有限差分法求解偏微分方程MATLAB教学教材
有限差分法Matlab实现课件
函数与脚本
03
Matlab中的函数和脚本可以用来组织代码和实现特
定功能,支持参数传递和局部变量。
Matlab的数据类型
数值型
数值型变量用于存储数字数据,包括整数 和浮点数。
单元数组
单元数组是一种特殊的数据类型,可以用 来存储多个字符串或数值型数据,每个元 素用方括号括起来。
总结词:三维有限差分法是求解偏微分方程的一种数值 方法,通过在三个方向上将方程离散化,用差分近似代 替微分,从而将原问题转化为求解一系列线性方程组。
1. 将求解区域划分为一系列离散的网格点;
详细描述:三维有限差分法通常采用如下的步骤进行实 现
2. 用差分近似代替微分,将原微分方程转化为差分方 程;
3. 利用线性方程组的求解方法,如高斯消元法、迭代法 等,求解差分方程;
r(i,i+1) = -2/h^2 + x(i+1)^2/h^2;
b(i) = (u(i+1) - 2*u(i) + u(i-1))/h^2 x(i)^2*u(i)/h^2;
一维有限差分法的代码示例及解析
end
r(1,1) = r(N,N) = 4/h^2;
b(1) = b(N) = (u(2) - u(1))/h^2;
在图像处理中的应用
图像去噪
有限差分法可以用来对图像进行去噪处理,通过减少图像中的噪声 来提高图像质量。
图像增强
有限差分法可以用来增强图像的边缘和细节,提高图像的视觉效果 。
图像重建
有限差分法可以用来从部分图像中重建出完整的图像,应用于计算 机视觉、模式识别等领域。
05
CATALOGUE
Matlab实现的代码示例及解析
matlab有限差分法求解非齐次偏微分方程
《使用 MATLAB 有限差分法求解非齐次偏微分方程》在科学和工程领域,偏微分方程是描述自然现象和过程中关键的数学工具。
非齐次偏微分方程作为其中的一个重要分支,在描述真实世界中的复杂现象方面具有广泛的应用。
而 MATLAB 作为一个强大的数学建模和计算工具,其有限差分法求解非齐次偏微分方程的能力受到了广泛关注。
在本文中,我们将以 MATLAB 为工具,探讨有限差分法如何用于求解非齐次偏微分方程,以及其中涉及的深度和广度。
1. 偏微分方程及有限差分法简介当我们研究自然界中的变化和现象时,经常会遇到连续变量之间的相关性和变化规律。
偏微分方程便是用来描述这些连续变量之间关系的数学工具。
而有限差分法则是一种数值计算方法,通过将连续的变量离散化,将偏微分方程转化为代数方程组,从而求解偏微分方程的数值解。
2. 非齐次偏微分方程的求解非齐次偏微分方程与常见的齐次偏微分方程相比,具有更复杂的边界和初始条件,因此其求解方法也更为复杂。
通过有限差分法,我们可以将非齐次偏微分方程转化为离散的代数方程组,进而求解出数值解。
3. MATLAB 中有限差分法的实现MATLAB 提供了丰富的数学建模和计算工具,包括用于求解偏微分方程的函数和工具箱。
通过调用这些函数和工具箱,我们可以方便地实现有限差分法对非齐次偏微分方程的求解。
4. 示例应用与个人观点我们将以一个实际的例子,展示 MATLAB 中有限差分法求解非齐次偏微分方程的过程,并共享对这一过程的个人观点和理解。
通过该示例,我们能更深刻地理解有限差分法在求解非齐次偏微分方程中的应用,以及其中涉及的数学原理和算法流程。
总结与回顾在本文中,我们以 MATLAB 为工具,探讨了有限差分法求解非齐次偏微分方程的深度和广度。
通过对有限差分法的基本原理和实际应用进行全面评估,我们详细介绍了有限差分法在求解非齐次偏微分方程中的具体步骤和流程。
我们也共享了在示例应用中对这一过程的个人理解和观点,以期帮助读者更全面、深刻和灵活地理解该主题。
matlab有限差分法求解非齐次偏微分方程
matlab有限差分法求解非齐次偏微分方程【导语】本文将介绍matlab有限差分法在求解非齐次偏微分方程中的应用。
非齐次偏微分方程是数学和物理学中的常见问题之一,它们描述了许多实际系统的行为。
通过有限差分法,可以将偏微分方程转化为差分方程,从而利用计算机来求解。
本文将从原理、步骤和实例三个方面来分析非齐次偏微分方程的有限差分法求解过程。
【正文】一、原理有限差分法是将连续函数在一系列有限的点上进行逼近的方法。
它的基本思想是用差分代替微分,将偏导数转化为差分算子。
通过对空间和时间离散化,将非齐次偏微分方程转化为差分方程组,再利用数值计算的方法求解这个差分方程组,从而得到非齐次偏微分方程的近似解。
具体而言,有限差分法将求解区域划分为网格,并在网格上近似表示偏微分方程中的函数。
利用中心差分公式或向前、向后差分公式来近似计算偏导数。
通过将偏微分方程中的微分算子替换为差分近似,可以将方程转化为一个代数方程组,进而求解得到非齐次偏微分方程的近似解。
二、步骤1. 确定求解的区域和方程:首先要确定求解的区域,然后确定非齐次偏微分方程的形式。
在matlab中,可以通过定义一个矩阵来表示求解区域,并将方程转化为差分算子形式。
2. 离散化:将求解区域划分为网格,确定每个网格点的位置,建立网格点之间的连接关系。
通常,使用均匀网格来离散化求解区域,并定义网格点的坐标。
3. 建立差分方程组:根据偏微分方程的形式和离散化的结果,建立差分方程组。
根据中心差分公式,用网格点上的函数值和近邻点的函数值来近似计算偏导数。
将差分算子应用于非齐次偏微分方程的各个项,得到差分方程组。
4. 求解差分方程组:利用线性代数求解差分方程组。
将方程组转化为矩阵形式,利用matlab中的线性方程组求解功能,得到差分方程组的近似解。
通过调整求解区域划分的精细程度和差分算子的选取,可以提高求解的精度。
5. 回代和结果分析:将求解的结果回代到原非齐次偏微分方程中,分析其物理意义和数值稳定性。
差分法求解偏微分方程MAAB
南京理工大学课程考核论文课程名称:高等数值分析论文题目:有限差分法求解偏微分方程姓名:罗晨学号:成绩:有限差分法求解偏微分方程一、主要内容1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下:2.推导五种差分格式、截断误差并分析其稳定性;3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;4.结论及完成本次实验报告的感想。
二、推导几种差分格式的过程:有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。
有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
推导差分方程的过程中需要用到的泰勒展开公式如下:()2100000000()()()()()()()......()(())1!2!!n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1)求解区域的网格划分步长参数如下:11k k k kt t x x h τ++-=⎧⎨-=⎩(2-2) 2.1古典显格式2.1.1古典显格式的推导由泰勒展开公式将(,)u x t 对时间展开得2,(,)(,)()()(())i i k i k k k uu x t u x t t t o t t t∂=+-+-∂(2-3) 当1k t t +=时有21,112,(,)(,)()()(())(,)()()i k i k i k k k k k i k i k uu x t u x t t t o t t tuu x t o tττ+++∂=+-+-∂∂=+⋅+∂(2-4)得到对时间的一阶偏导数1,(,)(,)()=()i k i k i k u x t u x t uo t ττ+-∂+∂(2-5) 由泰勒展开公式将(,)u x t 对位置展开得223,,21(,)(,)()()()()(())2!k i k i k i i k i i u uu x t u x t x x x x o x x x x∂∂=+-+-+-∂∂(2-6)当11i i x x x x +-==和时,代入式(2-6)得2231,1,1122231,1,1121(,)(,)()()()()(())2!1(,)(,)()()()()(())2!i k i k i k i i i k i i i i i k i k i k i i i k i i i iu u u x t u x t x x x x o x x x xu u u x t u x t x x x x o x x x x ++++----⎧∂∂=+-+-+-⎪⎪∂∂⎨∂∂⎪=+-+-+-⎪∂∂⎩(2-7) 因为1k k x x h +-=,代入上式得2231,,22231,,21(,)(,)()()()2!1(,)(,)()()()2!i k i k i k i k i k i k i k i ku u u x t u x t h h o h x xu u u x t u x t h h o h x x +-⎧∂∂=+⋅+⋅+⎪⎪∂∂⎨∂∂⎪=-⋅+⋅+⎪∂∂⎩(2-8) 得到对位置的二阶偏导数2211,22(,)2(,)(,)()()i k i k i k i k u x t u x t u x t uo h x h+--+∂=+∂(2-9) 将式(2-5)、(2-9)代入一般形式的抛物线型偏微分方程得(2-10)为了方便我们可以将式(2-10)写成11122k kk k k k i i i i i i u u u u u f h ατ++-⎡⎤--+-=⎢⎥⎣⎦(2-11) ()11122k k k k k k i i i i i i u u uu u f hτατ++----+=(2-12)最后得到古典显格式的差分格式为()111(12)k k k k k i i i i i u ra u r u u f ατ++-=-+++(2-13)2r hτ=其中,古典显格式的差分格式的截断误差是2()o h τ+。
(完整版)偏微分方程的MATLAB解法
引言偏微分方程定解问题有着广泛的应用背景。
人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。
然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。
现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。
偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
常用的方法有变分法和有限差分法。
变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。
虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。
随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。
从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。
从这个角度说,偏微分方程变成了数学的中心。
一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
(完整版)偏微分方程的MATLAB解法
引言偏微分方程定解问题有着广泛的应用背景。
人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。
然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。
现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。
偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
常用的方法有变分法和有限差分法。
变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。
虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。
随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。
从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。
从这个角度说,偏微分方程变成了数学的中心。
一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
有限差分法求解偏微分方程MATLAB
南京理工大学课程考核论文课程名称:高等数值分析论文题目:有限差分法求解偏微分方程*名:**学号: 1成绩:有限差分法求解偏微分方程一、主要内容1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:22(,)()u uf x t t xαα∂∂-=∂∂其中为常数具体求解的偏微分方程如下:22001(,0)sin()(0,)(1,)00u u x t x u x x u t u t t π⎧∂∂-=≤≤⎪∂∂⎪⎪⎪=⎨⎪⎪==≥⎪⎪⎩2.推导五种差分格式、截断误差并分析其稳定性;3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析;4.结论及完成本次实验报告的感想。
二、推导几种差分格式的过程:有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。
有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
推导差分方程的过程中需要用到的泰勒展开公式如下:()2100000000()()()()()()()......()(())1!2!!n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1)求解区域的网格划分步长参数如下:11k k k kt t x x h τ++-=⎧⎨-=⎩ (2-2) 2.1 古典显格式2.1.1 古典显格式的推导由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)()()(())i i k i k k k uu x t u x t t t o t t t∂=+-+-∂ (2-3) 当1k t t +=时有21,112,(,)(,)()()(())(,)()()i k i k i k k k k k i k i k uu x t u x t t t o t t tuu x t o tττ+++∂=+-+-∂∂=+⋅+∂ (2-4)得到对时间的一阶偏导数1,(,)(,)()=()i k i k i k u x t u x t uo t ττ+-∂+∂ (2-5) 由泰勒展开公式将(,)u x t 对位置展开得223,,21(,)(,)()()()()(())2!k i k i k i i k i i u uu x t u x t x x x x o x x x x∂∂=+-+-+-∂∂ (2-6)当11i i x x x x +-==和时,代入式(2-6)得2231,1,1122231,1,1121(,)(,)()()()()(())2!1(,)(,)()()()()(())2!i k i k i k i i i k i i i i i k i k i k i i i k i i i iu uu x t u x t x x x x o x x x x u u u x t u x t x x x x o x x x x ++++----⎧∂∂=+-+-+-⎪⎪∂∂⎨∂∂⎪=+-+-+-⎪∂∂⎩(2-7) 因为1k k x x h +-=,代入上式得2231,,22231,,21(,)(,)()()()2!1(,)(,)()()()2!i k i k i k i k i k i k i k i ku uu x t u x t h h o h x xu u u x t u x t h h o h x x +-⎧∂∂=+⋅+⋅+⎪⎪∂∂⎨∂∂⎪=-⋅+⋅+⎪∂∂⎩ (2-8) 得到对位置的二阶偏导数2211,22(,)2(,)(,)()()i k i k i k i k u x t u x t u x t u o h x h+--+∂=+∂ (2-9) 将式(2-5)、(2-9)代入一般形式的抛物线型偏微分方程得21112(,)(,)(,)2(,)(,)(,)()i k i k i k i k i k i k u x t u x t u x t u x t u x t f x t o h h αττ++---+⎡⎤-=++⎢⎥⎣⎦(2-10)为了方便我们可以将式(2-10)写成11122k kk k k k i i i i i i u u u u u f h ατ++-⎡⎤--+-=⎢⎥⎣⎦(2-11) ()11122k k k k k k i i i i i i u u uu u f h τατ++----+= (2-12)最后得到古典显格式的差分格式为()111(12)k k k k k i i i i i u ra u r u u f ατ++-=-+++ (2-13)2r h τ=其中,古典显格式的差分格式的截断误差是2()o h τ+。
偏微分方程的matlab解法讲课文档
现在二十五页,总共二十五页。
Байду номын сангаас
初始条件
现在三页,总共二十五页。
先确定方程大类
现在四页,总共二十五页。
Draw Mode
画图模式,先将处理的区域画出来,二维, 方形,圆形,支持多边形,可以手动更改坐
标,旋转rotate
例如,对于细杆导热,虽然是一维问题, 可以将宽度y虚拟出来,对应于y的边界条 件和初始条件按照题意制定
现在五页,总共二十五页。
°C,板的右边热量从板向环境空气定常流动,其他边及内孔边界保
持绝缘。初始
题;
t t 是板的温度为0 °C ,于是概括为如下定解问 0
d u u0 , t
u 1 0 0 ,在 左 边 界 上
u 1, 在 右 边 界 上 n u = 0, 其 他 边 界 上 n
u t to 0
区域的边界顶点坐标为(-0.5,-0.8), (0.5,-0.8), (-0.5,0.8), (0.5,0.8)。 内边界顶点坐标(-0.05,-0.4), (-0.05,0.4) ,(0.05,-0.4), (0.05,0.4)。
MATLAB形成M文件.
现在十六页,总共二十五页。
现在十七页,总共二十五页。
第四步:设置方程类型
选择PDE菜单中PDE Mode命令,进入PDE模式, 再单击PDE菜单中PDE Secification选项,打开
PDE Secification对话框,设置方程类型.
本例取抛物型方程 du(cu)auf, t
Conditions选项,打开Boundary Conditions对话框, 输入边界件.本例取默认条件,即将全部边界设为齐次
Dirichlet条件,边界显示为红色. 如果想将几何与边界信息存储,可选Boundary菜单 中的Export Decomposed Geometrv.Boundary
偏微分方程解的几道算例(差分、有限元)-含matlab程序(
《偏微分方程数值解》上机报告实验内容 1:分别用向前差分格式、向后差分格式及六点对称格式, 求解下列问题:222, 01, 0, (0, (1, 0, 1, (, 0 sin( (1.u u x t t x u t u t t u x x x x π⎧∂∂=+<<>⎪∂∂⎪⎨==>⎪⎪=+−⎩x 方向 0.1h =, t 方向0.01τ=.在 0.25t =时观察数值解与精确解 2sin( (1 u e x x x ππ−=+−的误差. (一算法描述:(二实验结果:1.误差的数值解结果数值对比(A“向前差分格式”程序:>>forward(0.1,0.01, 0.25Current plot heldans =0.00000.00270.00510.00700.00820.00870.00820.00700.00510.00270.0000(B“向后差分格式”程序:>>back(0.1,0.01, 0.25Current plot heldans =0.0000-0.0037-0.0071-0.0097-0.0114-0.0120-0.0114-0.0097-0.0071 -0.00370.0000(C“六点差分格式”程序:>>six(0.1,0.01, 0.25Current plot heldans =0.0000-0.0005-0.0009-0.0013-0.0015-0.0016-0.0015-0.0013-0.0009-0.00050.0000注:这里的"误差"=精确解-数值解.2.精确解与数值解结果图像对比“向前差分格式”:注:曲线表示精确解,"o"表示数值解(t=0.25时. “向后差分格式”:注:曲线表示精确解,"o"表示数值解(t=0.25时. “六点差分格式” :注:曲线表示精确解,"O"表示数值解(t=0.25时.(三结果分析通过(一 , (二 ,我们检验了三种方法都能很好的求解此一维热传导方程,其中明显能发现“六点对称格式”的误差更小。
Matlab求解微分方程(组)及偏微分方程(组)
第四讲【2 】Matlab求解微分方程(组)理论介绍:Matlab求解微分方程(组)敕令求解实例:Matlab求解微分方程(组)实例现实运用问题经由过程数学建模所归纳得到的方程,绝大多半都是微分方程,真正能得到代数方程的机遇很少.另一方面,可以或许求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就请求我们必须研讨微分方程(组)的解法:解析解法和数值解法.一.相干函数.敕令及简介1.在Matlab中,用大写字母D表示导数,Dy表示y关于自变量的一阶导数,D2y表示y关于自变量的二阶导数,依此类推.函数dsolve用来解决常微分方程(组)的求解问题,挪用格局为:X=dsolve(‘eqn1’,’eqn2’,…)函数dsolve用来解符号常微分方程.方程组,假如没有初始前提,则求出通解,假如有初始前提,则求出特解.留意,体系缺省的自变量为t2.函数dsolve求解的是常微分方程的准确解法,也称为常微分方程的符号解.但是,有大量的常微分方程固然从理论上讲,其解是消失的,但我们却无法求出其解析解,此时,我们须要追求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰硕的函数,我们将其统称为solver,其一般格局为:[T,Y]=solver(odefun,tspan,y0)解释:(1)solver为敕令ode45.ode23.ode113.ode15s.ode23s.ode23t.ode23tb.ode15i之一.(2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始前提y 求解.(3)假如要获得微分方程问题在其他指准时光点012,,,,ft t t t 上的解,则令tspan012[,,,]f t t t t =(请求是单调的).(4)因为没有一种算法可以有用的解决所有的ODE 问题,为此,Matlab 供给了多种求解器solver,对于不同的ODE 问题,采用不同的solver.表1 Matlab 中文本文件读写函数解释:ode23.ode45是极其常用的用来求解非刚性的标准情势的一阶微分方程(组)的初值问题的解的Matlab 常用程序,个中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估量来调节步长,具有低等的精度.ode45则采用龙格-库塔4阶算法,用5阶公式作误差估量来调节步长,具有中等的精度.3.在matlab敕令窗口.程序或函数中创建局部函数时,可用内联函数inline,inli ne函数情势相当于编写M函数文件,但不需编写M-文件就可以描写出某种数学关系.挪用inline函数,只能由一个matlab表达式构成,并且只能返回一个变量,不许可[u,v]这种向量情势.因而,任何请求逻辑运算或乘法运算以求得最终成果的场合,都不能运用inline函数,inline函数的一般情势为:FunctionName=inline(‘函数内容’, ‘所有自变量列表’)例如:(求解F(x)=x^2*cos(a*x)-b ,a,b是标量;x是向量)在敕令窗口输入: Fofx=inline(‘x .^2*cos(a*x)-b’ , ‘x’,’a’,’b’);g= Fofx([pi/3 pi/3.5],4,1)体系输出为:g=-1.5483 -1.7259留意:因为运用内联对象函数inline不须要别的树立m文件,所有运用比较便利,别的在运用ode45函数的时刻,界说函数往往须要编辑一个m文件来单独界说,如许不便于治理文件,这里可以运用inline来界说函数.二.实例介绍1.几个可以直接用Matlab求微分方程准确解的实例例1 求解微分方程2 '2x y xy xe-+=程序:syms x y; y=dsolve(‘Dy+2*x*y=x*exp(-x^2)’,’x’)例 2求微分方程'0xxy y e+-=在初始前提(1)2y e=下的特解并画出解函数的图形.程序:syms x y; y=dsolve(‘x*Dy+y-exp(1)=0’,’y(1)=2*exp(1)’,’x’);ezplot(y)例 3求解微分方程组530tdx x y e dt dy x y dt ⎧++=⎪⎪⎨⎪--=⎪⎩在初始前提00|1,|0t t x y ====下的特解并画出解函数的图形.程序:syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y)ezplot(x,y,[0,1.3]);axis auto2.用ode23.ode45等求解非刚性标准情势的一阶微分方程(组)的初值问题的数值解(近似解)例4求解微分方程初值问题2222(0)1dy y x x dx y ⎧=-++⎪⎨⎪=⎩的数值解,求解规模为区间[0,0.5].程序:fun=inline('-2*y+2*x^2+2*x','x','y'); [x,y]=ode23(fun,[0,0.5],1); plot(x,y,'o-') 例5求解微分方程22'2(1)0,(0)1,(0)0d y dy y y y y dt dt μ--+===的解,并画出解的图形.剖析:这是一个二阶非线性方程,我们可以经由过程变换,将二阶方程化为一阶方程组求解.令12,,7dyx y x dt μ===,则121221212,(0)17(1),(0)0dx x x dtdx x x x x dt ⎧==⎪⎪⎨⎪=--=⎪⎩编写M-文件vdp.m function fy=vdp(t,x)fy=[x(2);7*(1-x(1)^2)*x(2)-x(1)]; end在Matlab 敕令窗口编写程序 y0=[1;0][t,x]=ode45(@vdp,[0,40],y0);或[t,x]=ode45('vdp',[0,40],y0); y=x(:,1);dy=x(:,2); plot(t,y,t,dy)演习与思虑:M-文件vdp.m 改写成inline 函数程序? 3.用Euler 折线法求解Euler 折线法求解的根本思惟是将微分方程初值问题00(,)()dyf x y dx y x y ⎧=⎪⎨⎪=⎩化成一个代数(差分)方程,重要步骤是用差商()()y x h y x h +-替代微商dydx ,于是00()()(,())()k k k k y x h y x f x y x h y y x +-⎧=⎪⎨⎪=⎩记1,(),k k k k x x h y y x +=+=从而1(),k k y y x h +=+于是0011(),,0,1,2,,1(,).k k k k k k y y x x x h k n y y hf x y ++=⎧⎪=+=-⎨⎪=+⎩例6用Euler 折线法求解微分方程初值问题22(0)1dyx y dxy y ⎧=+⎪⎨⎪=⎩的数值解(步长h 取0.4),求解规模为区间[0,2].剖析:本问题的差分方程为00110,1,0.4,0,1,2,,1(,).k k k k k k x y h x x h k n y y hf x y ++===⎧⎪=+=-⎨⎪=+⎩程序:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});%subs,调换函数 x=x+h; szj=[szj;x,y];end >>szj>> plot(szj(:,1),szj(:,2)) 解释:调换函数subs 例如:输入subs(a+b,a,4)意思就是把a 用4调换掉落,返回4+b,也可以调换多个变量,例如:subs(cos(a)+sin(b),{a,b},[sym('alpha'),2])分离用字符alpha 调换a 和2调换b,返回 cos(alpha)+sin(2)特别解释:本问题可进一步运用四阶Runge-Kutta 法求解,Euler 折线法现实上就是一阶Runge-Kutta 法,Runge-Kutta 法的迭代公式为001112341213243(),,(22),6(,),0,1,2,,1(,),22(,),22(,).k k k k k k k k k k k k y y x x x h h y y L L L L L f x y k n h h L f x y L h h L f x y L L f x h y hL ++=⎧⎪=+⎪⎪=++++⎪⎪=⎪=-⎨⎪=++⎪⎪⎪=++⎪⎪=++⎩响应的Matlab 程序为:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1;>> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1l1=subs(f,{'x','y'},{x,y});调换函数 l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2}); l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2}); l4=subs(f,{'x','y'},{x+h,y+l3*h}); y=y+h*(l1+2*l2+2*l3+l4)/6; x=x+h; szj=[szj;x,y]; end >>szj>> plot(szj(:,1),szj(:,2))演习与思虑:(1)ode45求解问题并比较差异.(2)运用Matlab 求微分方程(4)(3)''20y y y -+=的解. (3)求解微分方程''2',2(1)0,030,(0)1,(0)0y y y y x y y --+=≤≤==的特解.(4)运用Matlab 求微分方程初值问题2''''00(1)2,|1,|3x x x y xy y y ==+===的解.提示:尽可能多的斟酌解法三.微分方程转换为一阶显式微分方程组Matlab 微分方程解算器只能求解标准情势的一阶显式微分方程(组)问题,是以在运用ODE 解算器之前,我们须要做的第一步,也是最重要的一步就是借助状况变量将微分方程(组)化成Matlab 可接收的标准情势.当然,假如ODEs 由一个或多个高阶微分方程给出,则我们应先将它变换成一阶显式常微分方程组.下面我们以两个高阶微分方程组构成的ODEs 为例介绍若何将它变换成一个一阶显式微分方程组.Step1将微分方程的最高阶变量移到等式左边,其它移到右边,并按阶次从低到高分列.情势为:()'''(1)'''(1)()'''(1)'''(1)(,,,,,,,,,,)(,,,,,,,,,,)m m n n m n x f t x x x x y y y y y g t x x x xy y y y ----⎧=⎨=⎩ Step 2 为每一阶微分式选择状况变量,最高阶除外'''(1)123'''(1)123,,,,,,,,,m m n m m m m n x x x x x x x x x y x y x y x y --++++========留意:ODEs 中所有是因变量的最高阶次之和就是须要的状况变量的个数,最高阶的微分式不须要给它状况变量.Step 3 依据选用的状况变量,写出所有状况变量的一阶微分表达式''''122334123''12123,,,,(,,,,,),,(,,,,,)m m n m m m n m n x x x x x x x f t x x x x x x x g t x x x x +++++======演习与思虑:(1)求解微分方程组**'''3312*'''3312()()22x x x y x r r y y y x y r r μμμμμμ⎧+-=+--⎪⎪⎨⎪=+--⎪⎩个中2r =1r =*1,μμ=-1/82.45,μ=(0) 1.2,x =(0)0,y ='(0)0,x ='(0) 1.049355751y =-(2)求解隐式微分方程组''''''''''''2235x y x y x y x y xy y ⎧+=⎨++-=⎩提示:运用符号盘算函数solve 求'''',x y ,然后运用求解微分方程的办法四.偏微分方程解法Matlab 供给了两种办法解决PDE 问题,一是运用pdepe 函数,它可以求解一般的PDEs,具有较大的通用性,但只支撑敕令情势挪用;二是运用PDE 对象箱,可以求解特别PDE 问题,PDEtoll 有较大的局限性,比如只能求解二阶PDE 问题,并且不能解决片微分方程组,但是它供给了GUI 界面,从庞杂的编程中摆脱出来,同时还可以经由过程File —>Save As 直接生成M 代码.1.一般偏微分方程(组)的求解(1)Matlab 供给的pdepe 函数,可以直接求解一般偏微分方程(组),它的挪用格局为:sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)@pdefun 是PDE 的问题描写函数,它必须换成标准情势:(,,)[(,,,)](,,,)m m u u u uc x t x x f x t u s x t u x t x x x -∂∂∂∂∂=+∂∂∂∂∂如许,PDE 就可以编写进口函数:[c,f,s]=pdefun(x,t,u,du),m,x,t 对应于式中相干参数,du 是u 的一阶导数,由给定的输入变量可表示出c,f,s 这三个函数.@pdebc 是PDE 的边界前提描写函数,它必须化为情势:(,,)(,,).*(,,,)0up x t u q x t u f x t u x ∂==∂于是边值前提可以编写函数描写为:[pa,qa,pb,qb]=pdebc(x,t,u,du),个中a 表示下边界,b 表示上边界.@pdeic 是PDE 的初值前提,必须化为情势:00(,)u x t u =,故可以运用函数描写为:u0=pdeic(x)sol 是一个三维数组,sol(:,:,i)表示i u 的解,换句话说,k u 对应x(i)和t(j)时的解为s ol(i,j,k),经由过程sol,我们可以运用pdeval 函数直接盘算某个点的函数值.(2)实例解释求解偏微分2111222221220.024()0.17()u u F u u t x u u F u u t x ⎧∂∂=--⎪⎪∂∂⎨∂∂⎪=+-⎪∂∂⎩个中, 5.7311.46()x x F x e e -=-且知足初始前提12(,0)1,(,0)0u x u x ==及边界前提1(0,)0,u t x ∂=∂221(0,)0,(1,)1,(1,)0u u t u t t x ∂===∂解:(1)对比给出的偏微分方程和pdepe 函数求解的标准情势,原方程改写为111221220.024()1.*()10.17u u F u u x u F u u u t x x ∂⎡⎤⎢⎥--⎡⎤⎡⎤⎡⎤∂∂∂=+⎢⎥⎢⎥⎢⎥⎢⎥-∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦ 可见1121220.024()10,,,()10.17u F u u x m c f s F u u u x ∂⎡⎤⎢⎥--⎡⎤⎡⎤∂====⎢⎥⎢⎥⎢⎥-∂⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦%目的PDE 函数function [c,f,s]=pdefun(x,t,u,du)c=[1;1];f=[0.024*du(1);0.17*du(2)];temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp))end(2)边界前提改写为:下边界2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦上边界1110.*000u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ %边界前提函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t)pa=[0;ua(2)];qa=[1;0];pb=[ub(1)-1;0];qb=[0;1];end(3)初值前提改写为:1210u u ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦%初值前提函数function u0=pdeic(x)u0=[1;0];end(4)编写主调函数clcx=0:0.05:1;t=0:0.05:2;m=0;sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t);subplot(2,1,1)surf(x,t,sol(:,:,1))subplot(2,1,2)surf(x,t,sol(:,:,2))演习与思虑: This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.2()u u t x x π∂∂∂=∂∂∂This equation holds on an interval 01x ≤≤ for times 0t ≥. The PDE satisfies the initial condition (,0)sin u x x π= and boundary conditions(0,)0;(1,)0t u u t e t x π-∂=+=∂2.PDEtool 求解偏微分方程(1)PDEtool (GUI )求解偏微分方程的一般步骤在Matlab 敕令窗口输入pdetool,回车,PDE 对象箱的图形用户界面(GUI)体系就启动了.从界说一个偏微分方程问题到完成解偏微分方程的定解,全部进程大致可以分为六个阶段Step 1 “Draw 模式”绘制平面有界区域Ω,经由过程公式把Matlab 体系供给的实体模子:矩形.圆.椭圆和多边形,组合起来,生成须要的平面区域.Step 2 “Boundary 模式”界说边界,声明不同边界段的边界前提.Step3 “PDE 模式”界说偏微分方程,肯定方程类型和方程系数c,a,f,d,依据具体情况,还可以在不同子区域声明不同系数.Step 4 “Mesh 模式”网格化区域Ω,可以掌握主动生成网格的参数,对生成的网格进行多次细化,使网格朋分更细更合理.Step 5 “Solve 模式”解偏微分方程,对于椭圆型方程可以激活并掌握非线性自顺应解题器来处理非线性方程;对于抛物线型方程和双曲型方程,设置初始边界前提后可以求出给准时刻t 的解;对于特点值问题,可以求出给定区间上的特点值.求解完成后,可以返回到Step 4,对网格进一步细化,进行再次求解.Step 6 “View 模式”盘算成果的可视化,可以经由过程设置体系供给的对话框,显示所求的解的表面图.网格图.等高线图和箭头梯形图.对于抛物线型和双曲线型问题的解还可以进行为画演示.(2)实例解释用法求解一个正方形区域上的特点值问题:12|0u u u u λ∂Ω⎧-∆-=⎪⎨⎪=⎩正方形区域为:11,1 1.x x -≤≤-≤≤(1)运用PDE 对象箱打开GUI 求解方程(2)进入Draw 模式,绘制一个矩形,然后双击矩形,在弹出的对话框中设置Left=-1,Bottom=-1,Width=2,Height=2,确认并封闭对话框(3)进入Boundary 模式,边界前提采用Dirichlet 前提的默认值(4)进入PDE 模式,单击对象栏PDE 按钮,在弹出的对话框中方程类型选择Eigenmodes,参数设置c=1,a=-1/2,d=1,确认后封闭对话框(5)单击对象栏的 按钮,对正方形区域进行初始网格剖分,然后再对网格进一步细化剖分一次(6)点开solve菜单,单击Parameters选项,在弹出的对话框中设置特点值区域为[ -20,20](7)单击Plot菜单的Parameters项,在弹出的对话框中选中Color.Height(3-D plot)和show mesh项,然后单击Done确认(8)单击对象栏的“=”按钮,开端求解。
matlab 求解偏微分方程组
一、介绍Matlab是一种强大的数学计算工具,用于解决各种数学问题,包括求解偏微分方程组。
偏微分方程组是描述自然界中许多物理现象的数学模型,其求解对于科学研究和工程应用具有重要意义。
在Matlab中,可以通过多种方法来求解偏微分方程组,包括有限差分方法、有限元方法、谱方法等。
本文将对Matlab中求解偏微分方程组的方法进行介绍和讨论。
二、有限差分方法有限差分方法是一种常用的求解偏微分方程组的数值方法。
其基本思想是将连续的变量离散化为有限个点,并利用差分逼近来近似偏微分方程的导数。
在Matlab中,可以通过编写相应的差分方程组来求解偏微分方程组。
对于二维热传导方程,可以将偏导数用中心差分逼近,并构建相应的差分方程来求解温度分布。
通过循环迭代的方式,可以逐步逼近偏微分方程的解,并得到数值解。
三、有限元方法有限元方法是另一种常用的求解偏微分方程组的数值方法。
其基本思想是将求解区域离散化为有限个单元,并在每个单元内建立近似函数来逼近原始方程。
在Matlab中,可以利用有限元建模工具箱来构建离散化的网格,并编写相应的有限元方程来求解偏微分方程组。
对于弹性力学方程,可以利用有限元方法来求解结构的位移和应力分布。
通过求解线性方程组,可以得到离散化网格上的数值解。
四、谱方法谱方法是一种利用特定基函数展开偏微分方程解的方法。
其基本思想是选取适当的基函数,并通过展开系数来得到偏微分方程的数值解。
在Matlab中,可以通过谱方法工具箱来实现对偏微分方程组的求解。
对于波动方程,可以利用正交多项式展开来逼近波函数,通过选取适当的基函数和展开系数,可以得到偏微分方程的数值解。
五、总结在Matlab中,有多种方法可以用来求解偏微分方程组,包括有限差分方法、有限元方法、谱方法等。
这些方法各有特点,适用于不同类型的偏微分方程和求解问题。
通过合理地选择方法和编写相应的数值算法,可以在Matlab中高效地求解偏微分方程组,为科学研究和工程应用提供重要支持。
MATLAB中的偏微分方程数值解法
MATLAB中的偏微分方程数值解法偏微分方程(Partial Differential Equations,PDEs)是数学中的重要概念,广泛应用于物理学、工程学、经济学等领域。
解决偏微分方程的精确解往往非常困难,因此数值方法成为求解这类问题的有效途径。
而在MATLAB中,有丰富的数值解法可供选择。
本文将介绍MATLAB中几种常见的偏微分方程数值解法,并通过具体案例加深对其应用的理解。
一、有限差分法(Finite Difference Method)有限差分法是最为经典和常用的偏微分方程数值解法之一。
它将偏微分方程的导数转化为差分方程,通过离散化空间和时间上的变量,将连续问题转化为离散问题。
在MATLAB中,使用有限差分法可以比较容易地实现对偏微分方程的数值求解。
例如,考虑一维热传导方程(Heat Equation):∂u/∂t = k * ∂²u/∂x²其中,u为温度分布随时间和空间的变化,k为热传导系数。
假设初始条件为一段长度为L的棒子上的温度分布,边界条件可以是固定温度、热交换等。
有限差分法可以将空间离散化为N个节点,时间离散化为M个时刻。
我们可以使用中心差分近似来计算二阶空间导数,从而得到以下差分方程:u(i,j+1) = u(i,j) + Δt * (k * (u(i+1,j) - 2 * u(i,j) + u(i-1,j))/Δx²)其中,i表示空间节点,j表示时间步。
Δt和Δx分别为时间和空间步长。
通过逐步迭代更新节点的温度值,我们可以得到整个时间范围内的温度分布。
而MATLAB提供的矩阵计算功能,可以大大简化有限差分法的实现过程。
二、有限元法(Finite Element Method)有限元法是另一种常用的偏微分方程数值解法,特点是适用于复杂的几何形状和边界条件。
它将求解区域离散化为多个小单元,通过构建并求解代数方程组来逼近连续问题。
在MATLAB中,我们可以使用Partial Differential Equation Toolbox提供的函数进行有限元法求解。
matlab有限差分法求解椭圆型偏微分方程
matlab有限差分法求解椭圆型偏微分方程
有限差分法是一种求解偏微分方程的经典数值方法,它将连续的
偏微分方程转化为离散的代数方程,从而能够使用计算机进行计算。
在 MATLAB 中,我们可以使用有限差分法来求解椭圆型偏微分方程。
椭圆型偏微分方程通常用来描述有稳态的空间分布的物理现象,
如稳态的温度分布。
其通用的数学形式为:
∇·(a(x,y)∇u(x,y)) + f(x,y) = 0
其中,u(x,y) 是要求解的函数,a(x,y) 是定义在区域Ω上的
函数,它代表了该区域内各点的材料特性,f(x,y) 是特定的源项函数。
有限差分法将区域Ω划分为离散的点集,然后通过对这些点之
间的差分运算进行逐点计算,得到离散式。
例如,可以使用中心差分
法对 u(x,y) 在某个点(x0,y0) 的二阶偏导数进行离散化,得到:(u(x0+Δx,y0) - 2u(x0,y0) + u(x0-Δx,y0)) / Δx^2
同样,对于 a(x,y)在点(x0,y0)的取值,我们也可以使用中心差
分法进行离散化:
(a(x0+Δx,y0) + a(x0,y0)) / 2
经过离散化后,我们可以将偏微分方程变为一个线性代数方程组,使用 MATLAB 的矩阵运算功能进行求解。
需要注意的是,在实际计算中,由于矩阵求逆时存在数值不稳定的问题,因此需要对矩阵进行一
定的处理,如使用迭代法或预处理技术等。
总之,有限差分法是一种常用的求解偏微分方程的数值方法,在MATLAB 中也有相应的实现。
通过离散化连续的偏微分方程,我们能够
在计算机上高效地求解椭圆型偏微分方程,提高计算效率,解决实际
问题。
MATLAB偏微分方程求解课件
常微分方程:在微分方程中,若自变量的个数只有一个的微分方程。
偏微分方程:自变量的个数有两个或两个以上的微分方程。
求解偏微分方程的方法
• 求解偏微分方程的数值方法: • 1. 有限元法(Finite Element Method, FEM)---
hp-FEM • 2. 有限体积法(Finite Volume Method, FVM) • 3. 有限差分法(Finite Difference Method, FDM)。
• 其它:广义有限元法(Generalized Finite Element Method, FFEM)、扩展有限元法(eXtended Finite Element Method, XFEM)、无网格有限元法(Meshfree Finite Element Method)、离散迦辽金有限元法(Discontinuous Galerkin Finite Element Method, DGFEM)等。
step3:边界条件和初值条件
• 初值条件可以通过【Solve】->【 Parameters…】设置
• 边值条件设置如下 • (1)点击工具栏的第6 个按钮【区域边界】,
显示如下
• (2)【Boundary】->【Remove All Subdomain Borders】移除所有子域的边界, 将得到所有子域合并成一个求解域
是name后边的名字'NumberTitle','off'是关掉默认显示名字。 • subplot(211) • surf(x,t,sol(:,:,1))%sol(:,:,i)表示ui的解 • title('The Solution of u_1') • xlabel('X') • ylabel('T') • zlabel('U') • subplot(212) • surf(x,t,sol(:,:,2))%sol(:,:,i)表示ui的解 • title('The Solution of u_2') • xlabel('X') • ylabel('T') • zlabel('U')
偏微分方程的matlab解法pdf
偏微分方程的matlab解法pdf
MATLAB提供了多种用于求解偏微分方程的方法,包括:
1.有限差分法:将空间域离散化,用有限差分代替偏导数。
2.有限元法:将空间域划分为有限元,用有限元的代数方程代替偏微分方程。
3.有限体积法:将空间域划分为有限体积,用有限体积的积分代替偏微分方程。
4.谱方法:利用空间域的正交函数来求解偏微分方程。
5.变分法:将偏微分方程转化为变分问题,然后用数值方法求解变分问题。
具体选择哪种方法,需要根据偏微分方程的类型、边界条件和初始条件等因素来决定。
matlab差分法解偏微分方程
Matlab 差分法解偏微分方程1.引言解偏微分方程是数学和工程领域中的一项重要课题,它在科学研究和工程实践中具有广泛的应用。
而 Matlab 差分法是一种常用的数值方法,用于求解偏微分方程。
本文将介绍 Matlab 差分法在解偏微分方程中的应用,包括原理、步骤和实例。
2. Matlab 差分法原理差分法是一种离散化求解微分方程的方法,通过近似替代微分项来求解微分方程的数值解。
在 Matlab 中,差分法可以通过有限差分法或者差分格式来实现。
有限差分法将微分方程中的导数用有限差分替代,而差分格式指的是使用不同的差分格式来近似微分方程中的各个项,通常包括前向差分、后向差分和中心差分等。
3. Matlab 差分法步骤使用 Matlab 差分法解偏微分方程一般包括以下步骤:(1)建立离散化的区域:将求解区域离散化为网格点或节点,并确定网格间距。
(2)建立离散化的时间步长:对于时间相关的偏微分方程,需要建立离散化的时间步长。
(3)建立离散化的微分方程:使用差分法将偏微分方程中的微分项转化为离散形式。
(4)建立迭代方程:根据离散化的微分方程建立迭代方程,求解数值解。
(5)编写 Matlab 代码:根据建立的迭代方程编写 Matlab 代码求解数值解。
(6)求解并分析结果:使用 Matlab 对建立的代码进行求解,并对结果进行分析和后处理。
4. Matlab 差分法解偏微分方程实例假设我们要使用 Matlab 差分法解决以下一维热传导方程:∂u/∂t = α * ∂^2u/∂x^2其中 u(x, t) 是热传导方程的温度分布,α 是热扩散系数。
4.1. 离散化区域和时间步长我们将求解区域离散化为网格点,分别为 x_i,i=1,2,...,N。
时间步长为Δt。
4.2. 离散化的微分方程使用中心差分格式将偏微分方程中的导数项离散化得到:∂u/∂t ≈ (u_i(t+Δt) - u_i(t))/Δt∂^2u/∂x^2 ≈ (u_i-1(t) - 2u_i(t) + u_i+1(t))/(Δx)^2代入原偏微分方程可得离散化的微分方程:(u_i(t+Δt) - u_i(t))/Δt = α * (u_i-1(t) - 2u_i(t) + u_i+1(t))/(Δx)^24.3. 建立迭代方程根据离散化的微分方程建立迭代方程:u_i(t+Δt) = u_i(t) + α * Δt * (u_i-1(t) - 2u_i(t) + u_i+1(t))/(Δx)^24.4. 编写 Matlab 代码使用以上建立的迭代方程编写 Matlab 代码求解热传导方程。
使用matlab差分法解偏微分方程
使用matlab差分法解偏微分方程1. 引言差分法是一种常用的数值方法,用于求解偏微分方程(Partial Differential Equations,简称PDE)的数值解。
在工程学和科学研究中,PDE广泛应用于描述各种物理现象和过程。
本文将介绍使用MATLAB差分法来解偏微分方程的方法和步骤,并探讨其优势和局限性。
2. 差分法简介差分法是一种基于离散点的数值求解方法,它将连续的空间或时间变量离散化为有限个点,通过对这些离散点上的方程进行逼近,得到PDE的数值解。
其中,MATLAB作为一种功能强大的数值计算工具,提供了快速而高效的差分法求解PDE的功能。
3. 二阶偏微分方程的差分方法在本节中,我们将以一个简单的二阶偏微分方程为例,说明如何使用差分法来解决。
考虑一个二维的泊松方程,即:∂²u/∂x² + ∂²u/∂y² = f(x, y)其中,u是未知函数,f(x, y)是已知函数。
为了使用差分法求解该方程,我们需要将空间离散化,假设网格步长为Δx和Δy。
我们可以使用中心差分法来逼近二阶导数,从而将偏微分方程转化为一个代数方程组。
在MATLAB中,我们可以通过设置好网格步长和边界条件,构建对应的代数方程组,并使用线性代数求解方法(如直接解法或迭代解法)获得数值解。
4. 差分法的优势和局限性差分法作为一种数值方法,具有许多优势和应用范围,但也存在一些局限性。
优势:- 简单易懂:差分法的思想直观明了,易于理解和实现。
- 适应性广泛:差分法可以用于求解各种类型的偏微分方程,包括常微分方程和偏微分方程。
- 准确度可控:通过调整网格步长,可以控制数值解的精度和稳定性。
局限性:- 离散误差:当空间或时间步长过大时,差分法的数值解可能会出现较大的离散误差。
- 边界条件:合适的边界条件对于差分法的求解结果至关重要,不合理的边界条件可能导致数值解的不准确。
- 计算效率:对于复杂的偏微分方程,差分法的计算成本可能较高,需要耗费大量的计算资源和时间。
matlab 求解偏微分方程
matlab 求解偏微分方程使用MATLAB求解偏微分方程摘要:偏微分方程(partial differential equation, PDE)是数学中重要的一类方程,广泛应用于物理、工程、经济、生物等领域。
MATLAB 是一种强大的数值计算软件,提供了丰富的工具箱和函数,可以用来求解各种类型的偏微分方程。
本文将介绍如何使用MATLAB来求解偏微分方程,并通过具体案例进行演示。
引言:偏微分方程是描述多变量函数的方程,其中包含了函数的偏导数。
一般来说,偏微分方程可以分为椭圆型方程、双曲型方程和抛物型方程三类。
求解偏微分方程的方法有很多,其中数值方法是最常用的一种。
MATLAB作为一种强大的数值计算软件,提供了丰富的工具箱和函数,可以用来求解各种类型的偏微分方程。
方法:MATLAB提供了多种求解偏微分方程的函数和工具箱,包括pdepe、pdetoolbox和pde模块等。
其中,pdepe函数是用来求解带有初始条件和边界条件的常微分方程组的函数,可以用来求解一维和二维的偏微分方程。
pdepe函数使用有限差分法或有限元法来离散化偏微分方程,然后通过求解离散化后的常微分方程组得到最终的解。
案例演示:考虑一维热传导方程的求解,偏微分方程为:∂u/∂t = α * ∂^2u/∂x^2其中,u(x,t)是温度分布函数,α是热扩散系数。
假设初始条件为u(x,0)=sin(pi*x),边界条件为u(0,t)=0和u(1,t)=0。
我们需要定义偏微分方程和边界条件。
在MATLAB中,可以使用匿名函数来定义偏微分方程和边界条件。
然后,我们使用pdepe函数求解偏微分方程。
```matlabfunction [c,f,s] = pde(x,t,u,DuDx)c = 1;f = DuDx;s = 0;endfunction u0 = uinitial(x)u0 = sin(pi*x);endfunction [pl,ql,pr,qr] = uboundary(xl,ul,xr,ur,t)pl = ul;ql = 0;pr = ur;qr = 0;endx = linspace(0,1,100);t = linspace(0,0.1,10);m = 0;sol = pdepe(m,@pde,@uinitial,@uboundary,x,t);u = sol(:,:,1);surf(x,t,u);xlabel('Distance x');ylabel('Time t');zlabel('Temperature u');```在上述代码中,我们首先定义了偏微分方程函数pde,其中c、f和s分别表示系数c、f和s。
matlab解偏微分方程组
matlab解偏微分方程组使用Matlab解偏微分方程组在科学与工程领域,偏微分方程组是描述自然现象和物理过程的重要数学工具。
解偏微分方程组是求解这些现象和过程的数值模拟方法之一。
Matlab作为一种高级的数值计算软件,提供了强大的功能来解决偏微分方程组。
本文将介绍如何使用Matlab来解偏微分方程组,并给出实例说明。
一、Matlab解偏微分方程组的基本原理Matlab是一种基于矩阵运算的高级数值计算软件,它提供了丰富的函数和工具箱来解决数学问题。
在解偏微分方程组时,Matlab主要采用有限差分法、有限元法和谱方法等数值方法。
这些方法将偏微分方程转化为离散的代数方程组,然后通过求解代数方程组得到数值解。
二、使用Matlab解偏微分方程组的步骤1. 定义偏微分方程组:首先需要将偏微分方程组转化为Matlab可以处理的形式。
通常将自变量和因变量离散化,并用矩阵和向量表示。
2. 离散化:将偏微分方程中的连续变量转化为离散变量,通常采用有限差分法或有限元法。
有限差分法将偏微分方程中的导数用差商表示,有限元法则将区域划分为有限个小单元。
3. 构建代数方程组:根据离散化后的方程,可以得到相应的代数方程组。
这一步需要根据边界条件和初始条件来确定代数方程的边界值和初始值。
4. 求解代数方程组:利用Matlab提供的求解函数,如\texttt{fsolve}或\texttt{ode45}等,求解代数方程组得到数值解。
5. 可视化结果:使用Matlab的绘图函数,如\texttt{plot}或\texttt{surf}等,将数值解可视化展示出来。
这可以帮助我们更好地理解解的特性和趋势。
三、一个简单的例子为了更好地理解如何使用Matlab解偏微分方程组,我们将以一个简单的热传导问题为例。
考虑一个一维热传导方程:$$\frac{{\partial u}}{{\partial t}} = \frac{{\partial^2 u}}{{\partial x^2}}$$其中$u(x,t)$是温度分布,$x$是空间变量,$t$是时间变量。
有限差分法的Matlab程序教学文案
有限差分法的M a t l a b程序有限差分法的Matlab程序(椭圆型方程)function FD_PDE(fun,gun,a,b,c,d) %用有限差分法求解矩形域上的Poisson 方程 tol=10^(-6); % 误差界 N=1000; % 最大迭代次数 n=20; % x轴方向的网格数 m=20; % y轴方向的网格数 h=(b-a)/n; %x轴方向的步长 l=(d-c)/m; %y轴方向的步长 fori=1:n-1 x(i)=a+i*h;function FD_PDE(fun,gun,a,b,c,d)% 用有限差分法求解矩形域上的Poisson方程tol=10^(-6); % 误差界N=1000; % 最大迭代次数n=20; % x轴方向的网格数m=20; % y轴方向的网格数h=(b-a)/n; % x轴方向的步长l=(d-c)/m; % y轴方向的步长for i=1:n-1x(i)=a+i*h;end % 定义网格点坐标for j=1:m-1y(j)=c+j*l;end % 定义网格点坐标u=zeros(n-1,m-1); %对u赋初值% 下面定义几个参数r=h^2/l^2;s=2*(1+r);k=1;% 应用Gauss-Seidel法求解差分方程while k%26lt;=N% 对靠近上边界的网格点进行处理% 对左上角的网格点进行处理z=(-h^2*fun(x(1),y(m-1))+gun(a,y(m-1))+r*gun(x(1),d)+r*u(1,m-2)+u(2,m-1))/s;norm=abs(z-u(1,m-1));u(1,m-1)=z;% 对靠近上边界的除第一点和最后点外网格点进行处理for i=2:n-2z=(-h^2*fun(x(i),y(m-1))+r*gun(x(i),d)+r*u(i,m-2)+u(i+1,m-1)+u(i-1,m-1))/s;if abs(u(i,m-1)-z)%26gt;norm;norm=abs(u(i,m-1)-z);endu(i,m-1)=z;end% 对右上角的网格点进行处理z=(-h^2*fun(x(n-1),y(m-1))+gun(b,y(m-1))+r*gun(x(n-1),d)+r*u(n-1,m-2)+u(n-2,m-1))/s;if abs(u(n-1,m-1)-z)%26gt;normnorm=abs(u(n-1,m-1)-z);endu(n-1,m-1)=z;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限差分法求解偏微分方程M A T L A B南京理工大学课程考核论文课程名称:高等数值分析论文题目:有限差分法求解偏微分方程姓名:罗晨学号: 115104000545成绩:有限差分法求解偏微分方程一、主要内容1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:22(,)()u uf x t t xαα∂∂-=∂∂其中为常数具体求解的偏微分方程如下:22001(,0)sin()(0,)(1,)00u u x t x u x x u t u t t π⎧∂∂-=≤≤⎪∂∂⎪⎪⎪=⎨⎪⎪==≥⎪⎪⎩2.推导五种差分格式、截断误差并分析其稳定性;3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析;4.结论及完成本次实验报告的感想。
二、推导几种差分格式的过程:有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。
有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
推导差分方程的过程中需要用到的泰勒展开公式如下:()2100000000()()()()()()()......()(())1!2!!n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1)求解区域的网格划分步长参数如下:11k k k k t t x x hτ++-=⎧⎨-=⎩ (2-2) 2.1 古典显格式2.1.1 古典显格式的推导由泰勒展开公式将(,)u x t 对时间展开得2,(,)(,)()()(())i i k i k k k uu x t u x t t t o t t t∂=+-+-∂ (2-3) 当1k t t +=时有21,112,(,)(,)()()(())(,)()()i k i k i k k k k k i k i k uu x t u x t t t o t t tuu x t o tττ+++∂=+-+-∂∂=+⋅+∂ (2-4)得到对时间的一阶偏导数1,(,)(,)()=()i k i k i k u x t u x t uo t ττ+-∂+∂ (2-5) 由泰勒展开公式将(,)u x t 对位置展开得223,,21(,)(,)()()()()(())2!k i k i k i i k i i u uu x t u x t x x x x o x x x x∂∂=+-+-+-∂∂ (2-6)当11i i x x x x +-==和时,代入式(2-6)得2231,1,1122231,1,1121(,)(,)()()()()(())2!1(,)(,)()()()()(())2!i k i k i k i i i k i i i i i k i k i k i i i k i i i iu uu x t u x t x x x x o x x x x u u u x t u x t x x x x o x x x x ++++----⎧∂∂=+-+-+-⎪⎪∂∂⎨∂∂⎪=+-+-+-⎪∂∂⎩(2-7) 因为1k k x x h +-=,代入上式得2231,,22231,,21(,)(,)()()()2!1(,)(,)()()()2!i k i k i k i k i k i k i k i ku uu x t u x t h h o h x x u u u x t u x t h h o h x x +-⎧∂∂=+⋅+⋅+⎪⎪∂∂⎨∂∂⎪=-⋅+⋅+⎪∂∂⎩ (2-8) 得到对位置的二阶偏导数2211,22(,)2(,)(,)()()i k i k i k i k u x t u x t u x t u o h x h+--+∂=+∂ (2-9)将式(2-5)、(2-9)代入一般形式的抛物线型偏微分方程得21112(,)(,)(,)2(,)(,)(,)()i k i k i k i k i k i k u x t u x t u x t u x t u x t f x t o h h αττ++---+⎡⎤-=++⎢⎥⎣⎦(2-10)为了方便我们可以将式(2-10)写成11122k kk k k ki i i i i i u u u u u f h ατ++-⎡⎤--+-=⎢⎥⎣⎦(2-11) ()11122k k kk k k i i i i i i u u uu u f hτατ++----+= (2-12)最后得到古典显格式的差分格式为()111(12)k k k k k i i i i i u ra u r u u f ατ++-=-+++ (2-13)2r hτ=其中,古典显格式的差分格式的截断误差是2()o h τ+。
2.1.2 古典显格式稳定性分析古典显格式(2-13)写成矩阵形式为()112k k k h h h u ra I raC u f τ+=-++⎡⎤⎣⎦(2-14)12212,(,,......,,)k k k k kh N N r u u u u u h τ--==其中。
(1)(1)01010*********N N C -⨯-⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L L MM L 上面的C 矩阵的特征值是:2cos()1,2,......,1C j h j N λπ==-()12H ra I raC =-+()()()212=122cos()121cos()14sin 1,2,......,12H j C ra ra ra ra j h ra j h j hra j N λλπππ=-+-+=--=-=- (2-15)使()1H ρ≤,即2114sin 12j hra π-≤-≤ 102ra ≤≤结论:当102ra ≤≤时,所以古典显格式是稳定的。
2.2 古典隐格式2.2.1 古典隐格式的推导 将1k t t -=代入式 (2-3)得21,11(,)(,)()()(())j k j k j k k k k k uu x t u x t t t o t t t---∂=+-+-∂ (2-16) 21,(,)(,)()()j k j k j k uu x t u x t o tττ-∂=-⋅+∂ (2-17)得到对时间的一阶偏导数1,(,)(,)()=()j k j k j k u x t u x t uo t ττ--∂+∂ (2-18) 将式(2-9)、(2-18)原方程得到11122(,)(,)(,)2(,)(,)(,)()j k j k j k j k j k j k u x t u x t u x t u x t u x t f x t o h h αττ-+---+⎡⎤-=++⎢⎥⎣⎦(2-19)为了方便把(2-19)写成11122k k k k kj jj j j k j u u u u u f h ατ-+-⎡⎤--+-=⎢⎥⎢⎥⎣⎦(2-20) ()11122k k kk k kj jj j j j u u uu u f h τατ-+----+= (2-21)最后得到古典隐格式的差分格式为()111(12)k k k k k j j j jj ra u r u u u f ατ-+-+-+=+ (2-22) 2r hτ=其中,古典隐格式的差分格式的截断误差是2()o h τ+。
2.2.2 古典隐格式稳定性分析将古典隐格式(2-22)写成矩阵形式如下()1212()k k kh h hra I raC u u f r h ττ++-=+=⎡⎤⎣⎦ (2-23)误差传播方程()112k k hh ra I raC v v ++-=⎡⎤⎣⎦ (2-24) ()12,A ra I raC B I=+-=所以误差方程的系数矩阵为()1112H A ra I raC --==+-⎡⎤⎣⎦()11,2,......,1122cos H j j N ra ra j hλπ==-+-使()1H ρ≤,显然()21122cos()112(1cos())114sin 2H j ra ra j h ra j h j h ra λπππ=+-=+-=+1H j λ≤恒成立。
结论:对于0r ∀>,即任意网格比下,古典隐格式是绝对稳定的。
2.3 Richardson 格式2.3.1 Richardson 格式的推导 将11k k t t t t +-==和,代入式(2-3)得21,1121,11(,)(,)()()(())(,)(,)()()(())i k i k i k k k k k i k i k i k k k k ku u x t u x t t t o t t t u u x t u x t t t o t t t +++---∂⎧=+-+-⎪⎪∂⎨∂⎪=+-+-⎪∂⎩(2-25) 即21,21,(,)(,)()()(,)(,)()()i k i k i k i k i k i ku u x t u x t o t u u x t u x t o t ττττ+-∂⎧=+⋅+⎪⎪∂⎨∂⎪=-⋅+⎪∂⎩(2-26) 由此得到可得211,(,)(,)()()2i k i k i k u x t u x t uo t ττ++-∂=+∂ (2-27)将式(2-9) 、(2-27)代入原方程得到下式2211112(,)(,)(,)2(,)(,)(,)()2i k i k i k i k i k i k u x t u x t u x t u x t u x t f x t o h h αττ+-+---+⎡⎤-=++⎢⎥⎣⎦(2-28) 为了方便可以把式(2-28)写成1111222k k k k k ki i i i i i u u u u u f h ατ+-+-⎡⎤--+-=⎢⎥⎣⎦(2-29) 即()111122k k kk k k i i i i i i u u uu u f hτατ+-+----+= (2-30)最后得到Richardson 显格式的差分格式为()1111222k k k k k k i i i i i i u r u u u u f ατ+-+-=-+++ (2-31)2r hτ=其中,古典显格式的差分格式的截断误差是22()o h τ+。