. 实数a -的绝对值是a二.填空题(每小题3分,共30分)11. 9的算术平方根是 ;3的平方根是 ; 271的立方根是 . 12.2-1的相反数是 , -36-的绝对值是 ;32-= .13.无理数10的小数部分可以表示为 . 14.64的立方根是______;364的平方根是______.15. 25的所有整数的和是 . 16. 若a ,b 都是无理数,且2=+b a ,则a ,b 的值可以是 .17.有如下命题:①负数没有立方根; ②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号; ④如果一个数的立方根是这个数本身,那么这个数是1或0. ⑤无限小数就是无理数; ⑥0.101001000100001 是无理数. 其中假命题有 18.有个数值转换器,原理如下:输出y是无理数取立方根输入x当输入x 为64时,输出y 的值是19、ππ-+-43= _____________。
八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)
八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028. 20. 解:因为m -15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-22+3(2-3)×(2+3)3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。
(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)
一、选择题1.下列计算正确的是( )A +=B =C 6=-D 1-= 2.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 3.一个正方形的面积为29,则它的边长应在( ) A .3到4之间 B .4到5之间 C .5到6之间 D .6到7之间 4.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或25.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=6. )A .8 B .4C D 7.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=8.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 9.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmB CD .3dm10( )A .1与2之间B .2与3之间C .3与4之间D .5与6之间 11.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9 B .3 C .1D .81 12.下列对于二次根式的计算正确的是( )A =B .2C .2=D .=二、填空题13.a b -=________.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.已知6y x =+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.16.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 17.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.已知2a =+,2b =,则227a b ++的算术平方根是_____.20.已知2x =,2y =+x 2+y 2﹣2xy 的值为_____.三、解答题21.计算:(1)(π﹣2020)0﹣.(2.22.(3++-.23.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.24.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.25.计算下列各题:(1(2)()(3)(226.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.2.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.3.C解析:C一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去. ②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.7.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确;故选:D .【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.8.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.9.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a ,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a =,解得:a =∴dm .故选:B .【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键. 10.C解析:C【分析】【详解】解:<34∴<<,故选:C .【点睛】本题考查无理数的估算,掌握几个非负整数的算术平方根的大小比较方法是解决问题的关键.11.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 12.C解析:C【分析】利用二次根式的加减和乘除运算法则进行计算即可.【详解】解:=B.=C.2=,故原题计算正确;D.10=,故原题计算错误.故选:C【点睛】此题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解答此题的关键.二、填空题13.2【分析】根据最简二次根式同类二次根式的性质计算即可得到a 和b 的值;再将a 和b 的值代入到代数式通过计算即可得到答案【详解】根据题意得:∴∵最简二次根式与是同类最简二次根式∴∴∴故答案为:2【点睛】本 解析:2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a 和b 的值代入到代数式,通过计算即可得到答案.【详解】根据题意得:12a -=∴3a =∵与∴252b b +=-∴1b =∴312a b -=-=故答案为:2.【点睛】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键.15.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:646y x x x =+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=则所求的总和为(1021)(1022)(1023)222-⨯+-⨯+-⨯++++86422018=+++⨯4054=故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.16.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键. 17.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.5【分析】根据完全平方公式和算术平方根即可求解【详解】解:因为所以=(+2)2+(-2)2+7=9+2+9-2+7=25所以a2+b2+7的算术平方根是5故答案为:5【点睛】本题考查了完全平方公式算解析:5【分析】根据完全平方公式和算术平方根即可求解.【详解】解:因为2a =,2b =,,所以227a b ++=)2+)2+7=25.所以a 2+b 2+7的算术平方根是5.故答案为:5.【点睛】本题考查了完全平方公式、算术平方根,解决本题的关键是掌握完全平方公式、算术平方根.20.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.三、解答题21.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()12212-⨯+-+=121+ =2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键. 22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;24.3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.25.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。
人教版八年级数学上册第十三章实数测试题(有答案)
《实数》 基础测试题(一)、精心选一选1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数包括正无理数、零、负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )A .1B .2C .3D .42.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 13.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数4. 下列各数中,不是无理数的是 ( ) A.7 B. 0.5 C. 2π D. 0.151151115…)个之间依次多两个115( 5.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.496. 下列说法正确的是( )A . 0.25是0.5 的一个平方根B ..正数有两个平方根,且这两个平方根之和等于0C . 7 2 的平方根是7D . 负数有一个平方根(二)、细心填一填7.在数轴上表示的点离原点的距离是 。
设面积为5的正方形的边长为x ,那么x =8. 9的算术平方根是 ;94的平方根是 ,271的立方根是 , -125的立方根是 .9. 25-的相反数是 ,32-= ; 10. =-2)4( ; =-33)6( ; 2)196(= .38-= .11. 比较大小;5.; (填“>”或“<”) 12. 要使62-x 有意义,x 应满足的条件是(三)、用心做一做13.将下列各数填入相应的集合内。
-7,0.32, 13,0,3125-,π,0.1010010001…①有理数集合{ … }②无理数集合{ … }③负实数集合{ … }14.化简①2+32—52 ② 7(71-7)③ |23- | + |23-|- |12- | ④ 41)2(823--+15.求下列各式中的x(1)12142=x (2)125)2(3=+x16.比较下列各组数的大少(1) 4 与 36317. 一个底为正方形的水池的容积是486m 3,池深1.5m ,求这个水底的底边长.18...一个正数.....a .的平方根是.....3.x .―.4.与.2.―.x .,则..a .是多少?....(四)、附参考答案(一)、精心选一选(每小题4分,共24分)1.B2.A3.D4.B5.B6.B(二)、细心填一填(每小题4分,共24分)7.3、58. 3 、 32± 、 31 、 -5 9. 52- 、 23-10. 4 、 -6 、196 、 -2;215- > 5.0; 12. 3≥x(三)、用心做一做 13.(6分)将下列各数填入相应的集合内。
(典型题)初中数学八年级数学上册第二单元《实数》检测题(答案解析)
一、选择题 1.计算82÷的结果是( )A .10B .6C .4D .22.16的平方根是( )A .4B .4±C .2±D .-2 3.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .24.下列各式中,正确的是( ) A 16B .16C 3273-=- D 2(4)4-=- 5.在数2277,01822)316112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( )A .3个B .4个C .5个D .6个6.172178a a b --=+a b - ).A .3±B .3C .5D .5± 7.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7± 8.下列说法中不正确的是( )A .0是绝对值最小的实数B ()222-=C .3是9的一个平方根D .负数没有立方根 9.在代数式13x -中,字母x 的取值范围是( ) A .x >1 B .x ≥1 C .x <1 D .x 13≤ 10.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D .2(5)-=5 11.下列各计算正确的是( ) A .382-= B .842= C .235+= D .236⨯=12.如图,在数轴上作长、宽分别为2和1的长方形,以原点为圆心,长方形对角线的长为半径画弧,与数轴相交于点A .若点A 对应的数字为a ,则下列说法正确的是( )A .a>-2.3B .a<-2.3C .a=-2.3D .无法判断二、填空题13.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.14.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.15.3x -+|2x ﹣y |=0,那么x ﹣y =_____.16.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________. 1783=______. 18.()22120x y +-=,则xy =_________.19.37-的整数部分a=_____,小数部分b=__________. 20.188=_____.三、解答题21.如果一个正方形ABCD 的面积为69.(1)求正方形ABCD 的边长a .(2)正方形ABCD 的边长满足m a n <<,m ,n 表示两个连续的正整数,求m ,n 的值.(3)M 、N 在满足(23m n -的值22.(1)计算:23)(23)123+;(2)解方程组:1327x y x y +=-⎧⎨-=⎩. 23.计算题:(1)12273⨯; (2)20105025-⨯-; (3)()()()2533531+⨯--- 24.计算:()22021(3)333-⎛⎫--+- ⎭+⎪⎝. 25.(1)计算:271223+-; (2)计算:()()6565+-. 26.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________;(2)将一个非零有理数a的圈n次方写成幂的形式为____________;(3)将(m为大于等于2的整数)写成幂的形式为_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】a=(a≥0,b>0)进行计算即可.a bb【详解】84=2,2故选:D.【点睛】此题主要考查了二次根式的除法,关键是注意结果要化成最简二次根式.2.C解析:C【分析】先计算16的算术平方根a,再计算a的平方根即可.【详解】∵164=,∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.3.B解析:B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【详解】解:连接DB,DF,在△FDB中,DF+BF>DB,由折叠的性质可知,FB=CB=4,∴当F在线段DB上时,点D到点F的距离最短,在Rt△DCB中,228BD DC BC+=,此时DF=8-4=4,故选:B.【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A164=,此项错误;B、164±=±,此项错误;C3273-=-,此项正确;D2(4)164-==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.5.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】22 7,0,2(2)2=,这些数都是有理数;,=112π-,3.2020020002…(相邻的两个2之间依次多一个0),是无理数,无理数共有5个.故选:C .【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义和各种类型.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 6.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a ≥0,∴a=17,∴b+8=0,解得b=-8, ∴5==,故选:C .【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键. 7.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键. 8.D解析:D【分析】根据实数,平方根和立方根的概念逐一判断即可.【详解】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A 正确;2,故B 正确;9的平方根是3±,故C 正确;任何数都有立方根,故D 错误;故选D .【点睛】本题考查了实数的概念,求一个数的平方根或立方根,熟练掌握平方根和立方根的概念是本题的关键.9.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x ﹣1≥0,解得x≥1,故选:B .【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;10.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.11.D解析:D【分析】分别计算即可.【详解】解:A. 382-=-,原式错误,不符合题意; B. 82=,原式错误,不符合题意; C. 235+≠,不是同类二次根式,不能合并,原式错误,不符合题意; D. 236⨯=,原式正确,符合题意; 故选:D .【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.12.A解析:A【分析】先利用勾股定理求出长方形对角线OB 的长,即为OA 的长,然后根据A 在原点的左边求出数轴上的点A 所对应的实数为5-,再根据22.3 5.295=>判断出5 2.3->-即可得答案.【详解】解:如图,连接OB ,长方形对角线的长OB 22215+=5OA OB ∴==,点A 在原点的左边,∴点A 所对应的实数为5a =又∵22.3 5.295=>,∴5 2.3,∴5 2.3>-,即 2.3a >-.故选A .【点睛】本题考查实数与数轴上的点的对应关系,勾股定理、比较无理数大小,求出5OA =题的关键.二、填空题13.﹣2a ﹣b 【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案【详解】解:由数轴可得:a <﹣0<b <故|﹣b|+|a+|+=﹣b ﹣(a+)﹣a =﹣b ﹣a ﹣﹣a =﹣2a ﹣b 故答案为:﹣2a ﹣b 【解析:﹣2a ﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a 0<b ,故﹣b |+|ab ﹣(a )﹣ab ﹣a ﹣a=﹣2a ﹣b .故答案为:﹣2a ﹣b .【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.14.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.15.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x 、y 的值,进而可求出x ﹣y 的值.【详解】解:∵+|2x ﹣y |=0,∴3020x x y -=⎧⎨-=⎩, 解得36x y =⎧⎨=⎩. 所以x ﹣y =3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.16.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+-=1 (1)2021 --=2020 2021 -.故答案为:2020 2021 -.【点睛】此题主要考查了实数运算,正确将原式变形是解题关键.17.【分析】根据二次根式的性质进行化简【详解】解:故答案为:【点睛】本题考查了二次根式的性质与化简解题的关键是掌握二次根式的性质和分母有理化解析:3【分析】根据二次根式的性质进行化简.【详解】=故答案为:3.【点睛】本题考查了二次根式的性质与化简.解题的关键是掌握二次根式的性质和分母有理化.18.-1【分析】由非负数的性质可知x=-y=2然后求得xy的值即可【详解】解:∵|+(y-2)2=0∴2x+1=0y-2=0∴x=-y=2∴xy=-×2=-1故答案为:-1【点睛】本题考查了非负数的性质解析:-1【分析】由非负数的性质可知x=-12,y=2,然后求得xy的值即可.【详解】解:∵(y-2)2=0,∴2x+1=0,y-2=0,∴x=-12,y=2.∴xy=-12×2=-1.故答案为:-1.【点睛】本题考查了非负数的性质,掌握非负数的性质是解题的关键.19.【分析】将已知式子分母有理数后先估算出的大小即可得到已知式子的整数部分与小数部分【详解】解:∵4<7<9∴2<<3即2+3<<3+3∴即实数的整数部分是则小数部分为故答案为:【点睛】本题考查了分母有解析:2 【分析】的大小即可得到已知式子的整数部分与小数部分.【详解】==, ∵4<7<9,∴2<3,即2+3<3+<3+3,∴532<<的整数部分是2a =,则小数部分为31222b =-=.故答案为:2, 【点睛】 本题考查了分母有理化,以及估算无理数的大小,熟练掌握估算无理数大小的方法是解题的关键.20.【分析】先化简二次根式再合并同类二次根式即可【详解】故答案为:【点睛】本题主要考查二次根式的化简以及同类二次根式的合并掌握二次根式的化简以及同类二次根式的合并方法是解题关键【分析】先化简二次根式,再合并同类二次根式即可.【详解】【点睛】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.三、解答题21.(1;(2)8m =,9n =;(3)-5【分析】(1)正方形ABCD 的边长a ,由正方形面积269a =.开平方即可;(2)正方形ABCD 的边长满足m a n <<,即m n <<,可得2269m n <<,可得m 2=64,n 2=81,开平方即可;(3)当8m =,9n =计算即可.【详解】解:(1)正方形ABCD 的边长269a =.0a a =>,a=;(2)正方形ABCD 的边长满足m a n <<,∴m n <<,∴2269m n <<,∴m,n 都为整数,而且是连续正整数,∴m 2=64,n 2=81,∴8m =,9n =;(3)当8m =,9n =,235--=-.【点睛】本题考查平方根,算术平方根,无理数估值,代数式求值,掌握平方根,算术平方根求法,无理数估值方法,代数式求值的方法是解题关键.22.(1)1,(2)12x y =⎧⎨=-⎩【分析】(1)按照二次根式的运算法则计算即可;(2)用加减消元法解方程组即可.【详解】解:(1)=222-+=232-+=1 (2)1327x y x y +=-⎧⎨-=⎩①② ①×2+②得,55=x ,1x =,把1x =代入①得,1+y=-1,y=-2,∴方程组的解为:12x y =⎧⎨=-⎩. 【点睛】本题考查了二次根式计算和解二元一次方程组,解题关键是熟练运用二次根式运算法则和加减消元法解方程组.23.(1)2)8+;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-+8=(3)23)(31)+--2(31)=--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.24.【分析】先计算零指数幂、负整数指数幂以及平方,再计算加减混合运算.【详解】 解:原式111999=+-+ 10=.【点睛】本题主要考查了实数的混合运算,解题的关键是熟练掌握零指数幂、负整数指数幂以及平方的性质.25.(1)5;(2)1【分析】(1)将原式化为最简二次根式,在根据二次根式的加减法则运算即可(2)按平方差公式展开,利用二次根式的性质化简,再进行计算即可【详解】(15=(2)22-=65=-1=【点睛】本题考查了二次根式的混合计算,解题关键是熟练掌握运算法则,准确计算.26.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③;111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-;(2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名: 班级: 得分:
一.选择题(每题3分,共30分) 1.
81的算术平方根是( )
A .9 B.-9 C. ±9 D. 3
2. 下列各数中,不是无理数的是 ( ) A.
7 B. 0.5 C. 2π
D. 0.151151115…
3. 下列说法正确的是( )
A. 有理数只是有限小数
B. 无理数是无限小数
C. 无限小数是无理数
D. 3
π
是分数
4. 下列说法错误的是( ) A. 1的平方根是±1 B. –1的立方根是–1
C.
2是2的算术平方根 D. –3是2
)
3(-的平方根
5. 和数轴上的点一一对应的是( )
A 整数
B 有理数
C 无理数
D 实数 6. 下列说法正确的是( )
A.064.0-的立方根是0.4
B.9-的平方根是3±
C.16的立方根是3
16
D.0.01的立方根是0.000001
7. 若
a 和a -都有意义,则a 的值是( )
A.0≥a
B.0≤a
C.0=a
D.0≠a
8. 边长为1的正方形的对角线长是( ) 整数 B. 分数 C. 有理数 D. 不是有理数
92
a a =-,则实数a 在数轴上的对应点一定在 (
)
A .原点左侧
B .原点右侧
C .原点或原点左侧
D .原点或原点右侧 10.下列说法中正确的是 ( )
A. 实数2
a -是负数 B. a a =2
C.
a -一定是正数
D. 实数a -的绝对值是a
二.填空题(每小题3分,共30分)
11. 9的算术平方根是 ;3的平方根是 ; 27
1的立方根
是 . 12.
2-1
的相反数是 , -
3
6
-的绝对值
是 ;
32-= .
13.无理数10的小数部分可以表示为 . 14.64的立方根是______;
3
64
的平方根是______. 15. 25的所有整数的和是 . 16. 若a ,b 都是无理数,且2=+b a ,则a ,b 的值可以是 .
17.有如下命题:①负数没有立方根; ②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号; ④如果一个数的立方根是这个数本身,那么这个数是1或0. ⑤无限小数就是无
理数; ⑥0.101001000100001 是无理数. 其中假命题有 18.有个数值转换器,原理如下:
当输入x 为64时,输出y 的值是
19、
ππ-+-43= _____________。
20.若 a a -=2
,则a ______0。
三.解答题:(共60分) 21. 请在数轴上用尺规作出 2- 所对应的点.(4分)
22. 求下列各式的值:(8分) ①44.1; ②3
027
.0-
;
③64
9 ; ④44.1-21.1;
23.将下列各数的序号填在相应的集合里.(8分)
3
512, π, 3.1415926, -0.456,
3.030030003…, 0, 11
5, -39, 2
)7(-, 1.0
有理数集合:{ …}; 无理数集合:{ …};
正实数集合:{ …}; 整数集合: { …}; 24. 化简(每小题2分,共4分)
① 2+32—52
②6(
6
1
-6)
25. 求下列各式中的x 的值(每小题3分,共6分)。
(1)、()2
3216x += (2)、31
(21)42
x -=-
26.(4分)若0)13(12=-++-y x x ,求2
5y x +的值。
27、(4分)若
13223+-+-=x x y ,求3x +y 的值。
28.(4分)若a 、b 、c 满足
01)5(32=-+++-c b a ,
求代数式a
c
b -的值。
29.(4分)已知0525
22=-++-x
x x y ,求7(x +y)-20
的立方根。
30.小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)(5分)
31. (6分)已知5+
11的小数部分为a ,5-11的小数部分为b ,
求:(1)a+b 的值; (2)a -b 的值.
32. 如图:A,B 两点的坐标分别是(2,3), ( 3, 0)
(1) 求⊿OAB 的面积(3分)
(2)将⊿OAB 向下平移
3个单位,画出平移后的图形,并写出所得的
三角形的三个顶点的坐标(5分)
错题更正
15、如图,在△ABC 中,AB>AC,AD 是角平分线,P 是AD 上任意一点,在AB-AC 与BP-PC 两式中,较大的一个是 。
16、ABC ∆中,点
A 的坐标为(0,1)
,点C 的坐标为(4,3),如果要使
ABD ∆与ABC ∆ 全等,那么点D 的坐标
是 .
P
D
C
B
A
第15题图
26、如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.
:
A
B
C
M
N
D。