微专题27以解析几何为载体的应用题答案

合集下载

解析几何习题及答案

解析几何习题及答案

解析几何习题一、选择题(本大题共12个小题在每小题给出的四个选项中,只有一项是符合题目要求的)1. 平面上有两个定点A 、B 及动点P ,命题甲:“|P A |-|PB |是定值”,命题乙“点P 的轨迹是以A 、B 为焦点的双曲线”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 如果双曲线经过点(6,3),且它的两条渐近线方程是y =±13x ,那么双曲线方程是( )A.x 236-y 29=1B.x 281-y 29=1C.x 29-y 2=1 D.x 218-y 23=1 3. 点(a ,b )关于直线x +y +1=0的对称点是( ) A .(-a -1,-b -1) B .(-b -1,-a -1) C .(-a ,-b ) D .(-b ,-a ) 4. 直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-15. 椭圆x 29+y 24+k 1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或216. 已知△ABC 的顶点B ,C 在椭圆x23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .127. 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( ) A.x 25-y 24=1 B.x 24-y 25=1 C.x 23-y 26=1 D.x 26-y23=1 8. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ).A. 2B. 3C.3+12D.5+129. 若不论k 为何值,直线y =k (x -2)+b 与曲线x 2-y 2=1总有公共点,则b 的取值范围是( )A .(-3,3)B .[-3,3]C .(-2,2)D .[-2,2] 10. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172 B .3 C. 5 D.9211. 已知F (c,0)是椭圆x 2a 2+y2b2=1(a >b >0)的一个焦点,F 与椭圆上点的距离的最大值为m ,最小值为n ,则椭圆上与点F 的距离为m +n2的点是( )A .(c ,±b 2a )B .(c ,±ba) C .(0,±b ) D .不存在12. A (x 1,y 1),B ⎝⎛⎭⎫22,53,C (x 2,y 2)为椭圆x 29+y225=1上三点,若F (0,4)与三点A 、B 、C 的距离为等差数列,则y 1+y 2的值为( )A.43B.103C.163D.223 二、填空题(本大题共4小题,将正确的答案填在题中横线上)13. 设P 是双曲线x 2a 2-y29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|等于________.14. 平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.15. 在Rt △ABC 中,AB =AC =1,如果一个椭圆通过A ,B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率为________.16. 点P 是双曲线x 24-y 2=1上的一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是________.三、解答题(本大题共5个小题,解答应写出文字说明、证明过程或演算步骤)17. 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.18. 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围. (2)求被椭圆截得的最长弦所在的直线方程.19. 已知直线y =-12x +2和椭圆x 2a 2+y 2b2=1(a >b >0)相交于A 、B 两点,M 为线段AB 的中点,若|AB |=25,直线OM 的斜率为12,求椭圆的方程.20. 在面积为1的△PMN 中,tan ∠PMN =12,tan ∠MNP =-2,建立适当的坐标系,求以M ,N 为焦点且过点P 的双曲线方程.21. 设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A 、B 两点. (1)设L 的斜率为1,求|AB |的大小;(2)求证:OA →·OB →是一个定值.解析几何习题答案一、选择题1. 解析 当|PA |-|PB |=|AB |时,点P 的轨迹是一条射线,故甲⇒/ 乙,而乙⇒甲,故选B.2. 解析 设双曲线方程为⎝⎛⎭⎫13x +y ⎝⎛⎭⎫13x -y =λ将点(6,3)代入求出λ即可.答案C.3. 解析 设对称点为(x ′,y ′),则⎩⎨⎧y ′-bx ′-a-1 =-1,x ′+a 2+y ′+b2+1=0,解得:x ′=-b -1,y ′=-a -1. 答案 B4. 解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k,令-3<1-2k<3,解不等式可得.也可以利用数形结合.答案 D5. 解析 若a 2=9,b 2=4+k ,则c = 5-k ,由c a =45即5-k 3=45,得k =-1925;若a 2=4+k ,b 2=9,则c = k -5,由c a =45,即k -54+k =45,解得k =21.答案 C6. 解析 由椭圆的定义知:|BA |+|BF |=|CA |+|CF |=2a ,∴周长为4a =43(F 是椭圆的另外一个焦点).答案 C7. 解析 圆心的坐标是(3,0),圆的半径是2,双曲线的渐近线方程是bx ±ay =0,根据已知得3b a 2+b 2=2,即3b 3=2,解得b =2,则a 2=5,故所求的双曲线方程是x 25-y 24=1.答案 A8. 解析 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),F (c,0),B (0,b ),则k BF =-bc,双曲线的渐近线方程为y =±b a x ,∴-b c ·b a =-1,即b 2=ac ,c 2-a 2=ac ,∴e 2-e -1=0,解得e =1±52.又e >1,∴e =5+12. 答案 D9. 解析 由直线过点(2,b ),因为x =2时,y 2=x 2-1=3,所以y =±3,所以b ∈[-3,3]. 答案B10. 解析 由抛物线的定义知,点P 到该抛物线的距离等于点P 到其焦点的距离,因此点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和即为点P 到点(0,2)的距离与点P 到焦点的距离之和,显然,当P 、F 、(0,2)三点共线时,距离之和取得最小值,最小值等于 ⎝⎛⎭⎫0-122+2-0 2=172. 答案 A 11. 解析 在椭圆中,m +n 2=(a +c )+(a -c )2=a ,而a 2=b 2+c 2,所以短轴端点(0,±b )与F的距离为a .12.解析 |AF |a 2c -y 1=c a ,即|AF |=5-45y 1,|CF |a 2c-y 2=c a ,即|CF |=5-45y 2,|BF |=8+499=113.由题意知2|BF |=|AF |+|CF |,所以5-45y 1+5-45y 2=223,所以y 1+y 2=103答案] B二、填空题13.解析 由渐近线方程y =32x ,且b =3,得a =2,由双曲线的定义,得|PF 2|-|PF 1|=4,又|PF 1|=3,∴|PF 2|=7. 答案 714.解析 直线l 2变为:3x -2y +32=0,由平行线间的距离公式得:d =⎪⎪⎪⎪-5-3232+22=132.15.解析设另一个焦点为F ,如图所示,∵|AB |=|AC |=1,△ABC 为直角三角形,∴1+1+2=4a ,则a =2+24,设|FA |=x ,∴⎩⎨⎧x +1=2a ,1-x +2=2a ,∴x =22,∴1+⎝⎛⎭⎫222=4c 2,∴c =64,e =c a =6- 3. 答案 6- 3.16. 解析 设P (x 0,y 0),M (x ,y ),由中点坐标公式可得x 0=2x ,y 0=2y ,代入双曲线方程得(2x )24-(2y )21=1,即x 2-4y 2=1.[答案 x 2-4y 2=1 三、解答题(本大题共6个小题,解答应写出文字说明、证明过程或演算步骤)17. 解 设A (a,0),B (0,b ),(a >0,b >0),则直线l 的方程为x a +yb=1,∵l 过点P (3,2),∴3a +2b=1.∴1=3a +2b ≥2 6ab,即ab ≥24.∴S △ABO =12ab ≥12.当且仅当3a =2b,即a =6,b =4.△ABO 的面积最小,最小值为12.此时直线l 的方程为:x 6+y4=1.即2x +3y -12=0.18. 解 (1)联立⎩⎪⎨⎪⎧4x 2+y 2=1y =x +m ,得5x 2+2mx +m 2-1=0.因为直线与椭圆有公共点.所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52.(2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2),由(1)知,5x 2+2mx +m 2-1=0,由韦达定理,得x 1+x 2=-2m 5,x 1x 2=15(m 2-1).所以|AB |=(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2]=2[4m 225-45(m 2-1)]=2510-8m 2, 所以当m =0时,|AB |最大,此时直线方程为y =x . 19. 解 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).则⎩⎨⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1, ②①-②得:y 2-y 1x 2-x 1=-b 2a 2x 1+x 2y 1+y 2.∴k AB =-b 2a 2×x 0y 0=-12.③又k OM =y 0x 0=12,④由③④得a 2=4b 2.由⎩⎨⎧y =-12x +2,x 24b 2+y 2b2=1得:x 2-4x +8-2b 2=0, ∴x 1+x 2=4,x 1·x 2=8-2b 2. ∴|AB |=1+k 2|x 1-x 2|=52x 1+x 22-4x 1x 2 =5216-32+8b 2 =528b 2-16 =2 5.解得:b 2=4.故所求椭圆方程为:x 216+y 24=1.20. 解析 以MN 所在直线为x 轴,MN 的中垂线为y 轴建立直角坐标系,设P (x 0,y 0),M (-c,0),N (c,0)(y 0>0,c >0),如图所示,则有⎩⎪⎨⎪⎧ y 0x 0+c =12,y 0x 0-c =2,12×2c ×y 0=1,解得⎩⎪⎨⎪⎧x 0=536,y 0=233,c =32,设双曲线的方程为x 2a 2-y 234-a 2=1,将P (536,233)代入,可得a 2=512,所以所求双曲线的方程为x 2512-y213=1.21. (1)解 ∵F (1,0),∴直线L 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x -1,y 2=4x得x 2-6x +1=0,∴x 1+x 2=6,x 1x 2=1. ∴|AB |=x 2-x 12+y 2-y 12=2·x 1+x 22-4x 1x 2 =2·36-4=8.(2)证明 设直线L 的方程为x =ky +1, 由⎩⎪⎨⎪⎧x =ky +1,y 2=4x得y 2-4ky -4=0. ∴y 1+y 2=4k ,y 1y 2=-4, OA →=(x 1,y 1),OB →=(x 2,y 2). ∵OA →·OB →=x 1x 2+y 1y 2 =(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2=-4k 2+4k 2+1-4=-3. ∴OA →·OB →是一个定值.。

高中数学解析几何复习 题集附答案

高中数学解析几何复习 题集附答案

高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。

直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。

下面我们通过一些例题来复习直线的方程的求解方法。

例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。

解析:首先我们可以求出直线L1的斜率k。

直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。

例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。

解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。

直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。

再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。

二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。

我们可以通过直线的方程和平面的方程来求解交点的坐标。

下面我们通过一些例题来复习直线和平面交点的求解方法。

例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。

高一数学解析几何试题答案及解析

高一数学解析几何试题答案及解析

高一数学解析几何试题答案及解析1.已知直线:,则该直线的倾斜角为()A.B.C.D.【答案】A【解析】略2.如果圆上总存在两个点到原点的距离为,则实数的取值范围是()A.B.C.D.【答案】A【解析】问题可转化为圆和相交,两圆圆心距,由,得,即可解得,即,故选A.【考点】点与圆的位置关系3.已知直线:与圆:交于、两点且,则()A.2B.C.D.【答案】B【解析】由可知,且,所以到直线:的距离为,由点到直线距离公式由:,解得:.【考点】1.向量的垂直;2.直线与圆的位置关系;3.点到直线距离公式.4.若过点P(-,-1)的直线与圆有公共点,直线的倾斜角的取值范围()A. B. C. D.【答案】D【解析】设直线方程为,圆心到直线的距离,因此倾斜角的范围是【考点】1.直线和圆的位置关系;2.直线的倾斜角和斜率5.(本题满分12分)已知直线方程为,其中(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时的直线方程.【答案】(1);(2);(3)【解析】(1)本题考察的是直线恒过定点,本题中直线含参数,我们需要把直线方程进行化简,把含的综合在一起,求出两个方程的解集即可得到定点.(2)本题考察的是求点到直线的距离的最大值,因为直线恒过定点,只需保证定点与已知点的连线与已知直线垂直时距离最大,所以距离的最大值即为已知点与定点的距离,利用两点间距离公式即可求出答案.(3)本题考察的是求直线的截距问题,由(1)直线过定点,根据点斜式方程写出直线方程,分别求出在轴的截距,根据面积公式结合基本不等式即可求出相应的斜率,从而求出直线方程.试题解析:(1)证明:直线方程为,可化为对任意都成立,所以,解得,所以直线恒过定点.(2)点到直线的距离最大,可知点与定点的连线的距离就是所求最大值,即(3)若直线分别与轴,轴的负半轴交于两点,直线方程为,则,当且仅当时取等号,面积的最小值为4此时直线的方程为【考点】(1)两点间距离公式;(2)基本不等式6.直线的倾斜角为.【答案】【解析】直线转化为形式为,因此直线的斜率为,而,因此直线的倾斜角为【考点】直线的倾斜角;7.若,,三点共线,则的值为()A.B.C.D.【答案】A【解析】过、两点直线方程为:,因为、、三点共线,所以满足直线方程,所以,故选A.【考点】三点共线成立的条件,直线方程.【思路点晴】本题主要考查是已知三点共线,求其中一个点坐标,属于基础题,先根据已知两个点、的坐标,求出点、两点所在的直线方程,然后由、、三点共线,将点坐标代入直线方程,求出的值.8.已知表示图形为圆.(1)若已知曲线关于直线的对称圆与直线相切,求实数的值;(2)若,求过该曲线与直线的交点,且面积最小的圆的方程.【答案】(1);(2)圆的方程为.【解析】(1)根据,求出圆的圆心坐标,半径,已知曲线圆关于直线的对称圆,那么这两个圆的圆心坐标是关于直线对称,两个圆的半径相等.然后根据对称圆与直线相切的条件:圆心到直线的距离等于半径,求出;(2)将带入方程中,求出圆的方程及圆心坐标和半径,要求面积最小的圆,就是当圆的直径刚好等于已知圆与直线的交点的弦长,求出圆的圆心和半径,最终求出圆的方程.试题解析:(1)已知圆的方程为,可知圆心为,设它关于的对称点为,则,解得,..................2分∴点到直线的距离为,即.∴,∴.当时,圆的方程为.设所求圆的圆心坐标为.∵已知圆的圆心到直线的距离为,则,∴,,∴所求圆的方程为.【考点】(1)求圆的圆心坐标和半径;(2)对称圆的求解;(3)直线与圆相切的性质;(4)直线与圆的相交弦.【易错点晴】本题主要考查的直线与圆相切的条件,关于直线对称圆的求解,属于难题.过两个点且半径最小的圆的方程是过这两点的线段长度刚好等于圆的直径,圆心坐标为线段的中点坐标;两个圆关于一条直线对称说明这两个圆的圆心是关于直线对称的且半径相同,这样就将圆的对称转化成了两个点关于直线对称.9.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.2B.6C.3D.2【答案】A【解析】,直线方程为,即.设点关于直线的对称点为,则有,解得,即.点关于轴的对称点,由对称性可知四点共线,所以所求路程即为.故A正确.【考点】对称问题.10.如图,已知平行四边形的三个顶点的坐标为,,.(1)求平行四边形的顶点D的坐标;(2)在ACD中,求CD边上的高线所在直线方程;(3)求的面积.【答案】(1);(2);(3).【解析】(1)设的中点为,则由为的中点求得,设点坐标为,由已知得为线段中点,求的坐标;(2)求得直线的斜率,可得边上的高线所在的直线的斜率为,从而在中,求得边上的高线所在直线的方程;(3)求得,用两点式求得直线的方程,利用点到直线的距离公式,求得点到直线的距离,可得的面积.试题解析:(1)设点D坐标为(x,y),由已知得M为线段BD中点,有[解得所以D(3,8)(2)所以CD边上的高线所在直线的斜率为故CD边上的高线所在直线的方程为,即为(3)由C,D两点得直线CD的方程为:【考点】待定系数法求直线方程;点到直线的距离公式.11.已知圆,为坐标原点,动点在圆外,过作圆的切线,设切点为.(1)若点运动到处,求此时切线的方程;(2)求满足条件的点的轨迹方程.【答案】(1)或;(2).【解析】(1)当直线的斜率不存在时,易求得直线方程为,当直线的斜率存在时,把直线方程设为点斜式,利用圆心到切线的距离等于半径,得关于斜率的方程,解方程得斜率的值,根据点斜式得直线方程;(2)直接用坐标表示条件,用直接法求动点轨迹,化简整理即得动点的轨迹方程.试题解析:(1)当直线的斜率不存在时,此时直线方程为,到直线的距离,满足条件;当直线的斜率存在时,设斜率为,得直线的方程为,则,解得.所以直线方程,即.综上,满足条件的切线方程为或(2)设,则,,∵,∴,整理,得,故点的轨迹方程为,【考点】1、圆的切线方程;2、直接法求动点的轨迹方程.【方法点睛】(1)过圆外一点引圆的切线,一定有两条.求圆的切线方程时一定要注意,不能丢掉斜率不存在这种情况.(2)动点轨迹方程的求法:一、直接法按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.二、代入法若动点依赖已知曲线上的动点而运动,则可将转化后的动点的坐标入已知曲线的方程或满足的几何条件,从而求得动点的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.三、定义法若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.四、参数法若动点的坐标与之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出,关于另一变量的参数方程,再化为普通方程.五、交轨法一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.以上是求动点轨迹方程的主要方法,也是常用方法,如果动点的运动和角度有明显的关系,还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法,都要注意所求轨迹方程中变量的取值范围.12.(2015秋•甘南州校级期末)已知两点A(﹣1,0),B(2,1),直线l过点P(0,﹣1)且与线段AB有公共点,则直线l的斜率k的取值范围是()A.[﹣1,1]B.(﹣∞,﹣1]∪[1,+∞)C.[﹣1,0)∪(0,1]D.[﹣1,0)∪[1,+∞)【答案】B【解析】由题意画出图形,求出P与AB端点连线的斜率,则答案可求.解:如图,∵KAP =﹣1,KBP=1,∴过P(0,﹣1)的直线l与线段AB始终有公共点时,直线l的斜率k的取值范围是k≤﹣1或k≥1.故选:B.【考点】直线的斜率.13.(2015秋•甘南州校级期末)直线x+a2y+6=0与直线(a﹣2)x+3ay+2a=0平行,则实数a 的值为()A.3或﹣1B.0或﹣1C.﹣3或﹣1D.0或3【答案】B【解析】讨论直线的斜率是否存在,然后根据两直线的斜率都存在,则斜率相等建立等式,解之即可.解:当a=0时,两直线的斜率都不存在,它们的方程分别是x=﹣6,x=0,显然两直线是平行的.当a≠0时,两直线的斜率都存在,故有斜率相等,∴﹣=,解得:a=﹣1,综上,a=0或﹣1,故选:B.【考点】直线的一般式方程与直线的平行关系.14.(2015秋•河池期末)直线(1﹣2a)x﹣2y+3=0与直线3x+y+2a=0垂直,则实数a的值为()A.B.C.D.【答案】B【解析】由题意可得3(1﹣2a)﹣2=0,解方程可得.解:∵直线(1﹣2a)x﹣2y+3=0与直线3x+y+2a=0垂直,∴3(1﹣2a)﹣2=0,∴,故选:B.【考点】直线的一般式方程与直线的垂直关系.15.(2015秋•河池期末)直线3x+4y+2m=0与圆x2+(y﹣)2=1相切,且实数m的值为()A.log23B.2C.log25D.3【答案】A【解析】根据直线与圆相切,圆心到直线的距离d=r,列出方程求出m的值.解:因为直线3x+4y+2m=0与圆x2+(y﹣)2=1相切,所以圆心到直线的距离为d=r;即=1,化简得2+2m=5,即2m=3,解得m=log23.故选:A.【考点】圆的切线方程.16.圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是()A.36B.18C.6D.5【答案】C【解析】将圆的方程变形为,可知圆心,半径.圆心到直线的距离,所以圆上的点到直线的最大距离与最小距离的差为.故C正确.【考点】1点到线的距离;2圆的简单性质.【思路点睛】本题主要考查圆上的点到线的距离的最大最小值问题,难度一般.圆上的点为动点,到圆心的距离均等于半径,所以应将圆上的动点到定直线的距离问题先转化为圆心到定直线的距离的问题.由数形结合分析可知圆上的点到直线的最大距离为,最小距离为.17.已知正方形中心为点M(-1,0),一条边所在直线方程为x+3y-5=0,求正方形其他三边所在直线方程.【答案】三边所在的直线方程为:x+3y+1=0;3x-y+9=0;3x-y-3=0【解析】由题已知正方形的一条边所在的直线方程和中心点的坐标,可利用中心到各边的距离相等,建立所求的直线方程,求出。

九年级数学解析几何练习题及答案

九年级数学解析几何练习题及答案

九年级数学解析几何练习题及答案解析几何是数学中的一个重要分支,它探讨了几何图形的性质以及其与代数关系的联系。

对于九年级的学生来说,解析几何是一个相对较难的话题。

为了帮助同学们更好地掌握解析几何知识,我整理了一些练习题,并附上了详细的解答。

以下是九年级数学解析几何的练习题及答案:1. 题目:已知直线l过点A(2,3),且与x轴交于点B,与y轴交于点C。

求直线l的斜率k。

答案:点B在x轴上,坐标为(x,0),点C在y轴上,坐标为(0,y)。

根据直线的斜率定义可得:k = (y-3)/(0-2) = (y-3)/(-2)。

又因为点B在x 轴上,所以(x,0)在直线l上,代入直线方程可得:0 = kx + b,即 0 = kx + b = kx + 3。

解得b = 3。

代入点C的坐标可得:0 = b - ky = 3 - ky,整理后可得 y = 3/k。

由此可以得到直线l的斜率k为 k = (y-3)/(-2) = (3/k-3)/(-2) = -3/(2k-2)。

2. 题目:已知直线l的斜率为k,且过点(4,5),求直线l的方程。

答案:点(4,5)在直线l上,代入直线方程可得:5 = 4k + b。

又因为直线l的斜率为k,所以直线l的方程为 y = kx + b,将上式代入可得:y = kx + 4k + b。

整理后可得 y = kx + (4k+b)。

由此可以得到直线l的方程为 y = kx + (4k+b)。

3. 题目:已知直线l的方程为 y = 2x - 1,求直线l与y轴的交点坐标。

答案:直线与y轴的交点坐标为(0,b),代入直线方程可得:b = -1。

所以直线l与y轴的交点坐标为(0,-1)。

4. 题目:已知点A(1,2)和点B(-1,4),求线段AB的中点坐标。

答案:线段AB的中点坐标为((x1+x2)/2, (y1+y2)/2) = ((1+(-1))/2, (2+4)/2) = (0,3)。

数学 解析几何 经典例题 附带答案

数学 解析几何 经典例题 附带答案

数学解析几何经典例题~一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线x 22-y 21=1的焦点坐标是( ) A .(1,0),(-1,0) B .(0,1),(0,-1)C .(3,0),(-3,0)D .(0,3),(0,-3)解析: c 2=a 2+b 2=2+1,∴c = 3.∴焦点为(3,0),(-3,0),选C.答案: C2.“a =1”是“直线x +y =0和直线 x -ay =0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充要条件.答案: C3.(2010·福建卷)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( )A .x 2+y 2+2x =0B .x 2+y 2+x =0C .x 2+y 2-x =0D .x 2+y 2-2x =0解析: 抛物线y 2=4x 的焦点坐标为(1,0),故以(1,0)为圆心,且过坐标原点的圆的半径为r =12+02=1,所以圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,故选D.答案: D4.方程mx 2+y 2=1所表示的所有可能的曲线是( )A .椭圆、双曲线、圆B .椭圆、双曲线、抛物线C .两条直线、椭圆、圆、双曲线D .两条直线、椭圆、圆、双曲线、抛物线解析: 当m =1时,方程为x 2+y 2=1,表示圆;当m <0时,方程为y 2-(-m )x 2=1,表示双曲线;当m >0且m ≠1时,方程表示椭圆;当m =0时,方程表示两条直线.答案: C5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( ) A .-x +2y -4=0 B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=0解析: 由题意知所求直线与直线2x -y -2=0垂直.又2x -y -2=0与y 轴交点为(0,-2).故所求直线方程为y +2=-12(x -0), 即x +2y +4=0.答案: D6.直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E 、F 两点,则△ECF 的面积为( )A.32B.34C .2 5 D.355解析: 圆心(2,-3)到EF 的距离d =|2+6-3|5= 5. 又|EF |=29-5=4,∴S △ECF =12×4×5=2 5. 答案: C 7.若点P (2,0)到双曲线x 2a 2-y 2b2=1的一条渐近线的距离为2,则该双曲线的离心率为( )A. 2B. 3C .2 2D .2 3解析: 由于双曲线渐近线方程为bx ±ay =0,故点P 到直线的距离d =2b a 2+b2=2⇒a =b ,即双曲线为等轴双曲线,故其离心率e =1+⎝⎛⎭⎫b a 2= 2.答案: A8.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=0解析: 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直,设圆心为O ,则O (2,0),∴k OM =2-01-2=-2. ∴直线l 的斜率k =12, ∴l 的方程为y -2=12(x -1), 即x -2y +3=0.答案: D9.已知a >b >0,e 1,e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b2=1的离心率,则lg e 1+lg e 2的值( )A .大于0且小于1B .大于1C .小于0D .等于0解析: 由题意,得e 1=a 2-b 2a ,e 2=a 2+b 2a (a >b >0), ∴e 1e 2=a 4-b 4a 2=1-b 4a4<1, ∴lg e 1+lg e 2=lg(e 1e 2)=lga 4-b 4a 2<0. 答案: C10.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎫225,0D.⎝⎛⎭⎫0,225 解析: 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.答案: B11.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B .3 C.977 D.94解析: 设椭圆短轴的一个端点为M .由于a =4,b =3,∴c =7<b .∴∠F 1MF 2<90°,∴只能∠PF 1F 2=90°或∠PF 2F 1=90°.令x =±7得y 2=9⎝⎛⎭⎫1-716=9216, ∴|y |=94. 即P 到x 轴的距离为94. 答案: D12.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线的方程为( )A .y 2=8xB .y 2=4xC .y 2=16xD .y 2=42x解析: 由AF →=FB →及|AF →|=|AC →|知在Rt △ACB 中,∠CBF =30°,|DF |=p 2+p 2=p , ∴AC =2p ,BC =23p ,BA →·BC →=4p ·23p ·cos 30°=48,∴p =2. 抛物线方程为y 2=4x .答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.若抛物线y 2=2px 的焦点与双曲线x 2-y 23=1的右焦点重合,则p 的值为________. 解析: 双曲线x 2-y 23=1的右焦点为(2,0), 由题意,p 2=2,∴p =4.答案: 414.两圆(x +1)2+(y -1)2=r 2和(x -2)2+(y +2)2=R 2相交于P 、Q 两点,若点P 坐标为(1,2),则点Q 的坐标为______.解析: ∵两圆的圆心分别为(-1,1),(2,-2),∴两圆连心线的方程为y =-x .∵两圆的连心线垂直平分公共弦,∴P (1,2),Q 关于直线y =-x 对称,∴Q (-2,-1).答案: (-2,-1)15.设M 是椭圆x 24+y 23=1上的动点,A 1和A 2分别是椭圆的左、右顶点,则MA 1→·MA 2→的最小值等于________.解析: 设M (x 0,y 0),则MA 1→=(-2-x 0,-y 0),MA 2→=(2-x 0,-y 0)⇒MA 1→·MA 2→=x 20+y 20-4=x 20+⎝⎛⎭⎫3-34x 20-4=14x 20-1, 显然当x 0=0时,MA 1→·MA 2→取最小值为-1.答案: -116.已知双曲线x 216-y 29=1的左、右焦点为F 1、F 2,P 是双曲线右支上一点,且PF 1的中点在y 轴上,则△PF 1F 2的面积为________.解析: 如图,设PF 1的中点为M ,则MO ∥PF 2,故∠PF 2F 1=90°.∵a =4,b =3,c =5,∴|F 1F 2|=10,|PF 1|=8+|PF 2|.由|PF 1|2=|PF 2|2+|F 1F 2|2得(8+|PF 2|)2=|PF 2|2+100,∴|PF 2|=94,S △PF 1F 2=12·|F 1F 2|·|PF 2|=454. 答案: 454三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)双曲线的两条渐近线方程为x +y =0和x -y =0,直线2x -y -3=0与双曲线交于A ,B 两点,若|AB |=5,求此双曲线的方程.解析: ∵双曲线渐近线为x ±y =0,∴双曲线为等轴双曲线.设双曲线方程为x 2-y 2=m (m ≠0),直线与双曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧2x -y -3=0,x 2-y 2=m , 得3x 2-12x +m +9=0,则x 1+x 2=4,x 1x 2=m +93. 又|AB |2=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+[(2x 1-3)-(2x 2-3)]2=(x 1-x 2)2+4(x 1-x 2)2=5(x 1-x 2)2=5[(x 1+x 2)2-4x 1x 2], ∴(5)2=5⎣⎢⎡⎦⎥⎤42-4·⎝ ⎛⎭⎪⎫m +93, 解得m =94. 故双曲线的方程为x 2-y 2=94. 18.(12分)已知圆C 的方程为(x -m )2+(y +m -4)2=2.(1)求圆心C 的轨迹方程;(2)当|OC |最小时,求圆C 的一般方程(O 为坐标原点).解析: (1)设C (x ,y ),则⎩⎪⎨⎪⎧x =m ,y =4-m .消去m ,得y =4-x ,∴圆心C 的轨迹方程为x +y -4=0.(2)当|OC |最小时,OC 与直线x +y -4=0垂直,∴直线OC 的方程为x -y =0. 由⎩⎪⎨⎪⎧x +y -4=0,x -y =0,得x =y =2. 即|OC |最小时,圆心的坐标为(2,2),∴m =2.圆C 的方程为(x -2)2+(y -2)2=2.其一般方程为x 2+y 2-4x -4y +6=0.19.(12分)(盐城市三星级高中20XX 届第一次联考)已知圆C 1的方程为(x -2)2+(y -1)2=203,椭圆C 2的方程为x 2a 2+y 2b 2=1(a >b >0),且C 2的离心率为22,如果C 1、C 2相交于A 、B 两点,且线段AB 恰好为C 1的直径,求直线AB 的方程和椭圆C 2的方程.解析: 设A (x 1,y 1)、B (x 2,y 2).A 、B 在椭圆上,∴b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2. ∴b 2(x 2+x 1)(x 2-x 1)+a 2(y 2+y 1)(y 2-y 1)=0.又线段AB 的中点是圆的圆心(2,1),∴x 2+x 1=4,y 2+y 1=2,∴k AB =-b 2(x 2+x 1)a 2(y 2+y 1)=-2b 2a 2, 椭圆的离心率为22,∴b 2a 2=1-e 2=12, k AB =-2b 2a2=-1, 直线AB 的方程为y -1=-1(x -2),即x +y -3=0.由(x -2)2+(y -1)2=203和x +y -3=0得 A ⎝⎛⎭⎫2+103,1-103. 代入椭圆方程得:a 2=16,b 2=8,∴椭圆方程为:x 216+y 28=1. 20.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为e . (1)若半焦距c =22,且23、e 、43成等比数列,求椭圆C 的方程; (2)在(1)的条件下,直线l :y =ex +a 与x 轴、y 轴分别交于M 、N 两点,P 是直线l 与椭圆C 的一个交点,且M P →=λMN →,求λ的值;(3)若不考虑(1),在(2)中,求证:λ=1-e 2.【解析方法代码108001121】解析: (1)∵e 2=23×43,∴e =223, ∴a =3,b =1,∴椭圆C 的方程为x 29+y 2=1. (2)设P (x ,y ),则⎩⎨⎧ y =223x +3x 29+y 2=1,解得P ⎝⎛⎭⎫-22,13. ∵M ⎝⎛⎭⎫-924,0,N (0,3),M P →=λMN →, ∴λ=19. (3)证明:∵M 、N 的坐标分别为M ⎝⎛⎭⎫-a e ,0,N (0,a ), 由⎩⎪⎨⎪⎧ y =ex +ax 2a 2+y 2b 2=1, 解得⎩⎪⎨⎪⎧x =-cy =b 2a (其中c =a 2-b 2),∴P ⎝⎛⎭⎫-c ,b 2a . 由M P →=λMN →得⎝⎛⎭⎫-c +a e ,b 2a =λ⎝⎛⎭⎫a e ,a , ∴⎩⎨⎧ a e -c =λ·a eb 2a =λa ,∴ λ=1-e 2. 21.(12分)设椭圆C :x 2a 2+y 22=1(a >0)的左、右焦点分别为F 1、F 2,A 是椭圆C 上的一点,且AF 2→·F 1F 2→=0,坐标原点O 到直线AF 1的距离为13|OF 1|. (1)求椭圆C 的方程;(2)设Q 是椭圆C 上的一点,过Q 的直线l 交x 轴于点P (-1,0),交y 轴于点M ,若M Q →=2QP →,求直线l 的方程.解析: (1)由题设知F 1(-a 2-2,0),F 2(a 2-2,0),由于AF 2→·F 1F 2→=0,则有AF 2→⊥F 1F 2→,所以点A 的坐标为⎝⎛⎭⎫a 2-2,±2a , 故AF 1所在直线方程为y =±⎝ ⎛⎭⎪⎫x a a 2-2+1a , 所以坐标原点O 到直线AF 1的距离为a 2-2a 2-1(a >2), 又|OF 1|=a 2-2,所以a 2-2a 2-1=13a 2-2,解得a =2(a >2),所求椭圆的方程为x 24+y 22=1. (2)由题意知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则有M (0,k ),设Q (x 1,y 1),由于M Q →=2QP →,∴(x 1,y 1-k )=2(-1-x 1,-y 1),解得x 1=-23,y 1=k 3. 又Q 在椭圆C 上,得⎝⎛⎭⎫-2324+⎝⎛⎭⎫k 322=1, 解得k =±4,故直线l 的方程为y =4(x +1)或y =-4(x +1),即4x -y +4=0或4x +y +4=0.22.(14分)已知椭圆y 2a 2+x 2b 2=1的一个焦点为F (0,22),与两坐标轴正半轴分别交于A ,B 两点(如图),向量A B →与向量m =(-1,2)共线.(1)求椭圆的方程;(2)若斜率为k 的直线过点C (0,2),且与椭圆交于P ,Q 两点,求△POC 与△QOC 面积之比的取值范围.【解析方法代码108001122】解析: (1)y 216+x 28=1. (2)设P (x 1,y 1),Q (x 2,y 2),且x 1<0,x 2>0.PQ 方程为y =kx +2,代入椭圆方程并消去y ,得(2+k 2)x 2+4kx -12=0,x 1+x 2=-4k 2+k 2,① x 1x 2=-122+k 2.② 设S △QOC S △POC =|x 2||x 1|=-x 2x 1=λ,结合①②得 (1-λ)x 1=-4k 2+k 2,λx 21=122+k 2. 消去x 1得λ(1-λ)2=34⎝⎛⎭⎫1+2k 2>34,解不等式λ(1-λ)2>34,得13<λ<3. ∴△POC 与△QOC 面积之比的取值范围为⎝⎛⎭⎫13,3.。

解析几何练习题及答案

解析几何练习题及答案

解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是( ) A.3 B .- 3 C.33D .-33解析:斜率k =-1-33-(-3)=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:①当a =0时,y =2不合题意. ②a ≠0, x =0时,y =2+a . y =0时,x =a +2a,则a +2a =a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( ) A .4 B .21313C.51326D .71020解析:把3x +y -3=0转化为6x +2y -6=0, 由两直线平行知m =2, 则d =|1-(-6)|62+22=71020.故选D. 答案:D4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -5=0D .x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.⎣⎡⎭⎫π6,π3 B .⎝⎛⎭⎫π6,π2 C.⎝⎛⎭⎫π3,π2D .⎣⎡⎦⎤π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l 的倾斜角的取值范围为⎝⎛⎭⎫π6,π2.故选B.答案:B6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0D .x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2, ∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A 二、填空题7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零. 设直线方程为x a +yb=1,由⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得⎩⎪⎨⎪⎧ a =3b =3或⎩⎪⎨⎪⎧a =4b =2.故所求直线方程为x +y -3=0或x +2y -4=0. 答案:x +y -3=0或x +2y -4=08.(2014湘潭质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0, ∴k AB =4-mm +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0, 即2a -(1+a )3-(1-a )<0,化简得a -1a +2<0,∴-2<a <1. 答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________. 解析:令k =0,得y +3=0,令k =1,得x +3=0.解方程组⎩⎪⎨⎪⎧ y +3=0,x +3=0,得⎩⎪⎨⎪⎧x =-3,y =-3,所以定点坐标为(-3,-3). 答案:(-3,-3) 三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一 当sin α=0时,直线l 1的斜率不存在, l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二 由l 1∥l 2,得⎩⎪⎨⎪⎧2sin 2α-1=0,1+sin α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0. ∴α=k π,k ∈Z . 故当α=k π,k ∈Z 时, l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0. (1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一 由方程组⎩⎪⎨⎪⎧y =k 1x +1,y =k 2x -1解得交点P 的坐标为⎝ ⎛⎭⎪⎫2k 2-k 1,k 2+k 1k 2-k 1, 而2x 2+y 2=2⎝ ⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上. 即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二 交点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧y -1=k 1x ,y +1=k 2x ,故知x ≠0.从而⎩⎪⎨⎪⎧k 1=y -1x ,k 2=y +1x .代入k 1k 2+2=0,得y -1x ·y +1x +2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇 第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1解析:由题意,设圆心(0,t ), 则12+(t -2)2=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A. 答案:A2.(2014郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:设P (x ,y ), 则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16,故选B. 答案:B3.(2012年高考陕西卷)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则() A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能解析:x2+y2-4x=0是以(2,0)为圆心,以2为半径的圆,而点P(3,0)到圆心的距离为d =(3-2)2+(0-0)2=1<2,点P(3,0)恒在圆内,过点P(3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考辽宁卷)将圆x2+y2-2x-4y+1=0平分的直线是()A.x+y-1=0B.x+y+3=0C.x-y+1=0D.x-y+3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C符合,故选C.答案:C5.(2013年高考广东卷)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A.x+y-2=0B.x+y+1=0C.x+y-1=0D.x+y+2=0解析:与直线y=x+1垂直的直线方程可设为x+y+b=0,由x+y+b=0与圆x2+y2=1,故b=±2.因为直线与圆相切于第一象限,故结合图形分析知=1相切,可得|b|12+12b=-2,则直线方程为x+y-2=0.故选A.答案:A6.(2012年高考福建卷)直线x+3y-2=0与圆x2+y2=4相交于A、B两点,则弦AB 的长度等于()A.25B.2 3C.3D.1|0+3×0-2|=1,半径r=2,解析:因为圆心到直线x+3y-2=0的距离d=12+(3)2所以弦长|AB|=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25, 故圆心为(3,4),半径r =5. 又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:4 58.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为 d =|1-1+4|12+(-1)2=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2. 答案: 29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上, ∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切, ∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1. 答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________. 解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1 三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0. (1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程. (1)证明:法一 直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0, ∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二 直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5内部, ∴对m ∈R ,直线l 与圆C 总有两个不同交点. (2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ), 由方程(m 2+1)x 2-2mx -4=0, 得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x ,代入x =m m 2+1,得x ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫y -1x 2+1=y -1x ,化简得x 2+⎝⎛⎭⎫y -322=14. 经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2+⎝⎛⎭⎫y -322=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切, 则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=22,|DA |=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇 第3节一、选择题1.设P 是椭圆x 225+y 216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D. 答案:D2.(2014唐山二模)P 为椭圆x 24+y 23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于( )A .3B . 3C .23D .2解析:由椭圆方程知a =2,b =3,c =1,∴⎩⎪⎨⎪⎧|PF 1|+|PF 2|=4,|PF 1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考江西卷)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14 B .55C.12D .5-2解析:本题考查椭圆的性质与等比数列的综合运用. 由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c , |F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列, 故(a -c )(a +c )=(2c )2, 可得e =c a =55.故应选B.答案:B4.(2013年高考辽宁卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )A.35 B .57C.45D .67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos ∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2, 连结AF 2,由对称性知|AF 2|=|FB |=8, 2a =|AF 2|+|AF |=6+8=14, 即a =7, 则e =c a =57.故选B. 答案:B5.已知椭圆E :x 2m +y 24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx +1被椭圆E 截得的弦长不可能相等的是( )A .kx +y +k =0B .kx -y -1=0C .kx +y -k =0D .kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等. 选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等. 选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等. 排除选项A 、B 、C ,故选D. 答案:D6.(2014山东省实验中学第二次诊断)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使a sin ∠PF 1F 2=csin ∠PF 2F 1,则该椭圆的离心率的取值范围为( )A .(0,2-1)B .⎝⎛⎭⎫22,1C.⎝⎛⎭⎫0,22 D .(2-1,1)解析:由题意知点P 不在x 轴上, 在△PF 1F 2中,由正弦定理得|PF 2|sin ∠PF 1F 2=|PF 1|sin ∠PF 2F 1,所以由a sin ∠PF 1F 2=csin ∠PF 2F 1可得a |PF 2|=c |PF 1|,即|PF 1||PF 2|=ca=e , 所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a , 所以e |PF 2|+|PF 2|=2a , 解得|PF 2|=2a e +1. 由于a -c <|PF 2|<a +c , 所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,也就是⎩⎪⎨⎪⎧(1-e )(1+e )<2,2<(1+e )2,解得2-1<e . 又0<e <1,∴2-1<e <1.故选D. 答案:D 二、填空题7.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6, 又|PF 1|+|PF 2|=10, ∴|PF 1|=4.答案:48.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1, ∵直线MF 2的倾斜角为120°, ∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3, 2c =|F 1F 2|=1. ∴e =ca =2- 3.答案:2- 39.(2014西安模拟)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y 225-m +x 29-m =1(m <9),代入点(3,-5), 得525-m +39-m=1, 解得m =5或m =21(舍去), ∴椭圆的标准方程为y 220+x 24=1.答案:y 220+x 24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:由题意得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2, 即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3. 答案:3 三、解答题11.(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 1上,可得⎩⎪⎨⎪⎧a 2-b 2=1,b =1,∴⎩⎪⎨⎪⎧a 2=2,b 2=1.故椭圆C 1的方程为x 22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0, 设其方程为y =kx +b ,由直线l 与抛物线C 2相切得⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0, Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1相切得⎩⎪⎨⎪⎧y =kx +b ,x 22+y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0, Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0, 化简得2k 2=b 2-1.②①②联立得⎩⎪⎨⎪⎧kb =1,2k 2=b 2-1,解得b 4-b 2-2=0, ∴b 2=2或b 2=-1(舍去), ∴b =2时,k =22,b =-2时,k =-22. 即直线l 的方程为y =22x +2或y =-22x - 2. 12.(2014海淀三模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△P AB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.所以a =3,b =1, 椭圆C 的方程为x 23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴, y 轴与直线l :x +y -3=0的交点为P (0,3), 又因为|AB |=23,|PO |=3, 所以∠P AO =60°, 所以△P AB 是等边三角形, 所以直线AB 的方程为y =0, 当直线AB 的斜率存在且不为0时, 则直线AB 的方程为y =kx ,所以⎩⎪⎨⎪⎧x 23+y 2=1,y =kx ,化简得(3k 2+1)x 2=3, 所以|x 1|=33k 2+1, 则|AO |=1+k 233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),所以⎩⎪⎨⎪⎧y =-x +3,y =-1k x ,解得⎩⎪⎨⎪⎧x 0=3kk -1,y 0=-3k -1.则|PO |=9k 2+9(k -1)2, 因为△P AB 为等边三角形, 所以应有|PO |=3|AO |, 代入得9k 2+9(k -1)2=33k 2+33k 2+1,解得k =0(舍去),k =-1. 综上,k =0或k =-1.第八篇 第4节一、选择题1.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17D .以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8, 又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1, ∴|PF 2|=17. 故选B. 答案:B2.(2013年高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考湖南卷)已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B .x 25-y 220=1C.x 280-y 220=1 D .x 220-y 280=1解析:由焦距为10,知2c =10,c =5. 将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20, 所以方程为x 220-y 25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A.14B .35C.34D .45解析:∵c 2=2+2=4, ∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22, |PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos ∠F 1PF 2=(42)2+(22)2-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.x 242-y 232=1 B .x 2132-y 252=1C.x 232-y 242=1 D .x 2132-y 2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10, 则椭圆两焦点为(-5,0),(5,0), 根据题意,可知曲线C 2为双曲线, 根据双曲线的定义可知, 双曲线C 2中的2a 2=8, 焦距与椭圆的焦距相同, 即2c 2=10, 可知b 2=3,所以双曲线的标准方程为x 242-y 232=1.故选A.答案:A6.(2014福州八中模拟)若双曲线x 29-y 216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16内,则实数m 的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞)C .[-5,5]D .(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16内,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值范围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考辽宁卷)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5, 则|PQ |=16, 又因为|PF |-|P A |=6, |QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12, |PF |+|QF |=28, 则△PQF 的周长为44. 答案:448.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1, 又e =ca =2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y 23=1.答案:x 2-y 23=19.(2014合肥市第三次质检)已知点P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径, 故∠F 1PF 2=90°,∠PF 1F 2=30°, 设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m , 该双曲线的离心率等于 |F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考湖南卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上, 由题意,在Rt △F 1PF 2中, |F 1F 2|=2c ,∠PF 1F 2=30°, 得|PF 2|=c ,|PF 1|=3c , 根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a , e =c a =23-1=3+1. 答案:3+1 三、解答题11.已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一 设点A (x 1,y 1),B (x 2,y 2)在双曲线上, 且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).① ∴x 0=x 1+x 22=k (1-k )2-k 2. 由题意,得k (1-k )2-k 2=1, 解得k =2.当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.法二 设A (x 1,y 1),B (x 2,y 2),若直线l 的斜率不存在,即x 1=x 2不符合题意,所以由题得x 21-y 212=1,x 22-y 222=1, 两式相减得(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)2=0, 即2-y 1-y 2x 1-x 2=0, 即直线l 斜率k =2,得直线l 方程y -1=2(x -1),即y =2x -1,联立⎩⎪⎨⎪⎧y =2x -1,x 2-y 22=1得2x 2-4x +3=0,Δ=16-24=-8<0,即直线y =2x -1与双曲线无交点,即所求直线不合题意,所以过点P (1,1)的直线l 不存在.12.(2014南京质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n , 则⎩⎪⎨⎪⎧ a -m =4,7·13a =3·13m ,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x 249+y 236=1, 双曲线方程为x 29-y 24=1. (2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-(213)22×10×4=45.第八篇 第5节一、选择题1.(2014银川模拟)抛物线y =2x 2的焦点坐标为( )A.⎝⎛⎭⎫12,0B .(1,0) C.⎝⎛⎭⎫0,18 D .⎝⎛⎭⎫0,14 解析:抛物线y =2x 2,即其标准方程为x 2=12y ,它的焦点坐标是⎝⎛⎭⎫0,18.故选C. 答案:C2.抛物线的焦点为椭圆x 24+y 29=1的下焦点,顶点在椭圆中心,则抛物线方程为( ) A .x 2=-45yB .y 2=-45xC .x 2=-413yD .y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A .相离B .相交C .相切D .不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014洛阳高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为( )A.53B .83 C.103D .10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1, 将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,则由⎩⎪⎨⎪⎧x 1+1=3(x 2+1),x 1x 2=y 214·y 224=(y 1y 2)216=1, 解得x 1=3,x 2=13, 故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B. 答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34B .1 C.54D .74 解析:∵|AF |+|BF |=x A +x B +12=3, ∴x A +x B =52. ∴线段AB 的中点到y 轴的距离为x A +x B 2=54. 故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,联立⎩⎪⎨⎪⎧y =3x +b ,x 2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y . 答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________. 解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考北京卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°, ∴直线斜率为3,∴直线方程为y =3(x -1).联立方程⎩⎪⎨⎪⎧y =3(x -1),y 2=4x , 解得⎩⎨⎧ x 1=13,y 1=-233,或⎩⎪⎨⎪⎧x 2=3,y 2=23, 由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3. 答案: 310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A ⎝⎛⎭⎫72,4,则|P A |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为⎝⎛⎭⎫12,0. 求|P A |+|PM |的最小值,可先求|P A |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|P A |+|PF |=|P A |+|PM ′|,当点A 、P 、F 在一条直线上时,|P A |+|PF |有最小值|AF |=5,所以|P A |+|PM ′|≥5,又因为|PM ′|=|PM |+12, 所以|P A |+|PM |≥5-12=92. 答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,求实数m 的值.解:法一 如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,由⎩⎪⎨⎪⎧ y =-x +n ,y =2x 2,得2x 2+x -n =0, ∴x 1+x 2=-12,x 1x 2=-n 2. 由x 1x 2=-12,得n =1. 又x 0=x 1+x 22=-14, y 0=-x 0+n =14+1=54, 即点M 为⎝⎛⎭⎫-14,54, 由点M 在直线l 上,得54=-14+m , ∴m =32. 法二 ∵A 、B 两点在抛物线y =2x 2上.∴⎩⎪⎨⎪⎧y 1=2x 21,y 2=2x 22, ∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0. 又AB ⊥l ,∴k AB =-1,从而x 0=-14. 又点M 在l 上,∴y 0=x 0+m =m -14, 即M ⎝⎛⎭⎫-14,m -14, ∴AB 的方程是y -⎝⎛⎭⎫m -14=-⎝⎛⎭⎫x +14, 即y =-x +m -12,代入y =2x 2, 得2x 2+x -⎝⎛⎭⎫m -12=0,∴x 1x 2=-m -122=-12,∴m =32. 12.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y =22⎝⎛⎭⎫x -p 2,与y 2=2px 联立, 从而有4x 2-5px +p 2=0,所以x 1+x 2=5p 4.由抛物线定义得|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4, y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。

解析几何初步的真题答案

解析几何初步的真题答案

解析几何初步的真题答案是数学的一个分支,通过代数和几何的结合研究空间中的几何形状和性质。

在高中数学中,常被作为一个单元进行教学和考查。

本文将以初步的真题答案作为主题,通过真题的分析,展示的基本思想和解题方法。

一、直线和圆的交点中常见的题型是直线与圆的交点问题。

考虑以下一道真题:已知直线l的方程为3x-4y+7=0,圆C的方程为x^2+y^2+6x-4y-3=0,求直线和圆的交点坐标。

解答:首先,我们可以将直线l的方程转换为一般式,得到3x-4y+7=0等价于y=(3/4)x+7/4。

接下来,将直线l的方程代入圆C的方程,得到x^2+y^2+6x-4y-3=0等价于x^2 + (3/4)x + 49/16 + y^2 - 7/2y + 49/16 - 3 = 0。

对圆C的方程进行配方,得到(x+3/8)^2 + (y-7/4)^2 = 17/4,由此可知圆C的圆心坐标为(-3/8, 7/4),半径为根号17/2。

通过求解直线和圆的交点,可得两个交点坐标为(-3/4+√2/2, 7/4+√2/2)和(-3/4-√2/2, 7/4-√2/2)。

二、平行和垂直的直线中,平行和垂直的直线是重要的概念。

考虑以下一道真题:已知直线l1过点A(1,2)且与直线2x-y+3=0平行,直线l2过点B(-1,3)且与直线2x-y+3=0垂直,求直线l1和直线l2的方程。

解答:首先,直线l1与直线2x-y+3=0平行,说明直线l1具有与直线2x-y+3=0相同的斜率。

令直线l1的方程为y=kx+b,由于直线l1过点A(1,2),可得到2=k+b。

同时,直线l1与直线2x-y+3=0平行,代入斜率可得到-k=2,由此可解得k=-2。

再将k值代入求得b=4。

因此,直线l1的方程为y=-2x+4。

接着,直线l2与直线2x-y+3=0垂直,说明直线l2的斜率与直线2x-y+3=0的斜率的乘积为-1。

直线2x-y+3=0的斜率为2,所以直线l2的斜率为-1/2。

初三数学解析几何练习题及答案

初三数学解析几何练习题及答案

初三数学解析几何练习题及答案解析几何是数学中的一个分支,它通过运用代数和几何的方法来研究图形和方程之间的关系。

初三学生对于解析几何的学习是非常重要的,因为它是数学学科中的一个基础,对于进一步学习高等数学有很大的帮助。

为了帮助同学们更好地掌握解析几何,我为大家准备了一些练习题,并提供了详细的解答,希望对大家的学习能够有所帮助。

1. 题目一:平面直角坐标系中,已知直线L的方程为2x + y = 5,直线L'过点A(2, 1)且垂直于直线L,求直线L'的方程。

解答:首先,我们可以求出直线L的斜率k1。

由于直线L的表达式为2x + y = 5,我们可以将其转化为斜截式的形式y = -2x + 5。

可以看出,直线L的斜率k1为-2。

由于直线L'垂直于直线L,所以它们的斜率互为倒数,即k1 * k2 = -1,其中k2为直线L'的斜率。

代入已知条件,我们得到-2 * k2 = -1,解得k2 = 1/2。

已知直线L'经过点A(2, 1)且斜率为1/2,我们可以利用点斜式的方程来求解。

点斜式的方程为y - y1 = k(x - x1),其中(x1, y1)为直线上已知的一点,k为直线的斜率。

代入已知条件,将点A的坐标代入,我们得到y - 1 = 1/2(x - 2)。

将该方程转化为一般式的形式,我们得到2y - x = 3,即为直线L'的方程。

2. 题目二:已知直线L过点A(1, -2)和点B(3, 4),直线L'经过点A且与直线L平行,求直线L'的方程。

解答:首先,我们可以通过两点之间的斜率公式来计算直线L的斜率k1。

斜率公式为k1 = (y2 - y1) / (x2 - x1),其中(x1, y1)和(x2, y2)分别为直线上的两个点的坐标。

代入已知条件,我们得到k1 = (4 - (-2)) / (3 - 1) = 6 / 2 = 3。

由于直线L'与直线L平行,所以它们的斜率相等,即k1 = k2,其中k2为直线L'的斜率。

微专题27-非对称韦达定理可编辑全文

微专题27-非对称韦达定理可编辑全文
索引
∴kk12=x1y+1 1·x2y-2 1=4(x1-1y)1y(2 x2-1)=4(my1+1y)1y(2 my2+1) =4[m2y1y2+my(1yy2 1+y2)+1] =4m2+my1y+1y2y2+y11y2 =4m2+m×-43m+4m122-1=-13. 法三(极点、极线法) 点 T(2,0)对应的极线方程为21x=1,即 x=12.
Δ>0,
则y1+y2=-4m162-m 1,

y1y2=4m122-1, ②
索引
而① ②得y1y+1y2y2=-43m, ∴my1y2=-34(y1+y2), 法一(双参变单参) 又 k1=x1y+1 1, k2=x2y-2 1, ∴kk12=x1y+1 1·x2y-2 1=mmyy11yy22++3yy12=--4433((yy11++yy22))++3yy12=-13.
索引
有aa9422--b3212b=2=1,1,解得ab22==31,, 故 C 的方程为x32-y2=1.
索引
(2)过点(3,0)的直线l交C于P,Q两点,过点P作直线x=1的垂线,垂足为A. 证明:直线AQ过定点. 证明 当直线 l 与 x 轴不重合时,设直线 l:x=my+3 代入x32-y2=1,
索引
法二(第三定义法) 由题意得 kMA=x1y+1 1,kMB=x1y-1 1,由 x21-y421=1,得 y21=4(x21 -1), ∴kMAkMB=x21y-21 1=4, 即 k1kMB=x21y-21 1=4, ∴k1=x1y+1 1=4(x1y-1 1). 又 k2=kNB=x2y-2 1,
k1,k2,若k1,k0,k2成等差数列,求实数t的值.
解 设直线l:x=my+1,M(x1,y1),N(x2,y2), x=my+1,

2020高考数学专项训练《27以解析几何为载体的应用题》(有答案)

2020高考数学专项训练《27以解析几何为载体的应用题》(有答案)

专题27 以解析几何为载体的应用题例题:如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处, 点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?变式1如图所示,为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD 建成生态休闲园,园区内有一景观湖EFG(图中阴影部分).以AB 所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系xOy(如图所示).景观湖的边界曲线符合函数y =x +1x (x >0)模型,园区服务中心P 在x 轴正半轴上,PO =43百米.(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道PQ最短.变式2如图所示,有一矩形钢板ABCD缺损了一角(图中阴影部分),边缘线OM上每一点到点D的距离都等于它到边AB的距离.工人师傅要将缺损的一角切割下来使剩余部分成一个五边形,已知AB=4米,AD=2米.(1)如图所示建立直角坐标系.求边缘线OM的轨迹方程;(2)①设点P(t,m)为边缘线OM上的一个动点,试求出点P处切线EF的方程(用t表示).②求AF的值,使截去的△DEF的面积最小.串讲1如图,相距14 km的两个居民小区M和N位于河岸l(直线)的同侧,M和N距离河岸分别为10 km和8 km.现要在河的小区一侧选一地点P,在P处建一个生活污水处理站,从P排直线水管PM,PN分别到两个小区和垂直于河岸的水管PQ,使小区污水经处理后排入河道,设PQ段长为t(0<t<8) km.(1)求污水处理站到两小区的水管的总长最小值(用t表示);(2)请确定污水处理站的位置,使所排三段水管的总长最小,并求出此时污水处理站分别到两小区水管的长度.串讲2为响应新农村建设,某村计划对现有旧水渠进行改造,已知旧水渠的横断面是一段抛物线弧,顶点为水渠最底端(如图),渠宽为4 m,渠深为2 m.(1)考虑到农村耕地面积的减少,为节约水资源,要减少水渠的过水量,在原水渠内填土,使其成为横断面为等腰梯形的新水渠,新水渠底面与地面平行(不改变渠宽),问新水渠底宽为多少时,所填土的土方量最少?(2)考虑到新建果园的灌溉需求,要增大水渠的过水量,现把旧水渠改挖(不能填土)成横断面为等腰梯形的新水渠,使水渠的底面与地面平行(不改变渠深),要使所挖土的土方量最少,请你设计水渠改挖后的底宽,并求出这个底宽.(2018·九章密卷)如图所示,有一块扇形区域的空地,其中∠AOB=90°,OA=120 m.现要对该区域绿化升级改造.设计要求建造三座凉亭供市民休息,其中凉亭C位于OA 上,且AC=40 m,凉亭D位于OB的中点,凉亭E位于弧AB上.(1)现要在四边形OCED内种植花卉,其余部分种植草坪,试确定E点的位置,使种植花卉的面积最大;(2)为了便于市民观赏花卉,现修建两条小道EC和ED,其中EC小道铺设塑胶,造价为每米a元,ED为离开地面高1 m的木质栈道,造价为每米2a元,试确定E点的位置,使两条小道总造价最小.某湿地公园内有一条河,现打算建一座桥(图1)将河两岸的路连接起来,剖面设计图纸(图2)如下:其中,点A,E为x轴上关于原点对称的两点,曲线段BCD是桥的主体,C为桥顶,且曲线段BCD在图纸上的图形对应函数的解析式为y=84+x2(x∈[-2,2]),曲线段AB,DE均为开口向上的抛物线段,且A,E分别为两抛物线的顶点.设计时要求:保持两曲线在各衔接处(B,D)的切线的斜率相等.(1)求曲线段AB在图纸上对应函数的解析式,并写出定义域;(2)定义车辆在上桥过程中通过某点P所需要的爬坡能力(Climbing Ability)为M P=(该点P与桥顶间的水平距离)×(设计图纸上该点P处的切线的斜率),其中M P的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力,它们的爬坡能力分别为0.8米,1.5米,2.0米,又已知图纸上一个单位长度表示实际长度1米,试问三种类型的观光车是否都可以顺利过桥?答案:(1)y=116(x+6)2(-6≤x≤-2);(2)“游客踏乘”的车辆不能顺利通过该桥,而“蓄电池动力”和“内燃机动力”的车辆可以顺利通过该桥.解析:(1)据题意,抛物线段AB与x轴相切,且A为抛物线的顶点,设A(a,0)(a<-2),则抛物线段AB对应函数的解析式可设为y=λ(x-a)2(a≤x≤-2)(λ>0),2分其导函数为y′=2λ(x -a).由曲线段BD 的图象对应函数的解析式为y =84+x 2(x ∈[-2,2]),又y′=-16x (4+x 2)2,且B(-2,1),所以曲线在B 点处的切线斜率为12, 因为B 点为衔接点,则⎩⎪⎨⎪⎧λ(-2-a )2=1,2λ(-2-a )=12,解得⎩⎪⎨⎪⎧a =-6,λ=116.4分所以曲线段AB 在图纸上对应函数的解析式为y =116(x +6)2(-6≤x ≤-2).5分 (2)设P(x ,y)是曲线段AC 上任意一点,①若P 在曲线段AB 上,则通过该点所需要的 爬坡能力(M P )1=(-x)·18(x +6)=-18[(x +3)2-9](-6≤x ≤2),6分令y 1=-18[(x +3)2-9](-6≤x ≤-2),所以函数y 1=-18[(x +3)2-9](-6≤x ≤-2)在区间[-6,-3]上为增函数,在区间[-3,-2]上是减函数, 所以[(M P )1]max =98(米)9分②若P 在曲线段BC 上,则通过该点所需要的爬坡能力(M P )2=(-x)·-16x(4+x 2)2=16x 2(4+x 2)2(-2≤x ≤0),10分 令t =x 2,t ∈[0,4],则(M P )2=16t (4+t )2,t ∈[0,4],记y 2=16t(4+t )2,t ∈[0,4],当t =0时,y 2=0,而当0<t ≤4时,y 2=1616t +t +8,所以当t =4时,t +16t 有最小值16,从而y 2取最大值1,此时[(M P )2]max =1(米).13分所以由①,②可知,车辆过桥所需要的最大爬坡能力为98米,14分答:因为0.8<98<1.5<2,所以“游客踏乘”的车辆不能顺利通过该桥,而“蓄电池动力”和“内燃机动力”的车辆可以顺利通过该桥.16分专题27例题答案:(1)150;(2)10.解析:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy.由条件知A(0,60),C(170,0),直线BC 的斜率k BC =-tan ∠BCO =-43.又因为AB ⊥BC ,所以直线AB 的斜率k AB =34.设点B 的坐标为(a ,b),则k BC =b -0a -170=-43,k AB =b -60a -0=34.解得a =80,b =120.所以BC =(170-80)2+(0+120)2=150.答:新桥BC 的长为150 m .(2)设保护区的边界圆M 的半径为r m ,OM =d m (0≤d ≤60).由条件知,直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切,故点M(0,d)到直线BC 的距离是r ,即r =|3d -680|42+32=680-3d5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎨⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时,r =680-3d5最大,即圆面积最大.答:当OM =10 m 时,圆形保护区的面积最大.变式联想变式1答案:(1)22+2百米;(2)点Q 在线段DE 上且距离y 轴13百米.解析:(1)设直线OM :y =kx(其中k 一定存在),代入y =x +1x ,得kx =x +1x ,化简为(k-1)x 2=1.设M(x 1,y 1),则x 1=1k -1,(k >1),所以OM =x 12+y 12=x 12+k 2x 12=1+k 2·1k -1=1+k 2k -1.令t =k -1(t >0),则1+k 2k -1=t 2+2t +2t =t +2t +2≥22+2,当且仅当t =2时等号成立,即k =2+1时成立.综上,OM 的最短长度为22+2百米.(2)当直线PQ 与边界曲线相切时,PQ 最短.若直线PQ 斜率不存在,则直线方程为x =43,不符合题意;若直线PQ 斜率存在,设PQ 方程为y =k ⎝⎛⎭⎫x -43,代入y =x +1x ,化简得(k -1)x 2-43kx -1=0.当k =1时,方程有唯一解x =-34(舍去),当k ≠1时,因为直线与曲线相切,所以Δ=⎝⎛⎭⎫-43k 2+4(k -1)=0,解得k =-3或k =34(舍去),此时直线PQ 方程为y =-3x +4,令y =5,得x =-13,即点Q 在线段DE 上且距离y 轴13百米.答:当点Q 在线段DE 上且距离y 轴13百米,通道PQ 最短.变式2答案:(1)y =14x 2(0≤x ≤2);(2)①y =12tx -14t 2; ②AF =23.解析:(1)因为边缘线OM 上每一点到点D 的距离都等于它到边AB 的距离,所以边缘线OM 是以点D 为焦点,直线AB 为准线的抛物线的一部分.因为D(0,1),M(2,1),所以边缘线OM 的方程为y =14x 2(0≤x ≤2).(2)①设切点为P ⎝⎛⎭⎫t ,14t 2(0<t <2),则点P 处的切线斜率为12t.所以直线EF 的方程为y -14t 2=12t(x -t), 即y =12tx -14t 2.②点E ,F 的坐标分别为E ⎝⎛⎭⎫4+t22t ,1,F ⎝⎛⎭⎫0,-14t 2.所以S △DEF = 12⎝⎛⎭⎫1+14t 2·4+t 22t= (4+t 2)216t ,t ∈(0,2). 因为S′△DEF =116· (4+t 2)(3t 2-4)t 2,令S′△DEF =0,得t =233⎝⎛⎭⎫t =-233舍.当t ∈⎝⎛⎭⎫0,233时,S ′△DEF <0;当x ∈⎝⎛⎭⎫233,2时,S ′△DEF >0,所以S △DEF 在⎝⎛⎦⎤0,233上是减函数,在⎣⎡⎭⎫233,2上是增函数.所以当t =233时,S △DEF 最小,此时F ⎝⎛⎭⎫0,-13. 答:取AF =23时,沿直线EF 画线段切割,可使截去的△DEF 的面积最小.说明:很多实际问题都与曲线有关(如直线、圆、抛物线以及由函数关系给出的曲线),通常的处理方法是仔细审题,明确解题方向,根据题意,结合所给图形的结构特征,建立直角坐标系,把要解决的问题放在坐标平面上使之与有关曲线相联系,根据相关等量关系建立数学模型(函数模型、不等式模型等),运用解析几何的基本知识、思想和方法予以解决,此类问题通常涉及确定最优解的点的位置,如例题和变式题就是这样的问题.串讲激活串讲1答案:(1)2t 2-18t +129(0<t <8);(2)满足题意的P 点距河岸5 km ,距小区M 到河岸的垂线5 3 km ,此时污水处理站到小区M 和N 的水管长度分别为10 km 和6 km .解析:(1)如图,以河岸l 所在直线为x 轴,以过M 垂直于l 的直线为y 轴建立直角坐标系,则可得点M(0, 10),点N(83,8).设点P(s ,t),过P 作平行于x 轴的直线m ,作N 关于m 的对称点N′,则N′(83,2t -8).则PM +PN =PM +PN′≥MN ′=(83-0)2+(12t -8-10)2=2t 2-18t +129(0<t <8)即为所求.(2)设三段水管总长为L ,则由(1)知L =PM +PN +PQ ≥MN′+PQ =t +2t 2-18t +129(0<t <8),所以(L -t)2=4(t 2-18t +129),即方程3t 2+(2L -72)t +(516-L 2)=0在t ∈(0,8)上有解.故Δ=(2L -72)2-12(516-L 2)≥0,即L 2-18L -63≥0,解得L ≥21或L ≤-3,所以L 的最小值为21,此时对应的t =5∈(0,8).故N′(83,2),MN ′方程为y =10-33x ,令y =5得x =53, 即P(53,5).从而PM = (53)2+(5-10)2=10, PN =(53-83)2+(5-8)2=6.答:满足题意的P 点距河岸5 km ,距小区M 到河岸的垂线5 3 km ,此时污水处理站到小区M 和N 的水管长度分别为10 km 和6 km .串讲2答案:(1)43m ;(2) 2 m .解析:建立如图所示的直角坐标系,设抛物线的方程为x 2=2py(p>0),由已知点P(2,2)在抛物线上,得p =1,所以抛物线的方程为y =12x 2.(1)为了使填入的土最少,内接等腰梯形的面积要最大,如图1,设点A ⎝⎛⎭⎫t ,12t 2(0<t <2),则此时梯形APQB 的面积S(t)=12(2t +4)·⎝⎛⎭⎫2-12t 2=-12t 3-t 2+2t +4,∴S ′(t)=-32t 2-2t +2,令S′(t)=-32t 2-2t +2=0,得t =23,当t ∈⎝⎛⎭⎫0,23时,S ′(t)>0,S(t)单调递增,当t ∈⎝⎛⎭⎫23,2时,S ′(t)<0,S(t)单调递减,所以当t =23时,S(t)有最大值12827. 答:改挖后的水渠的底宽为43m 时,可使填土的土方量最少.(2)为了使挖掉的土最少,等腰梯形的两腰必须与抛物线相切,如图2,设切点M ⎝⎛⎭⎫t ,12t 2(t >0),则函数在点M 处的切线方程为y -12t 2=t(x -t),分别令y =0,y =2得A ⎝⎛⎭⎫t 2,0,B ⎝⎛⎭⎫t 2+2t ,2,所以此时梯形OABC 的面积S(t)=12⎝⎛⎭⎫t +2t ·2=t +2t ≥22,当且仅当t =2时,等号成立,此时OA =22. 答:设计改挖后的水渠的底宽为2m 时,可使挖土的土方量最少.新题在线答案:(1)E 点为过圆O 与直线CD 的垂线与扇形弧的交点. (2)C ,E ,M 三点共线.解析:(1)以O 为坐标原点,OB 所在直线为x 轴,OA 所在直线为y 轴建立平面直角坐标系,则C(0,80),D(60,0),CD :x 60+y80=1即4x +3y =240,弧AB 所在圆的方程为x 2+y 2=1202;设与CD 平行且与弧AB 相切的直线为l :4x +3y =m ,当面积最大时,E 为切点,此时E 点为过圆O 与直线CD 的垂线与扇形弧的交点.当面积最大时,E 为切点,此时E 点为过圆心O 与直线CD 的垂线与扇形弧的交点. (2)设总造价为S 元,E(x ,y),由题意得,S =aCE +2aDE.在x 轴上取一点M(m ,0),使得EMED =2,则EM 2=4ED 2,即(x -m)2+y 2=4[(x -120)2+y 2],整理得3x 2+(2m -480)x+3y 2=m 2-1202(*),当2m -480=0即m =240时(*)可化为x 2+y 2=1202,此即为弧AB 所在圆的方程,即弧AB 上所有的点都满足,EM =2ED.所以M(240,0),此时CE +2DE =CE +EM ,当且仅当C ,E ,M 三点共线时总造价最小.。

高考数学解析几何解答题专项练习题(附解析)

高考数学解析几何解答题专项练习题(附解析)

高考数学解析几何解答题专项练习题(附解析)各科成绩的提高是同学们提高总体学习成绩的重要途径,大伙儿一定要在平常的练习中不断积存,查字典数学网为大伙儿整理了解析几何解答题专题训练题,期望同学们牢牢把握,不断取得进步!1.已知过抛物线y2=2px(p0)的焦点,斜率为22的直线交抛物线于A(x1,y1),B(x2,y2)(x1(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若OC=OA+OB,求的值.解(1)直线AB的方程是y=22x-p2,与y2=2px联立,从而有4x2-5px+ p2=0,因此x1+x2=5p4.由抛物线定义得|AB|=x1+x2+p=9,因此p=4,从而抛物线方程是y2=8x.(2)由p=4,知4x2-5px+p2=0可化为x2-5x+4=0,从而x1=1,x2=4,y1=-22,y2=42,从而A(1,-22),B(4,42).设OC=(x3,y3)=(1,-22)+(4,42)=(4+1,42-22),又y23=8x3 ,因此[22(2-1)]2=8(4+1),即(2-1)2=4+1,解得=0,或=2.2.已知圆心为C的圆,满足下列条件:圆心C位于x 轴正半轴上,与直线3x-4y+7=0相切,且被y轴截得的弦长为23,圆C的面积小于13.(1)求圆C的标准方程;(2)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在如此的直线l,使得直线OD 与MC恰好平行?假如存在,求出l的方程;假如不存在,请说明理由.解(1)设圆C:(x-a)2+y2=R2(a0),由题意知|3a+7|32+42=R,a2+3=R解得a=1或a=138,又S=13,a=1,R=2.圆C的标准方程为(x-1)2+y2=4.(2)当斜率不存在时,直线l为x=0,不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又l与圆C相交于不同的两点,联立得y=kx+3x-12+y2=4,消去y得(1+k2)x2+(6k-2)x+6=0,=(6k-2)2-24(1+k2)=12k2-24k-200,解得k 1-263或k1+263.x1+x2=-6k-21+k2,y1+y2=k(x1+x2)+6=2k+61+k2,OD=OA+OB=(x1+x2,y1+y2),MC=(1,-3),假设OD∥MC,则-3(x1+x2)=y1+y2,36k-21+k2=2k+61+k2,解得k=34-,1-2631+263,+,假设不成立,不存在如此的直线l.3.已知A(-2,0),B(2,0),点C,点D满足|AC|=2,AD=12(AB+AC).(1)求点D的轨迹方程;(2)过点A作直线l交以A,B为焦点的椭圆于M,N两点,线段MN 的中点到y轴的距离为45,且直线l与点D的轨迹相切,求该椭圆的方程.解(1)设C ,D点的坐标分别为C(x0,y0),D(x,y),则AC=(x0+2,y0),AB=(4,0),则AB+AC=(x0+6,y0),故AD=12(AB+AC)=x02+3,y02.又AD=(x+2,y),故x02+3=x+2,y02=y.解得x0=2x-2,y0=2y.代入|AC|=x0+22+y20=2,得x2+y2=1,即所求点D的轨迹方程为x2+y2=1.(2)易知直线l与x轴不垂直,设直线l的方程为y=k(x+2),①设椭圆方程为x2a2+y2a2-4=1(a24).②将①代入②整理,得(a2k2+a2-4)x2+4a2k2x+4a2k2-a4+4a2=0.③因为直线l与圆x2+y2=1相切,故|2k|k2+1=1,解得k2=13.故③式可整理为(a2-3)x2+a2x-34a4+4a2=0.设M(x1,y1),N(x2,y2),则x1+x2=-a2a2-3.由题意有a2a2-3=245(a24),解得a2=8,经检验,现在0.故椭圆的方程为x28+y24=1.4.已知点F1,F2分别为椭圆C:x2a2+y2b2=1(a0)的左、右焦点,P是椭圆C上的一点,且|F1F2|=2,F1PF2=3,△F1PF2的面积为33.(1)求椭圆C的方程;(2)点M的坐标为54,0,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,关于任意的kR,MAMB是否为定值?若是,求出那个定值;若不是,说明理由.解(1)设|PF1|=m,|PF2| =n.在△PF1F2中,由余弦定理得22=m2+n2-2mncos3,化简得,m2+n2-mn=4.由S△PF1F2=33,得12mnsin3=33.化简得mn=43.因此(m+n)2=m2+n2-mn+3mn=8.m+n=22,由此可得,a=2.又∵半焦距c=1,b2=a2-c2=1.因此,椭圆C的方程为x22+y2=1.(2)由已知得F2(1,0),直线l的方程为y=k(x-1),由y=kx-1,x22+y2=1消去y,得(2k2+1)x2-4k2x+2(k2-1)=0.设A(x1,y1),B(x2,y2),则x1+x2=4k22k2+1,x1x2=2k2-12k2+1.∵MAMB=x1-54,y1x2-54,y2=x1-54x2-54+y1y2=x1-54x2-54+k2(x1-1)(x2-1)=(k2+1)x1x2-k2+54(x1+x2)+2516+k2=(k2+1)2k2-22k2+1-4k2k2+542k2+1+2516+k2=-4k2-22k2+1+2516=-716.由此可知MAMB=-716为定值.5.已知双曲线E:x2a2-y2b2=1(a0,b0)的焦距为4,以原点为圆心,实半轴长为半径的圆和直线x-y+6=0相切.(1)求双曲线E的方程;(2) 已知点F为双曲线E的左焦点,试问在x轴上是否存在一定点M,过点M任意作一条直线交双曲线E于P,Q两点(P在Q点左侧),使FPFQ 为定值?若存在,求出此定值和所有的定点M的坐标;若不存在,请说明理由.解(1)由题意知|6|12+-12=a,a=3.又∵2c=4,c=2,b=c2-a2=1.双曲线E的方程为x23-y2=1.(2)当直线为y=0时,则P(-3,0),Q(3,0),F(-2,0),FPFQ=( -3+2,0)(3+2,0)=1.当直线不为y=0时,可设l:x=ty+m(t3),代入E:x23-y2=1,整理得(t2-3)y2+2mty+m2-3=0(t3).(*)由0,得m2+t23.设方程(*)的两个根为y1,y2,满足y1+y2=-2mtt2-3,y1y2=m2-3t2-3,FPFQ=(ty1+m+2,y1)(ty2+m+2,y2)=(t2+1)y1y2+t(m+2)(y1+y2)+(m+2)2=t2-2m2-12m-15t2-3.当且仅当2m2+12m+15=3时,FPFQ为定值,解得m1=-3-3,m2=-3+3(舍去).死记硬背是一种传统的教学方式,在我国有悠久的历史。

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.过平面区域内一点作圆的两条切线,切点分别为,记,则当最小时的值为()A.B.C.D.【答案】C【解析】根据题意可知,当点距离圆心越远时,越小,所以当点距离圆心最远时,即点落在处时角达到最小,此时,所以,故选C.【考点】圆的有关性质.2.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线(为参数),(为参数).(1)化,的方程为普通方程,并说明它们分别表示什么曲线;(2)若上的点对应的参数为,为上的动点,求中点到直线(为参数)距离的最小值.【答案】(1),,是以为圆心,半径为的圆;为中心在坐标原点,焦点在轴上,长半轴长是,短半轴长是的椭圆;(2)【解析】第一问将参数消掉,求得其普通方程,根据方程确定出曲线的类型,第二问根据确定出的坐标,利用中点坐标公式,确定出,将的方程消参,求得直线的普通方程,利用点到直线的距离公式,结合三角函数的最值,求得距离的最小值.试题解析:(1),是以为圆心,半径为的圆;为中心在坐标原点,焦点在轴上,长半轴长是,短半轴长是的椭圆(2)当时,,,故;为直线,到的距离当,时,取最小值【考点】参数方程向普通方程转化,中点坐标公式,点到直线的距离的最小值.3.(本小题满分12分)已知椭圆C:的离心率为,长轴长为8.。

(Ⅰ)求椭圆C的标准方程;(Ⅱ)若不垂直于坐标轴的直线经过点P(m,0),与椭圆C交于A,B两点,设点Q的坐标为(n,0),直线AQ,BQ的斜率之和为0,求的值。

【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)直接由题意和椭圆的概念可列出方程组,进而可求出椭圆的标准方程;(Ⅱ)根据已知设出直线方程为(),并记,于是联立直线与椭圆的方程并整理可得一元二次方程,进而由韦达定理可得,再由已知直线AQ,BQ的斜率之和为0,可得方程,将上述求得的的值直接代入即可求出参数的值.试题解析:(Ⅰ)由题意①,②,又③,由①②③解得:,所以求椭圆的标准方程为;(Ⅱ)设直线方程为(),且,直线的斜率分别为,将代入得:,由韦达定理可得:.由得,,将代入,整理得:即将代入,整理可解得【考点】1、椭圆的标准方程;2、直线与椭圆的相交综合问题;4.(本小题满分10分)选修4-1:几何证明选讲如图,是⊙的直径,是弧的中点,,垂足为,交于点.(1)求证:;(2)若,⊙的半径为6,求的长.【答案】(1)证明见解析;(2).【解析】第一问连结CO交BD于点M,根据弧的中点,结合三角形全等,从而证得结果,也可以延长CE 交圆O于点N,连接BN,根据角相等,证得结果,第二问根据圆中的直角三角形,利用勾股定理,求得结果.试题解析:(1)证法一:连接CO交BD于点M,如图1∵C为弧BD的中点,∴OC⊥BD又∵OC=OB,∴RtΔCEO≌RtΔBMO∴∠OCE=∠OBM又∵OC=OB,∴∠OCB=∠OBC∴∠FBC=∠FCB,∴CF=BF证法二:延长CE 交圆O于点N,连接BN,如图2∵AB是直径且CN⊥AB于点E.∴∠NCB=∠CNB又∵C为弧BD的中点∴∠CBD=∠CNB∴∠NCB=∠CBD即∠FCB=∠CBF∴CF=BF(2)∵O,M分别为AB,BD的中点∴OM=2OE∴EB=4在Rt△COE中,∴在Rt△CEB中,【考点】圆的性质.5.已知抛物线()的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则点的横坐标为()A.B.C.D.【答案】B【解析】∵双曲线,其右焦点坐标为.∴抛物线,准线为,∴,设,过点向准线作垂线,则,又,∴由得,从而,即,解得.故选B.【考点】圆锥曲线的性质.【思路点睛】根据双曲线得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得的坐标,设,过点向准线作垂线,则,根据及,进而可求得点坐标.6.抛物线y=2x2的焦点坐标是()A.(0,)B.(0,)C.(,0)D.(,0)【答案】B【解析】先将抛物线的方程化为标准形式,所以焦点坐标为().故选B.【考点】求抛物线的焦点.7.设是双曲线的两个焦点,P在双曲线上,若(c为半焦距),则双曲线的离心率为()A.B.C.2D.【答案】D【解析】由题意得,是直角三角形,由勾股定理得,∴,∴,∵,∴.故选:D.【考点】双曲线的简单性质.8.已知椭圆C: 的离心率为,且过点(1,).(1)求椭圆C的方程;(2)设与圆相切的直线交椭圆C与A,B两点,求面积的最大值,及取得最大值时直线的方程.【答案】(1);(2),.【解析】(1)利用题设条件可列出关于、、的方程组,从而可得、、的值.(2)因为直线与圆相切,所以欲求面积的最大值,只需求弦长的最大值,所以可求出弦长关于斜率的解析式,利用基本式可求得其最大值.试题解析:(1)由题意可得:.(2)①当不存在时,,②当存在时,设直线为,当且仅当即时等号成立,∴面积的最大值为,此时直线方程.【考点】求椭圆方程,直线与圆相切,弦长公式,基本不等式.【方法点睛】(1)对于直线的斜率,需要分类讨论斜率存在与不存在,这也是易忘易错之处.(2)注意到直线与圆相切,那么的高就是圆的半径,所以欲求面积的最大值,只需求弦长AB的最大值,也是本题的难点之一.(3)关于的化简,变形,进而结合基本不等式求解,是本题另一个难点.9.如图所示,一个酒杯的轴截面是一条抛物线的一部分,它的方程是:.在杯内放一个清洁球,要使清洁球能擦净酒杯的底部,则清洁球的最大半径为________.【答案】1【解析】球的截面大圆半径为,圆方程为,圆心为,设是抛物线上任意一点,由,由题意,最小值是与原点重合时取得,即时取得,因为,所以,,因此清洁球的最大半径为1.【考点】柱、锥、台、球的结构特征,圆的标准方程与一般方程,直线与抛物线的应用.【名师】本题考查圆与抛物线的位置关系,本题具有实际意义,从数学上讲,本题就是圆与抛物线切于抛物线的顶点处,从生活常识中可知,圆的半径很小时,圆一定与抛物线切于其顶点处,当圆半径很大时,圆不可能与抛物线切于顶点处,要满足题意,这个半径一定有最大值,从数学上来解,设圆心为,则抛物线上点到的距离的最小值在原点处取得,实质上本题转化为二次函数在上的最大值在自变量为0时取得,由此可得的最大值(范围).10.已知抛物线与圆的两个交点之间的距离为4.(1)求的值;(2)设过抛物线的焦点且斜率为的直线与抛物线交于两点,与圆交于两点,当时,求的取值范围.【答案】(1);(2)【解析】(1)利用圆与抛物线可求交点为,据此即可求出的值;(2)直线的方程为,分别于抛物线、圆的方程联立,求出,利用时,即可求的取值范围.试题解析:(1)由题意知交点坐标为代入抛物线解得(2)抛物线的焦点,设直线方程为与抛物线联立化简得设,则圆心到直线的距离为又,所以的取值范围为.【考点】1.抛物线的简单性质;2.直线与抛物线、圆的位置关系.11. 选修4-1:几何证明选讲 如图,⊙是的外接圆,平分交于,交的外接圆于.(1)求证:; (2)若,,,求的长. 【答案】(1)详见解析;(2). 【解析】(1)过作交于,连接,则可得,再利用条件可证明;(2)利用,可得对应线段成比例,即可建立关于的方程,从而求解.试题解析:(1)如图,过作交于,连接,∴①, 又∵平分,∴,又∵,∴,∴,∴,∴②,由①②知;(2)∵,又∵, ∵,∴,∴,∴,∴,∴.【考点】1.圆的基本性质;2.相似三角形的判定与性质.12. 已知椭圆C :的离心率为,点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点P 1,P 2(两点均不在坐标轴上),且使得直线OP 1,OP 2的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由. 【答案】(Ⅰ);(Ⅱ)当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足斜率之积k 1k 2为定值.【解析】(Ⅰ)利用离心率列出方程,通过点在椭圆上列出方程,求出a ,b 然后求出椭圆的方程.(Ⅱ)当直线l 的斜率不存在时,验证直线OP 1,OP 2的斜率之积.当直线l 的斜率存在时,设l 的方程为y=kx+m 与椭圆联立,利用直线l 与椭圆C 有且只有一个公共点,推出m 2=4k 2+1,通过直线与圆的方程的方程组,设P 1(x 1,y 1),P 2(x 2,y 2),结合韦达定理,求解直线的斜率乘积,推出k 1•k 2为定值即可. 试题解析:(Ⅰ)解:由题意,得,a 2=b 2+c 2,又因为点在椭圆C 上, 所以,解得a=2,b=1,,所以椭圆C 的方程为.(Ⅱ)结论:存在符合条件的圆,且此圆的方程为x 2+y 2=5. 证明如下:假设存在符合条件的圆,并设此圆的方程为x 2+y 2=r 2(r >0). 当直线l 的斜率存在时,设l 的方程为y=kx+m . 由方程组得(4k 2+1)x 2+8kmx+4m 2﹣4=0,因为直线l 与椭圆C 有且仅有一个公共点, 所以,即m 2=4k 2+1. 由方程组得(k 2+1)x 2+2kmx+m 2﹣r 2=0,则.设P 1(x 1,y 1),P 2(x 2,y 2),则,,设直线OP 1,OP 2的斜率分别为k 1,k 2, 所以,将m 2=4k 2+1代入上式,得.要使得k 1k 2为定值,则,即r 2=5,验证符合题意.所以当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足k 1k 2为定值.当直线l 的斜率不存在时,由题意知l 的方程为x=±2, 此时,圆x 2+y 2=5与l 的交点P 1,P 2也满足.综上,当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足斜率之积k 1k 2为定值.【考点】圆锥曲线的定值问题;椭圆的标准方程.13. 已知是双曲线的一条渐近线,是上的一点,是的两个焦点,若,则到轴的距离为A .B .C .D .【答案】C 【解析】,不妨设的方程为,设由.得,故到轴的距离为,故选C .【考点】1.双曲线的性质;2.向量的数量积.14. 已知圆:和抛物线,圆的切线与抛物线交于不同的两点.(1)当切线斜率为-1时,求线段的长;(2)设点和点关于直线对称,且,求直线的方程.【答案】(1);(2).【解析】试题解析:(1)圆的圆心为,,设,设的方程,利用直线是圆的切线,求得的值,从而可得到的方程,与抛物线方程联立,利用韦达定理及弦长公式,求出;(2)设直线的方程为,由直线是圆的切线,得到,解得此时直线的方程为;设直线的斜率不存在时,的方程为则得不成立,总上所述,存在满足条件其方程为.(1)因为圆,所以圆心为,半径.设,当直线的斜率为-1时,设的方程为.由,解得或,所以由消去得,所以弦长;(2)(i)当直线的斜率不存在时,因为直线是圆的切线,所以的方程为,与联立,则得,即,.不符合题意.(ii)当直线的斜率存在时,设直线的方程为,即.由题意知,得①,由,消去得.由直线l是圆的切线,得到,解得此时直线l的方程为;设直线l的斜率不存在时,l的方程为则得不成立,总上所述,存在满足条件其方程为.【考点】1、抛物线的简单性质;2、直线方程.【思路点睛】(1)本题主要考察抛物线简单的性质,得到的方程,与抛物线方程联立,利用韦达定理及弦长公式,求出;(2)将直线与抛物线联立,韦达定理,求出,点到直线的的距离公式,直线的方程的基础知识.主要考察学生的分析问题解决问题的能力,转化能力,计算能力.15.如图,点O为坐标原点,直线l经过抛物线C:y2=4x的焦点F.(Ⅰ)若点O到直线l的距离为,求直线l的方程;(Ⅱ)设点A是直线l与抛物线C在第一象限的交点.点B是以点F为圆心,|FA|为半径的圆与x轴负半轴的交点.试判断直线AB与抛物线C的位置关系,并给出证明.【答案】(Ⅰ);(Ⅱ)直线AB与抛物线相切,见解析【解析】法一:(Ⅰ)抛物线的焦点F(1,0),当直线l的斜率不存在时,即x=1不符合题意.当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1),所以,由此能求出直线l 的方程.(Ⅱ)直线AB与抛物线相切.设A(x0,y),则.因为|BF|=|AF|=x+1,所以B(﹣x,0),由此能够证明直线AB与抛物线相切.法二:(Ⅰ)同解法一.(Ⅱ)直线AB与抛物线相切,设A(x0,y),则.设圆的方程为:由此能够证明直线AB与抛物线相切.解法一:(Ⅰ)抛物线的焦点F(1,0),…(1分)当直线l的斜率不存在时,即x=1不符合题意.…(2分)当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1),即kx﹣y﹣k=0.…(3分)所以,,解得:.…(5分)故直线l的方程为:,即.…(6分)(Ⅱ)直线AB与抛物线相切,证明如下:…(7分)(法一):设A(x0,y),则.…(8分)因为|BF|=|AF|=x0+1,所以B(﹣x,0).…(9分)所以直线AB的方程为:,整理得: (1)把方程(1)代入y2=4x得:,…(10分),所以直线AB与抛物线相切.…(12分)解法二:(Ⅰ)同解法一.(Ⅱ)直线AB与抛物线相切,证明如下:…(7分)设A(x0,y),则.…(8分)设圆的方程为:,…(9分)当y=0时,得x=1±(x+1),因为点B在x轴负半轴,所以B(﹣x,0).…(9分)所以直线AB的方程为,整理得: (1)把方程(1)代入y2=4x得:,…(10分),所以直线AB与抛物线相切.…(12分)【考点】直线与圆锥曲线的关系;抛物线的标准方程.16.如图,中,以为直径的⊙分别交于点交于点.求证:(Ⅰ)过点平行于的直线是⊙的切线;(Ⅱ).【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)连结,延长交于,利用圆内接四边形的性质证明三角形相似,再证明线线垂直;(Ⅱ)连续利用割线定理进行证明.试题解析:(Ⅰ)连结,延长交于,过点平行于的直线是,∵是直径,∴,∴,∵四点共圆,∴,又∵是圆内接四边形,∴,∴,而,∴∽, ∴,∴, ∴,∴是⊙的切线.(Ⅱ)∵,∴四点共圆,∴, 同理,两式相加【考点】圆内接四边形.17.双曲线的离心率为()A.B.C.D.【答案】C【解析】,故选C.【考点】双曲线的性质.18.已知圆内接中,为上一点,且为正三角形,点为的延长线上一点,为圆的切线.(Ⅰ)求的度数;(Ⅱ)求证:【答案】(Ⅰ);(Ⅱ)证明见解析.【解析】对于(Ⅰ)可由与相似,并结合即可求出的度数;对于(Ⅱ)可先证明,再结合为等边三角形,进而可以证明所需结论.试题解析:证明:(Ⅰ)在与中,因为为圆的切线,所以,又公用,所以,因为为等边三角形,所以,(Ⅱ)因为为圆的切线,所以,因为为等边三角形,所以,所以,所以,所以,即,因为为等边三角形,所以,所以.【考点】几何证明.19.抛物线上的点P到它的焦点F的最短距离为________.【答案】1【解析】,根据焦半径公式.【考点】抛物线的几何性质.20.圆被直线分成两段圆弧,则较长弧长与较短弧长之比为()A.1:1B.2:1C.3:1D.4:1【答案】C【解析】圆心到直线的距离为,半径为,则截圆的弦所对的劣弧的圆心角为,则较长弧长与较短弧长之比.故选C.【考点】直线与圆的位置关系.21.已知双曲线的一条渐近线与平行,且它的一个焦点在抛物线的准线上,则双曲线的方程为______.【答案】【解析】抛物线的准线为,由题意可得,设双曲线的一条渐近线与平行,由题意可得,即,解得,∴双曲线的标准方程为.所以答案应填:.【考点】1、双曲线的简单性质;2、抛物线的性质.【思路点睛】求出抛物线的准线方程,可得,根据双曲线的方程为,求出渐近线方程,由题意可得的方程,解方程可得或,进而得到双曲线的方程.正确运用双曲线的性质是解题的关键,本题考查双曲线的方程的求法、抛物线的准线方程和双曲线的渐近线方程,考查逻辑思维能力和计算能力,属于基础题.22.如图,已知椭圆,椭圆的长轴长为,离心率为.(1)求椭圆方程;(2)椭圆内接四边形的对角线交于原点,且,求四边形周长的最大值与最小值.【答案】(1);(2)最大值是,最小值是.【解析】(1)由题意得,利用离心率可得,利用的关系,即可求解椭圆的标准方程;(2)由题意得对称性可得四边形为平行四边形,运用向量的数量积的性质,可得,即有四边形为菱形,既有,讨论直线的斜率为,可得最大值;不为时,设出直线方程,与椭圆方程联立,运用两点间的距离公式,化简整理,再借助二次函数的性质,即可求得最小值.试题解析:(1)由题意可知,所以.又因为,所以,所以椭圆方程是.(2)由题意可设,则,因为所以,所以四边形是平行四边形.因为,所以,所以四边形是菱形.设直线的方程是,则直线的方程是,并且由椭圆的对称性不妨设,由,得,所以,所以由,得,所以,所以所以,所以令,则,令,因为,所以,即时,.,即时,.所以四边形周长的最大值是,最小值是.【考点】椭圆的标准方程;直线与圆锥曲线的位置关系的应用.【方法点晴】本题主要考查了椭圆的定义、标准方程及其简单的几何性质、直线与椭圆位置关系的综合应用,其中直线与椭圆方程联立相交问题转化为联立方程组求交点、数量积的运算性质、二次函数的最值是解答的关键,着重考查了学生的推理、运算能力和转化与化归思想的应用,试题运算量与思维量较大,需要平时注意总结和积累,属于难题.23.双曲线的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,则双曲线的离心率是()A.B.C.D.【答案】B【解析】由题意,直线的方程是,因为圆与直线相切,所以点到直线的距离等于半径,即,又,得,,,故选B.【考点】1、双曲线的性质;2、双曲线的离心率.【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.24.已知椭圆的两个焦点,,且椭圆过点,,且是椭圆上位于第一象限的点,且的面积.(1)求点的坐标;(2)过点的直线与椭圆相交于点,,直线,与轴相交于,两点,点,则是否为定值,如果是定值,求出这个定值,如果不是请说明理由.【答案】(1);(2)详见解析.【解析】(1)通过已知条件首先求得椭圆的标准方程,再结合三角形的面积计算公式,即可求得的坐标;(2)将直线的方程设出,联立直线方程与椭圆方程,通过计算说明是否为定值即可.试题解析:(1)∵椭圆过点,,∴,计算得,,∴椭圆的方程为.∵的面积,∴,∴,代入椭圆方程.∵,∴,∴;(2)法一:设直线的方程为,,,直线的方程为,可得,即,直线的方程为,可得,即.联立,消去,整理,得.由,可得,,,∴为定值,且.法二:设,,,,直线,,的斜率分别为,,,由,得,,可得,,,,由,令,得,即,同理得,即,则∴为定值,该定值为.【考点】1.椭圆的标准方程及其性质;2.直线与椭圆的位置关系;3.椭圆中的定值问题.【名师】求解定值问题的方法一般有两种:1.从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;2.直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.25.已知圆的方程为,定直线的方程为.动圆与圆外切,且与直线相切.(1)求动圆圆心的轨迹的方程;(2)直线与轨迹相切于第一象限的点,过点作直线的垂线恰好经过点,并交轨迹于异于点的点,记为(为坐标原点)的面积,求的值.【答案】(1)(2)【解析】(1)由圆与圆外切得圆心距为半径之和,即得,用坐标表示,化简得(2)按条件依次表示点的坐标及三角形面积:设点,则由导数几何意义得切线斜率,根据垂直关系得,再由直线方程过点得,即得点坐标为,直线的方程为,最后根据直线方程与抛物线方程解出点的坐标为,计算出三角形面积试题解析:解:(1)设动圆圆心的坐标为,动圆半径为,则,且,可得.由于圆在直线的上方,所以动圆的圆心应该在直线的上方,所以有,,整理得,即为动圆圆心的轨迹的方程.(2)设点的坐标为,则,,,所以直线的方程为.又,∴,∵点在第一象限,∴,点坐标为,直线的方程为.联立得,解得或4,∴点的坐标为.所以.【考点】直接法求轨迹方程,导数几何意义,直线与抛物线位置关系26.已知圆方程为:,直线过点,且与圆交于两点,若,则直线的方程是_______.【答案】或【解析】①当直线垂直于轴时,则此时直线方程为,与圆的两个交点坐标为和,其距离为满足题意.②若直线不垂直于轴,设其方程为,即,设圆心到此直线的距离为,则,得,∴,解得,故所求直线方程为.综上所述,所求直线方程为或.【考点】直线与圆位置关系27.已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为A.B.C.D.【答案】A【解析】由题意,得又,所以所以双曲线的方程为,选A.【考点】双曲线【名师】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).28.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的方程为,以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出的极坐标方程,并求与的交点的极坐标;(2)设是椭圆上的动点,求的面积的最大值.【答案】(1),;(2).【解析】(1)借助题设将建直角坐标化为极坐标求解;(2)借助题设条件参数方程建立目标函数求解.试题解析:(1)因为,所以的极坐标方程为,直线的直角坐标方程为,联立方程组,解得或,所以点的极坐标分别为.(2)因为是椭圆上的点,设点坐标为,则到直线的距离,所以,当时,取得最大值1.【考点】极坐标方程和参数方程等知识及运用.29.平面直角坐标系中,点、是方程表示的曲线上不同两点,且以为直径的圆过坐标原点,则到直线的距离为()A.2B.C.3D.【答案】D【解析】由题设可得,注意到,由椭圆的定义可知动点的轨迹是以焦点,长轴长为的椭圆,所以其标准方程为.因为是椭圆上点,且以为直径的圆过坐标原点,所以,设,将这两点坐标代入可得, ,所以.即也即,设原点到直线的距离为,则,即,应选D.【考点】椭圆的标准方程和参数方程.【易错点晴】本题以方程的形式为背景考查的是圆锥曲线的几何性质与运用.解答本题的难点是如何建立两个动点的坐标的形式,将两点之间的距离表示出来,以便求坐标原点到这条直线的距离.解答时充分利用题设条件,先运用椭圆的定义将其标准方程求出来,再将两动点的坐标巧妙地设为,这也是解答本题的关键之所在.进而将这两点的坐标代入椭圆的方程并进行化简求得的长度之间的关系.最后运用等积法求出了坐标原点到直线的距离.30.选修4-1:几何证明选讲如图, 圆是的外接圆,垂直平分并交圆于点, 直线与圆相切于点,与的延长线交于点.(1)求的大小;(2)若,求的长.【答案】(1);(2).【解析】(1)运用弦切角与三角形的内角和定理求解;(2)借助题设条件和切割线定理求解. 试题解析:(1)设,为圆的切线, ,由垂直平分并交圆于点,可得,,则,由,得,即的大小为.(2)为圆的切线,. 由(1)知,又,即.【考点】圆幂定理中切割线定理及运用.31.过抛物线的焦点的直线与双曲线的一条渐近线平行,并交抛物线于两点,若,且,则抛物线的方程为()A.B.C.D.【答案】A【解析】抛物线的焦点的坐标为,准线方程为,与双曲线的渐近线方程为,由于过抛物线的焦点的直线与双曲线的一条渐近线平行,并交抛物线于两点,且,所以可设直线方程为:,设,则,由可得,所以,由得或(舍去),所以抛物线方程为,故选A.【考点】1.直线与抛物线的位置关系;2.抛物线和双曲线的定义与性质.【名师】本题考查直线与抛物线的位置关系、抛物线和双曲线的定义与性质,属中档题;解决抛物线弦长相关问题时,要注意抛物线定义的应用,即将到焦点的距离转化为到准线的距离,通过解方程组求解相关问题即可。

解析几何综合题解题思路案例分析(附答案)

解析几何综合题解题思路案例分析(附答案)

解析几何综合题解题思路案例分析解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。

据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.1 判别式----解题时时显神功案例1 已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。

分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:y ,令判别式0=∆l 的距离为2212222=+-+-k kx kx ()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k kkx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k kx k 的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2 判别式与韦达定理-----二者联用显奇效案例2 已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。

2023最新解析几何基础练习题及参考答案

2023最新解析几何基础练习题及参考答案

2023最新解析几何基础练习题及参考答案近年来,越来越多的学生开始关注解析几何这门数学课程。

解析几何对于高中生和大学生的数学学习都是非常重要的,甚至应用到一些高等数学领域。

今天我将带您了解2023最新解析几何基础练习题及参考答案,帮助您更好地掌握解析几何。

第一部分:主要观念解析几何的基本思想是在几何空间中引入笛卡尔坐标系。

解析几何主要研究的对象是几何图形,如点、线、面等。

在解析几何中,每个点都可以表示为一组有序数对(x,y,z),这就是笛卡尔坐标系的基础。

同时,在解析几何中,可以通过坐标系的表示方法来描述几何对象的一些性质。

解析几何的目标是通过解决坐标方程来解决几何问题。

第二部分:常见解析几何问题1. 直线与平面的交点问题这是解析几何中最基本的问题。

要解决这个问题,首先需要找到直线和平面的方程。

然后将直线方程代入平面方程,求出相交点的坐标。

2. 平面的方程问题在解析几何中,经常需要求一个平面的方程。

解决这个问题的方法是,首先找到平面上的三个点,然后将这些点的坐标代入平面的标准方程。

3. 直线与直线的交点问题求解直线与直线交点的问题需要通过建立两条直线的方程,然后将这些方程联立,解出交点坐标。

注意,当两条直线平行时,它们没有交点。

第三部分:参考答案下面是一些常见的解析几何问题的参考答案,希望能帮到您。

1. 已知三维空间中的点A(1,2,3),B(-2,4,-1),C(3,-1,2),求三角形ABC的周长。

答案:我们可以求出三个边长分别为|AB| = 5,|B C| = √26,|AC| =√29,所以三角形的周长为5 + √26 + √29。

2. 已知平面P的点法式方程为x+y+z=2,点M的坐标为(1,2,3),求点M到平面P的距离。

答案:将点M的坐标代入平面P的点法式方程中,得到1 + 2 + 3 -2 = 4,所以点M到平面P的距离为4 / √3。

总结:在解析几何中,需要掌握一定的基础知识和解题方法。

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分10分)选修4-1:几何证明选讲如图,是圆的直径,是半径的中点,是延长线上一点,且,直线与圆相交于点、(不与、重合),与圆相切于点,连结,,.(Ⅰ)求证:;(Ⅱ)若,求.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明目标可看做线段成比例,即证明思路确定为证明三角形相似:利用切割线定理得:,又由与相似,得;所以(Ⅱ)由(1)知,,与相似,则,所以试题解析:(1)连接,,,为等边三角形,则,可证与相似,得;又,则(2)由(1)知,,与相似,则因为,所以【考点】三角形相似,切割线定理2.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.【答案】(Ⅰ)的普通方程为,圆心;(Ⅱ).【解析】(Ⅰ)消去参数即可将的参数方程化为普通方程,在直角坐标系下求出圆心的坐标,化为极坐标即可;(Ⅱ)求出圆心到直线的距离,由勾股定理求弦长即可.试题解析:(Ⅰ)由的参数方程消去参数得普通方程为 2分圆的直角坐标方程, 4分所以圆心的直角坐标为,因此圆心的一个极坐标为. 6分(答案不唯一,只要符合要求就给分)(Ⅱ)由(Ⅰ)知圆心到直线的距离, 8分所以. 10分【考点】1.参数方程与普通方程的互化;2.极坐标与直角坐标的互化.:的焦点,且抛物线3.(本题满分12分)如图,O为坐标原点,点F为抛物线C1C1上点P处的切线与圆C2:相切于点Q.(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;(Ⅱ)当正数变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.【答案】(Ⅰ);(Ⅱ).【解析】第一问要求抛物线的方程,任务就是求的值,根据导数的几何意义,设出切点坐标,从而求得,再根据切点在切线上,得,从而求得,进而得到抛物线的方程,第二问根据三角形的面积公式,利用题中的条件,将两个三角形的面积转化为关于和切点横坐标的关系式,从而有,利用基本不等式求得最值.试题解析:(Ⅰ)设点,由得,,求导,……2分因为直线PQ的斜率为1,所以且,解得,所以抛物线C1的方程为.(Ⅱ)因为点P处的切线方程为:,即,根据切线又与圆相切,得,即,化简得,由,得,由方程组,解得,所以,点到切线PQ的距离是,所以,,所以,当且仅当时取“=”号,即,此时,,所以的最小值为.【考点】导数的几何意义,三角形的面积,基本不等式.4.(本小题满分12分)已知椭圆的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.(Ⅰ)若三角形AF1F2的周长为,求椭圆的标准方程;(Ⅱ)若,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)直接由题意和椭圆的概念可列出方程组,进而可求出椭圆的标准方程即可;(Ⅱ)首先设出点,然后联立直线与椭圆的方程并整理可得一元二次方程,进而由韦达定理可得,再结合可列出等式并化简即可得到等式,最后结合已知,即可求出参数的取值范围,进而得出椭圆离心率e的取值范围即可.试题解析:(Ⅰ)由题意得,得.结合,解得,.所以,椭圆的方程为.(Ⅱ)由得.设.所以,易知,,因为,,所以.即,将其整理为.因为,所以,即,所以离心率.【考点】1、椭圆的标准方程;2、直线与椭圆的相交综合问题;5.(本小题满分12分)椭圆()的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点.(1)求椭圆的方程;(2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.【答案】(1);(2)存在两个定点,.【解析】(1)由题设可得①,又点P在椭圆C上,可得②,又③,由①③联立解得c,b2,即可得解.(2)设动直线l的方程为y=kx+m,代入椭圆方程消去y,整理得(﹡),由△=0,得,假设存在,满足题设,则由对任意的实数k恒成立.由即可求出这两个定点的坐标.试题解析:(1),,由题设可知,得①又点在椭圆上,,②③①③联立解得,,故所求椭圆的方程为(2)当直线的斜率存在时,设其方程为,代入椭圆方程,消去,整理得()方程()有且只有一个实根,又,所以,得假设存在,满足题设,则由对任意的实数恒成立,所以,解得,或当直线的斜率不存在时,经检验符合题意.总上,存在两个定点,,使它们到直线的距离之积等于.……12分【考点】1、直线与圆锥曲线的关系;2、椭圆的标准方程.【方法点晴】本题主要考查了椭圆的标准方程的解法,考查了直线与圆锥曲线的关系,综合性较强,属于中档题.处理直线与圆锥曲线的关系问题时,注意韦达定理的应用,同时还得特别注意直线斜率不存在时的情况的验证.6.直线被圆截得的弦长为()A.1B.2C.4D.【答案】C【解析】圆心,圆心到直线的距离,半径,所以最后弦长为.故选C.【考点】点到直线的距离.7.(本小题12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。

微专题27以解析几何为载体的应用题答案

微专题27以解析几何为载体的应用题答案

微专题271.答案:3227.解析:建立坐标系,B 点坐标为(1, -1),求出抛物线方程为x 2=-y ,得D 点坐标(x ,-x 2),等腰梯形的高为1-x 2,S =2x +22(1-x 2),0<x <1,求导可以得到x =13时,S 取最大值3227.2.答案:13.解析:设抛物线的方程为 x 2=-2p ⎝⎛⎭⎫y -p 2(p >0),因为⎝⎛⎭⎫a 2,0在抛物线上,所以a 24=p 2,即p =a 2.所以抛物线的方程为x 2=-a⎝⎛⎭⎫y -a 4,将(0.8,y )代入,得y =a 2-2.564a.因为卡车高为3米,故要使卡车能通过,必须y >3且a >0,即a 2-12a -2.56>0,解得a >12.21,所以a 的最小整数值为13.3.答案:(1)h 1(x )=-t -cos t +4⎝⎛⎭⎫1≤t ≤32,h 2(x )=49t 2-t +3⎝⎛⎭⎫1≤t ≤32; (2)选用曲线C 2,当t =32时,点E 到BC 边的距离最大,最大值为52分米.解析:(1)对于曲线C 1,因为曲线AOD 的解析式为y =cos x -1,所以点D 的坐标为(t ,cos t -1),所以点O 到AD 的距离为1-cos t ,而AB =DC =3-t ,则h 1(t )=(3-t )+(1-cos t )=-t -cos t +4⎝⎛⎭⎫1≤t ≤32,对于曲线C 2,因为抛物线的方程为x 2=-94y ,即y =-49x 2,所以点D 的坐标为⎝⎛⎭⎫t ,-49t 2,所以点O 到AD 的距离为49t 2,而AB =DC =3-t ,所以h 2(x )=49t 2-t +3⎝⎛⎭⎫1≤t ≤32. (2)因为h 1′(t )=-1+sin t <0,所以h 1(t )在⎣⎡⎦⎤1,32上单调递减,所以当t =1时,h 1(t )取得最大值为3-cos1.又h 2(t )=49⎝⎛⎭⎫t -982+3916,而1≤t ≤32,所以当t =32时,h 2(t )取得最大值为52.因为cos1>cos π3=12,所以3-cos1<3-12=52,答:应选用曲线C 2,当t =32时,点E 到BC 边的距离最大,最大值为52分米.4.答案:(1)()4+22(百米);(2)(6-42)π.解析:建立如图所示的平面直角坐标系,则D (0,2).(1)小路的长度为OA +OB +AB ,因为OA ,OB 长为定值,故只需要AB 最小即可.作OM ⊥AB 于M ,记OM =d ,则AB =2OA 2-OM 2=24-d 2,又d ≤OD =2,故AB ≥24-2=22,此时点D 为AB 中点.故小路的最短长度为()4+22(百米).(2)显然,当广场所在的圆与△ABO 内切时,面积最大,设△ABO 的内切圆的半径为r , 则△ABO 的面积为S △ABO =12(AB +AO +BO )·r =12AB ·d ,由弦长公式AB = 24-d 2可得d 2=4-AB 24,所以r 2=AB 2·(16-AB 2)4(AB +4)2,设AB =x ,则r 2=f (x )=x 2·(16-x 2)4(x +2)2=x 2·(4-x )4(x +4),所以f ′(x )=-2x 3-8x 2+32x 4(x +4)2=-2x ·(x 2+4x -16)4(x +4)2,又因为0<d ≤OD ,即0<d ≤2,所以x =AB =24-d 2∈[)22,4,所以f ′(x )=-2x ·(x 2+4x -16)4(x +4)2<0,所以f (x )max =f (22)=6-42,即△ABC 的内切圆的面积最大值为(6-42)π.5.答案:(1)b =2a -3a -2,0<a <32.(2)下水管道AB 能经过污水总管的接口点P ,a =5±76(km).解析:(1)∵OA +OB +AB =3,∴AB =3-a -b .∵∠MON =60°,由余弦定理,得AB 2=a 2+b 2-2ab cos60°.∴(3-a -b )2=a 2+b 2+ab .整理,得b =2a -3a -2.由a >0,b >0,3-a-b >0,及a +b >3-a -b ,a +3-a -b >b ,b +3-a -b >a ,得0<a <32.综上,b =2a -3a -2,0<a <32.(2)以O 为原点,OM 为x 轴,建立如图所示的直角坐标系.∵PH =34,PO =74,∴点 P ⎝⎛⎭⎫12,34.假设AB 过点P . ∵A (a ,0),B ⎝⎛⎭⎫12b ,32b ,即B⎝ ⎛⎭⎪⎫12·2a -3a -2,32·2a -3a -2, 所以直线AP 方程为y =3412-a (x -a ),即y =32-4a (x -a ).将点B 代入,得32·2a -3a -2=32-4a ⎝ ⎛⎭⎪⎫12·2a -3a -2-a .化简,得6a 2-10a +3=0.所以a =5±76,且a ∈⎝⎛⎭⎫0,32. 答:下水管道AB 能经过污水总管的接口点P ,a =5±76(km).6.答案:(1)0.8米;(2)水渠底宽为233米时,所挖的土最少.解析:以AB 所在的直线为x 轴,AB 的中垂线为y 轴,建立如图所示的直角坐标系xOy ,因为AB =2米,所以半圆的半径为1米,则半圆的方程为x 2+y 2=1(-1≤x ≤1,y ≤0).因为水深CD =0.4米,所以OD =0.6米,在Rt △ODM 中,DM =OM 2-CD 2=1-0.62=0.8(米).所以MN =2DM =1.6米,故沟中水面宽为1.6米.(2)为使挖掉的土最少,等腰梯形的两腰必须与半圆相切,设切点为P (cos θ,sinθ)⎝⎛⎭⎫-π2<θ<0是圆弧BC 上的一点,过P 作半圆的切线得如图所示的直角梯形OCFE ,得切线EF 的方程为x cos θ+y sin θ=1.令y =0,得E ⎝⎛⎭⎫1cos θ,0,令y =-1,得F ⎝ ⎛⎭⎪⎫1+sin θcos θ,-1.设直角梯形OCFE 的面积为S ,则S =(CF +OE )·OC =⎝ ⎛⎭⎪⎫1cos θ+1+sin θcos θ×1= 2+sin θcos θ⎝⎛⎭⎫-π2<θ<0.S ′=cos θcos θ-(2+sin θ)(-sin θ)cos 2θ=1+2sin θcos 2θ,令S ′=0,解得θ=-π6,当-π2<θ<-π6时,S ′<0,函数单调递减;当-π6<θ<0时,S ′>0,函数单调递增.所以θ=-π6时,面积S 取得最小值,最小值为 3.此时CF =1+sin ⎝⎛⎭⎫-π6cos ⎝⎛⎭⎫-π6=33,即当渠底为233米时,所挖的土最少.。

解析几何考试真题及答案

解析几何考试真题及答案

解析几何考试真题及答案解析几何作为高中数学必修课程的一部分,是一门综合性较强的学科,也是学生评价高考成绩的重要因素。

为帮助学生提高解析几何的应试能力,以下将解析几何考试真题进行详细解析。

第一题:已知直线L与椭圆C相交于两个不同点A和B,直线L的斜率为k,且过椭圆C的中心。

求证:∠OAB=90°。

解析:这是一道典型的几何证明题。

首先,由于直线L过椭圆C的中心,所以O点是直线L的一个交点,也即O在直线L上。

而直线L 的斜率为k,说明其与x轴和y轴分别成k和1/k的倾斜角。

椭圆C的中心与x轴和y轴的交点分别记为A'和B',则OA'与OB'互相垂直。

因此,要证明∠OAB=90°,只需证明斜率为k的直线与圆心O的连线与斜率为1/k的直线互相垂直即可。

而根据直线的斜率定义,斜率为k 的直线与圆心O的连线的斜率也为k,故这两条线互相垂直。

证毕。

第二题:已知平面上的正方形ABCD的边长为a,点E为BC的中点,F为CD上的一点,且垂直于CD。

证明:EF与AD垂直。

解析:这道题也是一道几何证明题,需要运用正方形的性质进行推理。

首先,连接EF和AD并延长至交点M处。

由正方形的定义可知,DE与BC互相平行且等长。

由于E为BC的中点,所以AE与ED互相垂直,并且AE的长度为BD的一半,即AE=a/2。

由于DF垂直于CD,所以角ADF为直角。

同理可得,角CFE也为直角。

因此,三角形ADF与三角形CFE都为直角三角形。

我们可以通过计算三角形ADF和三角形CFE的斜率来判断EF与AD是否垂直。

由于ADF为直角三角形,所以斜率AD=(-b/a)。

而CFE也为直角三角形,因此斜率EF=(a/(a/2))=-2。

由于AD与EF的斜率互为负倒数,即AD和EF互相垂直。

证毕。

第三题:已知曲线C的方程为y=x^2-2x+1。

求证:曲线C的对称轴为x=1。

解析:这是一道求解对称轴的几何题目。

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.如图,四边形ABCD内接于⊙,是⊙的直径,于点,平分.(Ⅰ)证明:是⊙的切线(Ⅱ)如果,求.【答案】(Ⅰ)详见解析;(Ⅱ)【解析】(Ⅰ)连结,证得∥,即可证得.(Ⅱ)证得∽根据相似比可求得.因为是⊙的直径,所以,从而可求得,根据切割线定理得,从而可得.试题解析:解:(Ⅰ)连结,则,所以,又,所以,所以∥.因为,所以.所以是⊙的切线.(Ⅱ)由(Ⅰ)可得∽,所以,即,则,所以,从而,所以.由切割线定理,得,所以,所以.【考点】1圆的切线; 2切割线定理.2.(本小题满分10分)选修4—1:几何证明选讲如图,为⊙的直径,直线与⊙相切于,垂直于,垂直于,垂直于,连接,.证明:(Ⅰ);(Ⅱ).【答案】(Ⅰ)(Ⅱ)均见解析.【解析】(Ⅰ)由同弧上的圆周角等于弦切角可得,在直角三角形可证,从而可证结论成立.(Ⅱ)先证Rt△BCE≌Rt△BFE,得BC=BF.,再证Rt△ADE≌Rt△AFE,得AD=AF.由射影定理得EF2=AF·BF,可证结论成立.试题解析:(Ⅰ)由直线与⊙相切,得.由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=;又EF⊥AB,得∠FEB+∠EBF=,从而∠FEB=∠EAB. 故∠FEB=∠CEB.(Ⅱ)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边,得Rt△BCE≌Rt△BFE,所以BC=BF.类似可证,Rt△ADE≌Rt△AFE,得AD=AF.又在Rt△AEB中,EF⊥AB,故EF2=AF·BF,所以EF2=AD·BC.【考点】1.圆的相关知识;2.三角形全等的判定与性质.3.已知是双曲线的左右焦点,若双曲线右支上存在一点与点关于直线对称,则该双曲线的离心率为()A.B.C.2D.【答案】A【解析】由题意过且垂直于的直线方程为,它与的交点坐标为,所以点的坐标为,因为点在双曲线上,,可得,所以选A.【考点】双曲线的性质的应用.4.(本小题满分10分)选修4—4:极坐标与参数方程在直角坐标系中,直线的参数方程为(为参数).再以原点为极点,以正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位.在该极坐标系中圆的方程为.(1)求圆的直角坐标方程;(2)设圆与直线交于点、,若点的坐标为,求的值.【答案】(1);(2).【解析】(1)利用公式可化圆的极坐标方程为直角坐标方程;(2)把直线参数方程化为普通方程,代入圆的方程可求出两点坐标,然后求得,这种方法计算量较大,也可利用参数方程中参数的几何意义,由于点就在直线上,可把直线化为以点为基点的标准参数方程,这样直线上点的参数的几何意义为.把此参数方程代入圆方程得,,于是有,易得.试题解析:(1)由极坐标与直角坐标互化公式得圆的直角坐标方程式为.(2)直线的普通方程为,点在直线上.的标准参数方程为代入圆方程得:设、对应的参数分别为、,则,于是=.【考点】极坐标方程与直角坐标方程的互化,直线参数方程的应用.5.在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上的动点,求点到上点的距离的最小值.【答案】(1)曲线的普通方程为:,曲线的直角坐标方程为:;(2).【解析】(1)利用,即可将极坐标方程化为平面直角坐标系方程;消去参数即可将曲线的的参数方程化为普通方程;(2)设点P的坐标为,然后由点到直线的距离公式得到,最后运用三角函数求最值即可.试题解析:(1)由曲线:得即:曲线的普通方程为:由曲线:得:即:曲线的直角坐标方程为:(2)由(1)知椭圆与直线无公共点,椭圆上的点到直线的距离为所以当时,的最小值为.【考点】参数方程与普通方程的互化,极坐标方程与直角坐标方程的转化,点到直线的距离.6.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或B.或C.或D.或【答案】D【解析】点关于轴的对称点为,则设反射光线所在直线的方程为,因为反射光线与圆相切,∴圆心到直线的距离,解得或,故选D.【考点】1、直线与圆的位置关系;2、点到直线的距离;3、直线的方程.7.在平面直角坐标系xOy中,已知点,点B是圆上的点,点M为AB中点,若直线上存在点P,使得,则实数的取值范围为________.【答案】【解析】因为点M为AB中点,所以,即点M轨迹为以原点为圆心的单位圆,当PM为单位圆切线时,取最大值,即,从而,因此原点到直线距离不大于2,即【考点】直线与圆位置关系【名师】直线与圆位置关系解题策略1.与弦长有关的问题常用几何法,即利用弦心距、半径和弦长的一半构成直角三角形进行求解.2.利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系.3.与圆有关的范围问题,要注意充分利用圆的几何性质答题.8.设点在直线上运动,过点作圆的切线,切点为,则切线长的最小值是.【答案】2【解析】圆心到直线的距离,所以.【考点】1、圆的标准方程;2、点到直线的距离.9.已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)根据椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形可得,,再根据直线与圆相切可得的一个关系式,解方程组可得的值.(Ⅱ)由题意知直线的斜率存在,设直线方程为,与椭圆方程联立消去整理为关于的一元二次方程,由题意可知其判别式大于0,从而可得的范围.再由韦达定理可得两根之和,两根之积.设,根据可得间的关系式.可解得.将其代入椭圆方程可得的关系式,根据的范围可得的范围.试题解析:解:(Ⅰ)由题意,以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为,∴圆心到直线的距离(*)∵椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴,,代入(*)式得,∴,故所求椭圆方程为(2)由题意知直线的斜率存在,设直线方程为,设,将直线方程代入椭圆方程得:,∴,∴.设,,则,由,当,直线为轴,点在椭圆上适合题意;当,得∴将上式代入椭圆方程得:,整理得:,由知,,所以,综上可得.【考点】1椭圆的方程;2直线与椭圆的位置关系问题.10.在平面直角坐标系中,设点为圆:上的任意一点,点,其中,则线段长度的最小值为()A.B.C.D.【答案】A【解析】显然点是直线上的点,圆心,半径为,圆心到直线的距离为,所以长度的最小值为.故选A.【考点】点到直线的距离.【名师】本题表面上考查两点间距离,实质上由圆的几何性质知,与圆上的点有关的距离的最值问题都要与圆心联系起来,直线与圆相离时,圆心到直线的距离为,圆半径为,则圆上的点到直线的距离的最大值为,最小值为.另外动点问题,要注意的是动点必在某条曲线上,找到这条曲线后可借助曲线的性质分析、解决问题.11.(2015秋•上海月考)若直线l1的一个法向量=(1,1),若直线l2的一个方向向量=(1,﹣2),则l1与l2的夹角θ=.(用反三角函数表示)【答案】arccos【解析】利用向量的夹角公式,即可得出结论.解:由题意,cosθ=||=,∴θ=arccos.故答案为:arccos.【考点】两直线的夹角与到角问题;反三角函数的运用.12.(2015•宜昌校级一模)已知椭圆C:+=1(a>b>0)的下顶点为P(0,﹣1),P到焦点的距离为.(Ⅰ)设Q是椭圆上的动点,求|PQ|的最大值;(Ⅱ)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当•=λ,且满足≤λ≤时,求△AOB面积S的取值范围.【答案】(Ⅰ)2;(Ⅱ)≤S△AOB≤..【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的下顶点为P(0,﹣1),P到焦点的距离为∴b=1,a=2,∴椭圆的方程为设Q(x,y),|PQ|===(﹣1≤y≤1).∴当y=1时,|PQ|的最大值为2.(2)依题结合图形知的斜率不可能为零,设直线l的方程为x=my+n(m∈R).∵直线l即x﹣my﹣n=0与圆O:x2+y2=1相切,∴有:=1得n2=m2+1.又∵A(x1,y1),B(x2,y2),满足:消去整理得(m2+2)y2+2mny+n2﹣2=0,由韦达定理得y1+y2=﹣,y1y2=.其判别式△=8(m2﹣n2+2)=8,∵λ=•=x1x2+y1y2=(1+m2)y1y2+mn(y1+y2)+n2=.∴S△AOB=||||sin∠AOB=|x1y2﹣x2y1|=|n(y2﹣y1)|==•=•,∵≤λ≤,∴≤S△AOB≤.【考点】直线与圆锥曲线的综合问题.13.从圆外一点向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.0【答案】B【解析】圆的圆心为,半径为,从外一点向这个圆作两条切线,则点到圆心的距离等于,每条切线与的夹角的正切值等于,所以两切线夹角的正切值为,该角的余弦值等于,故选B.【考点】直线与圆的位置关系14.在平面直角坐标系中,已知直线与椭圆的一条准线的交点位于轴上,求实数的值.【答案】【解析】利用加减消元得直线普通方程:,利用平方关系消参数得椭圆普通方程,得准线:,因此,即试题解析:解:直线:,椭圆:,准线:由得,【考点】参数方程化普通方程15.(选修4—1:几何证明选讲)如图,为⊙的直径,直线与⊙相切于点,,,、为垂足,连接.若,,求的长.【答案】【解析】由弦切角定理得,从而可得,即,因此可得,即,,再由三角形相似得,解出试题解析:因为与相切于,所以,又因为为的直径,所以.又,所以,所以,所以又,,所以.所以,所以,又,所以.【考点】三角形相似16.已知圆与抛物线的准线相切,则()A.B.C.D.【答案】B【解析】抛物线的准线为,将圆化为标准方程,圆心到直线的距离为.【考点】1.圆的方程;2.抛物线的方程.17.已知两点分别在轴和轴上运动,且,若动点满足.(Ⅰ)求出动点的轨迹对应曲线的标准方程;(Ⅱ)一条纵截距为的直线与曲线交于,两点,若以直径的圆恰过原点,求出直线方程;(Ⅲ)直线与曲线交于、两点,,试问:当变化时,是否存在一直线,使的面积为?若存在,求出直线的方程;若不存在,说明理由.【答案】(Ⅰ);(Ⅱ);(Ⅲ)不存在,理由见解析.【解析】(Ⅰ)由向量的坐标去算及可得到椭圆的标准方程;(Ⅱ)由题意知,直线斜率必存在,设直线为,联立椭圆方程,结合为直径求出的值,从而求得直线方程;(Ⅲ)联立直线与椭圆方程,以及三角形的面积公式得到,从而结合条件求出的值,进而作出判断.试题解析:(Ⅰ)因为,即所以,所以又因为,所以,即,即所以椭圆的标准方程为(Ⅱ)直线斜率必存在,且纵截距为,设直线为联立直线和椭圆方程,得:由,得设,则(1)以直径的圆恰过原点,所以,,即,也即,即将(1)式代入,得,即解得,满足(*)式,所以所以直线的方程为(Ⅲ)由方程组,得设,则所以因为直线过点,所以的面积,则不成立不存在直线满足题意【考点】1、平面向量的坐标运算;2、直线与椭圆的位置关系;3、轨迹方程;4、直线方程.【方法点睛】直接法是求轨迹方程最重要的方法之一,本题用的就是直接法.要注意“求轨迹方程”和“求轨迹”是两个不同概念,“求轨迹”除了首先要求求出方程,还要说明方程轨迹的形状,这就需要对各种基本曲线方程和它的形态的对应关系了如指掌.18.选修4-1:几何证明选讲如图所示,为的直径,为的中点,为的中点.(1)求证:;(2)求证:.【答案】(1);(2)详见解析【解析】(1)欲证,连接,因为为的中点及为的中点,可得,因为为圆的直径,所以,最后根据垂直于同一条直线的两直线平行即可证得结论;(2)欲证,转化为,再转化成比例式.最后只须证明即可.试题解析:证明:(1)连接,因为为的中点,所以.因为为的中点,所以.因为为圆的直径,所以,所以.(2)因为为的中点,所以,又,则.又因为,所以.所以,因此.【考点】与圆有关的比例线段.19.(2015秋•陕西校级期末)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A,B两点,且AC⊥BC,求实数a的值.【答案】a=0或a=6.【解析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6.【考点】直线与圆的位置关系.20.(2011•江苏模拟)已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.【答案】(1)2a+b﹣3=0.(2).(3)+=.【解析】(1)由勾股定理可得 PQ2=OP2﹣OQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2,化简可得a,b间满足的等量关系.(2)由于 PQ==,利用二次函数的性质求出它的最小值.(3)设⊙P 的半径为R,可得|R﹣1|≤PO≤R+1.利用二次函数的性质求得OP=的最小值为,此时,求得b=﹣2a+3=,R取得最小值为﹣1,从而得到圆的标准方程.解:(1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得 PQ2=OP2﹣OQ2.由已知PQ=PA,可得 PQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2.化简可得 2a+b﹣3=0.(2)∵PQ====,故当a=时,线段PQ取得最小值为.(3)若以P为圆心所作的⊙P 的半径为R,由于⊙O的半径为1,∴|R﹣1|≤PO≤R+1.而OP===,故当a=时,PO取得最小值为,此时,b=﹣2a+3=,R取得最小值为﹣1.故半径最小时⊙P 的方程为+=.【考点】圆的标准方程;圆的切线方程.21.已知双曲线的一条渐近线过点,则,其离心率为.【答案】【解析】由题知:双曲线的渐近线为因为过点,所以所以【考点】双曲线22.选修4—1:几何证明选讲在中,,以为直径作圆交于点.(1)求线段的长度;(2)点为线段上一点,当点在什么位置时,直线ED与圆相切,并说明理由.【答案】(1);(2)是的中点,理由见解析.【解析】(1)由勾股定理易求得的长,可连结,由圆周角定理知,易知相似,可得的比例关系,即可求出的长;(2)当与相切时,由切线长定理知,则,那么和就是等角的余角,由此可证得,即是的中点,在证明时,可连结,证即可.试题解析:(1)解:连结,在直角三角形中,易知,所以,又因为,所以相似,所以, .(2)当点是的中点时, 直线与圆相切.证明如下:连接,因为是直角三角形斜边的中线,所以,所以,因为,所以,所以,所以直线与圆相切.【考点】相似三角形的判定;圆的切线定理的应用.23.已知椭圆()的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设,过点作与轴不重合的直线交椭圆于,两点,连接,分别交直线于,两点,若直线、的斜率分别为、,试问:是否为定值?若是,求出该定值,若不是,请说明理由.【答案】(1) ;(2)为定值.【解析】(1)由离心率、直线与圆相切列出关于的等量关系即可求出的值,即得到椭圆的标准方程;(2)设出直线的方程为,以及,,由直线方程与椭圆方程联立,得到关于的一元二次方程,由韦达定理得到,,又,,三点共线可知,,由此求出;,用点的坐标表示,并用韦达定理代入,即可求出.试题解析: (1)由题意得,解得,故椭圆的方程为. (2)设,,直线的方程为,由,得.所以,,由,,三点共线可知,,所以;同理可得.所以.因为,所以.【考点】1.椭圆的定义与几何性质;2.直线与椭圆的位置关系.【名师】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,属难题;圆锥曲线中的定点问题或定值问题通常用的解法有:1.引进参数法:即引进动点的坐标或动直线中的系数表示变化量,再研究变化量何时与参数没有关系,找到定点或定值;2.特殊到一般:即根据动点或动直线的特殊情况探索出定点或定值,再证明该定点或定值与变量无关.24. 已知F 1、F 2分别是双曲线C :﹣=1的左、右焦点,若F 2关于渐近线的对称点恰落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线C 的离心率为( ) A . B .3 C .D .2【答案】D【解析】求出F 2到渐近线的距离,利用F 2关于渐近线的对称点恰落在以F 1为圆心,|OF 1|为半径的圆上,可得直角三角形,即可求出双曲线的离心率. 解:由题意,F 1(﹣c ,0),F 2(c ,0),一条渐近线方程为,则F 2到渐近线的距离为=b .设F 2关于渐近线的对称点为M ,F 2M 与渐近线交于A ,∴|MF 2|=2b ,A 为F 2M 的中点 又0是F 1F 2的中点,∴OA ∥F 1M ,∴∠F 1MF 2为直角, ∴△MF 1F 2为直角三角形,∴由勾股定理得4c 2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选D.【考点】双曲线的简单性质.25.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过A点作AD⊥CD于D,交半圆于点E,DE=1(1)证明:AC平分∠BAD;(2)求BC的长.【答案】(1)证明见解析(2)2【解析】(1)推导出∠OAC=∠OCA,OC⊥CD,从而AD∥OC,由此能证明AC平分∠BAD.(2)由已知推导出BC=CE,连结CE,推导出△CDE∽△ACD,△ACD∽△ABC,由此能求出BC的长.证明:(1)∵OA=OC,∴∠OAC=∠OCA,∵CD是圆的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA故∠DAC=∠OAC,即AC平分∠BAD.解:(2)由(1)得:,∴BC=CE,连结CE,则∠DCE=∠DAC=∠OAC,∴△CDE∽△ACD,△ACD∽△ABC∴,故.【考点】相似三角形的性质.26.如图,椭圆左、右焦点分别为,上顶点轴负半轴上有点,满足,且,若过三点的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若为椭圆上的点,且直线垂直于轴,直线与轴交于点,直线与交于点,求的面积的最大值.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ)由题得,即的外接圆圆心为,半径,则由过三点的圆与直线相切可求得,进而得到,则椭圆的方程可求;(Ⅱ)首先证明点恒在椭圆上通过设、直线,利用三角形面积公式化简可知,通过联立直线与椭圆方程后由韦达定理、换元化简可知,,令求出的最大值进而即得结论.试题解析:(Ⅰ)由题得,即,的外接圆圆心为,半径,∵过三点的圆与直线相切,∴,解得:,∴所求椭圆方程为:.(Ⅱ)设,则,∴,与的方程分别为:.则,∵,∴点恒在椭圆上.设直线,则,记,,,令,则,∵函数在为增函数,∴当即时,函数有最小值4,即时,,又∵.故【考点】【名师】本题考查了椭圆离心率,方程的求法,以及直线与椭圆位置关系,属中档题.解题时注意设而不求思想的应用.以及基本不等式的综合应用,难点在于证明点恒在椭圆上27.抛物线y2=4x上任一点到定直线l:x=-1的距离与它到定点F的距离相等,则该定点F的坐标为.【答案】(1,0)【解析】因为,所以,可得,故焦点坐标为,即定点的坐标为(1,0).【考点】抛物线的的定义与运算.28.在平面直角坐标系中,已知抛物线上一点到准线的距离与到原点的距离相等,抛物线的焦点为.(1)求抛物线的方程;(2)若为抛物线上一点(异于原点),点处的切线交轴于点,过作准线的垂线,垂足为点.试判断四边形的形状,并证明你的结论.【答案】(1)(2)菱形.【解析】(1)利用抛物线定义化简条件“点到准线的距离为”得,即(2)先确定点处切线的斜率为,写出切线方程,求出点坐标,又,所以,再由抛物线的定义,得,所以四边形为菱形.试题解析:解:(1)由题意点到准线的距离为由抛物线的定义,点到准线的距离为所以,即点在线段的中垂线上,所以,所以抛物线的方程为由抛物线的对称性,设点在轴的上方,所以点处切线的斜率为所以点处切线的方程为令上式中,得所以点的坐标为,又,所以,所以,所以,又故四边形为平行四边形再由抛物线的定义,得,所以四边形为菱形.【考点】抛物线定义,直线与抛物线位置关系29.【选修4-1:几何证明选讲】如图,是圆的直径,弦的延长线相交于点,过作的延长线的垂线,垂足为,求证:.【答案】详见解析【解析】涉及线段乘积,一般利用三角形相似寻找条件:由△∽△,得,又四点共圆,由相交弦定理得.两式相减得结论试题解析:解:连接,因为为圆的直径,所以,又,则四点共圆,所以.又△∽△,所以,即,所以.【考点】三角形相似,四点共圆,相交弦定理30.已知双曲线(,)与直线有交点,则双曲线的离心率的范围是()A.B.C.D.【答案】C【解析】如图所示,双曲线的渐近线方程为,若双曲线(,)与直线有交点,应有,所以解得故选C.【考点】双曲线的简单几何性质.31.已知椭圆的中心在原点,焦点在轴上,如果直线与椭圆的交点在轴上的射影恰为椭圆的焦点,则椭圆的离心率等于 .【答案】【解析】设椭圆标准方程为,半焦距为,直线与椭圆在第一象限的交点的横坐标为,把代入椭圆标准方程解得,即交点坐标,∵交点在直线上,∴,即,解得.【考点】椭圆的标准方程及有关概念.【方法点晴】解答本题的关键是探求和构建椭圆中关于基本量的等量关系,即建构含的方程,然后通过解方程求出椭圆的离心率,从而使问题巧妙获解.解答本题的难点是如何理解交点在轴上的射影恰为椭圆的焦点,这是解答本题的重要突破口,也就是怎样确定出交点的坐标,其实本题中的这句话就是说交点的横坐标为,再将其代入直线求出其纵坐标,借助交点在椭圆上建立了方程,通过解方程从而使本题获解.32.【选修4-4,坐标系与参数方程】在直角坐标系中,直线的参数方程为(t为参数),在以O为极点,轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为(Ⅰ)求直线的普通方程与曲线C的直角坐标方程;(Ⅱ)若直线与轴的交点为P,直线与曲线C的交点为A,B,求的值.【答案】(1);;(2)3.【解析】本题主要考查参数方程、极坐标方程与直角坐标方程的转化、直线与圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,利用,,转化方程;第二问,将直线方程与曲线方程联立,消参,得到关于的方程,利用两根之积得到结论.试题解析:(Ⅰ)直线的普通方程为,,曲线的直角坐标方程为.(Ⅱ)将直线的参数方程(为参数)代入曲线:,得到:,,.【考点】本题主要考查:1.极坐标方程,参数方程与直角方程的相互转化;2.直线与圆的位置关系.33.如图“月亮图”是由曲线与构成,曲线是以原点O为中心,为焦点的椭圆的一部分,曲线是以O为顶点,为焦点的抛物线的一部分,是两条曲线的一个交点.(Ⅰ)求曲线和的方程;(Ⅱ)过作一条与轴不垂直的直线,分别与曲线,依次交于B,C,D,E四点,若G为CD 的中点、H为BE的中点,问:是否为定值?若是求出该定值;若不是说明理由.【答案】(Ⅰ),;(Ⅱ)是,.【解析】(Ⅰ)设曲线所在抛物线的方程为,将代入可得的值,利用椭圆的定义,可得曲线所在的椭圆方程;(Ⅱ)先设出四点坐标,过作的与轴不垂直的直线方程,在分别与椭圆方程,抛物线方程联立,利用根与系数的关系,求的值,看结果是否为定值.试题解析:(Ⅰ)由题意得抛物线,设椭圆方程为,则,得,故椭圆方程为(Ⅱ)设,,,,把直线代入得,则,.同理将代入得:,,;为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;抛物线的标准方程.34.选修4-4:坐标系与参数方程平面直角坐标系中, 圆,曲线的参数方程为为参数), 在以原点, 为极点,轴正半轴为极轴的极坐标系中, 直线的极坐标方程为.(1)求圆的极坐标方程及曲线的普通方程;(2)设与圆相切于点,且在第三象限内交于点,求的面积.【答案】(1),;(2).【解析】(1)运用极坐标、参数方程与直角坐标的互化求解;(2)借助题设条件建立方程求三角形的底边和高,再用面积公式求解.试题解析:(1)把,代入,得,所以圆的极坐标方程为,由曲线的参数方程为为参数),消去,得曲线的普通方程为.(2)联立,得点的极坐标为,曲线的极坐标方程为,联立,可得,可得,点的极坐标为,所以,而点到直线的距离为的面积为.【考点】极坐标、参数方程与直角坐标方程的互化及有关知识的综合运用.35.已知为正实数,直线与圆相切,则的最小值是()A.2B.4C.6D.8【答案】B【解析】,∴当且仅当时取等号,选B.【考点】直线与圆相切,基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.36.已知椭圆上的左、右顶点分别为,为左焦点,且,又椭圆过点.(1)求椭圆的方程;(2)点和分别在椭圆和圆上(点除外),设直线的斜率分别为,若,证明:三点共线.【答案】(1);(2)见解析【解析】(1),由椭圆过点可得,由椭圆中关系求出的值即可;(2)由(1)知,,设,由此可得,又因为,,由此可得,同理可得,所以,即可证三点共线.试题解析:(1)由已知可得,又,解得,故所求椭圆的方程为.(2)由(1)知,,设,。

解析几何数学真题答案高中

解析几何数学真题答案高中

解析几何数学真题答案高中在高中数学的学习过程中,解析几何是一个相对抽象但又非常重要的内容。

解析几何涉及到坐标系、线性方程、向量等概念和知识,通过运用这些概念和知识,我们可以研究几何图形的性质、定位和相互关系。

对于许多学生来说,解析几何的学习可能是一个难点,因此,掌握解析几何的方法和技巧是至关重要的。

解析几何的数学真题是检验学生对解析几何知识的理解和应用能力的重要手段。

以下是一道高中解析几何数学真题的解析:已知三角形ABC的三个顶点坐标分别为A(2, -1),B(5, 3),C(-1, 4)。

求证:三角形ABC是等腰直角三角形。

为了证明三角形ABC是等腰直角三角形,我们首先需要通过计算得出三条边的长度,然后再判断三个角是否满足等腰直角三角形的条件。

根据坐标计算两点之间的距离的公式:AB的长度为√[(x2-x1)² + (y2-y1)²]BC的长度为√[(x3-x2)² + (y3-y2)²]CA的长度为√[(x1-x3)² + (y1-y3)²]将A(2, -1),B(5, 3),C(-1, 4)代入公式,得到AB、BC、CA的长度分别为:AB = √[(5-2)² + (3-(-1))²] = √[(3)² + (4)²] =√(9+16) = √25 = 5BC = √[(-1-5)² + (4-3)²] = √[(-6)² + (1)²] =√(36+1) = √37CA = √[(2-(-1))² + (-1-4)²] = √[(3)² + (5)²] =√(9+25) = √34接下来判断三个角是否满足等腰直角三角形的条件。

在三角形ABC中,如果一个角为90度,其余两个角的度数之和也为90度,则称这个三角形为直角三角形。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题27
例题
答案:(1)150;(2)10.
解析:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直
角坐标系xOy.由条件知A(0,60),C(170,0),直线BC 的斜率k BC =-tan ∠BCO =-4
3.又因为AB ⊥BC ,
所以直线AB 的斜率k AB =3
4.
设点B 的坐标为(a ,b),则k BC =
b -0a -170=-4
3,k AB =b -60a -0=34
.解得a =80,b =120.所以BC =
(170-80)2+(0+120)2=150.答:新桥BC 的长为150 m .
(2)设保护区的边界圆M 的半径为r m ,OM =d m (0≤d ≤60).
由条件知,直线BC 的方程为y =-4
3(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切,故点M(0,
d)到直线BC 的距离是r ,即r =|3d -680|42+32=680-3d
5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,
所以⎩⎨⎧r -d ≥80,
r -(60-d )≥80,
即⎩⎨⎧680-3d
5-d ≥80,680-3d 5-(60-d )≥80,
解得10≤d ≤35.故当d =10时,r =680-3d
5最大,即圆面积最大.
答:当OM =10 m 时,圆形保护区的面积最大.
变式联想
变式1
答案:(1)22+2百米;(2)点Q 在线段DE 上且距离y 轴1
3
百米.
解析:(1)设直线OM :y =kx(其中k 一定存在),代入y =x +1x ,得kx =x +1
x ,化简为(k -1)x 2=1.设M(x 1,
y 1),则x 1=
1
k -1
,(k >1),所以OM =x 12+y 12=x 12+k 2x 12=1+k 2·1k -1
=1+k 2
k -1
.令t =k -1(t >0),则1+k 2k -1=t 2+2t +2t =t +2
t +2≥22+2,当且仅当t =2时等号成立,即k =2+1时成立.综上,
OM 的最短长度为22+2百米.
(2)当直线PQ 与边界曲线相切时,PQ 最短.若直线PQ 斜率不存在,则直线方程为x =4
3,不符合题意;
若直线PQ 斜率存在,设PQ 方程为
y =k )3
4(-x ,代入y =x +1x ,化简得(k -1)x 2-43kx -1=0.当k =1时,方程有唯一解x =-3
4(舍去),当k ≠1
时,因为直线与曲线相切,所以Δ=2)3
4(k -
+4(k -1)=0,解得k =-3或k =3
4(舍去),此时直线PQ 方程为y =-3x +4,令y =5,得x =-13,即点Q 在线段DE 上且距离y 轴1
3百米.
答:当点Q 在线段DE 上且距离y 轴1
3百米,通道PQ 最短.
变式2
答案:(1)y =14x 2(0≤x ≤2);(2)①y =12tx -14t 2; ②AF =2
3
.
解析:(1)因为边缘线OM 上每一点到点D 的距离都等于它到边AB 的距离,所以边缘线OM 是以点D 为焦点,直线AB 为准线的抛物线的一部分.因为D(0,1),M(2,1),所以边缘线OM 的方程为y =1
4
x 2(0≤x ≤2).
(2)①设切点为P )4
,(2t t (0<t <2),则点P 处的切线斜率为12t.所以直线EF 的方程为y -14t 2=1
2t(x -t),
即y =12tx -1
4
t 2.
②点E ,F 的坐标分别为E )1,24(2t t +,F )4
,0(2t -.所以S △DEF =12⎝⎛⎭⎫1+14t 2·4+t 22t =(4+t 2)2
16t ,t ∈(0,2). 因为S′△DEF =1
16
·
(4+t 2)(3t 2-4)t 2
,令S′△DEF =0,得t =233⎝⎛⎭⎫t =-233舍.当t ∈)332,0(时,S ′△DEF <0;当x ∈⎝⎛⎭⎫
233,2时,S ′△DEF >0,所以S △DEF 在]332,0(上是减函数,在)23
32[,上是增函数.所以当t =23
3时,S △DEF 最小,此时F )3
1
,0(-.
答:取AF =2
3
时,沿直线EF 画线段切割,可使截去的△DEF 的面积最小.
说明:很多实际问题都与曲线有关(如直线、圆、抛物线以及由函数关系给出的曲线),通常的处理方法是仔细审题,明确解题方向,根据题意,结合所给图形的结构特征,建立直角坐标系,把要解决的问题放在坐标平面上使之与有关曲线相联系,根据相关等量关系建立数学模型(函数模型、不等式模型等),运用解析几何的基本知识、思想和方法予以解决,此类问题通常涉及确定最优解的点的位置,如例题和变式题就是这样的问题.
串讲激活
串讲1
答案:(1)2t 2-18t +129(0<t <8);
(2)满足题意的P 点距河岸5 km ,距小区M 到河岸的垂线5 3 km ,此时污水处理站到小区M 和N 的水管长度分别为10 km 和6 km .
解析:(1)如图,以河岸l 所在直线为x 轴,以过M 垂直于l 的直线为y 轴建立直角坐标系,则可得点M(0, 10),点N(83,8).
设点P(s ,t),过P 作平行于x 轴的直线m ,作N 关于m 的对称点N′,则N′(83,2t -8).则PM +PN =PM +PN′≥MN ′=(83-0)2+(12t -8-10)2=2t 2-18t +129(0<t <8)即为所求. (2)设三段水管总长为L ,则由(1)知L =PM +PN +PQ ≥MN′+PQ =t +
2t 2-18t +129(0<t <8),所以(L -t)2=4(t 2-18t +129),即方程3t 2+(2L -72)t +(516-L 2)=0在t ∈(0,8)上有解.故Δ=(2L -72)2-12(516-L 2)≥0,即L 2-18L -63≥0,解得L ≥21或L ≤-3,所以L 的最小值为21,此时对应的t =5∈(0,8).故N′(83,2),MN ′方程为y =10-3
3
x ,令y =5得x =53, 即P(53,5).从而PM =(53)2+(5-10)2=10,
PN =(53-83)2+(5-8)2=6.
答:满足题意的P 点距河岸5 km ,距小区M 到河岸的垂线5 3 km ,此时污水处理站到小区M 和N 的水管长度分别为10 km 和6 km .
串讲2 答案:(1)4
3
m ;(2) 2 m .
解析:建立如图所示的直角坐标系,
设抛物线的方程为x 2=2py(p>0),由已知点P(2,2)在抛物线上,得p =1,所以抛物线的方程为y =1
2x 2.
(1)为了使填入的土最少,内接等腰梯形的面积要最大,如图1,设点A )2
1
,(2
t t (0<t <2),则此时梯形APQB
的面积S(t)=12(2t +4)·)2
12(2t =-12t 3-t 2+2t +4,∴S ′(t)=-32t 2-2t +2,令S′(t)=-32t 2-2t +2=0,
得t =2
3,当t ∈)32,0(时,S ′(t)>0,S(t)单调递增,当t ∈)2,3
2(时,S ′(t)<0,S(t)单调递减,所以当t
=23时,S(t)有最大值12827
. 答:改挖后的水渠的底宽为4
3
m 时,可使填土的土方量最少.
(2)为了使挖掉的土最少,等腰梯形的两腰必须与抛物线相切,如图2,设切点
M )21,(2t t (t >0),则函数在点M 处的切线方程为y -12t 2=t(x -t),分别令y =0,y =2得A )0,2(t ,B )2,22(t t +,
所以此时梯形OABC 的面积S(t)=12)2(t
t +·2=t +2t ≥22,当且仅当t =2时,等号成立,此时OA =2
2.
答:设计改挖后的水渠的底宽为2m 时,可使挖土的土方量最少.
新题在线
答案:(1)E 点为过圆O 与直线CD 的垂线与扇形弧的交点.
(2)C ,E ,M 三点共线.
解析:(1)以O 为坐标原点,OB 所在直线为x 轴,OA 所在直线为y 轴建立平面直角坐标系,则C(0,80),D(60,0),CD :x 60+y
80=1即4x +3y =240,弧AB 所在圆的方程为x 2+y 2=1202;设与CD 平行且与弧
AB 相切的直线为l :4x +3y =m ,当面积最大时,E 为切点,此时E 点为过圆O 与直线CD 的垂线与扇形弧的交点.
当面积最大时,E 为切点,此时E 点为过圆心O 与直线CD 的垂线与扇形弧的交点.
(2)设总造价为S 元,E(x ,y),由题意得,S =aCE +2aDE.在x 轴上取一点M(m ,0),使得EM
ED =2,则EM 2
=4ED 2,即(x -m)2+y 2=4[(x -120)2+y 2],整理得3x 2+(2m -480)x +3y 2=m 2-1202(*),当2m -480=0即m =240时(*)可化为x 2+y 2=1202,此即为弧AB 所在圆的方程,即弧AB 上所有的点都满足,EM =2ED.所以M(240,0),此时CE +2DE =CE +EM ,当且仅当C ,E ,M 三点共线时总造价最小.。

相关文档
最新文档