基于matlab的图像边缘提取算法实现及应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学

课程设计报告课程名称:数字图像处理与分析

课程设计题目:基于Matlab的图像边缘提取算法实现及应用

姓名:学院:专业:年级:学号:

目录

一.课程设计目的 (3)

二.提取图像边缘的背景与意义 (3)

三.设计的主要内容与原理 (4)

3.1 什么是图像边缘 (4)

3.2 图像边缘提取的基本原理与过程 (5)

3.3 对边缘检测与提取算法的介绍(以Canny与Log为例)

3.3.1坎尼(Canny)边缘算子 (7)

3.3.2Log边缘算子 (10)

四.边缘提取算法的实现 (11)

五对算子的稳定性的探讨 (13)

六结束语 (17)

致谢 (18)

参考文献 (18)

一.课程设计目的

图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。它在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用,也是它们的基础。

图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。而边缘检测算法则是图像边缘检测问题中经典技术难题之一,本文主要介绍两种经典的边缘提取算法,这两种都是用MATLAB语言编程实现,对提取结果进行比较和分析。

二.提取图像边缘的背景与意义

数字图像边缘检测技术起源于20世纪20年代,当时受条件的限制一直没有取得较大进展,直到20世纪60年代后期电子技术、计算机技术有了相当的发展,数字图像边缘检测处理技术才开始进入了高速发展时期。经过几十年的发展,数字图像边缘检测处理技术目前己经广泛应用于工业、微生物领域、医学、航空航天以及国防等许多重要领域,多年来一直得到世界各科技强国的广泛关注。

数字图像边缘检测处理技术在最近的10年发展尤为迅速,每年均有数以百计的新算法诞生,其中包括canny算法、小波变换等多种有相当影响的算法,这些算法在设计时大量运用数学、数字信号处理、信息论以及色度学的有关知识,而且不少新算法还充分吸取了神经网络、遗传算法、人工智能以及模糊逻辑等相关理论的一些思想,开阔了进行数字图像边缘检测处理的设计思路。

现代数字图像边缘检测处理的目标有三:可视化、自动化和定量化:

(1)可视化:当图像被采集并显示时,这些图像通常需要改善以便观察者更容易解释它们。感兴趣的目标必须突出或者图像各部位之间的对比度需要增强处理。自从像CT和MRI等三维成像手段问世以来,可视化,特别是三维结构的可视化受到极大的关注。

(2)自动化:旨在使一些日常的或繁琐的工作自动化。例如,根据一个染色体分布的显微图像自动确定染色体核型的系统,从一个血液涂片自动生成白细胞分类计数报告的系统。这些应用的特征是要求最小的人工干预,全自动完成分析工作。关于白细胞分类计数应用,市售系统是在1970年开发成功的。但今天这项任务是以完全不同方式(采用流式白细胞计数技术)自动完成。

(3)定量化:有关定量化的图像边缘检测的例子有:测量动脉狭窄的程序以及用电子显微镜观察组织切片中特殊成分的定位和定量(如血色素沉着症中的铁元素)。在这些应用中,人工介入是允许的,因为处理时间的长短在这些应用中并不是主要矛盾。

数字图像边缘检测处理,即用计算机对图像的边缘进行处理,这一技术是随着计算机技术发展而开拓出来的一个新的应用领域,汇聚了光学、电子学、数学、摄影技术、计算机技术等学科的众多方面。图像边缘检测处理作为一门学科已经被美国数学学会列为应用数学的一个研究分支。在其短暂的发展历史中,已经被成功的应用在几乎所有与成像有关的领域。近年来,图像分析和处理紧紧围绕理论、实现、应用三方面迅速发展起来。它以众多的学科领域为理论基础,其成果又渗透到众多的学科中,成为理论实践并重,在高新技术领域中占有重要地位的新兴学科分支。

三.设计的主要内容与原理

3.1 什么是图像边缘

所谓图像边缘(Edlge)是指图像局部特性的不连续性,例如,灰度级的突变,颜色的突变,纹理结构的突变等。边缘广泛存在于目标与目标、物体与背景、区域与区域(含不同色彩)之间,它是图像分割所依赖的重要特征。本为主要讨论几种典型的图像灰度值突变的边缘检测方法,其原理也是用于其他特性突变的边缘检测。

图像的边线通常与图像灰度的一阶导数的不连续性有关。图像灰度的不连续性可分为两类:阶跃不连续,即图像灰度再不连续出的两边的像素的灰度只有明显的差异,如图1.1所示,线条不连续,即图像灰度突然从一个值变化到另一个值,保持一个较小的行程又返回到原来的值。在实际中,阶跃和线条边缘图像是

较少见的,由于空间分辨率(尺度空间)、图像传感器等原因会使阶跃边缘变成斜坡形边缘,线条边缘变成房顶形边缘。它们的灰度变化不是瞬间的而是跨越一定距离的。

阶跃型房顶型突圆型

图1.1 边缘灰度变化

在讨论边缘检测方法之前,首先介绍一些术语的定义。

(1)边缘点:图像中灰度显著变化的点。

(2)边缘段:边缘点坐标()j i,及方向θ的总和,边缘的方向可以是梯度角。

(3)轮廓:边缘列表,或者是一条边缘列表的曲线模型。

(4)边缘检测器:从图像抽取边缘(边缘点或边线段)集合的算法。

(5)边缘连接:从无序边缘形成有序边缘表的过程。

(6)边缘跟踪:一个用来确定轮廓图像(指滤波后的图像)的搜索过程。

在实际中边缘点和边缘段都称为边缘。

3.2 图像边缘提取的基本原理与过程

边缘是图像最基本的特征,所谓边缘就是指周围灰度强度有反差变化的那些像素的集合,是图像分割所依赖的重要基础,也是纹理分析和图像识别的重要基础。理想的边缘检测应当正确解决边缘的有无、真假、和定向定位,长期以来,

相关文档
最新文档