人教版高中数学必修五 余弦定理优质教案

合集下载

高中数学余弦定理教案5篇

高中数学余弦定理教案5篇

高中数学余弦定理教案5篇作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。

高中数学余弦定理教案篇1一、教材分析《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。

本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。

其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

二、教学目标知识与技能:1、理解并掌握余弦定理和余弦定理的推论。

2、掌握余弦定理的推导、证明过程。

3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。

过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。

2、感受数学一般规律的美感,培养数学学习的兴趣。

三、教学重难点重点:余弦定理及其推论和余弦定理的运用。

难点:余弦定理的发现和推导过程以及多解情况的判断。

四、教学用具普通教学工具、多媒体工具 (以上均为命题教学的准备)高中数学余弦定理教案篇2一、教学内容分析人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。

通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

最新人教版高中数学必修5第一章“余弦定理”教案3

最新人教版高中数学必修5第一章“余弦定理”教案3

1.1.2余弦定理教学目的1.使学生掌握余弦定理及其证明方法.2.使学生初步掌握余弦定理的应用.教学重点与难点教学重点是余弦定理及其应用;教学难点是用解析法证明余弦定理.教学过程设计一、复习师:直角△ABC中有如下的边角关系(设∠C=90°):(1)角的关系A+B+C=180°.A+B=90°.(2)边的关系c2=a2+b2.二、引入师:在△ABC中,当∠C=90°时,有c2=a2+b2.若a,b边的长短不变,变换∠C的大小时,c2与a2+b2有什么关系呢?请同学们思考.如图1,若∠C<90°时,由于AC与BC的长度不变,所以AB的长度变短,即c2<a2+b2.如图2,若∠C>90°时,由于AC与BC的长度不变,所以AB的长度变长,即c2>a2+b2.经过议论学生已得到当∠C≠90°时,c2≠a2+b2,那么c2与a2+b2到底相差多少呢?请同学们继续思考.如图3,当∠C为锐角时,作BD⊥AC于D,BD把△ABC分成两个直角三角形:在Rt△ABD中,AB2=AD2+BD2;在Rt△BDC中,BD=BC·sinC=asinC,DC=BC·cosC=acosC.所以,AB2=AD2+BD2化为c2=(b-acosC)2+(asinC)2,c2=b2-2abcosC+a2cos2C+a2sin2C,c2=a2+b2-2abcosC.我们可以看出∠C为锐角时,△ABC的三边a,b,c具有c2=a2+b2-2abcosC 的关系.从以上分析过程,我们对∠C是锐角的情况有了清楚认识.我们不仅要认识到,∠C为锐角时有c2=a2+b2-2abcosC,还要体会出怎样把一个斜三角形转化成两个直角三角形的.这种未知向已知的转化在数学中经常碰到.下面请同学们自己动手推导结论.如图4,当∠C为钝角时,作BD⊥AC,交AC的延长线于D.△ACB是两个直角三角形之差.在Rt△ABD中,AB2=AD2+BD2.在Rt△BCD中,∠BCD=π-C.BD=BC·sin(π-C),CD=BC· cos(π-C).所以AB2=AD2+BD2化为c2=(AC+CD)2+BD2=[b+acos(π-C)]2+[asin(π-C)]2=b2+2abcos(π-C)+a2cos2(π-C)+a2sin2(π-C)=b2+2abcos(π-C)+a2.因为cos(π-C)=-cosC,所以c2=b2+a2-2abcosC.这里∠C为钝角,cosC为负值,-2abcosC为正值,所以b2+a2-2abcosC >a2+b2,即c2>a2+b2.从以上我们可以看出,无论∠C是锐角还是钝角,△ABC的三边都满足c2=a2+b2-2abcosC.这就是余弦定理.我们轮换∠A,∠B,∠C的位置可以得到a2=b2+c2-2bccosA.b2=c2+a2-2accosB.三、证明余弦定理师:在引入过程中,我们不仅找到了斜三角形的边角关系,而且还给出了证明,这个证明是依据分类讨论的方法,把斜三角形化归为两个直角三角形的和或差,再利用勾股定理和锐角三角函数证明的.这是证明余弦定理的一个好方法,但比较麻烦.现在我们已学完了三角函数,无论∠α是锐角、直角或钝角,我们都有统一的定义,借用三角函数和两定点间的距离来证明余弦定理,我们就可避开分类讨论.我们仍就以∠C为主进行证明.如图5,我们把顶点C置于原点,CA落在x轴的正半轴上,由于△ABC 的AC=b,CB=a,AB=c,则A,B,C点的坐标分别为A(b,0),B(acosC,asinC),C(0,0).请同学们分析B点坐标是怎样得来的.生:∠ACB=∠C,CB为∠ACB的终边,B为CB上一点,设B的坐标为(x,师:回答很准确,A,B两点间的距离如何求?生:|AB|2=(acosC-b)2+(asinC-0)2=a2cos2C-2abcosC+b2+a2sin2C=a2+b2-2abcosC,即c2=a2+b2-2abcosC.师:大家请看,我们这里也导出了余弦定理,这个证明方法是解析法.这种方法以后还要详细学习.余弦定理用语言可以这样叙述,三角形一边的平方等于另两边的平方和再减去这两边与夹角余弦的乘积的2倍.即:a2=b2+c2-2bccosA.c2=a2+b2-2abcosC.b2=a2+c2-2accosB.若用三边表示角,余弦定理可以写为四、余弦定理的作用(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.解由余弦定理可知Bc2=Ab2+Ac2-2AB×AC·cosA所以BC=7.以上两个小例子简单说明了余弦定理的作用.五、余弦定理与勾股定理的关系、余弦定理与锐角三角函数的关系在△ABC中,c2=a2+b2-2abcosC.若∠C=90°,则cosC=0,于是c2=a2+b2-2ab·0=a2+b2.说明勾股定理是余弦定理的特例,余弦定理是勾股定理的推广.这与Rt△ABC中,∠C=90°的锐角三角函数一致,即直角三角形中的锐角三角函数是余弦定理的特例.六、应用举例例1在△ABC中,求证c=bcosA+acosB.师:请同学们先做几分钟.生甲:如图6,作CD⊥AB于D.在Rt△ACD中,AD=b·cosA;在Rt△CBD中,D B=a·cosB.而c=AD+DB,所以c=bcosA+acosB.师:这位学生的证法是否完备,请大家讨论.生乙:他的证法有问题,因为作CD⊥AB时垂足D不一定落在AB上.若落在AB的延长线上时,c≠AD+DB,而c=AD-DB.师:学生乙的问题提得好,我们如果把学生乙所说的情况补充上是否就完备了呢?生丙:还不够.因为作CD⊥AB时,垂足D还可以落在B处.师:其实垂足D有五种落法,如落在AB上;AB的延长线上;BA的延长线上;A点或B点处.我们要分这么多种情况证明未免有些太麻烦了.请大家借用余弦定理证明.生:因为 acosB+bcosA所以 c=acosB+bcosA.师:这种证法显然简单,它避开了分类讨论.你们知道为什么这种证法不用分类讨论吗?生:因为余弦定理本身适用于各种三角形.例2三角形ABC中,AB=2,AC=3,BC=4,求△AB C的面积.师:我们通常求三角形的面积要用公式这个题目,我们应该如何下手呢?生:可以用余弦定理由三边求出一个内角的余弦值,再用同角公式导出这个角的正弦后,最后代入三角形面积公式.解因为a=4,b=3,c=2,所以由sin2A+cos2A=1,且A为△ABC内角,得例3在三角形ABC中,若CB=7,AC=8,AB=9,求AB边的中线长.请同学们先设计解题方案.生甲:我想在△ABC中,已知三边的长可求出cosB.在△BCD中,由BC=7,BD=4.5及cosB的值,再用一次余弦定理便可求出CD.师:这个方案很好.请同学很快计算出结果.解设D为AB中点,连CD.在△ACB中,由AC=8,BC=7,AB=9,得生乙:我们在初中碰到中线时,经常延长中线,所以我想延长中线CD 到E,使DE=CD,想在△BCE中解决.已知BC=7,BE=AC=8,若再知道cos∠CBE,便可解决,但我不知怎样求cos∠CBE.师:这个问题提得很有价值,请大家一起帮助学生乙解决这个难点.(学生开始议论.)生丙:连接AE,由于AD=DB,CD=DE,所以四边形ACBE为平行四边形,可得AC∥BE,∠CBE与∠ACB互补.我能利用余弦定理求出cos∠BCA,再利用互补关系解出cos∠CBE.师:大家看看他讲得好不好.请大家用第二套方案解题.解延长CD至E,使DE=CD.因为CD=DE,AD=DB,所以四边形ACBE是平行四边形.所以BE=AC=8,∠ACB+∠CBE=180°.在△ACB中,CB=7,AC=8,AB=9,由余弦定理可得在△CBE中,这两种解法都是两次用到余弦定理,可见掌握余弦定理是十分必要的.七、总结本节课我们研究了三角形的一种边角关系,即余弦定理,它的证明我们可以用解析法.它的形式有两种,一种是用两边及夹角的余弦表示第三边,另一种是三边表示角.余弦定理适用于各种三角形,当一个三角形的一个内角为90°时,余弦定理就自然化为勾股定理或锐角三角函数.余弦定理的作用如同它的两种形式,一是已知两边及夹角解决第三边问题;另一个是已知三边解决三内角问题.注意在(0,π)范围内余弦值和角的一一对应性.若cos A>0,则A为锐角;若cosA=0,则A为直角;若cosA <0,则A为钝角.另外本节课我们所涉及的内容有两处用到分类讨论的思想方法.请大家解决问题时要考虑全面.如果能回避分类讨论的,应尽可能回避,如用解析法证明余弦定理、用余弦定理证明例1等等.八、作业5.已知△ABC中,acosB=bcos A,请判断三角形的形状.课堂教学设计说明1.余弦定理是解三角形的重要依据,要给予足够重视.本内容安排两节课适宜.第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用.2.当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性.。

高中数学必修5《正弦定理和余弦定理》教案

高中数学必修5《正弦定理和余弦定理》教案

高中数学必修5《正弦定理和余弦定理》教案高中数学必修5《正弦定理和余弦定理》教案【一】教学准备教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1. 写出正弦定理、余弦定理及推论等公式.2. 讨论各公式所求解的三角形类型.二、讲授新课:1. 教学三角形的解的讨论:① 出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→ 讨论:解的个数情况为何会发生变化?②用如下图示分析解的情况. (A为锐角时)② 练习:在△ABC中,已知下列条件,判断三角形的解的情况.2. 教学正弦定理与余弦定理的活用:① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦.分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角.② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断③ 出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3. 作业:教材P11 B组1、2题.高中数学必修5《正弦定理和余弦定理》教案【二】一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。

4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。

5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。

6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。

7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。

三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。

2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。

3、培养学生的观察能力和概括能力。

三、教学重难点重点:发现并掌握加法交换律、结合律。

难点:由具体上升到抽象,概括出加法交换律和加法结合律。

四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。

师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。

师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。

(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。

高中数学必修五《余弦定理》教学设计

高中数学必修五《余弦定理》教学设计

《余弦定理》教学设计一.教学目标知识目标:能推导余弦定理及其推论,能运用余弦定理解已知“边,角,边”和“边,边,边”两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,让学生感受数学的美,激发学生学习数学的兴趣。

通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。

二.教学重点和难点重点:余弦定理的证明过程和定理的简单应用。

难点:利用向量的数量积证余弦定理的思路。

三.教学过程(一)知识回顾1.正弦定理:R cc B b A a 2sin sin sin === 2.运用正弦定理能解决的两类解三角形问题:(1)已知三角形任意两角和一边解三角形(2)已知三角形两边和其中一边的对角解三角形(二)提出问题已知三角形两边长和夹角求第三边的问题,即:在ABC ∆中已知AC=b ,AB=c 和A ,求a 。

(三)解决问题1.定理推导在ABC ∆中,设a BC b AC c AB ===,,,那么c b a -=,则c b a a -==,问题转化为 已知:c c b b == ,和b 与c 的夹角A 且c b a -= 求a . A BA bc c b c b b b a a c b c b a a a cos 22)()(222-+=⋅-⋅+⋅=-⋅-=⋅=即:A bc c b a cos 2222-+=2.自主探究(1)、在ABC ∆中已知:C ,和b a 求c 。

(2)、在ABC ∆中已知:b B ,求和c a 。

3.归纳总结(1)余弦定理在ABC ∆中有:Cab b a c B ac c a b Abc c b a cos 2cos 2cos 2222222222-+=-+=-+=(2)定理描述三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

高中数学必修5第一章《余弦定理》教案

高中数学必修5第一章《余弦定理》教案

课题: §1.1.2余弦定理(第1课时)授课教师:惠来第二中学陈金利教材:人教A版必修5第一章第一节一、教学目标1.知识与技能(1)能选用适当的方法证明余弦定理(主要是向量法);(2)能从余弦定理得到它的推论;(3)能利用余弦定理及推论解三角形(两类).2.过程与方法(1)经历利用向量的方法证明余弦定理的过程,体会向量与三角之间的关系;(2)培养学生在方程思想指导下处理解三角形问题的运算能力.3.情感态度与价值观(1)通过余弦定理与勾股定理的对比,体会特殊与一般的关系.(2)通过三角函数、余弦定理、向量的数量积等知识间的关系,理解事物之间的普遍联系与辩证统一.二、教学重点、难点重点:余弦定理及推论证明和其基本应用;难点:余弦定理证明的方法的选用以及必要性的体会.三、教学方法和手段教学方法:启发式教学(讲练相结合)教学手段:运用多媒体进行教学四、教学过程1.情景设置:隧道工程设计,经常要测算山脚的长度,工程技术人员先在地面上选一适当的位置A,量出A到山脚B、C的距离,再利用经纬仪测出A对山脚BC(即线段BC)的张角,最后通过计算求出山脚的长度BC.2.讲授新课[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因∠C 、∠B 均未知,所以较难求边a .提问:我们可以从哪些角度来研究这个问题,得到一个关系式或计算公式?(老师引导学生从向量法及三角法得出关系式)引导学生用向量方法来研究这个问题,由于涉及边长问题,从而可以考虑用向量来研究这个问题.如图1.1-3,设=,=,=,那么-=,则)()(b a b a c c -⋅-=⋅= ⋅-⋅+⋅=2C ab b a cos 222-+=从而 C ab b a c cos 2222-+= (图1.1-3)同理可证 A bc c b acos 2222-+= B ac c a b cos 2222-+= 于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即A bc c b acos 2222-+= B ac c a bcos 2222-+= C ab b a c cos 2222-+= 引导学生解决情景问题:若测得:AB =1千米,AC = 千米,∠060=A ,求山脚BC 的长度 .解: 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:23A AC AB AC AB BC cos |||2||||222⋅⋅-+=47212312)23(122=⨯⨯⨯-+=27=∴BC222cos 2+-=b c a A bc222cos 2+-=a c b B ac 222cos 2+-=b a c C ba[理解定理] 从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若ABC ∆中,090=c ,则0cos =c ,这时222b a c +=由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.[例题分析]例1.在△ABC 中,已知 ,求角A 、B 、C.例2.在△ABC 中,已知 ,求b 及A.例3.在△ABC 中, ,那么A 是( )A 、钝角B 、直角C 、锐角D 、不能确定提出问题:若222c b a +<呢?由学生回答,老师再进行总结.总结:设a 是最长的边,则 △ ABC 是钝角三角形 △ABC 是锐角三角形 △ABC 是直角角三角形例4.在三角形ABC 中,已知1413cos ,8,7===c b a ,求最大角的余弦值. [课堂练习](1)在ABC ∆中,已知4:3:2sin :sin :sin=C B A求 C cos 的值.13,2,6+===c b a OB c a 45,26,32=+==222cb a +>222c b a +>⇔222c b a +<⇔222c b a +=⇔(2)已知13,34,7===c b a ,求最小的内角.(3)在ABC ∆中,若bc c b a++=222,求角A3.课堂小结: (1)余弦定理适用于任何三角形(2)余弦定理的作用:a 、已知三边,求三个角b 、已知两边及这两边的夹角,求第三边,进而可求出其它两个角c 、判断三角形的形状(3)由余弦定理可知:4.课后作业(1)课后阅读:课本第8页[探究与发现](2)课时作业:第10页[习题1.1]A 组第3(1),4(1)题。

(完整版)《余弦定理》教案完美版

(完整版)《余弦定理》教案完美版

《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。

从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

数学必修五余弦定理教案(可编辑

数学必修五余弦定理教案(可编辑

数学必修五余弦定理教案(可编辑教案:数学必修五,余弦定理一、教学目标:1.理解余弦定理的概念及原理;2.学会运用余弦定理解决三角形中的实际问题;3.培养学生的逻辑思维和推理能力。

二、教学重点:1.理解余弦定理的概念及原理;2.运用余弦定理解决三角形中的实际问题。

三、教学难点:1.运用余弦定理解决具体问题。

四、教学过程:Step 1 引入与导入(5分钟)1.利用平面上两点间距离公式引入余弦定理;2.通过几个具体实例让学生感触余弦定理的作用。

Step 2 定理说明与证明(10分钟)1.介绍余弦定理的概念和原理;2.利用几何图示证明余弦定理。

Step 3 理解与运用(20分钟)1.引导学生理解余弦定理;2.利用余弦定理计算未知角度的大小;3.利用余弦定理计算未知边长的长度。

Step 4 实际问题的应用(25分钟)1.给出一些实际生活中的问题,如解决航海、测距等问题;2.分组讨论,利用余弦定理解决问题;3.学生进行展示,互相评价讨论,找出最佳解决方案。

Step 5 拓展与应用(15分钟)1.将余弦定理与三角函数的其他定理进行对比;2.引导学生思考余弦定理在其他数学领域的应用。

五、教学辅助手段及教学资源1.平面图示,辅助教学;2.三角量角器,用于演示与实践;3.教学PPT,展示定理证明与解题方法;4.实际问题的示例。

六、教学评估及反馈1.课堂练习,检测学生对概念和原理的理解程度;2.实际问题的解答,评价学生的应用能力;3.学生互相评价讨论,提供解决方案改进的建议。

七、教学延伸1.学生通过解决实际问题,培养分析和解决问题的能力;2.鼓励学生进一步探索余弦定理在其他数学领域的应用。

八、教学反思通过本节课的教学,学生对余弦定理有了更深入的理解,尤其是在解决实际问题的过程中,学生能够灵活运用余弦定理解决问题。

同时,在教学中引入实例和思考问题的环节,激发了学生的学习兴趣和思辨能力,培养了他们的创新思维和问题解决能力。

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。

本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。

(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。

教学难点是:灵活运用余弦定理解决相关的实际问题。

教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。

下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案一、教学目标1. 理解余弦定理的概念和意义,掌握余弦定理的表达式。

2. 能够运用余弦定理解决三角形中的边角关系问题。

3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学内容1. 余弦定理的定义和表达式2. 余弦定理的应用3. 余弦定理在三角形中的证明三、教学重点与难点1. 重点:余弦定理的概念和意义,余弦定理的表达式。

2. 难点:运用余弦定理解决实际问题,余弦定理在三角形中的证明。

四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论来理解和掌握余弦定理。

2. 通过举例和练习题,培养学生的实际应用能力。

3. 利用几何图形和动画演示,帮助学生直观地理解余弦定理。

五、教学过程1. 导入:通过一个实际问题,引导学生思考三角形中的边角关系。

2. 讲解:介绍余弦定理的定义和表达式,解释余弦定理的意义。

3. 演示:利用几何图形和动画演示余弦定理的应用和证明过程。

4. 练习:给出一些练习题,让学生运用余弦定理解决问题。

5. 总结:回顾本节课的内容,强调余弦定理的重要性和应用范围。

教案示例:一、教学目标1. 理解余弦定理的概念和意义,掌握余弦定理的表达式。

2. 能够运用余弦定理解决三角形中的边角关系问题。

3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学内容1. 余弦定理的定义和表达式2. 余弦定理的应用3. 余弦定理在三角形中的证明三、教学重点与难点1. 重点:余弦定理的概念和意义,余弦定理的表达式。

2. 难点:运用余弦定理解决实际问题,余弦定理在三角形中的证明。

四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论来理解和掌握余弦定理。

2. 通过举例和练习题,培养学生的实际应用能力。

3. 利用几何图形和动画演示,帮助学生直观地理解余弦定理。

五、教学过程1. 导入:通过一个实际问题,引导学生思考三角形中的边角关系。

问题:在三角形ABC中,已知边长AB=5,边长BC=8,角C=45°,求边长AC 的长度。

余弦定理优秀教学设计【优秀7篇】

余弦定理优秀教学设计【优秀7篇】

余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。

下面我分别从教材分析。

教学目标的确定。

教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

一、教材分析在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

二、教学目标的确定1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。

四、教学过程的设计为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。

具体过程如下:1、创设情境,引入课题利用多媒体引出如下问题:A地和B地之间隔着一个水塘现选择一地点C,可以测得的大小及,求A、B两地之间的距离c。

【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。

最新人教版高中数学必修5第一章《余弦定理》教案

最新人教版高中数学必修5第一章《余弦定理》教案

《余弦定理》教案教学目标1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题.3.培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学重点难点1.重点:余弦定理的发现和证明过程及其基本应用;2.难点:勾股定理在余弦定理的发现和证明过程中的作用.教法与学法1.教法选择:“情境--问题”教学模式——“设置情境--提出问题--解决问题--反思应用”;2.学法指导:“自主——合作——探究”的学习方式,让学生自主探索学会分析问题和解决问题.教学过程一、设置情境,激发学生探索的兴趣c a b =-)()2222222cos :c a b a b ab cABC c a b ⋅-=+-=+- 即:△中三、思维拓展,课堂交流5,bc =四、归纳小结,课堂延展1.教材地位分析“余弦定理”是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用.2.学生现实分析本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识.在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣.总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点.3.教学价值分析在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题.本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构.。

余弦定理教案

余弦定理教案

§1.1.2 余弦定理一、教学内容分析《余弦定理》选自人教版《普通高中课程标准实验教科书•必修(五)》(第2版)第一章《解三角形》第一单元第二课。

通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

二、学生学情分析本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。

在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。

总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

三、教学目标(一)知识与技能: 1.理解并掌握余弦定理和余弦定理的推论。

2.掌握余弦定理的推导、证明过程。

(二)过程与方法:1.能运用余弦定理及其推论解决“两边一夹角”“三边”问题。

2.通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

(三)情感态度与价值观:在方程思想指导下,提升处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

四、教学重难点(一)教学重点:余弦定理的发现过程及定理的应用。

(二)教学难点:用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。

五、教学过程(一)温故引新特例激疑1.正弦定理的内容是什么?在一个三角形中,各边和它所对角的正弦之比相等,即:asinA =bsinB=csinC.2.应用正弦定理可以解决所有的解三角形问题吗?如图,在△ABC中,已知AB=c,AC=b,∠CAB=A,求BC即a。

高中数学必修5第一章《余弦定理》教案

高中数学必修5第一章《余弦定理》教案

课题: §1.1.2余弦定理(第1课时)授课教师:惠来第二中学陈金利教材:人教A版必修5第一章第一节一、教学目标1.知识与技能(1)能选用适当的方法证明余弦定理(主要是向量法);(2)能从余弦定理得到它的推论;(3)能利用余弦定理及推论解三角形(两类).2.过程与方法(1)经历利用向量的方法证明余弦定理的过程,体会向量与三角之间的关系;(2)培养学生在方程思想指导下处理解三角形问题的运算能力.3.情感态度与价值观(1)通过余弦定理与勾股定理的对比,体会特殊与一般的关系.(2)通过三角函数、余弦定理、向量的数量积等知识间的关系,理解事物之间的普遍联系与辩证统一.二、教学重点、难点重点:余弦定理及推论证明和其基本应用;难点:余弦定理证明的方法的选用以及必要性的体会.三、教学方法和手段教学方法:启发式教学(讲练相结合)教学手段:运用多媒体进行教学四、教学过程1.情景设置:隧道工程设计,经常要测算山脚的长度,工程技术人员先在地面上选一适当的位置A,量出A到山脚B、C的距离,再利用经纬仪测出A对山脚BC(即线段BC)的张角,最后通过计算求出山脚的长度BC.2.讲授新课[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因∠C 、∠B 均未知,所以较难求边a .提问:我们可以从哪些角度来研究这个问题,得到一个关系式或计算公式?(老师引导学生从向量法及三角法得出关系式)引导学生用向量方法来研究这个问题,由于涉及边长问题,从而可以考虑用向量来研究这个问题.如图1.1-3,设=,=,=,那么-=,则)()(-⋅-=⋅= ⋅-⋅+⋅=2 C ab b a cos 222-+=从而 C ab b a c cos 2222-+= (图1.1-3)同理可证 A bc c b acos 2222-+= B ac c a b cos 2222-+= 于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即A bc c b acos 2222-+= B ac c a bcos 2222-+= C ab b a c cos 2222-+= 引导学生解决情景问题:若测得:AB =1千米,AC = 千米,∠060=A ,求山脚BC 的长度 .解: 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:23A AC AB AC AB BC cos |||2||||222⋅⋅-+=47212312)23(122=⨯⨯⨯-+=27=∴BC222cos 2+-=b c a A bc222cos 2+-=a c b B ac 222cos 2+-=b a c C ba[理解定理] 从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若ABC ∆中,090=c ,则0cos =c ,这时222b a c +=由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.[例题分析]例1.在△ABC 中,已知,求角A 、B 、C.例2.在△ABC 中,已知 ,求b 及A.例3.在△ABC 中, ,那么A 是( )A 、钝角B 、直角C 、锐角D 、不能确定提出问题:若222c b a +<呢?由学生回答,老师再进行总结.总结:设a 是最长的边,则 △ ABC 是钝角三角形 △ABC 是锐角三角形 △ABC 是直角角三角形例4.在三角形ABC 中,已知1413cos ,8,7===c b a ,求最大角的余弦值. [课堂练习](1)在ABC ∆中,已知4:3:2sin :sin :sin =CB A求 C cos 的值.13,2,6+===c b a O B c a 45,26,32=+==222cb a +>222c b a +>⇔222c b a +<⇔222c b a +=⇔(2)已知13,34,7===c b a ,求最小的内角.(3)在ABC ∆中,若bc c b a++=222,求角A3.课堂小结: (1)余弦定理适用于任何三角形(2)余弦定理的作用:a 、已知三边,求三个角b 、已知两边及这两边的夹角,求第三边,进而可求出其它两个角c 、判断三角形的形状(3)由余弦定理可知:4.课后作业(1)课后阅读:课本第8页[探究与发现](2)课时作业:第10页[习题1.1]A 组第3(1),4(1)题。

高中数学必修五《余弦定理》优秀教学设计

高中数学必修五《余弦定理》优秀教学设计
2、媒体的使用方式:
A.设疑—播放—讲解B.设疑—播放—讨论C.讲解—播放—概括D.讲解—播放—举例E.播放—提问—讲解F.播放—讨论—总结G.边播放、边讲解H.边播放、边议论I.学习者自己操作媒体进行学习J.自定义。
3、媒体的来源包括:
A.自制B.购入C.库存D.取自××资源库存E.网上下载F.其他
教学过程的设计
教学环节
教师活动
学生活动
设计意图
归纳概括
余弦定理:
三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍。
说出余弦定理内容,记忆余弦定理
知识归纳比较,发现特征,加强识记
结构分析
观察余弦定理,指明了三边长与其中一角的具体关系,并发现a与A,b与B,C与c之间的对应表述,同时发现三边长的平方在余弦定理中同时出现
F
G
3
A
例题典析
例题及解题过程;幻灯片
G,H,
B,G
10
A
训练巩固
练习题;幻灯片
H
E
10
A
归纳总结
余弦定理内容,余弦定理推论内容;幻灯片
J
G
5
A
说明:教学作用、使用方式和媒体来源只需在下面查找对应的内容,填写字母即可。
1、媒体在教学中的作用:
A.提供事实,建立经验B.创设情境,引发动机C.举例验证,建立概念D.提供示范,正确操作E.呈现过程,形成表象F.演绎原理,启发思维G.设难置疑,引起思辨H.展示事例,开阔视野I.欣赏审美,陶冶情操J.归纳总结,复习巩固K.自定义。
例2:在△ABC中,已知a=134.6cm,b=87.8cm,c=161.7cm,解三角形(角度精确到1′)
思考分析,解题

人教A版高中数学必修五优秀教案示范教案余弦定理

人教A版高中数学必修五优秀教案示范教案余弦定理

1.1.2余弦定理从容说课课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的.启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系.教学重点余弦定理的发现和证明过程及其基本应用.教学难点1.向量知识在证明余弦定理时的应用,与向量知识的联系过程;2.余弦定理在解三角形时的应用思路;3.勾股定理在余弦定理的发现和证明过程中的作用.教具准备投影仪、幻灯片两张第一张:课题引入图片(记作1.1.2A)如图(1),在Rt△ABC中,有A2+B2=C2问题:在图(2)、(3)中,能否用b、c、A求解a?第二张:余弦定理(记作1.1.2B)余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.形式一: a2=b2+c2-2bcco s A,b2=c2+a2-2caco s B,c2=a2+b2-2abco s C,形式二:co s A=bc ac b22 22-+,co s B=ca ba c22 22-+,co s C=ab cb a22 22-+.三维目标一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法;2.会利用余弦定理解决两类基本的解三角形问题;3.能利用计算器进行运算.二、过程与方法1.利用向量的数量积推出余弦定理及其推论;2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学过程导入新课师上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题.在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A.师由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在Rt△ADC内求解.解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得A2=CD2+BD2.∵在Rt△ADC中,CD2=B2-AD2,又∵BD2=(C-AD)2=C2-2C·AD+AD2,∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD.又∵在Rt△ADC中,AD=B·CO s A,∴a2=b2+c2-2ab c os A.类似地可以证明b2=c2+a2-2caco s B.c2=a2+b2-2ab c os C.另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2=c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B)推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.在幻灯片1.1.2B中我们可以看到它的两种表示形式:形式一:a2=b2+c2-2bcco s A,b2=c+a2-2caco s B,c2=a2+b2-2abco s C.形式二:bcacbA2cos222-+=,cabacB2cos222-+=,abcbaC2cos222-+=.师在余弦定理中,令C =90°时,这时co s C=0,所以c2=a2+b2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用.[合作探究]2.向量法证明余弦定理(1)证明思路分析师联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边C.由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢?生向量数量积的定义式a·b=|a||b|co sθ,其中θ为A、B的夹角.师在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C,则构造CACB•这一数量积以使出现CO s C.同样在证明过程中应注意两向量夹角是以同起点为前提.(2)向量法证明余弦定理过程:如图,在△ABC中,设AB、BC、CA的长分别是c、a、b.由向量加法的三角形法则,可得BCABAC+=,∴,cos2)180cos(22)()(222222aBaccBCBBCABABBCBCABABBCABBCABACAC+-=+-︒+=+•+=+•+=•即B2=C2+A2-2AC CO s B.由向量减法的三角形法则,可得AB AC BC -=,∴222222cos 2cos 22)()(c A bc b AB A AB AC AC AB AB AC AC AB AC AB AC BC BC +-=+•-=+•-=-•-=•即a 2=b 2+c 2-2bcco s A . 由向量加法的三角形法则,可得BC AC CB AC AB -=+=,∴,cos 2cos 22)()(222222a C bab BC C BC AC AC BC BC AC AC BC AC BC AC AB AB +-=+•-=+•-=-•-=•即c 2=a 2+b 2-2abco s C . [方法引导](1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则. (2)在证明过程中应强调学生注意的是两向量夹角的确定,AC与AB 属于同起点向量,则夹角为A ;AB 与BC 是首尾相接,则夹角为角B 的补角180°-B ;AC 与BC 是同终点,则夹角仍是角C . [合作探究]师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:bac a b C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=.师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? 生(学生思考片刻后会总结出)若△ABC 中,C =90°,则co s C =0,这时c 2=a 2+b 2.由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变成可定量计算的公式了.师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片1.1.2B )通过幻灯片中余弦定理的两种表示形式我们可以得到,利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角.这类问题由于三边确定,故三角也确定,解唯一,课本P 8例4属这类情况. (2)已知两边和它们的夹角,求第三边和其他两个角.这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题.接下来,我们通过例题来进一步体会一下. [例题剖析]【例1】在△ABC 中,已知B =60 c m ,C =34 c m ,A =41°,解三角形(角度精确到1°,边长精确到1 c m ).解:根据余弦定理,a 2=b 2+c 2-2bcco s A =602+342-2·60·34co s41°≈3 600+1 156-4 080×0.754 7≈1 676.82,所以A ≈41 c m.由正弦定理得sin C =4141sin 34sin ︒⨯=a A c ≈41656.034⨯≈0.544 0, 因为C 不是三角形中最大的边,所以C 是锐角.利用计数器可得C ≈33°,B =180°-A -C =180°-41°-33°=106°.【例2】在△ABC 中,已知a =134.6 c m ,b =87.8 c m ,c =161.7 c m ,解三角形. 解:由余弦定理的推论,得co s A =7.1618.8726.1347.1618.872222222⨯⨯-+=-+bc a c b ≈0.554 3,A ≈56°20′;co s B =7.1616.13428.877.1616.1342222222⨯⨯-+=-+ca b a c ≈0.839 8,B ≈32°53′;C =180°-(A +B )=180°-(56°20′+32°53′)=90°47′.[知识拓展] 补充例题:【例1】在△ABC 中,已知a =7,b =10,c =6,求A 、B 和C .(精确到1°)分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二.解:∵725.0610276102cos 222222=⨯⨯-+=-+=bc a c b A , ∴A ≈44°.∵c os C =140113107261072222222=⨯⨯-+=-+ab c b a ≈0.807 1,∴C ≈36°.∴B =180°-(A +C )=180°-(44°+36°)=100°. [教师精讲](1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出.(2)对于较复杂运算,可以利用计算器运算.【例2】在△ABC 中,已知a =2.730,b =3.696,c =82°28′,解这个三角形(边长保留四个有效数字,角度精确到1′).分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在第三边求出后其余角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角利用正弦定理求解,但根据1.1.1斜三角形求解经验,若用正弦定理需对两种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好. 解:由c 2=a 2+b 2-2abco s C =2.7302+3.6962-2×2.730×3.696×co s82°28′, 得c ≈4.297.∵c os A =297.4696.32730.2297.4696.32222222⨯⨯-+=-+bc a c b ≈0.776 7,∴A ≈39°2′.∴B =180°-(A +C )=180°-(39°2′+82°28′)=58°30′. [教师精讲]通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦. 【例3】在△ABC 中,已知A =8,B =7,B =60°,求C 及S △ABC .分析:根据已知条件可以先由正弦定理求出角A ,再结合三角形内角和定理求出角C ,再利用正弦定理求出边C ,而三角形面积由公式S △ABC =21ac sin B 可以求出. 若用余弦定理求C ,表面上缺少C ,但可利用余弦定理b 2=c 2+a 2-2caco s B 建立关于C 的方程,亦能达到求C 的目的. 下面给出两种解法. 解法一:由正弦定理得︒=60sin 7sin 8A , ∴A 1=81.8°,A 2=98.2°, ∴C 1=38.2°,C 2=21.8°.由Ccsin 60sin 7=︒,得c 1=3,c 2=5, ∴S △ABC =36sin 211=B ac 或S △ABC =310sin 212=B ac .解法二:由余弦定理得b 2=c +a 2-2caco s B ,∴72=c +82-2×8×cco s60°, 整理得c 2-8c +15=0, 解之,得c 1=3,c 2=5.∴S △ABC =36sin 211=B ac 或S △ABC = 310sin 212=B ac . [教师精讲]在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意.综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边、一角解三角形可用余弦定理解之. 课堂练习1.在△ABC 中:(1)已知c =8,b =3,b =60°,求A ; (2)已知a =20,b B =29,c =21,求B ; (3)已知a =33,c =2,b =150°,求B ;(4)已知a =2,b =2,c =3+1,求A .解: (1)由a 2=b 2+c 2-2bcco s A ,得a 2=82+32-2×8×3co s60°=49.∴A =7.(2)由ca b a c B 2cos 222-+=,得021202292120cos 222=⨯⨯-+=B .∴B =90°.(3)由b 2=c 2+a 2-2caco s B ,得b 2=(33)2+22-2×33×2co s150°=49.∴b =7.(4)由bc a c b A 2cos 222-+=,得22)13(222)13()2(cos 222=+-++=A .∴A =45°. 评述:此练习目的在于让学生熟悉余弦定理的基本形式,要求学生注意运算的准确性及解题效率.2.根据下列条件解三角形(角度精确到1°). (1)a =31,b =42,c =27; (2)a =9,b =10,c =15.解:(1)由bc a c b A 2cos 222-+=,得27422312742cos 222⨯⨯-+=A ≈0.675 5,∴A ≈48°.由273124227312cos 222222⨯⨯-+=-+=ca b a c B ≈-0.044 2,∴B ≈93°.∴C =180°-(A +B )=180°-(48°+93°)≈39°.(2)由,2222bc a c b -+得1510291510cos 222⨯⨯-+=A ≈0.813 3,∴A ≈36°.由1592109152cos 222222⨯⨯-+=-+=ca b a c B ≈0.763 0,∴B ≈40°.∴C =180°-(A +B )=180°-(36°+40°)≈104°.评述:此练习的目的除了让学生进一步熟悉余弦定理之外,还要求学生能够利用计算器进行较复杂的运算.同时,增强解斜三角形的能力. 课堂小结通过本节学习,我们一起研究了余弦定理的证明方法,同时又进一步了解了向量的工具性作用,并且明确了利用余弦定理所能解决的两类有关三角形问题:(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①已知三边求三角;②已知两边、一角解三角形. 布置作业课本第8页练习第1(1)、2(1)题.板书设计 余弦定理1.余弦定理2.证明方法:3.余弦定理所能解决的两类问题:(1)平面几何法; (1)已知三边求任意角;(2)向量法(2)已知两边、一角解三角形4.学生练习。

人教高中数学必修五余弦定理教案

人教高中数学必修五余弦定理教案

人教高中数学必修五余弦定理教案一、传授内容:余弦定理。

二、传授目标:1、知识与技术:掌握余弦定理的两种表示形式及证明余弦定理的向量要领,并会运用余弦定理办理两类基本的解三角形标题。

培育数学语言的表达能力以及转化能力。

2、历程与要领:议决设疑、探究、讨论的历程中,在老师的引导下,办理利用余弦定理求解三角形的历程与要领。

培育利用知识办理生活标题的能力、总结概括能力。

3、情绪与态度:在学习历程中,表现“方程的思想”以及“数形连合”的思想,感受余弦定理在生活的应用的意义。

同时,培育学生合作交流、联合的物质,激发学习兴趣。

三、传授重难点:1.传授重点:余弦定理的推导历程及其基本应用;2.传授难点:理解余弦定理的基本应用。

四、传授要领:引导法、演示法。

五、传授历程:余弦定理的推导如图,设c AB b CA a CB ===,,,那么b a c -=,则c ⋅= b A=⋅-⋅+⋅2 C a B从而 2222cos c a b ab C =+-同理可证 2222cos a b c bc A =+- 2222cos b a c ac B =+-余弦定理:三角形中任何一边的平方即是其他双方的平方的和减去这双方与它们的夹角的余弦的积的两倍。

即:2222cos a b c bc A =+-; (注:让学生查看公式特点并总结求谁后面没谁,只有对边的余弦值,帮助学生记 忆)余弦定理的变式(余弦定理推论)学生类比正弦定理鉴别余弦定理的基本应用:1)已知三角形的恣意双方及其夹角可以求第三边2)已知三角形的三条边可以求出三角3.例题讲解例1.在∆ABC 中,.60,4,20===A c b 求a ?解:∵2222cos a b c bc A =+-=1260cos 42242022=⨯⨯-+练习:在∆ABC 中,.60,4,20===A c b 解三角形。

解: ∵2222cos a b c bc A =+-=1260cos 42242022=⨯⨯-+∵ 060=A ,030=B ∴所以三角形ABC 为直角三角形,090=C稳固练习:在ABC ∆ 中,已知030,33,3===B c b ,解三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2从容说课课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系教学重点余弦定理的发现和证明过程及其基本应用教学难点 1.向量知识在证明余弦定理时的应用,与向量知识的联系过程2.余弦定理在解三角形时的应用思路3.勾股定理在余弦定理的发现和证明过程中的作用.教具准备 投影仪、幻灯片两张 第一张:课题引入图片(记作A如图(1),在Rt △ABC 中,有A 2+B 2=C 2 问题:在图(2)、(3)中,能否用b 、c 、A 求解a第二张:余弦定理(记作1.1.2B余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍形式一: a 2=b 2+c 2-2bcco s A ,b 2=c 2+a 2-2caco s B ,c 2=a 2+b 2-2abco s C形式二:co s A =bc a c b 2222-+,co s B =ca b a c 2222-+,co s C =abc b a 2222-+三维目标一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法2.会利用余弦定理解决两类基本的解三角形问题3.能利用计算器进行运算二、过程与方法1.利用向量的数量积推出余弦定理及其推论2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学过程导入新课师上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A师由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在Rt△ADC 内求解解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得A2=CD2+BD2∵在Rt△ADC中,CD2=B2-AD2又∵BD2=(C-AD)2=C2-2C·AD+AD2∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD又∵在Rt△ADC中,AD=B·CO s A∴a2=b2+c2-2ab c os A类似地可以证明b2=c2+a2-2caco s Bc2=a2+b2-2ab c os C另外,当A 为钝角时也可证得上述结论,当A 为直角时,a 2+b 2=c 2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍在幻灯片1.1.2B 中我们可以看到它的两种表示形式形式一a 2=b 2+c 2-2bcco s A b 2=c +a 2-2caco s Bc 2=a 2+b 2-2abco s C形式二bc a c b A 2cos 222-+=ca b a c B 2cos 222-+=abc b a C 2cos 222-+=师 在余弦定理中,令C =90°时,这时co s C =0,所以c 2=a 2+b 2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用[合作探究2.向量法证明余弦定理 (1)证明思路分析师 联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边C .由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢生 向量数量积的定义式a ·b =|a ||b |co sθ,其中θ为A 、B的夹角师 在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C ,则构造∙这一数量积以使出现CO s C .同样在证明过程中应注意两向量夹角是以同起点为前提(2)向量法证明余弦定理过程如图,在△ABC 中,设AB 、BC 、CA 的长分别是c 、a 、b由向量加法的三角形法则,可得+=∴,cos 2)1802)()(2222a B ac c B BC AB +-=-︒+=+∙+=+∙+=∙即B 2=C 2+A 2-2AC COB由向量减法的三角形法则,可得-=∴2222cos 22)()(c A bc b A AB AC +-=-=+∙-=-∙-=∙即a 2=b 2+c 2-2bcco s A由向量加法的三角形法则,可得-=+=∴,cos 22)()(22222a C ba b C AC BC AC +-=+-=+∙-=-∙-=∙即c 2=a 2+b 2-2abco sC[方法引导(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则(2)在证明过程中应强调学生注意的是两向量夹角的确定,与属于同起点向量,则夹角为A ;与是首尾相接,则夹角为角B 的补角180°-B ;与是同终点,则夹角仍是角C[合作探究师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:bac a b C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?生(学生思考片刻后会总结出)若△ABC 中,C =90°,则co s C =0,这时c 2=a 2+b 2.由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变成可定量计算的公式了. 师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片1.1.2B通过幻灯片中余弦定理的两种表示形式我们可以得到,利用余弦定理,可以解决以下两类有关三角形的问题(1)已知三边,求三个角这类问题由于三边确定,故三角也确定,解唯一,课本P 8例4属这类情况(2)已知两边和它们的夹角,求第三边和其他两个角这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题接下来,我们通过例题来进一步体会一下[例题剖析]【例1】在△ABC 中,已知B =60 c m ,C =34 c m ,A =41°,解三角形(角度精确到1°,边长精确到1 c m )解:根据余弦定理,a 2=b 2+c 2-2bcco s A =602+342-2·60·34co s41°≈3 600+1 156-所以A ≈41 c由正弦定理得sin C =4141sin 34sin ︒⨯=a A c ≈41656.034⨯因为C 不是三角形中最大的边,所以C 是锐角.利用计数器可得CB =180°-A -C =180°-41°-【例2】在△ABC 中,已知a =134.6 c m ,b =87.8 c m ,c =161.7 c m ,解三角形解:由余弦定理的推论,得co s A =7.1618.8726.1347.1618.872222222⨯⨯-+=-+bc a c b ≈0.554 3,Aco s B =7.1616.13428.877.1616.1342222222⨯⨯-+=-+ca b a c ≈0.839 8,BC =180°-(A +B )=180°-[知识拓展补充例题:【例1】在△ABC 中,已知a =7,b =10,c =6,求A 、B 和C .(精确到分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二解:∵725.0610276102cos 222222=⨯⨯-+=-+=bc a c b A∴A∵c os C =140113107261072222222=⨯⨯-+=-+ab c b a∴C∴B =180°-(A +C )=180°-[教师精讲(1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出(2)对于较复杂运算,可以利用计算器运算【例2】在△ABC 中,已知a =2.730,b =3.696,c =82°28′,解这个三角形(边长保留四个有效数字,角度精确到分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在第三边求出后其余角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角利用正弦定理求解,但根据1.1.1斜三角形求解经验,若用正弦定理需对两种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好解:由c 2=a 2+b 2-2abco s C =2.7302+3.6962-2×2.730×3.696×co s82°28′, 得c∵c os A =297.4696.32730.2297.4696.32222222⨯⨯-+=-+bc a c b∴A∴B =180°-(A +C )=180°-[教师精讲通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦【例3】在△ABC 中,已知A =8,B =7,B =60°,求C 及S △ABC分析:根据已知条件可以先由正弦定理求出角A ,再结合三角形内角和定理求出角C ,再利用正弦定理求出边C ,而三角形面积由公式S △ABC =21ac sin B 可以求出若用余弦定理求C ,表面上缺少C ,但可利用余弦定理b 2=c 2+a 2-2caco s B 建立关于C 的方程,亦能达到求C 的目的下面给出两种解法解法一:由正弦定理得︒=60sin 7sin 8A∴A 1=81.8°,A 2∴C 1=38.2°,C 2由Ccsin 60sin 7=︒,得c 1=3,c 2 ∴S △ABC =36sin 211=B ac 或S △ABC =310sin 212=B ac解法二:由余弦定理得b 2=c +a 2-2caco s B∴72=c +82-2×8×cco整理得c 2-8c解之,得c 1=3,c 2=5.∴S △ABC =36sin 211=B ac 或S △ABC = 310sin 212=B ac[教师精讲]在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边、一角解三角形可用余弦定理解之课堂练习1.在△ABC 中(1)已知c =8,b =3,b =60°,求A(2)已知a =20,b B =29,c =21,求B(3)已知a =33,c =2,b =150°,求B(4)已知a =2,b =2,c =3+1,求A解: (1)由a 2=b 2+c 2-2bcco s A ,得a 2=82+32-2×8×3co s60°=49.∴A(2)由ca b a c B 2cos 222-+=,得021202292120cos 222=⨯⨯-+=B .∴B(3)由b 2=c 2+a 2-2caco s B ,得b 2=(33)2+22-2×33×2co s150°=49.∴b(4)由bc a c b A 2cos 222-+=,得22)13(222)13()2(cos 222=+-++=A .∴A评述:此练习目的在于让学生熟悉余弦定理的基本形式,要求学生注意运算的准确性及解题效率2.根据下列条件解三角形(角度精确到(1)a =31,b =42,c(2)a =9,b =10,c解:(1)由bc a c b A 2cos 222-+=,得27422312742cos 222⨯⨯-+=A ≈0.675 5,∴A由273124227312cos 222222⨯⨯-+=-+=ca b a c B ≈-0.044 2,∴B∴C =180°-(A +B )=180°-(2)由,2222bc a c b -+得1510291510cos 222⨯⨯-+=A∴A由1592109152cos 222222⨯⨯-+=-+=ca b a c B ≈0.763 0,∴B∴C=180°-(A+B)=180°-评述:此练习的目的除了让学生进一步熟悉余弦定理之外,还要求学生能够利用计算器进行较复杂的运算.同时,增强解斜三角形的能力课堂小结通过本节学习,我们一起研究了余弦定理的证明方法,同时又进一步了解了向量的工具性作用,并且明确了利用余弦定理所能解决的两类有关三角形问题(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①已知三边求三角;②已知两边、一角解三角形.布置作业课本第8页练习第1(1)、2(1)题板书设计余弦定理1.余弦定理2.证明方法余弦定理所能解决的两类问题:(1)平面几何法已知三边求任意角;(2)向量法(2)已知两边、一角解三角形4.学生练习。

相关文档
最新文档