高中数学人教版必修第二章统计单元测试卷(B)00
人教版高中数学必修三第二章《统计》单元检测精选(含答案解析)
人教版高中数学必修三第二章《统计》单元检测精选(含答案解析)一、选择题(本大题共12小题,每小题5分,共60分)1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是( ) A .1 000名学生是总体B .每个被抽查的学生是个体C .抽查的125名学生的体重是一个样本D .抽取的125名学生的体重是样本容量2.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1,那么对于样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可以表示为( ) A.12(1+x 2) B.12(x 2-x 1) C.12(1+x 5) D.12(x 3-x 4) 3.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别应抽取的人数是( )A .7,11,19B .6,12,18C .6,13,17D .7,12,174.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关5.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,那么另一组数3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数,方差分别是( )A .2,13 B .2,1C .4,23D .4,36.某学院有4个饲养房,分别养有18,54,24,48只白鼠供实验用.某项实验需抽取24只白鼠,你认为最合适的抽样方法是( ) A .在每个饲养房各抽取6只B .把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C .从4个饲养房分别抽取3,9,4,8只D .先确定这4个饲养房应分别抽取3,9,4,8只,再由各饲养房自己加号码颈圈,用简单随机抽样的方法确定7.下列有关线性回归的说法,不正确的是( )A .相关关系的两个变量不一定是因果关系B .散点图能直观地反映数据的相关程度C .回归直线最能代表线性相关的两个变量之间的关系D .任一组数据都有回归直线方程8.已知施肥量与水稻产量之间的回归直线方程为y ^=4.75x +257,则施肥量x =30时,对产量y 的估计值为( )A .398.5B .399.5C .400D .400.59.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ) A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某高中在校学生2 000人,高一与高二人数相同并都比高三多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二参与跑步的学生中应抽取( ) A .36人 B .60人 C .24人 D .30人11.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如右图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为( )A .19,13B .13,19C .20,18D .18,2012A .30%B .70%C .60%D .50%二、填空题(本大题共4小题,每小题5分,共20分)13.已知一个回归直线方程为y ^=1.5x +45(x i ∈{1,5,7,13,19}),则y =________. 14.若a 1,a 2,…,a 20这20个数据的平均数为x ,方差为0.21,则a 1,a 2,…,a 20,x 这21个数据的方差为________.15.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.16.某公司有员工49人,其中30岁以上的员工有14人,没超过30岁的员工有35人,为了解员工的健康情况,用分层抽样方法抽一个容量为7的样本,其中30岁以上的员工应抽取________人.三、解答题(本大题共6小题,共70分)17.(10分)某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:(1)(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?18.(12分)炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的一列数据如下表所示:(1)(2)求回归直线方程;(3)预测当钢水含碳量为160时,应冶炼多少分钟?19.(12分)甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.20.(12分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:(1)(2)若二者线性相关,求回归直线方程.21.(12分)某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A类工人中和B类工人中各抽查多少工人?(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.表1表2异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).22.(12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10(1)y与x是否具有线性相关关系?(2)如果y与x具有线性相关关系,求回归直线方程;(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?参考答案与解析1.C [在初中学过:“在统计中,所有考察对象的全体叫做总体,其中每一个所要考察的对象叫做个体,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量.”因此题中所指的对象应是体重,故A 、B 错误,样本容量应为125,故D 错误.]2.C [由题意把样本从小到大排序为x 1,x 3,x 5,1,-x 4,-x 2,因此得中位数为12(1+x 5).]3.B [因27∶54∶81=1∶2∶3,16×36=6,26×36=12,36×36=18.]4.C [由点的分布知x 与y 负相关,u 与v 正相关.]5.D [因为数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,所以x =2,15∑5i =1 (x i -2)2=13, 因此数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数为: 15∑5i =1 (3x i -2)=3×15∑5i =1x i-2=4, 方差为:15∑5i =1 (3x i -2-x )2=15∑5i =1 (3x i -6)2=9×15∑5i =1 (x i -2)2=9×13=3.] 6.D [因为这24只白鼠要从4个饲养房中抽取,因此要用分层抽样决定各个饲养房应抽取的只数,再用简单随机抽样法从各个饲养房选出所需白鼠.C 虽然用了分层抽样,但在每个层中没有考虑到个体的差异,也就是说在各个饲养房中抽取样本时,没有表明是否具有随机性,故选D.]7.D [根据两个变量具有相关关系的概念,可知A 正确,散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B 、C 正确.只有线性相关的数据才有回归直线方程,所以D 不正确.] 8.B [成线性相关关系的两个变量可以通过回归直线方程进行预测,本题中当x =30时,y ^=4.75×30+257=399.5.]9.D [由于甲地总体均值为3,中位数为4,即中间两个数(第5、6天)人数的平均数为4,因此后面的人数可以大于7,故甲地不符合.乙地中总体均值为1,因此这10天的感染人数总和为10,又由于方差大于0,故这10天中不可能每天都是1,可以有一天大于7,故乙地不符合.丙地中中位数为2,众数为3,3出现的最多,并且可以出现8,故丙地不符合.故丁地符合.]10.A [由题意知高一、高二、高三的人数分别为667,667,666. 设a =2k ,b =3k ,c =5k ,则a +b +c =35×2 000,即k =120.∴b =3×120=360.又2 000人中抽取200人的样本,即每10人中抽取一人,则360人中应抽取36人,故选A.]11.A [分别将甲、乙两名运动员的得分从小到大排列,中间位置的分数则为中位数.] 12.B [由数据分布表可知,质量不小于120克的苹果有10+3+1=14(个),占苹果总数的1420×100%=70%.]13.58.5解析 回归直线方程为y ^=1.5x +45经过点(x , y ),由x =9,知y =58.5. 14.0.215.0.030 3解析 因5个矩形面积之和为1,即(0.005+0.010+0.020+a +0.035)×10=1, ∴0.070×10+10a =1,∴a =0.030.由于三组内学生数的频率分别为:0.3,0.2,0.1,所以三组内学生的人数分别为30,20,10.因此从[140,150]内选取的人数为1060×18=3.16.217.解 (1)作出的散点图如图所示(2)易得x =52,y =692,所以b ^ =∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=418-4×52×69230-4×⎝⎛⎭⎫522=735,a ^ =y -b ^ x =692-735×52=-2.故y 对x 的回归直线方程为y ^ =735x -2.(3)当x =9时,y ^ =735×9-2=129.4.故当广告费为9万元时,销售收入约为129.4万元.18.解 (1)以x 轴表示含碳量,y 轴表示冶炼时间,可作散点图如图所示:从图中可以看出,各点散布在一条直线附近,即它们线性相关.设所求的回归直线方程为y =b x +a ,b ^ =∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2≈1.267,a ^ =y -b ^ x ≈-30.47.所求回归直线方程为 y ^=1.267x -30.47.(3)当x =160时,y ^=1.267×160+(-30.47)=172.25.即当钢水含碳量为160时,应冶炼约172.25分钟.19.解 (1)由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成绩较稳定. 从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高. 20.解 (1)作出散点图:观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系.(2)x =110(0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y =110(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,∑10i =1x i y i =27.51,∑10i =1x 2i =33.72, b ^=∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2≈0.813 6,a ^ =1.42-1.74×0.813 6≈0.004 3,∴回归方程为y ^=0.813 6x +0.004 3.21.解 (1)A 类工人中和B 类工人中分别抽查25名和75名.(2)①由4+8+x +5+3=25,得x =5,6+y +36+18=75,得y =15. 频率分布直方图如下:图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小.②x A =425×105+825×115+525×125+525×135+325×145=123,x B =675×115+1575×125+3675×135+1875×145=133.8,x =25100×123+75100×133.8=131.1.A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1. 22.解 (1)作出如下散点图:由图可知,y 与x 具有线性相关关系.x =55,y =91.7,∑10i =1x 2i =38 500,∑10i =1y 2i =87 777,∑10i =1x i y i =55 950, 设所求的回归直线方程为y ^ =b ^ x +a ^,则有b ^ =∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668,a ^ =y -b ^ x =91.7-0.668×55=54.96,因此,所求的回归直线方程为y ^ =0.668x +54.96.(3)这个回归直线方程的意义是当x 每增加1时,y 的值约增加0.668,而54.96是y 不随x 变化而变化的部分,因此,当x =200时,y 的估计值为y ^ =0.668×200+54.96=188.56≈189,因此,加工200个零件所用的时间约为189分.。
高中数学 第二章 统计模块复习课检测 新人教B版必修3-新人教B版高一必修3数学试题
第2课时统计课后篇巩固探究A组1.下列不具有相关关系的是()A.单产不为常数时,土地面积和总产量B.人的身高与体重C.季节与学生的学习成绩D.学生的学习态度与学习成绩.2.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是()A.5B.7C.11D.13k==16,即每16人抽取一个人.因为39=2×16+7,所以第1小组中抽取的数为7.3.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.48.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016=9.5.方差s2=[(9.4-9.5)2+(9.4-9.5)2+(9.6-9.5)2+(9.4-9.5)2+(9.7-9.5)2]=0.016.4.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家,为了掌握各商店的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型商店为() A.2家B.3家C.5家D.13家1:在整个抽样过程中,每个个体被抽到的可能性为,则抽取的中型商店为75×=5(家).方法2:因为大、中、小型商店数的比为30∶75∶195=2∶5∶13,所以抽取的中型商店为20×=5(家).答案:C5.某商场在五一促销活动中,对5月1日9时至14时的销售额进行统计,其频率分布直方图如图,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为()A.6万元B.8万元C.10万元D.12万元解析:由频率分布直方图可知,11时至12时的销售额占全部销售额的,即销售额为25×=10(万元).答案:C6.从一堆苹果中任取了20个,并得到它们的质量(单位:g)数据分布表如下:分组[90,100) [100,110) [110,120) [120,130) [130,140) [140,150)频数 1 2 3 10 1则这堆苹果中,质量不小于120 g的苹果数约占苹果总数的.解析:由表中可知这堆苹果中,质量不小于120 g的苹果数为20-1-2-3=14.故约占苹果总数的=0.70=70%.答案:70%7.某产品的广告费用x与销售额y的统计数据如下表:广告费用x/万元 4 2 3 5销售额y/万元49 26 39 54根据上表可得回归方程x+中的为9.4,据此模型预报广告费用为6万元时销售额约为元.解析:=3.5,=42,∴=42-9.4×3.5=9.1,∴回归方程为=9.4x+9.1,∴当x=6时,=9.4×6+9.1=65.5..58.现有同一型号的电脑96台,为了了解这种电脑每开机一次所产生的辐射情况,从中抽取10台在同一条件下做开机实验,测量开机一次所产生的辐射,得到如下数据:13.712.914.413.813.312.713.513.613.113.4(1)写出采用简单随机抽样抽取上述样本的过程;(2)根据样本,请估计总体平均数与总体标准差的情况.解:(1)利用随机数表法或抽签法.具体过程如下:方法一(抽签法):①将96台电脑随机编号为1~96;②将以上96个分别写在96X相同的小纸条上,揉成小球,制成号签;③把号签放入一个不透明的容器中,充分搅拌均匀;④从容器中逐个抽取10个号签,每次取完后再次搅拌均匀,并记录上面的;⑤找出和所得对应的10台电脑,组成样本.方法二(随机数表法):①将96台电脑随机编号,编号为00,01,02, (95)②在随机数表中任选一数作为开始,然后依次向右读,每次读两位,凡不在00~95中的数和前面已读过的数跳过不读,直到读出10个符合条件的数;③这10个数所对应的10台电脑即是我们所要抽取的样本.(2)=13.44;s2=≈0.461.故总体平均数为13.44,总体标准差约为0.461.9.对某班50人进行智力测验,其得分如下:48,64,52,86,71,48,64,41,86,79,71,68,82,84,68,64,62,68,81,57,90,52,74,73,56,78,47,66,5 5,64,56,88,69,40,73,97,68,56,67,59,70,52,79,44,55,69,62,58,32,58.(1)这次测试成绩的最大值和最小值各是多少?(2)将[30,100)平分成7个小区间,试画出该班学生智力测验成绩的频数分布图.(3)分析这个频数分布图,你能得出什么结论?解:(1)最小值是32,最大值是97.(2)7个区间分别是[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),每个小区间的长度是10,统计出各小区间内的数据频数,列表如下:区间[30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)频数 1 6 12 14 9 6 2频数分布图如下图所示.(3)可以看出,该班智力测验成绩大体上呈两头小、中间大、左右对称的钟形状态,说明该班学生智力特别好或特别差的是极少数,而智力一般的是多数,这是一种最常见的分布.10.导学号17504078已知学生的总成绩与数学成绩之间有线性相关关系,下表给出了5名同学在一次考试中的总成绩和数学成绩(单位:分).学生编号1 2 3 4 5成绩总成绩/x482 383 421 364 362数学成绩/y78 65 71 64 61(1)求数学成绩与总成绩的回归直线方程.(2)根据以上信息,如果一个学生的总成绩为450分,试估计这个学生的数学成绩;(3)如果另一位学生的数学成绩为92分,试估计其总成绩是多少?解:(1)列出下表,并进行有关计算.编号x y x2xy1 482 78 232 324 37 5962 383 65 146 689 24 8953 421 71 177 241 29 8914 364 64 132 496 23 2965 362 61 131 044 22 082合计 2 012 339 819 794 137 760由上表可得,可得≈0.132,-0.132×≈14.683.故数学成绩y对总成绩x的回归直线方程为=14.683+0.132x.(2)由(1)得当总成绩x为450分时,=14.683+0.132×450≈74(分),即数学成绩大约为74分.(3)若数学成绩为92分,将=92代入回归直线方程=14.683+0.132x中,得x≈586(分).故估计该生的总成绩在586分左右.B组1.设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a解析:=+a=1+a.s2===4.答案:A2.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m o,平均值为,则()A.m e=m o=B.m e=m o<C.m e<m o<D.m o<m e<解析:由题目所给的统计图示可知,30个得分中,按大小顺序排好后,中间的两个得分为5,6,故中位数m e==5.5,又众数m o=5,平均值(3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×2)=,故m o<m e<.答案:D3.某市为加强教师基础素质建设,开展了“每月多读一本书,提高自身修养”的读书活动.设该市参加读书活动的教师平均每人每年读书的本数为x(单位:本),按读书本数分下列四种情况统计:①0~10本;②11~20本;③21~30本;④30本以上.现有10 000名教师参加了此项活动,如图是此次调查中某一项的程序框图,其输出的结果为6 200,则该市参加活动的教师中平均每年读书本数在0~20之间的频率是()A.3 800B.6 200C.0.38D.0.62解析:由程序框图知,当x>20时,S=S+1,故输出的S值应是10 000名教师中读书本数大于20的人数,故S=6 200,∴在0~20之间的频率为=0.38.答案:C4.(2017某某某某二中高三一模)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得为12的学生,则在第八组中抽得为的学生.解析:由题意得,在第八组中抽得为12+(8-3)×5=37.答案:375.某公司为改善职工的出行条件,随机抽取50名职工,调查他们的居住地与公司的距离d(单位:千米).若样本数据分组为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],由数据绘制的频率分布直方图如图所示,则样本中职工居住地与公司的距离不超过4千米的人数为.解析:样本中职工居住地与公司的距离不超过4千米的频率为(0.1+0.14)×2=0.48,所以样本中职工居住地与公司的距离不超过4千米的人数为50×0.48=24.答案:246.导学号17504079从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125)频数 6 26 38 22 8(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解:(1)(2)质量指标值的样本平均数为=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.7.导学号17504080某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元8 8.2 8.4 8.6 8.8 9销量y/件90 84 83 80 75 68(1)求回归直线方程x+,其中=-20,;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解:(1)=8.5,=80.∵=-20,,∴=80+20×8.5=250.∴回归直线方程为=-20x+250.(2)设工厂获得的利润为L元,则L=x(-20x+250)-4(-20x+250)=-20(x-8.25)2+361.25,∴该产品的单价定为8.25元时,工厂获得的利润最大.。
人教版高一数学必修三第二章统计全部教案和测试题
人教版高一数学必修三第二章统计目录2.1.1 简单随机抽样(新授课)2.1.2 系统抽样(新授课)2.1.3 分层抽样(新授课)2.2.1用样本的频率分布估计总体分布(2课时)(新授课) 2.2.2用样本的数字特征估计总体的数字特征(2课时)(新授课) 2.3.1变量之间的相关关系(新授课)2.3.2两个变量的线性相关(第一课时)(新授课)2.3.2两个变量的线性相关(第二课时)(新授课)2.3.2生活中线性相关实例(第三课时)(新授课)第二章统计单元检测题(一)第二章统计单元检测题(一)参考答案第二章统计单元检测题(二)第二章统计单元检测题(二)参考答案第二章统计单元检测题(三)第二章统计单元检测题(三)参考答案第二章统计一、课程目标:本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
本章通过实际问题,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。
二、学习目标:1、随机抽样(1)能从现实生活或其他学科中提出具有一定价值的统计问题。
(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性。
(3)在参与解决统计问题的过程中,学会用简单随机抽样从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
(4)通过试验、查阅资料、设计调查问卷等方法收集数据。
2、用样本估计总体(1)通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布彪、花频率分布直方图、频率折线图、茎叶土,体会它们各自的特点。
(2)通过实例理解样本数据标准差的意义和作用,学会计算数据样本差。
(3)能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,并做出合理的解释。
(4)进一步体会用样本估计总体的思想。
(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。
(6)形成对数据处理过程进行初步评价的意识。
高中数学人教版必修1第二章基本初等函数单元测试卷(B)Word版含答案
第二章 基本初等函数 单元测试卷(B )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.有下列各式:①na n=a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43 +y ;④3-5=6(-5)2.其中正确的个数是( ) A .0 B .1 C .2D .32.三个数log 215,20.1,20.2的大小关系是( ) A .log 215<20.1<20.2B .log 215<20.2<20.1C .20.1<20.2<log 215D .20.1<log 215<20.23.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)4.已知2x=3y,则xy =( )A.lg2lg3B.lg3lg2 C .lg 23 D .lg 325.函数f (x )=x ln|x |的图象大致是( )6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为奇函数,g (x )为偶函数 C .f (x )与g (x )均为奇函数 D .f (x )为偶函数,g (x )为奇函数7.函数y =(m 2+2m -2)x 1m -1 是幂函数,则m =( ) A .1 B .-3 C .-3或1D .28.下列各函数中,值域为(0,+∞)的是( ) A .y =2-x2B .y =1-2xC .y =x 2+x +1D .y =31x +19.已知函数:①y =2x;②y =log 2x ;③y =x -1;④y =x 12 ;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ) (x <1)2x -1 (x ≥1),则f (-2)+f (log 212)=( )A .3B .6C .9D .1211.已知函数f (x )=⎩⎨⎧(a -2)x ,x ≥2,(12)x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( ) A .(-∞,2) B .(-∞,138] C .(-∞,2]D .[138,2)12.(2016·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为( ) A .0个 B .1个 C .2个D .3个第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.已知a 12 =49(a >0),则log 23a =________.14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________. 15.若函数y =log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.16.(2016·邵阳高一检测)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22 x ,y =x 12 ,y =(22)x 的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题满分10分)计算:10.25+(127)-13 +(lg3)2-lg9+1-lg 13+810.5log 35.18.(本小题满分12分)已知函数f (x )=(12)ax,a 为常数,且函数的图象过点(-1,2). (1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.19.(本小题满分12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(本小题满分12分)求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0,且a ≠1).21.(本小题满分12分)(2016·雅安高一检测)已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(本小题满分12分)若函数f (x )满足f (log a x )=a a 2-1·(x -1x )(其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围.第二章 基本初等函数 单元综合测试二 答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分) 1.[答案] B [解析] ①na n=⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数(n >1,且n ∈N *),故①不正确.②a 2-a +1=(a -12)2+34>0,所以(a 2-a +1)0=1成立.③3x 4+y 3无法化简.④3-5<0,6(-5)2>0,故不相等.因此选B. 2.[答案] A[解析] ∵log 215<0,0<20.1<20.2, ∴log 215<20.1<20.2,选A. 3.[答案] C[解析] A ={y |y =2x ,x ∈R }={y |y >0}.B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B ={x |x >0}∪{x |-1<x <1}={x |x >-1},故选C. 4.[答案] B[解析] 由2x =3y 得lg2x =lg3y ,∴x lg2=y lg3, ∴x y =lg3lg2. 5.[答案] A[解析] 由f (-x )=-x ln|-x |=-x ln|x |=-f (x )知,函数f (x )是奇函数,故排除C ,D ,又f (1e )=-1e <0,从而排除B ,故选A.6.[答案] D[解析]因为f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)是偶函数,g(x)为奇函数,故选D.7.[答案] B[解析]因为函数y=(m2+2m-2)x 1m-1是幂函数,所以m2+2m-2=1且m≠1,解得m=-3.8.[答案] A[解析]A,y=2-x2=(22)x的值域为(0,+∞).B,因为1-2x≥0,所以2x≤1,x≤0,y=1-2x的定义域是(-∞,0],所以0<2x≤1,所以0≤1-2x<1,所以y=1-2x的值域是[0,1).C,y=x2+x+1=(x+12)2+34的值域是[34,+∞),D,因为1x+1∈(-∞,0)∪(0,+∞),所以y=31x+1的值域是(0,1)∪(1,+∞).9.[答案] D[解析]根据幂函数、指数函数、对数函数的图象可知选D. 10.[答案] C[解析]f(-2)=1+log2(2-(-2))=3,f(log212)=2log212-1=2log26=6,∴f(-2)+f(log212)=9,故选C.11.[答案] B[解析]由题意知函数f(x)是R上的减函数,于是有⎩⎨⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B. 12.[答案] C[解析] 设指数函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.[答案] 4[解析] ∵a 12 =49(a >0), ∴(a 12)2=[(23)2]2,即a =(23)4, ∴log 23 a =log 23 (23)4=4.14.[答案] 19[解析] ∵14>0,∴f (14)=log 214=-2. 则f (14)<0,∴f (f (14))=3-2=19. 15.[答案] (-8,-6][解析] 令g (x )=3x 2-ax +5,其对称轴为直线x =a6,依题意,有⎩⎨⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8.∴a ∈(-8,-6]. 16.[答案] (12,14)[解析] 由图象可知,点A (x A,2)在函数y =log 22 x 的图象上,所以2=log 22 x A ,x A =(22)2=12. 点B (x B,2)在函数y =x 12 的图象上, 所以2=x B 12 ,x B =4.点C (4,y C )在函数y =(22)x的图象上, 所以y C =(22)4=14. 又x D =x A =12,y D =y C =14, 所以点D 的坐标为(12,14).三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.[解析] 原式=10.5+(3-1)-13 +(lg3-1)2-lg3-1+(34)0.5log 35 =2+3+(1-lg3)+lg3+32log 35 =6+3log 325=6+25=31.18.[解析] (1)由已知得(12)-a=2,解得a =1. (2)由(1)知f (x )=(12)x,又g (x )=f (x ),则4-x-2=(12)x ,即(14)x -(12)x-2=0,即[(12)x ]2-(12)x-2=0,令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即(12)x =2,解得x =-1. 19.[解析] (1)当a =2时,f (x )=log 2(1+x ), 在[3,63]上为增函数,因此当x =3时,f (x )最小值为2. 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧ 1+x >1-x 1+x >01-x >0∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧1+x <1-x 1+x >01-x >0∴-1<x <0综上a >1时,解集为{x |0<x <1} 0<a <1时解集为{x |-1<x <0}. 20.[解析] ∵(1a )x 2-8=a 8-x 2, ∴原不等式化为a 8-x 2>a -2x . 当a >1时,函数y =a x 是增函数, ∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数,∴8-x2<-2x,解得x<-2或x>4.故当a>1时,x的集合是{x|-2<x<4};当0<a<1时,x的集合是{x|x<-2或x>4}.21.[解析](1)∵f(x)=2x,∴g(x)=f(2x)-f(x+2)=22x-2x+2.因为f(x)的定义域是[0,3],所以0≤2x≤3,0≤x+2≤3,解得0≤x≤1.于是g(x)的定义域为{x|0≤x≤1}.(2)设g(x)=(2x)2-4×2x=(2x-2)2-4.∵x∈[0,1],∴2x∈[1,2],∴当2x=2,即x=1时,g(x)取得最小值-4;当2x=1,即x=0时,g(x)取得最大值-3.22.[解析](1)令log a x=t(t∈R),则x=a t,∴f(t)=aa2-1(a t-a-t).∴f(x)=aa2-1(a x-a-x)(x∈R).∵f(-x)=aa2-1(a-x-a x)=-aa2-1(a x-a-x)=-f(x),∴f(x)为奇函数.当a>1时,y=a x为增函数,y=-a-x为增函数,且a2a2-1>0,∴f(x)为增函数.当0<a<1时,y=a x为减函数,y=-a-x为减函数,且a2a2-1<0,∴f(x)为增函数.∴f(x)在R上为增函数.(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数.由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即aa2-1(a2-a-2)≤4.∴aa2-1(a4-1a2)≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-3≤a≤2+ 3.又a≠1,∴a的取值范围为[2-3,1)∪(1,2+3].。
高中数学第二章统计221用样本的频率分布估计总体分布练习含解析新人教A版必修
2.2.1 用样本的频率分布估计总体分布A级基础巩固一、选择题1.没有信息的损失,所有的原始数据都可以从图中得到的统计图是( )A.总体密度曲线B.茎叶图C.频率分布折线图D.频率分布直方图答案:B2.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )B.C.D.解析:数据总个数n=10,又落在区间[22,30)内的数据个数为4,故所求的频率为410=0.4.答案:B3.某雷达测速区规定:凡车速大于或等于70 km/h的汽车视为“超速”,并将受到处罚.下图是某路段的一个检测点对300辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可得出将被处罚的汽车数为( )A.30辆B.40辆C.60辆D.80辆解析:车速大于或等于70 km/h的汽车数为×10×300=60(辆).答案:C4.一个社会调查机构就某地区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图),为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(单位:元)月收入段应抽出的人数为( )A.5 B.25 C.50 D.2 500解析:组距=500,在[2 500,3 000)的频率=0.000 5×500=,样本数为100,则在[2 500,3 000)内应抽100×=25(人).答案:B5.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,仅知道后5组的频数和为62.设视力在到之间的学生数为a,最大频率为,则a的值为( )A.27 B.48 C.54 D.64解析:由已知,视力在到之间的学生数为100×=32,又视力在到之间的频率为1-+0.5)×-62100=,所以视力在到之间的学生数为100×=22,所以视力在到之间的学生数a =32+22=54.答案:C二、填空题6.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组/分频数频率[80,90)①②[90,100)[100,110)[110,120)36[120,130)[130,140)12③[140,150]合计④根据上面的频率分布表,可以①处的数值为________,②处的数值为________. 解析:由位于[110,120)的频数为36,频率=36n=,得样本容量n =120,所以[130,140)的频率=12120=,②处的数值=1------=; ①处的数值为×120=3. 答案:37.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[140,150]内的学生中抽取的人数应为________.解析:所有小矩形的面积和等于10×++0.020+a +0.035)=1,解得a =;100名同学中,身高在[120,130)内的学生数是10××100=30,身高在[130,140)内的学生数是10××100=20,身高在[140,150]内的学生数是10××100=10,则三组内的总学生数是30+20+10=60,抽样比是1860=310,所以身高在[140,150]内的学生中选取的人数应为10×310=3.答案: 38.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,25)内的人数为________.答案:60三、解答题9.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得到如图所示的茎叶图.(1)甲网站点击量在[10,40]间的频率是多少? (2)甲、乙两个网站哪个更受欢迎?请说明理由.解:(1)甲网站点击量在[10,40]内的有17,20,38,32,共有4天,则频率为414=27. (2)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎.10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? 解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由题意估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.B 级 能力提升1.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18解析:志愿者的总人数为20(+)×1=50,所以第三组的人数为50×=18,有疗效的人数为18-6=12.答案:C2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,则运动员人数为4.答案:43.从高一学生中抽取50名参加调研考试,成绩的分组及各组的频数如下(单位:分): [40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[70,80)分的学生所占总体的百分比.解:(1)频率分布表如下:成绩分组频数频率[40,50)2[50,60)3[60,70)10[70,80)15[80,90)12[90,100]8合计50(2)由题意知组距为10,取小矩形的高根据表格画出如下的频率分布直方图:(3)由频率分布直方图,可估计成绩在[70,80)分的学生所占总体的百分比是×10==30%.。
(人教版)高中数学必修二(全册)单元测试卷汇总
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
人教版高中数学第二章 统计B综合拓展(共41张PPT)教育课件
1.A 【解析】 调查的目的是“了解某地5 000名居民某天的阅读时间”,所以“5 000名居民的阅读时间”是调查的总 体.
2.[2019青海西宁高一(下)期末考试]用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号 .按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第15组中抽出的号码为118,则第一组中按此方法确 定的号码是( ) A.7 B.6 C.5 D.4
.
答案
16.[2019广东东莞期末考试]子代与父代的身高之间是线性相关关系,已知某数学老师身高176 cm,他爷爷、父亲和 儿子的cm,根据最小二乘法原理进行线性回归分析,可预测该老师的孙子的身高 为_____ cm.
答案
16.185 【解析】 父亲和儿子的身高数据: 父亲身高x/cm 儿子身高y/cm
答案
A.1 B.2 C.3 D.4
答案
答案
气温/℃ 用电量/度
c 13 10 -1 24 34 38 d
14.已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成 5组,按系统
抽样方法从各组中抽取一个编号.
(1)若第1组抽出的编号为2,则所有被抽出的职工的编号为
智力评分/分 [160,165) [165,170)
频数
2
5
[170,175) 14
[175,180) 13
[180,185) 4
[185,190] 2
表2:女生“智力评分”频数分布表
智力评分/分 [150,155) [155,160)
频数
1
7
[160,165) 12
[165,170) 6
2021年高中数学 第二章 统计综合测试题(含解析)新人教B版必修3
2021年高中数学 第二章 统计综合测试题(含解析)新人教B 版必修3一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列哪种工作不能使用抽样方法进行( ) A .测定一批炮弹的射程B .测定海洋某一水域的某种微生物的含量C .高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D .检测某学校全体高三学生的身高和体重的情况 [答案] D[解析] 抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A 、B 、C 都是从总体中抽取部分个体进行检验,选项D 是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法.故选D.2.高一·一班李明同学进行一项研究,他想得到全班同学的臂长数据,他应选择的最恰当的数据收集方法是( )A .做试验B .查阅资料C .设计调查问卷D .一一询问[答案] A[解析] 全班人数不是很多,所以做试验最恰当.3.设有一个回归方程为y ^=2-2.5x ,变量x 增加一个单位时,变量y ( ) A .平均增加1.5个单位 B .平均增加2个单位 C .平均减少2.5个单位D .平均减少2个单位 [答案] C[解析] 因为随变量x 增大,y 减小,x 、y 是负相关的,且b ^=-2.5,故选C. 4.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,根据此图估计学生在课外读物方面的支出费用的中位数为( )元( )A .45B .3909C.4009D .46[答案] C [解析] 40+10×0.160.36=4009. 5.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,按下述三种方法抽取:①将160人从1至160编上号,然后用白纸做成1~160号的签160个放入箱内拌匀,然后从中抽取20个签,与签号相同的20个人被选出;②将160人从1至160编上号,按编号顺序分成20组,每组8人,即1~8号,9~16号,…,153~160号.先从第1组中用抽签方法抽出k 号(1≤k ≤8),其余组的(k +8n )号(n =1、2、…、19)亦被抽出,如此抽取20人;③按20160=18的比例,从业务人员中抽取12人,从管理人员中抽取5人,从后勤人员中抽取3人,都用随机数表法从各类人员中抽取所需的人数,他们合在一起恰好抽到20人.上述三种抽样方法,按简单随机抽样、分层抽样、系统抽样的顺序是( ) A .①、②、③ B .②、①、③ C .①、③、② D .③、①、②[答案] C[解析] ①是简单随机抽样;②是系统抽样;③是分层抽样,故选C.6.样本中共有五个个体,其值分别为a 、0、1、2、3.若该样本的平均值为1,则样本方差为( )A.65 B .65C. 2 D .2[答案] D [解析] ∵a +0+1+2+35=1,∴a =-1,故S 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.7.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )8 9 79 3 1 6 4 0 2A .91.5和91.5 C .91和91.5 D .92和92[答案] A[解析] 将这组数据从小到大排列,得87、89、90、91、92、93、94、96. 故平均数x -=87+89+90+91+92+93+94+968=91.5,中位数为91+922=91.5,故选A.8.对变量x 、y 有观测数据理据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u 、v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 [答案] C[解析] 本题主要考查了变量的相关知识,考查学生分析问题和解决问题的能力.由散点图可以判断变量x与y负相关,u与v正相关.9.已知样本容量为30,在样本频率分布直方图中,各小长方形的高的比从左到右依次为2431,则第2组的频率和频数分别是( )A.0.4,12 B.0.6,16C.0.4,16 D.0.6,12[答案] A[解析]因为各小长方形的高的比从左到右依次为2431,所以第2组的频率为0.4,频数为30×0.4=12.10.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高y(单位:cm)对年龄x(单位:岁)的回归直线方程y=73.93+7.19x,用此方程预测儿子10岁时的身高,有关叙述正确的是( )A.身高一定为145.83 cmB.身高大于145.83 cmC.身高小于145.83 cmD.身高在145.83 cm左右[答案] D[解析]用回归直线方程预测的不是准确值,而是估计值.当x=10时,y=145.83,只能说身高在145.83 cm左右.11.设矩形的长为a,宽为b,其比满足b a=5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定[答案] A[解析]本小题主要考查学生的知识迁移能力和统计的有关知识.x -甲=0.598+0.625+0.628+0.595+0.6395=0.617,x -乙=0.618+0.613+0.592+0.622+0.6205=0.613,故选A.12.某示范农场的鱼塘放养鱼苗8万条,根所这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,试估计鱼塘中鱼的总质量约为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg[答案] A[解析] 平均每条鱼的质量为x -=40×2.5+25×2.2+35×2.840+25+35=2.53(kg),所以估计这时鱼塘中鱼的总质量约为80 000×95%×2.53=192 280(kg).二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上.) 13.一支田径队有男女运动员98人,其中男运动员有56人.按男、女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.[答案] 12 [解析] ∵2898=27,即每7人抽取2人,又知女运动员人数为98-56=42, ∴应抽取女运动员人数为42×27=12(人).分层抽样中抓住“抽样比”是解决问题的关键.14.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为________和________.[答案] 24 23[解析] x -甲=110(10×2+20×5+30×3+17+6+7)=24,x -乙=110(10×3+20×4+30×3+17+11+2)=23.15.(xx·山东临沂高一期末测试)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55)、[55,65)、[65,75)、[75,85)、[85,95),由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[55,75)的人数是________.[答案]13[解析]由频率分布直方图知[55,75)之间的频率为(0.040+0.025)×10=0.65,故[55,75)之间的人数为0.65×20=13.16.某校甲、乙两个班级各有5名编号为1、2、3、4、5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号2号3号4号5号甲组67787乙组67679则以上两组数据的方差中较小的一个为s2=______.[答案]2 5[解析]x甲=6+7+7+8+75=7,x乙=6+7+6+7+95=7.∴s2甲=6-72+7-72+7-72+8-72+7-725=25,s2乙=7-62+7-72+7-62+7-72+7-925=65,则两组数据的方差中较小的一个为s2甲=25 .三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)下面的抽样方法是简单随机抽样吗?为什么?(1)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回,再拿一件,连续玩了5件;(3)从200个灯泡中逐个抽取20个进行质量检查. [解析] (1)不是简单随机抽样,因为这不是等可能抽样. (2)不是简单随机抽样,因为它是有放回的抽样.(3)是简单随机抽样,因为它满足简单随机抽样的几个特点.18.(本题满分12分)已知某班4个小组的人数分别为10、10、x 、8,这组数据的中位数与平均数相等,求这组数据的中位数.[解析] 该组数据的平均数为14(28+x ),中位数一定是其中两个数的平均数,因为x不知是多少,所以要分几种情况讨论.(1)当x ≤8时,原数据按从小到大的顺序为x,8,10,10,其中位数为12(10+8)=9.若14(x+28)=9,则x =8,此时中位数为9.(2)当8<x ≤10时,原数据按从小到大顺序排列为8,x,10,10,其中位数为12(x +10),若14(x +28)=12(x +10),则x =8,而8不在8<x ≤10的范围内, ∴舍去.(3)当x >10时,原数据为8,10,10,x , 其中位数为12(10+10)=10.若14(x +28)=10,则x =12,∴此时中位数为10. 综上所述,这组数据的中位数为9或10.19.(本题满分12分)一箱方便面共有50包,从中用随机抽样方法抽取了10包称量其重量(单位:g)结果为:60.5 61 60 60 61.5 59.5 59.5 58 60 60(1)指出总体、个体、样本、样本容量; (2)指出样本数据的众数、中位数、平均数; (3)求样本数据的方差.[解析] (1)总体是这50包方便面所有的包重,个体是这一箱方便面中每一包的包重,样本是抽取的10包的包重,样本容量为10.(2)这组样本数据的众数是60,中位数为60,样本平均数x -=110×(60.5+61+60+60+61.5+59.5+59.5+58+60+60)=60.(3)样本数据的方差为s 2=110[(60.5-60)2+(61-60)2+(60-60)2+(60-60)2+(61.5-60)2+(59.5-60)2+(59.5-60)2+(58-60)2+(60-60)2+(60-60)2]=0.8.20.(本题满分12分)(xx·安徽黄山高一期末测试)某班的全体学生共有50人,参加数学测试(百分制)成绩的频率分布直方图如图,数据的分组依次为:[20,40)、[40,60)、[60,80)、[80,100].依此表可以估计这一次测试成绩的中位数为70分.(1)求表中a、b的值;(2)请估计该班本次数学测试的平均分.[解析](1)由中位数为70可得,0.005×20+0.01×20+a×10=0.5,解得a=0.02.又20(0.005+0.01+0.02+b)=1,解得b=0.015.(2)该班本次数学测试的平均分的估计值为30×0.1+50×0.2+70×0.4+90×0.3=68分.21.(本题满分12分)有一容量为50的样本,数据的分组以及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5),4.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计,数据落在[15.5,24.5)内的可能性约是多少?[解析](1)频率分布表为:分组频数频数频率[12.5,15.530.06)[15.5,18.580.16)[18.5,21.590.18)[21.5,24.5110.22)[24.5,27.5)100.20[27.5,30.5)50.10[30.5,33.5)40.08合计50 1.00(2)频率分布直方图如图所示:(3)数据落在[15.5,24.5)内的可能性为:8+9+1150=0.56.22.(本题满分14分)(x x·河南新乡市高一期末测试)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求线性回归方程y=b x+a;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是 3.5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).(参考公式与数据:6i=1x i y i=4 066,∑i=16x2i=434.2,∑i=16x i=51,∑i=16y i=480.b^=∑i=16x i y i-n x y∑i=16x2i-n x2,a^=y-b^x)[解析](1)x=16(8+8.2+8.4+8.6+8.8+9)=516=8.5,y=16(90+84+83+80+75+68)=4806=80.b ^=∑i =16x i y i -n x y∑i =16x 2i -n x 2=4 066-6×8.5×80434.2-6×8.52=-20, a ^=y -b ^x =80-(-20)×8.5=250.∴线性回归直线方程为y ^=-20x +250. (2)设工厂的利润为y ,依题意得y =(-20x +250)(x -3.5)=-20(x -8)2+405,∴当x =8时,y 取最大值405.即该产品的单价应定为8元时,工厂获得最大利润.i25332 62F4 拴! 7 23630 5C4E 屎26225 6671 晱32922 809A 肚360488CD0 賐22375 5767 坧(NF。
2019人教B版必修三第二章统计单元练习题
2019人教B 版必修三第二章统计单元练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A.0.5B.0.6C.0.7D.0.82.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生3.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差4.已知变量x 与y 负相关,且由观测数据算得样本平均数4, 5.6x y ==,则由该观测的数据算得的线性回归方程可能是 A.0.44y x =+ B. 1.20.7y x =+ C.0.68y x =-+D.0.78.2y x =-+5.某学校老师中,O 型血有36人、A 型血有24人、B 型血有12人,现需要从这些老师中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量减少一个,则在采用系统抽样时,需要在总体中剔除2个个体,则样本容量n 可能为( ) A.12B.8C.6D.46.如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2019年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长7.A ,B 两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A ,B 两人的平均成绩分别是A x ,B x ,观察茎叶图,下列结论正确的是( )A .AB x x <,B 比A 成绩稳定 B .A B x x >,B 比A 成绩稳定C .A B x x <,A 比B 成绩稳定D .A B x x >,A 比B 成绩稳定8.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1-160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是( ) A.7B.6C.5D.4二、填空题9.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.10.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.11.某学校高一、高二、高三共有2400名学生,为了调查学生的课余学习情况,拟采用分层抽样的方法抽取一个容量为120的样本已知高一有820名学生,高二有780名学生,则在该学校的高三应抽取_________名学生.12.在2019年3月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是3.240y x =-+,且20m n +=,则其中的n =__.三、解答题13.2019年“非洲猪瘟”过后,全国生猪价格逐步上涨,某大型养猪企业,欲将达到养殖周期的生猪全部出售,根据去年的销售记录,得到销售生猪的重量的频率分布直方图(如图所示).(1)根据去年生猪重量的频率分布直方图,估计今年生猪出栏(达到养殖周期)时,生猪重量达不到270斤的概率(以频率代替概率);(2)若假设该企业今年达到养殖周期的生猪出栏量为5000头,生猪市场价格是8元/斤,试估计该企业本养殖周期的销售收入是多少万元;(3)若从本养殖周期的生猪中,任意选两头生猪,其重量达到270斤及以上的生猪数为随机变量Y ,试求随机变量Y 的分布列及方差.14.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).参考答案1.C 【解析】 【分析】根据题先求出阅读过西游记的人数,进而得解. 【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C . 【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题. 2.C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样. 3.A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =+++++,后来平均数234817x x x x x '=+++()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确 ③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解. 4.C 【解析】 【分析】根据x 与y 负相关可知b 为负数,将样本平均数点带入选项检验,可求得回归直线方程。
人教A版必修一高中数学单元测试卷第二章章末检测B(含答案)
章末检测(B)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N 等于()A .MB .NC .[0,4)D .[0,+∞)2.函数y =3|x |-1的定义域为[-1,2],则函数的值域为()A .[2,8]B .[0,8]C .[1,8]D .[-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为()A .1B .2C .-1 D.124.21log 52 等于()A .7B .10C .6 D.925.若100a =5,10b =2,则2a +b 等于()A .0B .1C .2D .36.比较13.11.5、23.1、13.12的大小关系是()A .23.1<13.12<13.11.5B .13.11.5<23.1<13.12C .13.11.5<13.12<23.1D .13.12<13.11.5<23.17.式子log 89log 23的值为()A.23B.32C .2D .38.已知ab >0,下面四个等式中:①lg(ab )=lg a +lg b ;②lg a b =lg a -lg b ;③12lg(ab )2=lg a b;④lg(ab )=1log ab 10.其中正确命题的个数为()A .0B .1C .2D .39.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.函数y =2x 与y =x 2的图象的交点个数是()A .0B .1C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于()A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是()A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )x ,x ≥41),x <4,则f (2+log 23)的值为______.14.函数f (x )=log a 3-x 3+x(a >0且a ≠1),f (2)=3,则f (-2)的值为________.15.函数y =212log (32)x x -+的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x +5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x>1且x≠43,f(x)=1+log x3,g(x)=2log x2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x),14≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=log a1+x1-x (a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.章末检测(B)1.C [由题意,得M ={x |x <4},N ={y |y ≥0},∴M ∩N ={x |0≤x <4}.]2.B [当x =0时,y min =30-1=0,当x =2时,y max =32-1=8,故值域为[0,8].]3.D [由f (3x )=log 29x +12,得f (x )=log 23x +12,f (1)=log 22=12.]4.B [21log 52 =2·2log 52=2×5=10.]5.B [由100a =5,得2a =lg 5,由10b =2,得b =lg 2,∴2a +b =lg 5+lg 2=1.]6.D[∵13.11.5=1.5-3.1=(11.5)3.1,13.12=2-3.1=(12)3.1,又幂函数y =x 3.1在(0,+∞)上是增函数,12<11.5<2,∴(12)3.1<(11.5)3.1<23.1,故选D.]7.A [∵log 89=log 232log 223=23log 23,∴原式=23.]8.B [∵ab >0,∴a 、b 同号.当a 、b 同小于0时①②不成立;当ab =1时④不成立,故只有③对.]9.C [y =lg x +310=lg(x +3)-1,即y +1=lg(x +3).故选C.]10.D [分别作出y =2x 与y =x 2的图象.知有一个x <0的交点,另外,x =2,x =4时也相交,故选D.]11.B [∵f (x )=2x -4(x ≥0),∴令f (x )>0,得x >2.又f (x )为偶函数且f (x -2)>0,∴f (|x -2|)>0,∴|x -2|>2,解得x >4或x <0.]12.A [由f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),可知a >1,而f (-4)=a |-4+1|=a 3,f (1)=a |1+1|=a 2,∵a 3>a 2,∴f (-4)>f (1).]13.124解析∵log 23∈(1,2),∴3<2+log 23<4,则f (2+log 23)=f (3+log 23)=23log 312+⎛⎫ ⎪⎝⎭=(12)3·12log 32-=18×13=124.14.-3解析∵3-x 3+x>0,∴-3<x <3∴f (x )的定义域关于原点对称.∵f (-x )=log a 3+x 3-x =-log a 3-x 3+x=-f (x ),∴函数f (x )为奇函数.∴f (-2)=-f (2)=-3.15.(-∞,1)解析函数的定义域为{x |x 2-3x +2>0}={x |x >2或x <1},令u =x 2-3x +2,则y =12log u 是减函数,所以u =x 2-3x +2的减区间为函数y =()212log 32x x -+的增区间,由于二次函数u =x 2-3x +2图象的对称轴为x =32,所以(-∞,1)为函数y 的递增区间.16.5212解析y =124x --3·2x +5=12(2x )2-3·2x +5.令t =2x ,x ∈[0,2],则1≤t ≤4,于是y =12t 2-3t +5=12(t -3)2+12,1≤t ≤4.当t =3时,y min =12;当t =1时,y max =12×(1-3)2+12=52.17.解(1)指数函数f (x )=a x (a >0且a ≠1),则f (x )的反函数g (x )=log a x (a >0且a ≠1).(2)∵g (x )≤log a (2-3x ),∴log a x ≤log a (2-3x )若a >1>0-3x >0≤2-3x ,解得0<x ≤12,若0<a <1>0-3x >0≥2-3x ,解得12≤x <23,综上所述,a >1时,不等式解集为(0,12];0<a <1时,不等式解集为[12,23).18.解(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈[18,1],故y =2t 2-t -1=2(t -14)2-98,t ∈[18,1],故值域为[-98,0].(2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2ax 2-x -1=0在(0,+∞)上有解.记g (x )=2ax 2-x -1,当a =0时,解为x =-1<0,不成立;当a <0时,开口向下,对称轴x =14a<0,过点(0,-1),不成立;当a >0时,开口向上,对称轴x =14a>0,过点(0,-1),必有一个根为正,符合要求.故a 的取值范围为(0,+∞).19.解f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0.即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.解(1)∵t =log 2x ,14x ≤4,∴log 214≤t ≤log 24,即-2≤t ≤2.(2)f (x )=(log 24+log 2x )(log 22+log 2x )=(log 2x )2+3log 2x +2,∴令t =log 2x ,则y =t 2+3t +2=(t +32)2-14,∴当t =-32即log 2x =-32,x =322 时,f (x )min =-14.当t =2即x =4时,f (x )max =12.21.解(1)由对数函数的定义知1+x 1-x>0,故f (x )的定义域为(-1,1).(2)∵f (-x )=log a 1-x 1+x =-log a 1+x 1-x=-f (x ),∴f (x )为奇函数.(3)(ⅰ)对a >1,log a 1+x 1-x >0等价于1+x 1-x>1,①而从(1)知1-x >0,故①等价于1+x >1-x 又等价于x >0.故对a >1,当x ∈(0,1)时有f (x )>0.(ⅱ)对0<a <1,log a 1+x 1-x >0等价于0<1+x 1-x<1,②而从(1)知1-x >0,故②等价于-1<x <0.故对0<a <1,当x ∈(-1,0)时有f (x )>0.综上,a >1时,x 的取值范围为(0,1);0<a <1时,x 的取值范围为(-1,0).22.解(1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0⇒b =1.∴f (x )=1-2x 2+2x +1.(2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1,设x 1<x 2则f (x 1)-f (x 2)=12112121x x -++=()()2112222121x x x x -++.因为函数y =2x 在R 上是增函数且x 1<x 2,∴22x -12x >0.又(12x +1)(22x +1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因为f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0.等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13.。
2024-2025学年高中数学人教B版选择性必修一第二章测试卷
2024-2025学年高中数学人教B版选择性必修一第二章测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.斜率为2的直线的倾斜角α所在的范围是()A.0°<α<45°B.45°<α<90°C.90°<α<135°D.135°<α<180°2.在x轴上的截距为2且倾斜角为60°的直线方程为()A.y=3x-23B.y=3x+23C.y=-3x-23D.y=-3x+233.已知椭圆x2a2+y225=1(a>5)的两个焦点为F1,F2,且|F1F2|=8,弦AB过点F1,则△ABF2的周长为()A.10B.20C.241D.4414()A.x22−y24=1B.x24−y22=1C.x24−y26=1D.x24−y210=15.已知直线l1:2x+y+n=0与l2:4x+my-4=0互相平行,且l1,l2则m+n=()A.-3或3B.-2或4C.-1或5D.-2或26.抛物线y=ax2的准线方程是y=2,则a的值为()A.18B.-18C.8D.-87.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B 两点,|AB|=43;则C的实轴长为()A.2B.22C.4D.88.已知直线y=kx+m(m为常数)与圆x2+y2=4交于点M,N,当k变化时,若|MN|的最小值为2,则m=()A.±1B.±2C.±3D.±2二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,选对但不全的得2分,有选错的得0分) 9.已知点M(1,2)关于直线l:y=kx+b对称的点是N(-1,6),直线m过点M,则()A.kb=-2B.l在x轴上的截距是-8C.点M到直线l的距离为1D.当m∥l时,两直线间的距离为510.已知圆C1:x2+y2=r2,圆C2:(x-a)2+(y-b)2=r2(r>0),两圆交于不同的A(x1,y1),B(x2,y2)两点,下列结论正确的有()A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=a D.y1+y2=2b11.已知P是椭圆C:x26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为5B.CC.圆D在C的内部D.|PQ|12.已知F1,F2分别是双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,A为左顶点,P为双曲线右支上一点.若|PF1|=2|PF2|,且△PF1F2的最小内角为30°,则() A.双曲线的离心率为3B.双曲线的渐近线方程为y=±2xC.∠PAF2=45°D.直线x+2y-2=0与双曲线有两个公共点三、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线ax-y+1=0经过抛物线y2=4x的焦点,则实数a=________.14.已知双曲线C:x26−y23=1,则C的右焦点的坐标为________;C的焦点到其渐近线的距离是________.15.已知P是直线kx+4y-10=0(k>0)上的动点,过点P作圆C:x2+y2-2x+4y+4=0的两条切线,A,B是切点,C是圆心,若四边形PACB面积的最小值为22,则k的值为________.16.双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2的直线交曲线C 右支于P,Q两点,且PQ⊥PF1,若3|PQ|=4|PF1|,则C的离心率等于________.四、解答题(本大题共6个小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知Rt△ABC的顶点坐标A(-3,0),直角顶点B(-1,-22),顶点C在x轴上.(1)求点C的坐标;(2)求斜边所在直线的方程.18.(12分)已知圆C:x2+y2-2y-4=0,直线l:mx-y+1-m=0.(1)判断直线l与圆C的位置关系;(2)若直线l与圆C交于不同的两点A,B,且|AB|=32,求直线l的方程.19.(12分)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,求该抛物线的方程及其准线方程.20.(12分)已知椭圆C:x24+y2=1,过点P(1,0)的直线l交椭圆C于M,N两点.(1)证明:|MN|≥3;(2)已知两点A1(-2,0),A2(2,0).记直线A1M的斜率为k1,直线A2N的斜率为k2,求k1k2的值.21.(12分)已知椭圆E:x2a2+y2b2=1(a>b>0)过点M3,(1)求椭圆E的方程;(2)如图,过点P(0,2)的直线l与椭圆E相交于两个不同的点A,B,求OA ·OB 的取值范围.22.(12分)已知椭圆ω:x2a2+y2b2=1(a>b>0)过点A(-2,0),且a=2b.(1)求椭圆ω的方程;(2)设O为原点,过点C(1,0)的直线l与椭圆ω交于P,Q两点,且直线l与x轴不重合,直线AP,AQ分别与y轴交于M,N两点,求证:|OM|·|ON|为定值.答案解析1.解析:因为斜率为1的直线的倾斜角是45°,斜率为2的直线的倾斜角大于45°,倾斜角大于90°且小于180°时,直线的斜率是负值,所以斜率为2的直线的倾斜角α的范围是45°<α<90°,故选B.答案:B2.解析:由题可知直线的斜率k=tan60°=3,所以直线方程为y=3(x-2),即y =3x-23.答案:A3.解析:由题意可得椭圆x2a2+y225=1的b=5,c=4,a=b2+c2=41,由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=441.故选D.答案:D4.解析:由e=62得c2a2=32,1+b2a2=32,b2a2=12,选B.答案:B5.解析:由2m-4=0,解得m=2.满足l1∥l2.l2的方程为2x+y-2=0,有|n+2|5=35 5,则|n+2|=3,解得n=1或-5,故m+n=±3.答案:A6.解析:∵方程y=ax2表示的是抛物线,∴a≠0,∴x2=ya=2·12a·y,∴抛物线y=ax2的准线方程是y=-12×2a=2,解得a=-18,故选B.答案:B7.解析:设等轴双曲线C:x2a2-y2a2=1.∵抛物线y2=16x的准线为x=-4,联立x2a2-y2a2=1和x=-4得A(-4,16-a2),B(-4,-16-a2),∴|AB|=216-a2=43,∴a=2,∴2a=4.∴C的实轴长为4.答案:C8.解析:由题可得圆心为(0,0),半径为2,则圆心到直线的距离d=|m|k2+1,则弦长为|MN |=24-m 2k 2+1,则当k =0时,弦长|MN |取得最小值为24-m 2=2,解得m =±3.故选C.答案:C9.解析:因为点M (1,2)关于直线y =kx +b 对称的点是N (-1,6),线段MN 的中点坐标为(0,4)k =-1,+b ,=12,=4,所以kb =2,故A 错;此时直线l 方程为y =12x +4,令y =0,解得x =-8,所以直线l 在x 轴上的截距是-8,故B 正确;由点到直线的距离公式知,点M 到直线l |1-2+4=5,故C 错误;易知直线m 的方程为x -2y +3=0,又直线l :x -2y +8=0,则两直线间的距离为|3-8|1+4=5,故D 正确,故选BD.答案:BD10.解析:两圆方程相减可得直线AB 的方程为a 2+b 2-2ax -2by =0,即2ax +2by =a 2+b 2,故B 正确;分别把A (x 1,y 1),B (x 2,y 2)两点代入2ax +2by =a 2+b 2得2ax 1+2by 1=a 2+b 2,2ax 2+2by 2=a 2+b 2,两式相减得2a (x 1-x 2)+2b (y 1-y 2)=0,即a (x 1-x 2)+b (y 1-y 2)=0,故A 正确;由圆的性质可知:线段AB 与线段C 1C 2互相平分,∴x 1+x 2=a ,y 1+y 2=b ,故C 正确,D 错误.故选ABC.答案:ABC11.解析:由x 26+y 2=1可知,a 2=6,b 2=1,c 2=5,则焦距2c =25,离心率e =ca =56=306;设P (x ,y ),圆心D (-1,0),半径为r =55,则|PD |=(x +1)2+y 2=(x +1)2+1-x 26=>15,故圆D 在C 的内部;当PD 取最小值45时,|PQ |的最小值为45-15=55,综上所述,选项B 、C 正确,故选BC.答案:BC12.解析:因为|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,所以|PF 1|=4a ,|PF 2|=2a .又2c >2a ,4a >2a ,所以∠PF 1F 2=30°,所以cos ∠PF 1F 2=16a 2+4c 2-4a 22·4a ·2c=32,所以c 2-23ac +3a 2=0,所以e 2-23e +3=0,解得e =3,A 正确;因为e 2=c 2a 2=a 2+b 2a 2=3,所以b 2a 2=2,所以ba=2,所以双曲线的渐近线方程为y =±2x ,B 正确;因为e =3,所以2c =23a ,所以|PF 1|2=|PF 2|2+|F 1F 2|2,所以∠PF 2F 1=90°.又|AF 2|=c +a =(3+1)a ,|PF 2|=2a ,所以|AF 2|≠|PF 2|,所以∠PAF 2≠45°,C 错误;2y -2=0,-y 22a 2=1,所以2(2-2y )2-y 2=2a 2,所以7y 2-16y +8-2a 2=0,所以Δ=162-4×7×(8-2a 2)=32+56a 2>0,所以直线x +2y -2=0与双曲线有两个公共点,D 正确.故选ABD.答案:ABD13.解析:直线ax -y +1=0经过抛物线y 2=4x 的焦点F (1,0),则a +1=0,∴a =-1.答案:-114.解析:在双曲线C 中,a =6,b =3,则c =a 2+b 2=3,则双曲线C 的右焦点坐标为(3,0),双曲线C 的渐近线方程为y =±22x ,即x ±2y =0,所以双曲线C 的焦点到其渐近线的距离为312+2=3.答案:(3,0)315.解析:圆的标准方程为(x -1)2+(y +2)2=1,则圆心为C (1,-2),半径为1,则直线与圆相离,如图:S 四边形P ACB =S △P AC +S △PBC ,而S △P AC =12|PA |·|CA |=12|PA |,S △PBC =12|PB |·|CB |=12|PB |,又|PA |=|PB |=|PC |2-1,所以当|PC |取最小值时|PA |=|PB |取最小值,即S △P AC =S △PBC 取最小值,此时,CP ⊥l ,四边形PACB 面积的最小值为22,S △P AC =S △PBC =2,所以|PA |=22,所以|CP |=3,所以|k -8-10|k 2+16=3,因为k >0,所以k =3.16.解析:如图,设|PQ |=4t (t >0),由3|PQ |=4|PF 1|可得|PF 1|=3t ,由双曲线定义,有|PF 1|-|PF 2|=2a ,所以|PF 2|=3t -2a ,|QF 2|=|PQ |-|PF 2|=t +2a ,又|QF 1|-|QF 2|=2a ,所以|QF 1|=t +4a ,因为PQ ⊥PF 1,所以|PF 1|2+|PF 2|2=4c 2,|PF 1|2+|PQ |2=|QF 1|2,即(3t )2+(3t -2a )2=4c 2①,(3t )2+(4t )2=(t +4a )2②,由②解得t =a ,代入①得(3a )2+(3a -2a )2=4c 2,即10a 2=4c 2,所以e =c a =104=102.答案:10217.解析:(1)解法一:依题意,Rt △ABC 的直角顶点坐标为B (-1,-22),∴AB ⊥BC ,∴k AB ·k BC =-1.又∵A (-3,0),∴k AB =0+22-3-(-1)=-2,∴k BC =-1k AB =22,∴边BC 所在的直线的方程为y +22=22(x +1),即x -2y -3=0.∵直线BC 的方程为x -2y -3=0,点C 在x 轴上,由y =0,得x =3,即C (3,0).解法二:设点C (c ,0),由已知可得k AB ·k BC =-1,即0+22-3-(-1)·0+22c +1=-1,解得c =3,所以点C 的坐标为(3,0).(2)由B 为直角顶点,知AC 为直角三角形ABC 的斜边.∵A (-3,0),C (3,0),∴斜边所在直线的方程为y =0.18.解析:(1)将圆C 的方程化为标准方程为x 2+(y -1)2=5,所以圆C 的圆心为C (0,1),半径r =5,圆心C (0,1)到直线l :mx -y +1-m =0的距离d =|0-1+1-m |m 2+1=|m |m 2+1<1<5,因此直线l 与圆C 相交.(2)设圆心C 到直线l 的距离为d ,则d ==22.又d =|m |m 2+1,则|m |m 2+1=22,解得m =±1,所以所求直线方程为x -y =0或x +y -2=0.19.解析:设A (x 1,y 1),B (x 2,y 2),由题意知直线AB 的方程为y =x -p2,与y 2=2px 联立,得y 2-2py -p 2=0,∴y 1+y 2=2p .由题意知y 1+y 2=4,∴p =2.∴抛物线的方程为y 2=4x ,其准线方程为x =-1.20.解析:(1)①当直线l的斜率不存在时,,,或,.此时|MN|=3.②当直线l的斜率存在时,设其方程为y=k(x-1).k(x-1),y2=1,得(1+4k2)x2-8k2x+4k2-4=0设M(x1,y1),N(x2,y2),1+x2=8k21+4k2,1x2=4k2-41+4k2.所以|MN|=(x1-x2)2+(y1-y2)2=1+k2·(x1+x2)2-4x1x2=43k4+4k2+11+4k2.设m=1+4k2,则m≥1.所以|MN|=3(m-1)2+16mm=3m2+10m+3m>3m2m=3.综上|MN|≥3.(2)当直线l的斜率不存在时,,,或,,此时都有k1k2=13.直线A1M的斜率为k1=y1x1+2,直线A2N的斜率为k2=y2x2-2.方法一:k1k2=y1(x2-2)y2(x1+2)=(x1-1)(x2-2)(x2-1)(x1+2)=x1x2-2(x1+x2)+x2+2x1x2-(x1+x2)+3x2-2=(4k2-4)-2×8k2+(1+4k2)x2+2(1+4k2)(4k2-4)-8k2+3(1+4k2)x2-2(1+4k2)=-2(1+2k2)+(1+4k2)x2-6(1+2k2)+3(1+4k2)x2=13.方法二:k21k22=y21(x2-2)2y22(x1+2)2=(4-x21)(x2-2)2(4-x22)(x1+2)2=(2-x1)(2-x2)(2+x1)(2+x2)=x 1x 2-2(x 1+x 2)+4x 1x 2+2(x 1+x 2)+4=(4k 2-4)-2×8k 2+4(1+4k 2)(4k 2-4)+2×8k 2+4(1+4k 2)=19.又k 1k 2=y 1(x 2-2)y 2(x 1+2)>0,所以k 1k 2=13.综上,k 1k 2=13.21.解析:(1)12,∴a 2=4,b 2=1.故椭圆E 的方程为x 24+y 2=1.(2)①当直线l 的斜率不存在时,A (0,1),B (0,-1),则OA →·OB →=-1.②当直线l 的斜率存在时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),kx +2y 2=1,消去y ,整理得(1+4k 2)x 2+16kx +12=0,由Δ>0,可得4k 2>3,且x 1+x 2=-16k 1+4k 2,x 1x 2=121+4k 2,∴OA →·OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k (x 1+x 2)+4=-1+171+4k 2,则-1<OA →·OB →<134,综上,OA →·OB →∈-1.22.解析:(1)因为椭圆ω过点A (-2,0),所以a =2.因为a =2b ,所以b =1.所以椭圆ω的方程为x 24+y 2=1.(2)当直线l 斜率不存在时,直线l 的方程为x =1.不妨设此时,,所以直线AP 的方程为y =36(x +2),即.直线AQ 的方程为y =-36(x +2),即.所以|OM |·|ON |=13.当直线l 斜率存在时,设直线l 的方程为y =k (x -1),k (x -1),y 2=1得(4k 2+1)x 2-8k 2x +4k 2-4=0.依题意,Δ>0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=8k 24k 2+1,x 1x 2=4k 2-44k 2+1.又直线AP 的方程为y =y 1x 1+2(x +2),令x =0,得点M 的纵坐标为y M =2y1x 1+2,即.同理,得.所以|OM |·|ON |=|4y 1y 2(x 1+2)(x 2+2)|=|4k 2(x 1-1)(x 2-1)(x 1+2)(x 2+2)|=|4k 2[x 1x 2-(x 1+x 2)+1]x 1x 2+2(x 1+x 2)+4|=4k -44k 2+1+16k 4k 2+1+4=|4k 2(4k 2-4-8k 2+4k 2+1)4k 2-4+16k 2+16k 2+4|=|12k 236k 2|=13.综上,|OM |·|ON |为定值,定值为13.。
2021年新教材高中数学必修第二册《统 计》测试卷及答案解析
2021年新教材高中数学必修第二册《统 计》测试卷(时间:100分钟,满分100分)一、选择题(本大题共20小题,每小题3分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本量是100解析:选D 总体是1 000名运动员的年龄,所以A 项不正确;个体是每一名运动员的年龄,所以B 项不正确;样本是100名运动员的年龄,所以C 项不正确;很明显样本量是100.故选D.2.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( )A .10组B .9组C .8组D .7组解析:选B 根据列频率分布表的步骤,140-5110=8.9,所以分为9组较为恰当.故选B.3.为了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高1.60 m ;从南方抽取了200个男孩,平均身高1.50 m ,由此可推断我国13岁的男孩平均身高为( )A .1.54 mB .1.55 mC .1.56 mD .1.57 m解析:选C 我国13岁的男孩平均身高为(300×1.60+200×1.50)/(300+200)=1.56(m).故选C.4.下列说法错误的是( )A .在统计里,最常用的简单随机抽样方法有抽签法和随机数法B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大 解析:选B 平均数不大于最大值,不小于最小值.故选B. 5.某题的得分情况如下:得分/分 0 1 2 3 4 频率/%37.08.66.028.220.2其中众数是( ) A .37.0% B .20.2% C .0分D .4分解析:选C 根据众数的概念可知C 正确.故选C.6.一个频数分布表(样本量为30)不小心被损坏了一部分,若样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为( )A .15B .16C .17D .19解析:选A 20到60之间有30×0.8=24(个),20到40之间一共有4+5=9(个),故[40,50),[50,60)内共有24-9=15(个).故选A.7.在用样本的频率分布估计总体的频率分布的过程中,下列说法正确的是( ) A .总体的容量越大,估计越准确 B .总体的容量越小,估计越准确 C .样本的容量越大,估计越准确 D .样本的容量越小,估计越准确解析:选C 根据样本的频率分布可知,样本的频率分布反映的是总体中部分个体的频率分布,只有当样本的容量越大时,估计才越准确.故选C.8.某校举行歌咏比赛,7位评委给各班演出的节目评分,去掉一个最高分,再去掉一个最低分后,所得平均数作为该班节目的实际得分. 对于某班的演出,7位评委的评分分别为:9.65,9.70,9.68,9.75,9.72,9.65,9.78,则这个班节目的实际得分是( )A .9.66B .9.70C .9.65D .9.67解析:选B 这个班节目的实际得分为9.65+9.70+9.68+9.75+9.725=9.70.故选B.9.以下四个叙述:①极差与方差都反映了数据的集中程度;②方差是没有单位的统计量;③标准差比较小时,数据比较分散;④只有两个数据时,极差是标准差的2倍,其中正确的是( )A .①④B .②③C .①③D .②④解析:选A 只有两个数据时,极差等于|x 2-x 1|,标准差等于12|x 2-x 1|.故④正确.由定义可知①正确,②③错误.故选A.10.从某批零件中抽取50个.然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为( )A .36%B .72%C .90%D .25%解析:选C 由题意知,该产品的合格率为3640×100%=90%.故选C.11.港珠澳大桥是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55 km.桥面为双向六车道高速公路,大桥通行限速100 km /h ,现对大桥某路段上1 000辆汽车的行驶速度进行抽样调查,据此画出频率分布直方图如图,根据直方图估计在此路段上汽车行驶速度在区间[85,90)内的车辆数和汽车行驶速度超过90 km/h 的频率分布为( )A .300,0.25B .300,0.35C .60,0.25D .60,0.35解析:选B 由频率分布直方图得,在此路段上汽车行驶速度在区间[85,90)内的频率为0.06×5=0.3,所以在此路段上汽车行驶速度在区间[85,90)内的车辆数为0.3×1 000=300(辆),汽车行驶速度超过90 km/h 的频率为(0.05+0.02)×5=0.35.故选B.12.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层随机抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解析:选A 由题意得,n 3 500+1 500=703 500,解得n =100.故选A.13.将A ,B ,C 三种性质的个体按1∶2∶4的比例进行分层随机抽样调查,若抽取的样本量为21,则A ,B ,C 三种性质的个体分别抽取( )A .12,6,3B .12,3,6C .3,6,12D .3,12,6解析:选C 由按比例分配的分层随机抽样的概念,知A ,B ,C 三种性质的个体应分别抽取21×17=3,21×27=6,21×47=12.故选C.14.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据.则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:选D 只有标准差不变,其中众数、平均数和中位数都加2.故选D.15.统计某校1 000名学生的数学测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是( )A .20%B .25%C .6%D .80%解析:选D 从左至右,后四个小矩形的面积和等于及格率,则及格率是1-10×(0.005+0.015)=0.8=80%.故选D.16.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示: 分数段 [60,65) [65,70) [70,75) [75,80) [80,85) [85,90] 人数 234951据此估计允许参加面试的分数线大约是( ) A .90 B .85 C .80D .75解析:选C 参加面试的频率为100400=0.25,样本中[80,90]的频率为5+124=0.25,由样本估计总体知,分数线大约为80分.故选C.17.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )A .1%B .2%C .3%D .5%解析:选C 由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%.故选C.18.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分如下: 高一:82 83 85 93 97 98 99 高二:88 88 89 88 97 99 98 则对这组数据分析正确的是( ) A .高一的中位数大,高二的平均数大 B .高一的平均数大,高二的中位数大 C .高一的平均数、中位数都大 D .高二的平均数、中位数都大解析:选A 由得分数据可以看出,高一的中位数为93,高二的中位数为89,所以高一的中位数大.由计算得,高一的平均数为91,高二的平均数为6477,所以高二的平均数大.故选A.19.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.25解析:选A 由频率分布直方图的性质,可设中间一组的频率为x ,则x +4x =1,∴x =0.2,故中间一组的频数为160×0.2=32.故选A.20.设矩形的长为a ,宽为b ,若其比满足ba =5-12≈0.618,则这种矩形称为黄金矩形.黄金矩形给人以美感,常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数与标准值0.618比较,正确结论是( )A .甲批次的总体平均数与标准值更接近B .乙批次的总体平均数与标准值更接近C .两个批次总体平均数与标准值接近程度相同D .两个批次总体平均数与标准值接近程度不能确定解析:选A 甲批次的样本平均数为15×(0.598+0.625+0.628+0.595+0.639)=0.617;乙批次的样本平均数为15×(0.618+0.613+0.592+0.622+0.620)=0.613.所以可估计:甲批次的总体平均数与标准值更接近.故选A.二、填空题(本大题共5小题,每小题3分,共15分,请把答案填写在题中横线上) 21. 一个班组共有20名工人,他们的月工资情况如下:则该班组工人月工资的平均数为________.解析:平均数x =(1 600×2+1 440×4+1 320×5+1 220×5+1 150×2+980×2)÷20=25 920÷20=1 296.答案:1 29622.某学生在一门功课的22次考试中,所得分数如下: 56 62 63 63 65 66 68 69 71 74 76 76 77 78 79 79 82 85 87 88 95 98 则该学生该门功课考试分数的极差与中位数之和为________.解析:最大数为98,最小数为56,极差为98-56=42,中位数为76,所以极差与中位数之和为118.答案:11823.某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是________人.解析:高三的人数为900-240-260=400(人), 所以在高三抽取的人数为45900×400=20(人).答案:2024.甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,29,31,38,39,51.则甲、乙两名运动员得分的25%分位数分别是________,________.解析:因为两组数据都是12个数,所以12×25%=3,所以甲运动员得分的25%分位数为x 3+x 42=20+252=22.5.乙运动员得分的25%分位数为x 3+x 42=14+162=15.答案:22.5 1525.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.解析:在频率分布直方图中,所有小长方形的面积和为1,设[70,80)的小长方形面积为x ,则(0.01+0.015×2+0.025+0.005)×10+x =1,解得x =0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:71三、解答题(本大题共3小题,共25分,解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分) 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(1)求频率分布直方图中a 的值;(2)分别求出成绩落在[50,60]与[60,70]中的学生人数.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2(人).成绩落在[60,70)中的学生人数为3×0.005×10×20=3(人).27.(本小题满分8分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.估计居民月均用水量的中位数.解:由(0.08+0.16+a+0.42+0.50+a+0.12+0.08+0.04)×0.5=1,解得a=0.30.设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.28.(本小题满分9分)某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:40.0240.0039.9840.0039.9940.0039.9840.0139.9839.9940.0039.9939.9540.0140.0239.9840.0039.9940.0039.96(1)完成下面的频率分布表,并画出频率分布直方图;分组频数频率频率组距[39.95,39.97) [39.97,39.99) [39.99,40.01)[40.01,40.03]合计(2)假定乒乓球的直径误差不超过0.02 mm 为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.解:(1)分组 频数 频率 频率组距 [39.95,39.97) 2 0.10 5 [39.97,39.99) 4 0.20 10 [39.99,40.01) 10 0.50 25 [40.01,40.03]4 0.20 10 合计20150(2)∵抽样的20只产品中在[39.98,40.02]范围内有18只,∴合格率为1820×100%=90%,∴10 000×90%=9 000(只).即根据抽样检查结果,可以估计这批产品的合格只数为9 000.B 卷——面向全国卷高考滚动检测卷(时间:120分钟,满分150分)一、单项选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某台机床加工的1 000只产品中次品数的频率分布如下表:次品数 0 1 2 3 4 频率0.50.20.050.20.05则次品数的众数、平均数依次为()A.0,1.1B.0,1C.4,1 D.0.5,2解析:选A数据x i出现的频率为p i(i=1,2,…,n),则x1,x2,…,x n的平均数为x1p1+x2p2+…+x n p n=1×0.2+2×0.05+3×0.2+4×0.05=1.1.故选A.2.如图所示的几何体的平面展开图是四选项中的()解析:选D选项A、C中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后三角形和圆的位置不符,所以正确的是D.故选D.3.某校一年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为140的样本,则此样本中男生人数为()A.80 B.120C.160 D.240解析:选A因为男生和女生的比例为560∶420=4∶3,样本量为140,所以应该抽取男生的人数为140×44+3=80.故选A.4.某校高二年级有50人参加2019“希望杯”数学竞赛,他们竞赛的成绩制成了如下的频率分布表,根据该表估计该校学生数学竞赛成绩的平均分为()分组[60,70)[70,80)[80,90)[90,100]频率0.20.40.30.1A.70 B.73C.78 D.81.5解析:选C估计该校学生数学竞赛成绩的平均分x=65×0.2+75×0.4+85×0.3+95×0.1=78.故选C.5.某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为()A .20B .25C .22.5D .22.75解析:选C 产品的中位数出现在频率是0.5的位置.自左至右各小矩形的面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x ,则由0.1+0.2+0.08×(x -20)=0.5,得x =22.5.故选C.6.如图是某超市一年中各月份的收入与支出(单位:万元)情况的柱形统计图.已知利润为收入与支出的差,即利润=收入-支出,则下列说法正确的是( )A .利润最高的月份是2月份,且2月份的利润为40万元B .利润最低的月份是5月份,且5月份的利润为10万元C .收入最少的月份的利润也最少D .收入最少的月份的支出也最少解析:选D 利润最高的月份是3月份和10月份,且2月份的利润为40-30=10万元,故A 错误;利润最低的月份是8月份,且8月份的利润为5万元,故B 错误;收入最少的月份是5月份,但5月份的支出也最少,故5月份的利润不是最少,故C 错误,D 正确.故选D.7.(2019·山东、湖北部分重点中学高三冲刺考试(二))已知复数z 满足|z |=2,z +z =2(z 为z 的共轭复数)(i 为虚数单位),则z =( )A .1+iB .1-iC .1+i 或1-iD .-1+i 或-1-i解析:选C 设z =a +b i(a ,b ∈R ),则z =a -b i ,z +z =2a ,所以⎩⎪⎨⎪⎧a 2+b 2=2,2a =2,得⎩⎪⎨⎪⎧a =1,b =±1,所以z =1+i 或z =1-i.故选C. 8.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n+2的平均数和方差分别是( )A.x和s2B.3x和9s2C.3x+2和9s2D.3x+2和12s2+4解析:选C3x1+2,3x2+2,…,3x n+2的平均数是3x+2,由于数据x1,x2,…,x n 的方差为s2,所以3x1+2,3x2+2,…,3x n+2的方差为9s2.故选C.9.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为()A.4∶3∶1 B.5∶3∶1C.5∶3∶2 D.3∶2∶1解析:选B体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.30,体重在[55,60]内的频率为0.02×5=0.1,∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1.故选B.10.从某地区年龄在25~55岁的人员中,随机抽取100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是()A.抽取的100人中,年龄在40~45岁的人数大约为20B.抽取的100人中,年龄在35~45岁的人数大约为30C.抽取的100人中,年龄在40~50岁的人数大约为40D.抽取的100人中,年龄在35~50岁的人数大约为50解析:选A根据频率分布直方图的性质得(0.01+0.05+0.06+a+0.02+0.02)×5=1,解得a=0.04,所以抽取的100人中,年龄在40~45岁的人数大约为0.04×5×100=20,所以A正确;年龄在35~45岁的人数大约为(0.06+0.04)×5×100=50,所以B不正确;年龄在40~50岁的人数大约为(0.04+0.02)×5×100=30,所以C不正确;年龄在35~50岁的人数大约为(0.06+0.04+0.02)×5×100=60,所以D不正确.故选A.二、多项选择题(本大题共3小题,每小题4分,共12分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得4分,选对但不全的得2分,有选错的得0分)11.下列说法正确的是( ) A .中位数是50%分位数B .数据x 1,x 2,…,x m 的平均数为x ,数据y 1,y 2,…,y n 的平均数为y ,则x 1,x 2,…,x m ,y 1,y 2,…,y n 的平均数为m m +n x +n m +nyC .当样本数据全相等时,其样本方差(标准差)为0D .已知某7个数的平均数为4,方差为2,现加入一个新数据4,则此时8个数的方差s 2=2解析:选ABC 由百分位数的定义知,A 正确;对于B ,x 1,x 2,…,x m ,y 1,y 1,…,y n 的平均数为x 1+x 2+…+x n +y 1+y 2+…+y n m +n =∑i =1m x i +∑i =1ny im +n =m x -+n y -m +n =m m +n x -+n m +ny -,B 正确;选项C 显然正确;对于D ,因为后来7个数的平均数为4,再加上一个新数据4,这8个数的平均数仍为4,其方差s 2=7×2+4-428=74<2,故D 错,故选A 、B 、C. 12.比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是( )A .甲的逻辑推理能力指标值优于乙的逻辑推理能力指标值B .甲的数学建模能力指标值优于乙的直观想象能力指标值C .乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平D .甲的数学运算能力指标值优于甲的直观想象能力指标值解析:选AC 对于选项A ,甲的逻辑推理能力指标值为4,乙的逻辑推理能力指标值为3,所以甲的逻辑推理能力优于乙的逻辑推理能力,故A 正确;对于选项B ,甲的数学建模能力指标值为3,乙的直观想象能力指标值为5,所以乙的直观想象能力指标值优于甲的数学建模能力指标值,故B 错误;对于选项C ,甲的六维能力指标值的平均值为16(4+3+4+5+3+4)=236,乙的六维能力指标值的平均值为16(5+4+3+5+4+3)=4,236<4,故C 正确;对于选项D ,甲的数学运算能力指标值为4,甲的直观想象能力指标值为5,所以甲的数学运算能力指标值不优于甲的直观想象能力指标值,故D 错误.故选A 、C.13.2018年11月~2019年11月某工厂工业原油产量的月度走势图如图所示,则以下说法错误的是( )A .2019年11月份原油产量约为51.8万吨B .2019年11月份原油产量相对2018年11月增加1.0%C .2019年11月份原油产量比上月减少54.9万吨D .2019年1~11月份原油的总产量不足15 000万吨解析:选ABD 由题意得,2019年11月份原油的日均产量为51.8吨,则11月份原油产量为51.8×30=1 554万吨,故A 错误;2019年11月份原油产量的同比增速为-1.0%,原油产量相对2018年11月份减少1.0%,则B 错误;10月份原油产量为51.9×31=1 608.9万吨,11月份原油产量比上月减少1 608.9-1 554=54.9万吨,则C 正确;1~11月份共334天,而1~11月份日均原油产量都超过50万吨,故1~11月份原油产量的总产量会超过15 000万吨,故D 错误.故选A 、B 、D.三、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上) 14.从一堆苹果中任取20个,并得到它们的质量(单位:克)数据分布如下: 分组 [90,100) [100,110)[110,120)[120,130) [130,140)[140,150]频数1231031则这堆苹果中,质量不少于120克的苹果数约占苹果总数的________%. 解析:∵质量不少于120克的频数为14,∴频率为1420×100%=70%.答案:7015.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下:甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲____________,乙____________,丙____________.解析:甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数为4+6×3+8+9+12+138=8;丙:该组数据的中位数是7+92=8.答案:众数 平均数 中位数16.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据比例分配的分层随机抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A ,C 两种产品的有关数据已被污染看不清楚了,统计员只记得A 产品的样本量比C 产品的样本量多10,根据以上信息,可得C 产品的数量是________件.解析:抽样比130∶1 300=1∶10,即每10个产品中取1个个体,又A 产品的样本量比C 产品的多10,故A 产品比C 产品多100件,故12(3 000-1 300-100)=800(件)为C 产品数量.答案:80017.某同学10次测评成绩的数据如下:2,2,3,4,10+x ,10+y ,19,19,20,21.已知成绩的中位数为12,若要使标准差最小,则4x +2y 的值是________.解析:由题意可知,成绩的中位数为12,所以10+x +10+y2=12,故x +y =4,平均数为110(2+2+3+4+10+x +10+y +19+19+20+21)=11.4.要使标准差最小,即方差最小,只需使(10+x -11.4)2+(10+y -11.4)2最小即可.又(10+x -11.4)2+(10+y -11.4)2=(x -1.4)2+(y -1.4)2≥(x +y -2.8)22=0.72,当且仅当x -1.4=y -1.4时取等号,故x =y =2时,标准差最小.此时4x +2y =12.答案:12四、解答题(本大题共6小题,共82分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分12分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到统计图如图所示.(1)求样本中患病者的人数和图中a ,b 的值;(2)试估计此地区该项身体指标检测值不低于5的从业者的人数.解:(1)根据分层抽样原则,容量为100的样本中,患病者的人数为100×3.48.5=40(人).a =1-0.10-0.35-0.25-0.15-0.10=0.05,b =1-0.10-0.20-0.30=0.40. (2)指标检测值不低于5的样本中,有患病者40×(0.30+0.40)=28(人),未患病者60×(0.10+0.05)=9(人),共37人. 此地区该项身体指标检测值不低于5的从业者的人数约为37100×85 000=31 450(人).19.(本小题满分14分)为加强中学生实践创新能力和团队精神的培养,促进教育教学改革,某市教育局将举办全市中学生创新知识竞赛.某校举行选拔赛,共有200名学生参加,为了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表解答下列问题:分组 频数 频率 一 [60.5,70.5) a 0.26 二 [70.5,80.5) 15 c 三 [80.5,90.5) 18 0.36 四 [90.5,100.5]b d 合计50e(1)求a ,b ,c ,d ,e 的值; (2)作出频率分布直方图.解:(1)根据题意,得分在[60.5,70.5)内的频数是a =50×0.26=13,在[90.5,100.5]内的频数是b =50-13-15-18=4,在[70.5,80.5)内的频率是c =1550=0.30,在[90.5,100.5]内的频率是d =450=0.08,频率和e =1.00.(2)根据频率分布表作出频率分布直方图,如图所示.20.(本小题满分14分)在射击比赛中,甲、乙两名运动员分在同一小组,给出了他们命中的环数如下表:甲 9 6 7 6 2 7 7 9 8 9 乙24687897910赛后甲、乙两名运动员都说自己是胜者,如果你是裁判,你将给出怎样的评判? 解:为了分析的方便,先计算两人的统计指标如下表所示:平均环数方差 中位数 命中10环次数甲 7 4 7 0 乙75.47.51规则1:平均环数和方差相结合,平均环数高者胜.若平均环数相等,则再看方差,方差小者胜,则甲胜.规则2:平均环数与中位数相结合,平均环数高者胜.若平均环数相等,则再看中位数,中位数大者胜,则乙胜.规则3:平均环数与命中10环次数相结合,平均环数高者胜.若平均环数相等,则再看命中10环次数,命中10环次数多者胜,则乙胜.以上规则都是以平均环数为第一标准,如果比赛规则是看命中7环以上或10环的次数,那么就不需要先看平均环数了.21.(本小题满分14分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组 频数 频率 [10,15)100.25[15,20)25n[20,25)m p[25,30]20.05合计M 1(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10,频率是0.25知,10M=0.25,所以M=40.因为频数之和为40,所以10+25+m+2=40,解得m=3. 故p=340=0.075.因为a是对应分组[15,20)的频率与组距的商,所以a=2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90(人).22.(本小题满分14分)如图,在正三棱柱ABC-A1B1C1中,F,F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.证明:(1)在正三棱柱ABC-A1B1C1中,∵F,F1分别是AC,A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在正三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1, ∴平面AB 1F 1⊥平面ACC 1A 1.23.(本小题满分14分) 甲、乙两人在相同的条件下各射靶10次,每次射靶成绩(单位:环)如图所示:(1)填写下表:平均数 中位数 命中9环以上甲 7 ________ 1 乙________________3(2)请从四个不同的角度对这次测试进行分析: ①结合平均数和方差,分析偏离程度; ②结合平均数和中位数,分析谁的成绩好些;③结合平均数和命中9环以上的次数,看谁的成绩好些; ④结合折线图上两人射击命中环数及走势,分析谁更有潜力. 解:(1)甲的射靶环数从小到大排列为5,6,6,7,7,7,7,8,8,9, ∴中位数为7环.乙的射靶环数依次为2,4,6,8,7,7,8,9,9,10,∴x 乙=110(2+4+6+8+7+7+8+9+9+10)=7(环).乙的射靶环数从小到大排列为2,4,6,7,7,8,8,9,9,10, ∴中位数是7+82=7.5(环).于是填充后的表格,如表所示:平均数 中位数 命中9环以上甲 7 7 1 乙77.53(2)s 2甲=110[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=1.2,s2乙=110[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.①甲、乙的平均数相同,均为7,但s2甲<s2乙,说明甲偏离平均数的程度小,而乙偏离平均数的程度大.②甲、乙的平均数相同,而乙的中位数比甲大,说明乙射靶环数的优秀次数比甲多.③甲、乙的平均数相同,而乙命中9环以上(包含9环)的次数比甲多2次,可知乙的射靶成绩比甲好.④从折线图上看,乙的成绩呈上升趋势,而甲的成绩在平均线上波动不大,说明乙的状态在提升,更有潜力.。
高中数学 第二章 统计 2.1 随机抽样教材习题点拨 新人教B版必修3-新人教B版高中必修3数学试题
高中数学第二章统计 2.1 随机抽样教材习题点拨新人教B版必修3练习A1.什么是简单随机抽样?解:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.2.在一般“调查”时,为什么要进行抽样调查?解:做一般“调查”最好是对每一个个体逐一进行“调查”,但这样做有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.3.如果想了解你所在班上同学喜欢听数学课的比例,计划抽取8名同学做调查.请你用抽签法抽取一个样本.解:(1)将班内60名同学的学号1,2,…,60分别写在相同的60X纸片上.(2)将60X纸片放在一个容器里均匀搅拌之后,就可以抽样.(3)抽出一X纸片,记下上面的,然后均匀搅拌,继续抽取第2X纸片,记下这个,重复这个过程,直到取得8个时终止.(4)于是,和这8个对应的同学就构成了一个简单随机样本.练习B1.某居民区有730户居民,居委会计划从中抽取25户调查其家庭收入状况,你能帮助居委会抽出一个简单随机样本吗?解:随机数表法:(用教材第87页的随机数表)(1)将730户居民编号为001,002, (730)(2)给出的随机数表是5个数一组,使用各个5位数组的后3位,从各个数组中任选一个后3位小于或等于730的数作为起始,如从第2行的第6组开始,取出572作为25户中的第1个代号;(3)继续向右读,每组后3位符合要求的数取出,前面已经取出的跳过,到行末转下一行从左向右继续读,得数据:572,483,459,073,242,372,048,088,600,636,171,247,303,422,421,183,546,385,120,042 ,320,500,219,225,059.编号为以上所选的25个的居户被选中.2.使用计算器或计算机制作一X1 000个一位数的随机数表,并检查0~9这10个数在表中出现的可能性是否相同?解:相同.练习A1.什么是系统抽样?系统抽样有什么优点?解:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.系统抽样的优点:它很好地解决了当总体容量和样本容量都较大时,用简单随机抽样不方便的问题.2.从编号为1~900的总体中用系统抽样的办法抽取一个容量为9的样本.解:按编号顺序分成9组,每组100个号,先在第一组用简单随机抽样方式抽出k(1≤k≤100)号,其余的k+100n(n=1,2,…,8)也被抽到,即可得所需样本.练习B1.某批产品共有1 563件,产品按出厂顺序编号,为从1~1 563.检测员要从中抽取15件产品作检测,请你给出一个系统抽样方案.解:S1 将产品的调整为0001,0002,0003, (1563)S2 从总体中剔除3件产品(剔除方法可用随机数表法),将剩下的1 560件产品重新编号(分别为0001,0002,…,1560),并分成15段;S3 在第一段0001,0002,...,0104,这104个编号中用简单随机抽样抽出一个(如0003)作为起始,则各段对应编号分别为0003,0107,0211, (1459)S4 将编号为0003,0107,0211,…,1459的个体抽出,即得到一个容量为15的样本.2.要考察某商场2003年的日销售额,从一年时间中抽取52天的销售额作为样本,请给出你的系统抽样方案.并说说你的抽样方案的优点和不足.解:S1 用随机数表法从365天中随机剔除1天;S2 将其余的364天编号,为001,002,003,…,364,并将依次分为52段;S3 在第一段001,002,…,007这7个中用抽签法选取一个,如002;S4 将为002,009,016,…,359的日期找出,组成样本.该抽样方案的优点是:抽取的样本能代表总体;缺点是:所抽取的日期与日常用的日期相比规律性差,不便于该方案的操作.练习A1.某校高一学生共500名,经调查,喜欢数学的学生占全体学生的30%,不喜欢数学的人数占40%,介于两者之间的学生占30%.为了考查学生的期中考试的数学成绩,如何用分层抽样抽取一个容量为50的样本.解:由题意知喜欢数学的学生有150人,不喜欢数学的有200人,介于两者之间的有150人.三个层次的学生人数之比为3∶4∶3.所以应抽喜欢数学的学生15人,不喜欢数学的学生20人,介于两者之间的学生15人.用随机数表法抽样分别从对应的部分抽取相应的人数即可.2.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了调查员工的身体健康状况,从中抽取100名员工,用分层抽样应当怎样抽取?解:S1 确定抽样比100500=15,所以不到35岁的应抽取125÷5=25(人),35~49岁的应抽取280÷5=56(人),50岁以上的应抽取95÷5=19(人);S2 用简单随机抽样法或系统抽样法分别抽取不到35岁的25人,35~49岁的56人;50岁以上的19人.这些人便组成了我们要抽取的样本.3.某大学就餐中心为了了解新生的饮食习惯,以分层抽样的方式从1 500名新生中抽取200名进行调查,新生中的南方学生有500名,北方学生有800名,西部地区的学生有200名,应如何抽取?解:由题意知南方学生有500名,北方学生有800名,西部地区的学生有200名.样本容量与总体容量的比为200∶1 500=2∶15.所以应抽取南方学生约67名,北方学生约106名,西部地区的学生约27名.用分层抽样法分别从对应的部分抽取相应的人数即可.练习B某市电视台在因特网上征集电视节目的现场参与观众,报名的共有12 000人,分别来自4个城区,其中东城区2 400人,西城区4 605人,南城区3 795人,北城区1 200人.用分层抽样的方式从中抽取60人参加现场节目,应当如何抽取?解:从12 000人中抽取60人,抽取比例为12 000∶60=200∶1,所以应在东城区抽取 2 400÷200=12(人),在西城区抽取 4 605÷200≈23(人),在南城区抽取 3 795÷200≈19(人),在北城区抽取1 200÷200=6(人).用系统抽样法分别从对应的部分抽取相应的数即可.练习A1.想一想怎样可以得到你所在班级同学的身高数据.解:设计调查问卷请每位同学填写自己的身高,然后汇总即可.2.你还能想到哪些可以得到数据资料的途径?解:如:教材或教材提供的数据;课堂数据(它们是在教室中收集的,主要与班上的学生有关,而不问结论是否对于更大的群体也成立).练习B为了了解中学生如何度过课余时间,请你设计一份关于中学生课余活动的调查问卷,实际调查后写出调查分析报告.解:提示:在设计调查问卷时,设计的题目意思要明确,覆盖面要广,不要有答题倾向即可.习题2-1A1.为了考察某地10 000名高一学生的体重情况,从中抽出了200名学生做调查.这里的总体、个体、样本、样本容量各指什么?为什么我们一般要从总体中抽取一个样本,通过样本来研究总体?解:统计的总体是指该地10 000名高一学生的体重;个体是指这10 000名学生中每一名学生的体重;样本是指这10 000名学生中抽出的200名学生的体重;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取机会均等的前提下从总体中抽取部分个体,进行抽样调查.2.要从编号为1~100的100道选择题中随机抽取20道题组成一份考卷,请你用抽签法给出考题的编号.解:(1)编号1~100;(2)制作大小相同的号签,并写上;(3)放入一个大容器,均匀搅拌;(4)依次抽取20个签(注意每次都要均匀搅拌),具有这20个编号的题组成一份考卷.3.某商店有590件货物,要从中选出50件货物做质量检查,请你用随机数表法给出一个抽样方案.解:(1)将590件货物编号为001,002, (590)(2)给出的随机数表是5个数一组,使用各个5位数组的中间3位,从各个数组中任选中间3位小于或等于590的数作为起始,如从第3行的第4列数037开始,取出037作为590件货物中的第1个代号;(3)继续向右读,将每组中间3位符合要求的数取出,已取出重复的跳过,到行末转下一行从左向右继续读,得数据:037,104,460,463,317,290,030,042,142,237,318,154,038,212,404,132,…,编号为以上所选的50个的货物被选中,即得到一个容量为50的样本.4.故宫博物院某天接待游客10 000人(假设把他们编号为0~9 999),如果要从这些游客中随机选出10名幸运游客,请你用系统抽样的方式给出幸运游客的编号.解:按编号顺序分成10组,每组1 000个号,先在第1组用简单随机抽样方式取出k(0≤k≤999)号,其余的k+1 000n(n=1,2,…,9)也被抽到,即可得到所需样本.5.一支田径队中有男运动员56人,女运动员42人,用分层抽样的方式从全队中抽取28名运动员.解:从男运动员中抽16人,女运动员中抽12人.6.某市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了了解商店的销售情况,要从中抽取21家商店进行调查,请你用分层抽样的方式进行抽取.解:大型商店、中型商店、小型商店分别抽取2家、4家、15家.习题2-1B1.某公园为了考察每天游览的人数,从一年中要抽取30天进行统计,请你分别用随机数表法、系统抽样法、分层抽样法给出样本,并根据样本比较这3种抽样方式.解:方法1:随机数表法S1 将一年的365天编号为001,002, (365)S2 在教材第一节提供的随机数表中任选一数作为开始,任选一方向作为读数方向,比如,选第1行第6个数“5”,向右读;S3 从数“5”开始,向右读,每次读取3位,凡不在001~365中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到30个符合要求的;S4 以上对应的日期就是抽取的对象.方法2:系统抽样法S1 将365天用随机方式编号;S2 从总体中剔除5天(剔除方法可用随机数表法),将剩下的360天重新编号(分别为001,…,360),并分成30段;S3 在第一段001,…,012这12个编号中用简单随机抽样抽出一个(如003)作为起始;S4 将编号为003,015,027,…,351的日期抽出,组成样本.方法3:分层抽样法S1 将一年分为春、夏、秋、冬四个层次;S2 在每个层次中用随机数表法抽取8天;S3 4×8=32,再用抽签法剔除2天,剩下的30天组成样本.点拨:3种抽样方法的共同点是每个个体被抽到的可能性均相等.2.随着互联网络的发展与普及,网络调查方式的使用越来越多.你能比较一下传统的调查方式与网络调查方式的优劣吗?解:网络调查省时、省力,但有时也不具备代表性.如调查农业方面的问题,应该调查农民,但农民上网的人数很少;传统调查方式虽费时、费力,但针对性强.。
2019人教A版高中数学必修三练习 第二章统计单元质量评估(含答案)
单元质量评估(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面抽样方法是简单随机抽样的是 ( D )A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编号)2.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现用分层抽样抽取30人,则各职称抽取人数分别为 ( B )A.5,10,15B.3,9,18C.3,10,17D.5,9,163.在一次数学测试中,有考生1 000名,现想了解这1 000名考生的数学成绩,从中抽取100名学生的数学成绩进行统计分析,在这个问题中,总体是指 ( B )A.1 000名考生B.1 000名考生的数学成绩C.100名考生的数学成绩D.100名考生4.如图是某校高一学生到校方式的条形统计图,根据图形可得出骑自行车人数占高一学生总人数的 ( B )A.20%B.30%C.50%D.60%5.用抽签法进行抽样有以下几个步骤:①把号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条制作)②将总体中的个体编号;③从这个容器中逐个不放回地抽取号签,将取出号签所对应的个体作为样本;④将这些号签放在一个容器内并搅拌均匀;这些步骤的先后顺序应为 ( A )A.②①④③B.②③④①C.①③④②D.①④②③6.由观测的样本数据算得变量x与y满足线性回归方程=0.6x-0.5,已知样本平均数=5,则样本平均数的值为 ( C )A.0.5B.1.5C.2.5D.3.57.用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11行至第15行),根据下列数据,读出的第三个样本编号是 ( B )18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 05 26 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 71 23 42 40 64 74 82 97 77 77 81 07 45 32 14 08 32 98 94 07 72 93 85 79 10 75 52 36 28 19 95 50 92 26 11 97 00 56 76 31 38 80 22 02 53 53 86 60 42 04 5337 85 94 35 12 83 39 50 08 30 42 34 07 96 88 54 42 06 87 98 35 85 29 48 39A.841B.114C.014D.1468.某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( B )A.5B.7C.11D.139.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( C )A.15B.18C.21D.2210.某校为了了解高三学生的身体状况,抽取了100名女生的体重.将所得的数据整理后,画出了如图的频率分布直方图,则所抽取的女生中体重在40~45 kg的人数是( A )A.10B.2C.5D.1511.有关部门从甲、乙两个城市所有的自动售货机中各随机抽取了16台,记录上午8:00~11:00间各自的销售情况(单位:元),用茎叶图表示:设甲、乙的平均数分别为,,标准差分别为s1,s2,则 ( D )A.>,s1>s2B.>,s1<s2C.<,s1<s2D.<,s1>s212.某人对一个地区人均工资收入x与该地区人均消费水平y进行统计调查,y与x有相关关系,得到线性回归方程为y=0.66x+1.562(单位:百元).若该地区人均消费水平为7.675百元,估计该地区人均消费水平占人均工资收入的百分比约为 ( D )A.66%B.72.3%C.67.3%D.83%二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 1 800件.14.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是18,00,38,58,32,26,25,39.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60 15.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是6.16.为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的实验数据,计算得回归直线方程为=0.85x-0.25.由以上信息,可得表中c的值为6.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(10分)某校高三的某次数学测试中,对其中100名学生的成绩进行分析,按成绩分组,得到的频率分布表如下:(1)求出频率分布表中①,②位置相应的数据.(2)为了选拔出最优秀的学生参加即将举行的数学竞赛,学校决定在成绩较高的第3,4,5组中分层抽样取5名学生,则第4,5组每组各抽取多少名学生?【解析】(1)①处的数据为:15÷100=0.15,②处的数据为:0.35×100=35.(2)第三、四、五组中共有学生20+20+10=50人,故抽样比k==,故应从第四组中抽取20×=2人,应从第五组中抽取10×=1人.18.(12分)高一(3)班有学生60人,为了了解学生对目前高考制度的看法,现要从中抽取一个容量为10的样本,问此样本若采用简单随机抽样,将如何获得?试设计抽样方案. 【解析】抽签法:①将这60名学生按学号编号,分别为1,2, (60)②将这60个号码分别写在60张相同纸片上;③将这60张相同纸片揉成团,放到一个不透明的盒子里搅拌均匀;④抽出一张,记下上面的号码,然后再搅拌均匀,接着抽取第2张,记下号码.重复这个过程直到取到10个号码为止.这样,与这10个号码对应的10名学生就构成了一个简单的随机样本.19.(12分)某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:40.02 40.00 39.98 40.00 39.9940.00 39.98 40.01 39.98 39.9940.00 39.99 39.95 40.01 40.0239.98 40.00 39.99 40.00 39.96(1)完成下面的频率分布表,并画出频率分布直方图.(2)假定乒乓球的直径误差不超过0.02 mm为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.【解析】(1)10(2)因为抽样的20只产品中在[39.98,40.02]范围内有18只,所以合格率为×100%=90%,所以10 000×90%=9 000(只).即根据抽样检查结果,可以估计这批产品的合格只数为9 000.20.(12分)一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:(1)作出散点图.(2)如果y与x线性相关,求出回归直线方程.(3)若实际生产中,允许每小时生产的产品中有缺损的零件最多为10个,那么,机器的转速应控制在什么范围内?(结果保留整数)附:线性回归方程=x+a中,=,=-.【解析】(1)散点图如图:(2)由题中数据列表如下:=12.5,=8.25,=660,x i y i=438,所以=≈0.73,=8.25-0.73×12.5=-0.875,所以=0.73x-0.875.(3)令0.73x-0.875≤10,解得x≤14.9≈15,故机器的运转速度应控制在15转/秒内.21.(12分)为缓解堵车现象,解决堵车问题,北京市交通局调查了甲、乙两个交通站的车流量,在2018年5月随机选取了14天,统计每天上午7:30~9:00间各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.(1)甲、乙两个交通站的车流量的中位数分别是多少?(2)甲、乙两个交通站哪个站更繁忙?说明理由.(3)计算甲、乙两交通站的车流量在[10,40]之间的频率.【解析】(1)甲交通站的车流量的中位数为=56.5.乙交通站的车流量的中位数为=36.5.(2)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.(3)甲交通站的车流量在[10,40]之间的有4天,所以频率为=,乙交通站的车流量在[10,40]之间的有6天,所以频率为=.22.(12分)某重点中学100位学生在市统考中的理科综合分数,以[160,180),[180,200),[200,220),[220,240),[240,260), [260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值.(2)求理科综合分数的众数和中位数.(3)在理科综合分数为[220,240),[240,260),[260,280),[280,300]的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[220,240)的学生中应抽取多少人? 【解析】(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,解得x=0.007 5,所以直方图中x的值为0.007 5.(2)理科综合分数的众数是=230,因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以理科综合分数的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)理科综合分数在[220,240)的学生有0.012 5×20×100=25(位),同理可求理科综合分数为[240,260),[260,280),[280,300]的学生分别有15位、10位、5位,故抽取比为=,所以从理科综合分数在[220,240)的学生中应抽取25×=5人.关闭Word文档返回原板块。
第二章 统计单元达标测试卷
第二章统计 A卷基础夯实——高二数学人教A版必修3单元达标测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1、某社区卫生室为了了解该社区居民的身体健康状况,对该社区1100名男性居民和900名女性居民按性别采用等比例分层随机抽样的方法进行抽样调查,抽取了一个容量为100的样本,则应从男性居民中抽取的人数为( )A. 45B. 50C. 55D. 602、从某地参加计算机水平测试的5000名学生的成绩中抽取200名学生的成绩进行统计分析,在这个问题中,200名学生的成绩是( )A.总体B.个体C.从总体中所取的一个样本D.总体的容量3、总体容量为203,若采用系统抽样法抽样,当抽样间距为多少时,不需要剔除个体( )A.4B.5C.6D.74、某学校对高三年级500名学生进行系统抽样,编号分别为001,002,…,500,若样本相邻的两个编号为031,056,则样本中编号最大的为()A.479B.480C.481D.4825、为了解员工对“薪资改革方案”的态度,人资部门欲从研发部门和销售部门的2200名员工中,用分层抽样的方法抽取88名员工进行调查,已知研发部门有800名员工,则应从销售部门抽取的员工人数是( )A.24B.32C.56D.726、某校有高一年级学生1000名,高二年级学生1200名,高三年级学生1100名,现用分层抽样的方法从该校所有高中生中抽取330名学生,则抽取的高三年级学生人数为()A. 50B. 70C. 90D. 1107、某林场有树苗30000棵,其中松树苗4000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A.30B.25C.20D.158、某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图,则下列结论错误的是()A. 得分在[40,60)之间的共有40人B. 从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5C. 估计得分的众数为55D. 这100名参赛者得分的中位数为659、在某中学举行的环保知识竞赛中,将三个年级参赛的学生的成绩进行整理后分为5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是( )A.15B.18C.20D.2510、已知某7个数的平均数为3,方差为3,现加入一个新数据3,此时这8个数的平均数为x,标准差为s,则( )A.3x=,3s B.3x=,3s<C.3x>,3s<D.3x>,3s>11、设一组样本数据1x,2x,…,n x的方差为0.01,则数据110x,210x,…,10n x的方差为( )A.0.01B.0.1C.1D.1012、采用随机抽样法抽到一个容量为20的样本数据,分组后,各组的频数如下表:分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数 2 3 x 5 y 2A.0.70B.0.50C.0.25D.0.20二、填空题13、某中学组织了“党史知识竞赛”活动,已知该校共有高中学生2000人,用分层抽样的方法从该校高中学生中抽取一个容量为50的样本参加活动,其中高一年级抽取了6人,则该校高一年级学生人数为______.14、某超市有三类食品,其中果蔬类、奶制品类及肉制品类分别有20种、15种和10种, 现采用分层抽样的方法抽取一个容量为n的样本进行安全检测,若果蔬类抽取4种,则n为_______.15、某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取__________名学生.16、某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层随机抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_____件.三、解答题17、从30个足球中抽取10个进行质量检测,请用随机数表法写出抽样过程.18、某校高一某班的某次数学测试成绩(满分为100分)如下56,58,62,63,63,65,66,68,69,71,72,72,73,74,75,76,77,78,79,95,98其中[80,90)内的成绩缺失.频率分布直方图也受到了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60)内的频率及全班人数.(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.参考答案1、答案:C解析:应从男性居民中抽取的人数为1100100551100900⨯=+2、答案:C解析:总体是5000名学生的成绩,个体是每一名学牛的成绩,200名学生的成绩是从总体中所取的一个样本,总体的容量为5000. 3、答案:D解析:因为203729=⨯,即203能被7整除,所以间隔为7时,不需要剔除个体. 4、答案:C解析: ∵样本中相邻的两个编号分别为 031 , 056∴样本数据组距为563125-=, 则样本容量为5002025=, 则对应的号码数()6251x n =+-, 当 20n =时, x 取 得最大值为62519481x =+⨯=, 故选: C. 5、答案:C解析:由题意可得应从研发部门抽取的员工人数是88800322200⨯=,则应从销售部门抽取的员工人数是883256-=. 6、答案:D解析:由题意得抽取的高三年级学生人数为 1100330110100012001100⨯=++,故选:D 7、答案:C解析:抽样比是150130000200=,则样本中松树苗的数量为1400020200⨯=.8、答案:D解析:根据频率和为1,计算(0,0350.0300.0200.010)101a ++++⨯=,解得0.005a =,得分在[40,60)的频率是0.40,估计得分在[40,60)的有1000.4040⨯=人,A 正确;得分在[60,80)的频率为0.5,可得这100名参赛者中随机选取一人,得分在[60,80)的概率为0.5,B 正确;根据频率分布直方图知,最高的小矩形对应的底边中点为5060552+=,即估计众数为55,C 正确,故选D. 9、答案:A解析:根据频率分布直方图,得第二小组的频率是0.04100.4⨯=,∵频数是()0.010.005100.15+⨯=,∴样本容量是401000.4=,又成绩在80~100分的频率是()0.010.005100.15+⨯=,∴成绩在80~100分的学生人数是1000.1515⨯=.故选A.10、答案:B解析:因为某7个效据的平均数为5,方差为3,现又加入一个新数据3, 此时这8个数的平均数为x ,方差为2s ,所以733438x ⨯+==,2273(33)21388s ⨯+-==<, 故答案为B. 11、答案:C解析:由已知得数据110x ,210x ,…,10n x 的方差为1000.011⨯=.故选C. 12、答案:D 解析:由题意得30.3520x+=,解得4x =,20234524y ∴=-----=,∴所求频率为40.2020=.故选D. 13、答案:240解析:由题意知,该校高一年级学生人数为2000624050⨯=. 故答案为: 240 . 14、答案:9解析:由果蔬类抽取 4 种可知,抽样比为41205=, 故()120151095n=++⨯=15、答案:15解析:高二年级学生人数占总数的310,样本容量为50,则3501510⨯=.16、答案:18解析:应从丙种型号的产品中抽取30060181000⨯=(件).17、答案:步骤如下:第一步,将30个足球进行编号:00,01,02, (29)第二步:在随机数表中随机选一数作为开始, 如从第9行第17列的数0开始.第三步,从选定的数0开始向右读(也可以向左、向上、向下等),读取一个两位数字07,由于07<29,将它取出;读取82,由于82 >29,将它去掉.按照这种方式继续向右读, 取出的两位数字若与前面已有的相同,也将它去掉,这样又得到15,00,13,…,依次下去,直到取出10个号碍.这10个编号对应的10个足球就是要抽取的对象.解析:18、答案:(1)频率为0.08,全班人数25.(2)频数为4,高为0.016.解析:(1)分数在[50,60)的频率为0.008100.08⨯=.由题意知,分数在[50,60)之间的频数为2,所以全班人数为225 0.08=.(2)分数在[80,90)之间的频数为25271024----=,频率分布直方图中[80,90)间的矩形的高为4100.016 25÷=.。
新教材 人教B版高中数学必修第二册5.1统计 习题课件(共118页)
③将这 60 张相同纸片揉成团,放到一个盒子里搅拌均匀; ④抽出一张,记下上面的号码(不放回),然后再搅拌均匀,接着抽 取第 2 张,记下号码.重复这个过程直到取到 10 个号码为止. 这样,与这 10 个号码对应的 10 名学生就构成了一个简单的随机样 本. 方法 2(随机数表法): ①将 60 名学生编号,可以编为 00,01,02,…,59; ②利用教材提供的随机数表,选定随机数表中的起始数,取数据的 后两位,如指定从随机数表中的第 2 行第 2 组数 12 开始;
解析:①因家庭收入不同其社会购买力也不同,宜用分层抽样的 方法.②因总体个数较小,宜用简单随机抽样法.
2.已知某地区中小学生人数和近视情况分别如图①和图②所 示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取 2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 (A )
A.200, 20 C.200, 10
及果蔬类分别有 40 种、10 种、30 种、20 种,现从中抽取一个容量
为 20 的样本进行食品安全检测.若采用分层抽样的方法抽取样本,
则抽取的植物油类
B.5
C.6
D.7
解析:抽样比 k=40+102+030+20=12000=15,所以抽取植物油类与
果蔬类食品种数之和是 10×15+20×15=2+4=6.
抽取一个容量为 2 的样本,可能得到的样本共有( A )
A.10 种
B.7 种
C.9 种
D.20 种
解析:设 5 个个体分别为 a,b,c,d,e,则可能得到的样本为(a, b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e), (d,e),共 10 种.