stata上机实验第五讲..

合集下载

stata上机实验第五讲 工具变量(IV)

stata上机实验第五讲 工具变量(IV)

究竟该用OLS 还是IV
即解释变量是否真的存在内生性? 假设能够找到方程外的工具变量。 1。如果所有解释变量都是外生变量,则OLS
比IV 更有效。在这种情况下使用IV,虽然估 计量仍然是一致的,会增大估计量的方差。2。 如果存在内生解释变量,则OLS 是不一致的, 而IV 是一致的。
豪斯曼检验(Hausman specification test)原假设: H0 :所有解释变量均为外生变量。 H1:至少有一个解释变量为内生变量。
检验方法: estat firststage 1。初步判断可以用偏R2(partial R2) (剔除掉模型中原有外生变量的影响)。 2。 Minimum eigenvalue statistic(最小特征 值统计量),经验上此数应该大于10。
ivregress 2sls lw80 expr80 tenure80 (s80 iq=med kww mrt age), first
使用grilic.dta估计教育投资的回报率。
变量说明:lw80(80年工资对数),s80 (80年时受教育年限),expr80(80年时工 龄),tenure80(80年时在现单位工作年 限), iq(智商),med(母亲的教育年 限),kww(在‘knowledge of the World of Work’测试中的成绩),mrt(婚姻虚拟变量, 已婚=1),age(年龄)。
ivregress 2sls lw80 expr80 tenure80 (s80 iq=med kww mrt age), first estat overid ivregress gmm lw80 expr80 tenure80 (s80 iq=med kww mrt age) estat overid

Stata学习讲义

Stata学习讲义

Stata学习讲义刘志阔一、如何导入数据Stata的数据处理功能是极其强大的,不过我们最好在excel中整理数据,然后导入到stata中就可以了。

命令:insheet using name.csv*注意,Stata只能用csv格式,另外把数据放到stata的目录中。

二、如何进行回归Stata中有很多命令,这些命令都是现成的,直接用就可以了。

不过,怎么用是个问题。

熟悉命令的基础上学会如何使用Help。

最简单的命令reg做ols回归,xtreg处理面板等。

命令:reg y x*注意,Stata命令的格式,自己回去看手册。

网络帮助可以采用如下命令获得findit scat3, net;search scat3, net三、如何导出结果Stata可以直接导出发表论文中回归结果,当然不是完全一样。

命令:outreg2 Results using name.word四、如何画图Stata的画图功能也是极其强大的,可以画出各种类型的图标。

命令:scatter y x || lfit y x五、如何存储结果Stata可以储存回归结果,便于分析。

命令:log using name log closed1.codebook可以查看数据有没有缺失2.xml_tab estout 可以输出结果3.qui tab year, gen(yr) 可以生产时间虚拟变量。

4.g q=quarterly( qtr,"YQ")5.form q %tq6.recode province (min/11=1) (12/19=2) (20/31=3)gen eastern=(province==1)gen middle=(province==2)gen western=(province==3)Logout 命令可以把界面内容存到word里面,而不用复制。

Logout,save(名称) word/excel replace:各种描述性命令,statsXml_tab可以输出Excel格式的结果。

计量经济学stata上机命令整理

计量经济学stata上机命令整理

计量经济学上机命令整理实验一edit 打开数据编辑器browse 打开数据浏览器rename 对变量重新命名labelsavedescribe 对数据集简要描述sort 排序例如:list in -10/-1list 显示变量的数值Generate 缩小:gen 生成新的变量后面可以接if条件句Replace 替换append 覆盖Summarize 缩写:su 总结后面可以接if条件句实验二twoway (scatter y x)(connected ey_x x) 在该散点图上,做出条件均值点sc y x||lfit y x 画出线图和散点图Reg y x 做出回归Rename ** y **指原变量名用于修改变量名字graph twoway scatter y x 画出y x 的二维散点图Line y x 做出y x 的线条图egen Ey_x=mean(y),by(x) 求在同一x水平下,求y的均值实验三Regress y x1 x2 ........做多元回归Precict e,re 预测方差Sort e 按照方差排序Cor y x 测试y与x的相关程度Pwcorr y x 也是测试y与x的相关程度Set obs 90 (90为任意一个数字),增加一个或者多个样本值Replace x=980 in 90 为第90个样本值赋值(980为任意一个数字)Predict yhat 预测y的估计值Display invttail(n,p) n为自由度;p为概率(一般为0.025)。

用来求t分布的t 值Display ttail(n,t)知道t值求T<t的右端概率Destring (变量名,可省略),replace ignore("-$") 将其他类型的数据转化为数值型Hist e残差直方图hist e,norm加了一条正态分布线Two connected y x 二维图连线Two connected y x,yline(0) 在y=0处画一条线(也可x=0)Kdensity e,normal 对残差画出密度图Sktest e 利用e的偏锋度做是否符合正态分布的检验gen low=yhat-t*se gen high=yhat+t*se 预测置信区间Twoway lfitci y x 置信区间与回归之间作图实验四(第五章)Gen lny=log(y)生成y的对数Gen lnx=log(x)生成x的对数Drop y或者x 删除变量Predict se,stdp 预测所有的标准误实验五(第六章)虚拟变量Tab quarter,gen(d) quarter代表变量,对变量quarter生成虚拟变量d Gen d1_x=d1*x 或者是(d2,d3,d4与x2,x3,x4)生成交互作用的虚拟变量Reg y x1 x2...d2 d3 d4.....(d1通常省略,常数项)Egen ybar=mean(y) 生成y的均值实验六(第八章:多重共线性)Gen t=0Replace t=1 if x<(或>或>=或<=)数值Test (t=0)(t_x=0)做假设联合检验,求出新的F值Test (lnx2+lnx3=1) 求出新的F检验统计量Cor lnx2-lnx6 求lnx2与lnx3到Lnx6之间的相关程度,找出是否存在多重共线性问题Pcorr lnx2 lnx3-lnx6 也是测量变量之间的相关程度Estat vif 估计方差膨胀因子(方差膨胀因子越大,说明两个此变量与y的共线性越高,应该考虑删除)实验七八(第九十章)Predict e,reGen e2=e^2Est store m1 记录原回归的内容Est tab m1 m2 展示上述记录过的回归内容并作出比较Est tab m1 m2.....,seEstat imtest 怀特检验Estat hettest BP检验Regress y x2 x3...,robust 校正后的怀特检验自相关检验Regress y x...Est store m1Predict e,reSc e obs,yline(0)Tsset obs或者其他变量,用来表示时间变化Dwstat 进行DW检验并查表得出自相关程度Gen rho=1-d/2 rho 代表ρ估计Prais y x,corc (one,two...)括号可接可不接表示从OLS残差中估计ρ Gen dy1=y-l.y*ρ1Gen dx1=y-l.y*ρ1Gen dy2=y-l.y*ρ2Gen dx2=y-l.y*ρ2 (rho=ρ)Replace dy1=sqrt(1-rho^2)*y if ......补充第一个样本值比如ifobs==1958 Replace dx1=sqrt(1-rho^2)*x if .......。

stata5

stata5

9.3使用数据集nerlove.dta,估计以下模型:
Intc i=β1+β2lnq i+β3lnpl i+β4Inpk i+β5lnpf i+εi
其中,Intc,Inq,Inpl,Inpk与Inpf分别为电力企业的总成本、总产量、小时工资率、资本使用成本、燃料价格的对数(参见第6章)。

(1)使用稳健标准误,对方程(9.47)进行OLS回归。

(2)计算VIF。

是否存在多重共线性?
(3)使用拟合值进行RESET检验。

是否遗漏了非线性项?
(4)在方程中,加入lnq的平方项,重新进行回归。

(5)再次使用拟合值进行RESET检验。

是否还遗漏了非线性项?
(6)再次计算VIF。

是否存在多重共线性?
(7)从经济理论出发,以上两个回归结果,哪个更可信?
(1)reg lntc lnq lnpl lnpk lnpf
reg lntc lnq lnpl lnpk lnpf,r
Intc=-3.566513+0.7209135lnq+0.4559645lnpl-0.2151476Inpk+0.4258137lnpf
(2)
最大VIF为1.21,远小于10,故不必担心存在多重共线性。

(3)
遗漏了非线性项。

(4)
Intc=-0.1627064+0.1166562lnq+0.536124lnq2+0.0206146lnpl-0.568725Inpk+0. 4804816lnpf
(5)
没遗漏了非线性项。

(6)
最大VIF为22.21,远大于10,故存在多重共线性。

(7)第一个更可信。

Stata实验指导、统计分析与应用chap05

Stata实验指导、统计分析与应用chap05

这个命令语句是在缺失样本的具体数据,只通过样本的统
例如,在检验砖的抗断强度的例子中,假设并不知道
方差为1.21,而进行检验其均值为32.5,这时就需要用 到ttest命令了,具体命令如下: ttest kdqd=32.5 这时就可以得到如图5.2所示的检验结果,在结果图中, 可以看到表格中显示了样本的特性,主要包括样本容 量、样本均值、标准误差、标准差、置信区间。表格 下面是进行的t检验的内容,其中最重的的指标是 “Ha: mean != 32.5”的部分,不难发现检验得到的p 值为0.0302,所以应当拒绝原假设,即不能认为这批 砖的平均抗断强度为32.5。
标准差是否为1.1。
三、实验操作指导
1.正态分布、方差已知的均值检验 在这种情形下,由于Stata没有提供直接的命令进行检验,所
以需要用户自行构建正态分布的统计量进行检验,命令语句 为: quietly summarize

scalar crit=invnormal(1-0.05/2) scalar p=(1-normal(abs(z)))/2 scalar list z crit p 在这一组命令语句中,第一个命令语句是为了求出样本的均 值的大小,并且不显示计算的结果;第二个命令语句是输入 了正态分布统计量的计算公式,目的是为了算出正态分布统 计量的大小;第三个命令语句是为了求出置信度为95%的正 太分布临界值的大小;第四个命令语句输入了p值的计算公式, 是为了求出p值的大小;第五个命令语句是为了列出这些统计 量的大小,以便进行判断。
例如,利用english.dta数据库中的数据,分析两个班
的英语成绩方差是否相等,所使用到的命令为: sdtest score1==score2 执行这一命令,可得到如图5.6所示的结果,这个图中 的表格展示了数据的情况,包括两个变量及其总体的 样本容量、均值、标准误、标准差、置信区间的信息。 在表格的下方展示了方差检验的结果,从中不难看出, 检验的p值为0.3362,不能拒绝原假设,即认为两个班 英语成绩的方差相等。

计量经济学stata上机教程

计量经济学stata上机教程

计量经济学stata上机教程2014计量经济学上机教程1Stata操作基础主要内容:1. Stata的特点与功能2. Stata的界面管理3. Stata的命令语法4. 数据处理5. 统计描述、制图与输出结果6. log文档与do文档7. 常用函数8. Stata的帮助系统与学习资源9. 课后练习1. Stata的特点与功能, 将统计功能与计量分析完整地结合起来。

不仅可以实现诸多统计分析方法,比如描述统计、假设检验、方差分析、主成分分析等,而且可以实现多种计量经济模型的估计和检验,包括经典单方程回归模型、方程组模型、微观数据模型(离散选择模型、计数模型、截断模型、归并模型等)、时间序列数据模型(ARMA、VAR、GARCH等)以及面板数据分析。

, 强大的数据处理功能。

, 精致的作图功能。

, 丰富的网络资源。

Stata 12有各种版本,其中尤以SE(特殊版)最为常用。

用户可以在命令栏中输入about命令查看所安装的版本信息。

2--per ml sodium hydroxide [c (NaOH) =1.000 mol/L] potassium hydrogen phthalate standard solution of quality g. ... After dilution to 1000mL. 1.1.2 0.000 35mol/L iodine solution: dissolve 20 g of potassium iodide in Cheng You (30~40) 500mL mL water bottle; 5mL iodine stock solution, and then diluted to scale and mix. This solution every other day to prepare. 1.1.3 acetate buffer (PH5.3): dissolve 87g sodium acetate (CH3COONa • 3H2O) 400mL water and 10.5mL in glacial acetic acid is dissolved in a small amount of water. volume and then mixing the two together and add water to 500mL, using regulation to PH5.3. 1.1.40.5mol/L sodium chloride: 14.5 g of sodium chloride dissolved in boiled water, and constant volume to 500mL. 1.1.5 soluble starch: pure before use should determine its value. Accurate said take amount starch (equivalent to dry state 1g) Yu 250mL high type beaker in the, added80~90mL distilled water, Yu asbestos online in constantly mixing Xia quickly heating to boiling, then with fire keep micro-boiling 3min, stamped and cooling to at room temperature, transfer to 100mL capacity bottle in the, into 40 ? water bath in the makes solution reached this temperature, and in 40 ? Shi with distilled water (40 ?) set capacity, this starch solution placed 40 ? thermostat water bath in the for determination samples with. 1.2 the instrument a) constant temperaturewater bath: (40+-0.2) 0C. B) spectrophotometer. 1.3 procedures 1.3.1 preparation of samples: weighing 50mL 10G sample不同的版本对于样本容量、变量个数、矩阵阶数等有着不同的限制,用户可以通过以下命令了解和改变这些设定:memory 显示目前存储空间query memory 查看目前实际设定的存储空间set memory 10m 设定存储空间的大小set matsize 250 设定最大矩阵阶数set maxvar 2500 设定最大变量数(最小设定为2048)help limits 显示Stata的各种极限 2. Stata的界面管理, 首次打开Stata,将会出现一个询问是否进行更新的对话框。

第五讲 多值、排序与计数模型 高级计量经济学及Stata应用课件

第五讲 多值、排序与计数模型 高级计量经济学及Stata应用课件
• 解释变量:是否白人(white),受教育年限(ed), 工龄(exper)。
• 这些解释变量都只依赖于个体,而不依赖于方案 ,故应使用多项logit或多项probit回归。
2020/7/27
陈强 计量及Stata应用 (c) 2014
20
数据特征
• use nomocc2.dta, clear • sum
• 解释变量xij,既随个体i而变,也随方案j而变。
• 系数 β 表明,xij对随机效用Uij的作用不依赖于方 案j。比如,乘车时间依个体与方案而变,但乘车 时间太长所带来的负效用是一致的。
2020/7/27
陈强 计量及Stata应用 (c) 2014
9
条件Logit (续)
• 根据与多项Logit类似的推导,
2020/7/27
陈强 计量及Stata应用 (c) 2014
18
混合logit的Stata命令
• asclogit y x1 x2 x3,case(varname) alternatives(varname) casevars(varname) base(#) or
• “asclogit”表示“alternative-specific conditional logit”
• 如果假设 i1, ,iJ 服从J维正态分布,可
得“多项probit”(multinomial probit)模型
• 但多项Probit的计算涉及高维积分,不易计 算,较少使用。
2020/7/27
陈强 计量及Stata应用 (c) 2014
7
随方案而变的解释变量
• 多项Logit仅考虑不随方案而变的解释变量(比如, 个体收入),但有些解释变量既随个体,也随方案 而变。比如,在选择交通工具时,乘车时间既因 个体而异,也因交通工具而异。

stata操作指南

stata操作指南

stata操作指南计量经济学stata操作(实验课)第一章stata基本知识1、stata窗口介绍2、基本操作(1)窗口锁定:Edit-preferences-general preferences-windowing-lock splitter (2)数据导入(3)打开文件:use E:\example.dta,clear(4)日期数据导入:gen newvar=date(varname, “ymd”)format newvar %td 年度数据gen newvar=monthly(varname, “ym”)format newvar %tm 月度数据gen newvar=quarterly(varname, “yq”)format newvar %tq 季度数据(5)变量标签Label variable tc ` “total output” ’(6)审视数据describelist x1 x2list x1 x2 in 1/5list x1 x2 if q>=1000drop if q>=1000keep if q>=1000(6)考察变量的统计特征summarize x1su x1 if q>=10000su q,detailsutabulate x1correlate x1 x2 x3 x4 x5 x6(7)画图histogram x1, width(1000) frequency kdensity x1scatter x1 x2twoway (scatter x1 x2) (lfit x1 x2) twoway (scatter x1 x2) (qfit x1 x2) (8)生成新变量gen lnx1=log(x1)gen q2=q^2gen lnx1lnx2=lnx1*lnx2gen larg=(x1>=10000)rename larg largeg large=(q>=6000)replace large=(q>=6000)drop ln*(8)计算功能display log(2)(9)线性回归分析regress y1 x1 x2 x3 x4vce #显示估计系数的协方差矩阵reg y1 x1 x2 x3 x4,noc #不要常数项reg y1 x1 x2 x3 x4 if q>=6000reg y1 x1 x2 x3 x4 if largereg y1 x1 x2 x3 x4 if large==0reg y1 x1 x2 x3 x4 if ~large predict yhatpredict e1,residualdisplay 1/_b[x1]test x1=1 # F检验,变量x1的系数等于1test (x1=1) (x2+x3+x4=1) # F联合假设检验test x1 x2 #系数显著性的联合检验testnl _b[x1]= _b[x2]^2(10)约束回归constraint def 1 x1+x2+x3=1cnsreg y1 x1 x2 x3 x4,c(1)cons def 2 x4=1cnsreg y1 x1 x2 x3 x4,c(1-2)(11)stata的日志File-log-begin-输入文件名log off 暂时关闭log on 恢复使用log close 彻底退出(12)stata命令库更新Update allhelp command第二章有关大样本ols的stata命令及实例(1)ols估计的稳健标准差reg y x1 x2 x3,robust(2)实例use example.dta,clearreg y1 x1 x2 x3 x4test x1=1reg y1 x1 x2 x3 x4,rtestnl _b[x1]=_b[x2]^2第三章最大似然估计法的stata命令及实例(1)最大似然估计help ml(2)LR检验lrtest #对面板数据中的异方差进行检验(3)正态分布检验sysuse auto #调用系统数据集auto.dtahist mpg,normalkdensity mpg,normalqnorm mpg*手工计算JB统计量sum mpg,detaildi (r(N)/6)*((r(skewness)^2)+[(1/4)*(r(kurtosis)-3)^2]) di chi2tail(自由度,上一步计算值)*下载非官方程序ssc install jb6jb6 mpg*正态分布的三个检验sktest mpgswilk mpgsfrancia mpg*取对数后再检验gen lnmpg=log(mpg)kdensity lnmpg, normaljb6 lnmpgsktest lnmpg第四章处理异方差的stata命令及实例(1)画残差图rvfplotrvfplot varname*例题use example.dta,clearreg y x1 x2 x3 x4rvfplot # 与拟合值的散点图rvfplot x1 # 画残差与解释变量的散点图(2)怀特检验estat imtest,white*下载非官方软件ssc install whitetst(3)BP检验estat hettest #默认设置为使用拟合值estat hettest,rhs #使用方程右边的解释变量estat hettest [varlist] #指定使用某些解释变量estat hettest,iidestat hettest,rhs iidestat hettest [varlist],iid(4)WLSreg y x1 x2 x3 x4 [aw=1/var]*例题quietly reg y x1 x2 x3 x4predict e1,resgen e2=e1^2gen lne2=log(e2)reg lne2 x2,nocpredict lne2fgen e2f=exp(lne2f)reg y x1 x2 x3 x4 [aw=1/e2f](5)stata命令的批处理(写程序)Window-do-file editor-new do-file#WLS for examplelog using E:\wls_example.smcl,replaceset more offuse E:\example.dta,clearreg y x1 x2 x3 x4predict e1,resgen e2=e1^2g lne2=log(e2)reg lne2 x2,nocpredict lne2fg e2f=exp(lne2f)*wls regressionreg y x1 x2 x3 x4 [aw=1/e2f]log closeexit第五章处理自相关的stata命令及实例(1)滞后算子/差分算子tsset yearl.l2.D.D2.LD.(2)画残差图scatter e1 l.e1ac e1pac e1(3)BG检验estat bgodfrey(默认p=1)estat bgodfrey,lags(p)estat bgodfrey,nomiss0(使用不添加0的BG检验)(4)Ljung-Box Q检验reg y x1 x2 x3 x4predict e1,residwntestq e1wntestq e1,lags(p)* wntestq指的是“white noise test Q”,因为白噪声没有自相关(5)DW检验做完OLS回归后,使用estat dwatson(6)HAC稳健标准差newey y x1 x2 x3 x4,lag(p)reg y x1 x2 x3 x4,cluster(varname)(7)处理一阶自相关的FGLSprais y x1 x2 x3 x4 (使用默认的PW估计方法)prais y x1 x2 x3 x4,corc (使用CO估计法)(8)实例use icecream.dta, cleartsset timegraph twoway connect consumption temp100 time, msymbol(circle) msymbol(triangle) reg consumption temp price incomepredict e1, resg e2=l.e1twoway (scatter e1 e2) (lfit e1 e2)ac e1pac e1estat bgodfreywntestq e1estat dwatsonnewey consumption temp price income, lag (3)prais consumption temp price income, corcprais consumption temp price income, nologreg consumption temp l.temp price incomeestat bgodfreyestat dwatson第六章模型设定与数据问题(1)解释变量的选择reg y x1 x2 x3estat ic*例题use icecream.dta, clearreg consumption temp price incomeestat icreg consumption temp l.temp price incomeestat ic(2)对函数形式的检验(reset检验)reg y x1 x2 x3estat ovtest (使用被解释变量的2、3、4次方作为非线性项)estat ovtest, rhs (使用解释变量的幂作为非线性项,ovtest-omitted variable test)*例题use nerlove.dta, clearreg lntc lnq lnpl lnpk lnpfestat ovtestg lnq2=lnq^2reg lntc lnq lnq2 lnpl lnpk lnpfestat ovtest(3)多重共线性estat vif*例题use nerlove.dta, clearreg lntc lnq lnpl lnpk lnpfestat vif(4)极端数据reg y x1 x2 x3predict lev, leverage (列出所有解释变量的lev值)gsort –levsum levlist lev in 1/3*例题use nerlove.dta, clearquietly reg lntc lnq lnpl lnpk lnpfpredict lev, leveragesum levgsort –levlist lev in 1/3(5)虚拟变量gen d=(year>=1978)tabulate province, generate (pr)reg y x1 x2 x3 pr2-pr30(6)经济结构变动的检验方法1:use consumption_china.dta, cleargraph twoway connect c y year, msymbol(circle) msymbol(triangle)reg c yreg c y if year<1992reg c y if year>=1992计算F统计量方法2:gen d=(year>1991)gen yd=y*dreg c y d ydtest d yd第七章工具变量法的stata命令及实例(1)2SLS的stata命令ivregress 2sls depvar [varlist1] (varlist2=instlist)如:ivregress 2sls y x1 (x2=z1 z2)ivregress 2sls y x1 (x2 x3=z1 z2 z3 z4) ,r firstestat firststage,all forcenonrobust (检验弱工具变量的命令)ivregress liml depvar [varlist 1] (varlist2=instlist)estat overid (过度识别检验的命令)*对解释变量内生性的检验(hausman test),缺点:不适合于异方差的情形reg y x1 x2estimates store olsivregress 2sls y x1 (x2=z1 z2)estimates store ivhausman iv ols, constant sigmamore*DWH检验estat endogenous*GMM的过度识别检验ivregress gmm y x1 (x2=z1 z2) (两步GMM)ivregress gmm y x1 (x2=z1 z2),igmm (迭代GMM)estat overid*使用异方差自相关稳健的标准差GMM命令ivregress gmm y x1 (x2=z1 z2), vce (hac nwest[#])(2)实例use grilic.dta,clearsumcorr iq sreg lw s expr tenure rns smsa,rreg lw s iq expr tenure rns smsa,rivregress 2sls lw s expr tenure rns smsa (iq=med kww mrt age),restat overidivregress 2sls lw s expr tenure rns smsa (iq=med kww),r first estat overidestat firststage, all forcenonrobust (检验工具变量与内生变量的相关性)ivregress liml lw s expr tenure rns smsa (iq=med kww),r *内生解释变量检验quietly reg lw s iq expr tenure rns smsaestimates store olsquietly ivregress 2sls lw s expr tenure rns smsa (iq=med kww) estimates store ivhausman iv ols, constant sigmamoreestat endogenous (存在异方差的情形)*存在异方差情形下,GMM比2sls更有效率ivregress gmm lw s expr tenure rns smsa (iq=med kww)estat overidivregress gmm lw s expr tenure rns smsa (iq=med kww),igmm*将各种估计方法的结果存储在一张表中quietly ivregress gmm lw s expr tenure rns smsa (iq=med kww)estimates store gmmquietly ivregress gmm lw s expr tenure rns smsa (iq=med kww),igmmestimates store igmmestimates table gmm igmm第八章短面板的stata命令及实例(1)面板数据的设定xtset panelvar timevarencode country,gen(cntry) (将字符型变量转化为数字型变量)xtdesxtsumxttab varnamextline varname,overlay*实例use traffic.dta,clearxtset state yearxtdesxtsum fatal beertax unrate state yearxtline fatal(2)混合回归reg y x1 x2 x3,vce(cluster id)如:reg fatal beertax unrate perinck,vce(cluster state)estimates store ols对比:reg fatal beertax unrate perinck(3)固定效应xtreg y x1 x2 x3,fe vce(cluster id)xi:reg y x1 x2 x3 i.id,vce(cluster id) (LSDV法)xtserial y x1 x2 x3,output (一阶差分法,同时报告面板一阶自相关)estimates store FD*双向固定效应模型tab year, gen (year)xtreg fatal beertax unrate perinck year2-year7, fe vce (cluster state)estimates store FE_TWtest year2 year3 year4 year5 year6 year7(4)随机效应xtreg y x1 x2 x3,re vce(cluster id) (随机效应FGLS)xtreg y x1 x2 x3,mle (随机效应MLE)xttest0 (在执行命令xtreg, re 后执行,进行LM检验)(5)组间估计量xtreg y x1 x2 x3,be(6)固定效应还是随机效应:hausman testxtreg y x1 x2 x3,feestimates store fextreg y x1 x2 x3,reestimates store rehausman fe re,constant sigmamore (若使用了vce(cluster id),则无法直接使用该命令,解决办法详见P163)estimates table ols fe_robust fe_tw re be, b se (将主要回归结果列表比较)第九章长面板与动态面板(1)仅解决组内自相关的FGLSxtpcse y x1 x2 x3 ,corr(ar1) (具有共同的自相关系数)xtpcse y x1 x2 x3 ,corr(psar1) (允许每个面板个体有自身的相关系数)例题:use mus08cigar.dta,cleartab state,gen(state)gen t=year-62reg lnc lnp lnpmin lny state2-state10 t,vce(cluster state)estimates store OLSxtpcse lnc lnp lnpmin lny state2-state10 t,corr(ar1) (考虑存在组内自相关,且各组回归系数相同)estimates store AR1xtpcse lnc lnp lnpmin lny state2-state10 t,corr(psar1) (考虑存在组内自相关,且各组回归系数不相同)estimates store PSAR1xtpcse lnc lnp lnpmin lny state2-state10 t, hetonly (仅考虑不同个体扰动性存在异方差,忽略自相关)estimates store HETONL Yestimates table OLS AR1 PSAR1 HETONL Y, b se(2)同时处理组内自相关与组间同期相关的FGLSxtgls y x1 x2 x3,panels (option/iid/het/cor) corr(option/ar1/psar1) igls注:执行上述xtpcse、xtgls命令时,如果没有个体虚拟变量,则为随机效应模型;如果加上个体虚拟变量,则为固定效应模型。

stata第五讲【山大陈波】

stata第五讲【山大陈波】

静态面板数据
静态面板数据模型,是指解释变量中不包含 被解释变量的滞后项(通常为一阶滞后项) 的 情形。但严格地讲,随机干扰项服从某种序 列相关的模型,如AR(1), AR(2), MA(1) 等, 也不是静态模型。静态面板数据主要有两种 模型------固定效应模型和随机效应模型。
面板数据的格式
company 1 1 1 1 2 2 2 2 3 3 3 3 year 1951 1952 1953 1954 1951 1952 1953 1954 1951 1952 1953 1954 invest 755.9 891.2 1304.4 1486.7 588.2 645.5 641 459.3 135.2 157.3 179.5 189.6 mvalue 4833 4924.9 6241.7 5593.6 2289.5 2159.4 2031.3 2115.5 1819.4 2079.7 2371.6 2759.9
究竟该用OLS 还是IV
即解释变量是否真的存在内生性? 假设能够找到方程外的工具变量。 1。如果所有解释变量都是外生变量,则OLS 比IV 更有效。在这种情况下使用IV,虽然估 计量仍然是一致的,会增大估计量的方差。2。 如果存在内生解释变量,则OLS 是不一致的, 而IV 是一致的。
豪斯曼检验(Hausman specification test)原假设: H0 :所有解释变量均为外生变量。 H1:至少有一个解释变量为内生变量。 quietly reg lw80 s80 expr80 tenure80 iq est store ols quietly ivregress 2sls lw80 expr80 tenure80 (s80 iq=med kww mrt age) est store iv hausman iv ols

stata 上机

stata 上机
Stata
使用已保存的Stata数据 1 use “c:\myfile\mydata.dta”, clear 2 sysuse auto (录入系统数据) 3 webuse sorghum (录入网络数据) 手动录入 Input [type] varname [[type] varname]…… Input str10 name age Name age 1. mike 22 2. bruce 28 …… end






命令格式2: clustermat singlelinkage matname [,options] 比如: cluster singlelinkage x1 x2 x3, name(l2slnk) cluster single a1-a60, measure(matching) name(slink) cluster s x*, measure(L(1.5)) clustermat singlelinkage D, clear 其中,clear(将内存信息替换为聚类信息)

如果多个变量为同一类型,可以用括号括起来 Input str10 (name class) double score 从其他文件拷贝和粘贴 Excel或其他数据表直接copy和paste 从其他文件导入 Insheet [varlist] using filename [,option] Insheet using c:\data1.txt




webuse metabolic manova y1 y2 = group test group1 versus group2,3,4 manovatest, showorder matrix c1= (3,-1,-1,-1,0) manovatest, test(c1)

《STATA第五讲》课件

《STATA第五讲》课件

总结词:在Stata编程中,宏和循环结构的使用可能会 带来一些问题。
错误与调试
详细描述:熟悉常见的语法错误提示,根据错误提示检 查代码;采用逐步调试方法,设置断点、单步执行和查 看变量值,定位和修正逻辑错误。
2023
REPORTING
THANKS
感谢观看
2023
PART 06
Stata常见问题解答
REPORTING
数据处理问题解答
总结词
当遇到数据导入困难时,可能是由于文件格 式、编码或分隔符不正确所致。
详细描述
确保数据文件格式(如.csv、.dta等)与 Stata软件兼容;检查文件编码(如UTF-8 、ANSI等),确保与软件设置一致;确认 数据字段分隔符(如逗号、制表符等)是否 正确。
Stata是一种统计分析软件,专门用于数据管理和统 计分析。
02
它提供了广泛的数据分析工具,包括描述性统计、 回归分析、方差分析、生存分析等。
03
Stata具有易于使用的界面和强大的编程语言,使数 据分析变得简单而高效。
Stata的用途
数据分析
Stata提供了各种数据分析工具, 可以帮助用户进行数据探索、描 述性统计和复杂统计分析。
Cox比例风险模型
研究多个因素对生存时间的影响,并假设风险函 数与时间无关。
ABCD
Kaplan-Meier曲线
非参数方法描述生存函数随时间的变化。
时间依赖性Cox模型
在某些情况下,风险函数可能随时间变化,可以 使用此模型进行描述。
2023
PART 04
Stata编程基础
REPORTING
Stata命令基础
数据管理
Stata具有强大的数据管理功能, 可以方便地导入、导出数据,进 行数据清洗和整理。

stata上机实验第五讲

stata上机实验第五讲

固定效应模型
对于特定的个体i而言,ai 表示那些不随时间
改变的影响因素,如个人的消费习惯、国家 的社会制度、地区的特征、性别等,一般称 其为“个体效应” (individual effects)。如果 把“个体效应”当作不随时间改变的固定性 因素, 相应的模型称为“固定效应”模型。
固定效应模型
ivregress 2sls lw80 expr80 tenure80 (s80 iq=med kww mrt age), first estat firststage
过度识别检验
检验工具变量是否与干扰项相关,即工具变量是否
为外生变量。目前仅限于在过度识别的情况下,进 行过度识别检验。 2SLS根据Sargan统计量进行过度识别检验 ,GMM 使用Hansen J Test进行过度识别检验。 命令均为: estat overid 检验工具变量的外生性 H0:所有工具变量都是外生的。 H1:至少有一个工具变量不是外生的,与扰动项相 关。
xtgls命令xtglsinvestmvaluekstockpanelsiidpooledolsxtglsinvestmvaluekstockpanelhet截面异方差xtglsinvestmvaluekstockcorrar1所有个体具有相同的自相关系数xtglsinvestmvaluekstockcorrpsar1每个个体有自己的自相关系数xtglsinvestmvaluekstockpanelcorr截面间相关且异方差xtglsinvestmvaluekstockpanelcorrcorrar1异方差序列相关和截面相关?2xtpcseinvestmvaluekstockols估计面板稳健性标准差xtpcseinvestmvaluekstockcorrar1praiswinsten估计个体具有共同的自相关系数xtpcseinvestmvaluekstockcorrpsar1每个截面有自己的自相关系数xtpcseinvestmvaluekstockcorrar1hetonly不考虑截面相关xtpcse命令

Stata操作讲义知识讲解

Stata操作讲义知识讲解

操S义讲作atatStata操作讲义第一讲 Stata操作入门第一节概况Stata最初由美国计算机资源中心(Computer Resource Center)研制,现在为Stata公司的产品,其最新版本为7.0版。

它操作灵活、简单、易学易用,是一个非常有特色的统计分析软件,现在已越来越受到人们的重视和欢迎,并且和SAS、SPSS一起,被称为新的三大权威统计软件。

Stata最为突出的特点是短小精悍、功能强大,其最新的7.0版整个系统只有10M左右,但已经包含了全部的统计分析、数据管理和绘图等功能,尤其是他的统计分析功能极为全面,比起1G以上大小的SAS系统也毫不逊色。

另外,由于Stata在分析时是将数据全部读入内存,在计算全部完成后才和磁盘交换数据,因此运算速度极快。

由于Stata的用户群始终定位于专业统计分析人员,因此他的操作方式也别具一格,在Windows席卷天下的时代,他一直坚持使用命令行/程序操作方式,拒不推出菜单操作系统。

但是,Stata的命令语句极为简洁明快,而且在统计分析命令的设置上又非常有条理,它将相同类型的统计模型均归在同一个命令族下,而不同命令族又可以使用相同功能的选项,这使得用户学习时极易上手。

更为令人叹服的是,Stata语句在简洁的同时又拥有着极高的灵活性,用户可以充分发挥自己的聪明才智,熟练应用各种技巧,真正做到随心所欲。

除了操作方式简洁外,Stata的用户接口在其他方面也做得非常简洁,数据格式简单,分析结果输出简洁明快,易于阅读,这一切都使得Stata成为非常适合于进行统计教学的统计软件。

Stata的另一个特点是他的许多高级统计模块均是编程人员用其宏语言写成的程序文件(ADO文件),这些文件可以自行修改、添加和下载。

用户可随时到Stata网站寻找并下载最新的升级文件。

事实上,Stata的这一特点使得他始终处于统计分析方法发展的最前沿,用户几乎总是能很快找到最新统计算法的Stata程序版本,而这也使得Stata自身成了几大统计软件中升级最多、最频繁的一个。

stata上机实验第五讲..

stata上机实验第五讲..

• 怎样选择固定效应和随机效应? • 随机效严格要求个体效应与解释变量不相 关,即 • Cov(ai,XitB)=0 • 而固定效应模型并不需要这个假设条件。 • 这是两种模型选择的关键。
面板数据基本命令
• 1、指定个体截面变量和时间变量:xtset • 2、对数据截面个数、时间跨度的整体描述: xtdes。分组内、组间和样本整体计算各个变量的 基本统计量xtsum。采用列表的方式显示某个变 量的分布xttab,较少使用。 • 3、list、sum、des、tabstat、histogram、 kdensity等命令都可以用。 • 4、对每个个体分别显示该变量的时间序列图: xtline。 • 5、静态面板数据基本回归命令:xtreg,系统默 认GLS估计。
tab company,gen(dum) drop dum1 reg invest mvalue kstock dum* 与上述方法比较一下: xi:reg invest mvalue kstock pany 结果完全一样。
组间估计法
• 对于随机效应模型,还可以采用“组间估 计量”。对于那些每个个体的时间序列数 据较不准确或“噪音”较大的数据,可对 每个个体取时间平均值,然后用平均值来 回归。 xtreg invest mvalue kstock ,be 由于损失了较多信息量,组间估计法并不 常用。
1953 1954 1951 1952 1953 1954
645.5
641 459.3 135.2 157.3 179.5 189.6
2159.4
2031.3 2115.5 1819.4 2079.7 2371.6 2759.9
面板数据模型
• 考虑如下模型: • Yit=Xitb+Uit • uit=ai+εit
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• xtreg Fixed-, between- and random-effects, and population-averaged linear models • xtregar Fixed- and random-effects linear models with an AR(1) disturbance • xtgls Panel-data models using GLS • xtpcse OLS or Prais-Winsten models with panelcorrected standard errors • xtrchh Hildreth-Houck random coefficients models • xtivreg Instrumental variables and two-stage least squares for panel-data models
use grunfeld,clear xtset company year xtdes xtline invest(要等一下) 混合回归:reg invest mvalue kstock(扩大样本量) 固定效应:xtreg invest mvalue kstock ,fe(看F值 的P值) 随机效应:xtreg invest mvalue kstock ,re
面板数据
一些面板数据教材
• 面板数据分析 (美)萧政 著 • 横截面与面板数据的经济计量分析 伍德里 奇 著,王忠玉 译 • Baltagi. Econometric Analysis of Panel Data
• 最新动态可关注期刊: Journal of Econometrics
面板数据一些前沿问题
面板数据的格式
company 1 1 1 1 2 year 1951 1952 1953 1954 1951 invest 755.9 891.2 1304.4 1486.7 588.2 mvalue 4833 4924.9 6241.7 5593.6 2289.5
2
2 2 3 3 3 3
1952
固定效应模型
• 固定效应模型的公式变为: • Yit=ai+Xitb+εit • 回归结果是每个个体都有一个特定的截距 项。
随机效应模型
• 随机效应模型将个体效应ai视为随机因素, 即把个体效应设定为干扰项的一部分。公 式将变为: • Yit=Xitb+(ai+εit) • 回归的结果是随机效应模型的所有的个体 具有相同的截距项,个体的差异主要反应 在随机干扰项的设定上。
• 怎样选择固定效应和随机效应? • 随机效严格要求个体效应与解释变量不相 关,即 • Cov(ai,XitB)=0 • 而固定效应模型并不需要这个假设条件。 • 这是两种模型选择的关键。
面板数据基本命令
• 1、指定个体截面变量和时间变量:xtset • 2、对数据截面个数、时间跨度的整体描述: xtdes。分组内、组间和样本整体计算各个变量的 基本统计量xtsum。采用列表的方式显示某个变 量的分布xttab,较少使用。 • 3、list、sum、des、tabstat、histogram、 kdensity等命令都可以用。 • 4、对每个个体分别显示该变量的时间序列图: xtline。 • 5、静态面板数据基本回归命令:xtreg,系统默 认GLS估计。
其中, i=1,2,… N ; t=1, 2,…T uit称为复合扰动项。
固定效应模型
• 对于特定的个体i而言,ai 表示那些不随时 间改变的影响因素,如个人的消费习惯、 国家的社会制度、地区的特征、性别等, 一般称其为“个体效应” (individual effects)。如果把“个体效应”当作不随时 间改变的固定性因素, 相应的模型称为 “固定效应”模型。
• xtpcse OLS or Prais-Winsten models with panelcorrected standard errors • xtrchh Hildreth-Houck random coefficients models • xtivreg Instrumental variables and two-stage least squares for panel-data models • xtabond Arellano-Bond linear, dynamic panel data estimator • xtabond2 Arellano-Bond system dynamic panel data estimator(需要从网上下载) • xttobit Random-effects tobit models • xtintreg Random-effects interval data regression models
• xtabond Arellano-Bond linear, dynamic panel data estimator • xtabond2 Arellano-Bond system dynamic panel data estimator(需要从网上下载) • xttobit Random-effects tobit models • xtintreg Random-effects interval data regression models • xtreg Fixed-, between- and random-effects, and population-averaged linear models • xtregar Fixed- and random-effects linear models with an AR(1) disturbance • xtgls Panel-data models using GLS
面板向量自回归模型(Panel VAR) 面板单位根检验(Panel Unit Root test) 面板协整分析(Panel Cointegeration) 门槛面板数据模型(Panel Threshold) 面板联立方程组 面板空间计量
静态面板数据
• 静态面板数据模型,是指解释变量中不包 含被解释变量的滞后项(通常为一阶滞后项) 的情形。但严格地讲,随机干扰项服从某 种序列相关的模型,如AR(1), AR(2), MA(1) 等,也不是静态模型。静态面板数据主要 有两种模型------固定效应模型和随机效应 模型。
1953 1954 1951 1952 1953 .3 135.2 157.3 179.5 189.6
2159.4
2031.3 2115.5 1819.4 2079.7 2371.6 2759.9
面板数据模型
• 考虑如下模型: • Yit=Xitb+Uit • uit=ai+εit
相关文档
最新文档