高中数学不等式经典题型(精)
高中不等式经典例题
高中不等式经典例题例1解不等式:(1)2x ³-x ²-15x>0;(2)(x+4)(x+5)²(2-x)³<0.分析:如果多项式 f(x)可分解为 n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)把方程x(2x+5)(x-3)=0的三个根说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正:②对于偶次或奇次重根可转化为不含重根的不等式, 也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2解下列分式不等式: (1)3x−2≤1−2x+2; (2)x 2−4x+13x 2−7x+2<1分析:当分式不等式化为 f (x )g (x )<0(或≤0)时,要注意它的等价变形(1) 解:原不等式等价于3x−2≤x x+23x−2−x x+2≤03(x+2)−x (x−2)(x−2)(x+2)≤0−x 2+5x+6(x−2)(x+2)≤0可用“穿根法”求解,但要注意处理好有重根的情况。
解:(1) 原不等式可化为x(2x+5)(x-3)>0x 1=0,x 2=−52,x 3=3顺次标上数轴, 然后从右上开始画线顺次经过三个根, 其解集如下图的阴影部分,∴原不等式解集为(2) 原不等式等价于(x+4)(x+5)³(x -2)³>0x>2 ∴原不等式解集为 或-5<x<-4或x>2}f (x )g (x )<0f (x )⋅g (x )<0;(x−6)(x+1)(x−2)(x+2)≥0{(x −6)(x +1)(x −2)(x +2)≥0(x +2)(x −2)≠0(2) 解法一:原不等式等价于2x 2−3x+13x 2−7x+2>0 (2x 2−3x +1)(3x 2−7x +2)>0{2x 2−3x +1>03x 2−7x +2>0或 {2x 2−3x +1<03x 2−7x +2<0x <13或 12<x <1或x>2,∴原不等式解集为 (−∞,13)∪(12,1)∪(2,+∞). 解法二:原不等式等价于典型例题三例3解不等式|x ²-4|<x+2 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义 |a|={a (a ≥0)−a(a <0)二是根据绝对值的性质: |x|<a −a <x <a,|x|ax >a 或x<-a, 因此本题有如下两种解法。
高中不等式试题和答案
不等式一、选择题:1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2B .1C .22D .2-13.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件D .非充分条件非必要条件6.若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足c b a <<,且a c <0,那么下列选项中不一定成立的是 A .a b a c > B .c b a ()-<0C .c b a b 22< D .0)(<-c a ac 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 . 15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:16.(本题满分l2分)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围.17.(本题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合.18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x=+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f(x)=|x-m|-mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a>0,函数f(x)=ax-bx2.⑴当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;⑵当b>1时,证明对任意x∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a≤2b;⑶当0<b≤1时,讨论:对任意x∈[0,1],都有|f(x)|≤1的充要条件.21.(本题满分14分)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .[不等]符号定,比较技巧深参考答案二、填空题11.x ≤0或x ≥2; 12.155;13.]23,(-∞; 14 15.②④ 三、解答题16.解:由于y =2x 是增函数,f (x )≥22等价于|x +1|-|x -1|≥32, ① (2)分(i)当x ≥1时,|x +1|-|x -1|=2。
高中数学不等式经典练习题1(含答案)
高中数学不等式经典练习题1(含答案) 高中数学不等式经典练题【编著】黄勇权一、选择题1、若a∈R,下列不等式恒成立的是()A、a²+1≥a2、已知x>y>0,若x+y=1,则下列数中最大的是()D、x²+y²3、a∈R,b∈R,若a²+b²=1,则a+b()C、有最小值24、a,b为任意实数,若a>b,则有()A、a²>b²5、实数a,b>0,则a+b的最大值是。
C、36、已知x>0,y>0,z>0,且x+y+z=3,则xy+xz+yz的最大值是。
B、37、已知a,b,c∈R,若a>b,则以下不等式成立的是()A、ac>bc。
8、实数a≥1,b≥0,若3a²+6a+2b²=3,则(a+1)3b²+1的最大值。
D、39、已知a、b为正实数,且满足2ab=2a+b+3,则a+b/2的最小值是。
B、310、已知x,y,z为正数,若ab+bc+ca=1,则a+b+c的最小值是A、2.二、填空题1、已知实数x,y满足x+y=2xy,则xy的最小值是1/2.2、已知m>0,n>0,且m+n=1,则(m-1)(n-1)的最小值是1/4.3、函数y=x+2-x的最大值是2.4、已知x、y为正数,若2x+3y=4,则x/2+y/3的最小值是8/15.5、函数f(a)=a-a²的最大值是1/4.6、m、n均为正数,若m+n=1,则mn最小值是1/4.7、已知x,y,z为正数,若3x+2y+z=2,则9x²+4y²+z²的最小值是13/9.8、x+2y=4,则x/2+3y/4的最大值是8/3.9、已知a、b、c为正实数,若a+b+c=1,则ab+bc+ca的最小值为1/3.三道数学题的解答1.已知实数 $x,y,z$ 满足$x^2+y^2=2,y^2+z^2=3,z^2+x^2=3$,求$xy+yz+zx$ 的最大值。
第9讲 基本不等式9种常见题型(解析版)高一数学同步教学题型(人教A版2019必修第一册)
第9讲基本不等式9种常见题型【考点分析】考点一:重要不等式若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号;考点二:基本不等式若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.考点三:几个常见重要的不等式①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)2,112a ba b R a b++≤≤≤∈+即调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件).【题型目录】题型一:直接利用基本不等式求最值题型二:“1”的代换,乘1法题型三:常规凑配法题型四:换元法题型五:消参法题型六:双换元题型七:齐次化题型八:和、积、平方和的转化题型九:多选题【典型例题】题型一直接利用基本不等式求最值【例1】(2021·湖南邵阳市)若正实数y x ,满足12=+y x .则xy 的最大值为()A .14B .18C .19D .116【答案】B【解析】1218x y xy +≥≥≤ 当且仅当122x y ==时取等号,即xy 的最大值为18故选:B 【例2】(2021·六安市裕安区新安中学)已知01x <<,则)(33x x -的最大值为()A .12B .14C .23D .34【答案】D【解析】因为01x <<,所以10,0x x ->>,所以()1x x +-≥,当且仅当1x x =-,即12x =时,等号成立,所以1≤,整理得()114x x -≤,即3(33)4x x -≤.所以(33)x x -的最大值为34.故选:D.【题型专练】1.(2022·甘肃酒泉·模拟预测(理))若x ,y 为实数,且26x y +=,则39x y +的最小值为()A .18B .27C .54D .90【答案】C【解析】由题意可得2393322754x y x y +=+≥=⨯=,当且仅当233x y =时,即2x y =等号成立.故选:C .2.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为()A .4-B .4C .8D .8-【答案】B【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a=即12,2a c ==时等号成立.故选:B 题型二“1”的代换,乘1法1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.【例1】(2021·上海市大同中学)设b a ,为正数,且1a b +=,则ba 11+的最小值为_______.【答案】4【解析】因为b a ,为正数,且1a b +=,所以11111111124a b a b a b a b a b b a +=+⨯=+⨯+=+++≥+=()()(),当且仅当a=b=1时取等号即11a b+的最小值为4.故答案为:4【例2】(2021·河北石家庄市)已知0,0x y >>,且350x y xy +-=,则34x y +的最小值是()A .4B .5C .6D .9【答案】B【解析】由350x y xy +-=,得135y x+=,所以1131312134(34)13(135555x y x y x y y x y x ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,2x y ==,取等号.故选:B.【例3】(2021·北京师范大学万宁附属中学)已知0,0a b >>,122a b+=,则a b +的最小值为()A .3222-B .3222+C .3-D .3+【答案】B【解析】因为0a >,0b >,且122a b+=,所以()112121322332222b a a b a b a b a b ⎛+⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当b =即212a +=,222b +=时,a b +有最小值3222+.故选:B.【例4】(2021·浙江高一期末)0a >,0b >,且21a b +=,不等式1102m b a b+-≥+恒成立,则m 的范围为_______.【答案】32m ≤【解析】因为21a b +=,所以1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭1122a b b b a b +=++++322a b b b a b+=+++333222≥+=+=当且仅当2a b bb a b+=+,即1)a b =-时,取等号,因为不等式1102m b a b +-≥+恒成立,所以m 小于等于112b a b++最小值,所以32m ≤【例5】(2021·浙江)当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为()A .7B .8C .9D .10【答案】C 【解析】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立,因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9.故选:C【例6】若1,0m n >>,3m n +=,则211m n+-的最小值为__________.【答案】232+【解析】因为3=+n m ,所以21=+-n m ,所以1221=+-nm ,所以232232112212111221112112+=+⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-≥+-+-+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=+-n m m n n m m n n m n m n m 当且仅当⎪⎩⎪⎨⎧=+-=-3211n m n m m n,等号成立.【例7】若b a ,是正实数,且1a b +=,则11a ab+的最小值为.【答案】322+【解析】因为1=+b a ,所以()b a b a b a a b a ab b a a ab a +⎪⎭⎫ ⎝⎛+=+=++=++=+1212111111322322122+=+⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛≥+++=b a a b b a a b ,当且仅当⎪⎩⎪⎨⎧=+=12b a b aa b ,等号成立.【例8】设2=+b a ,0>b ,则ba a ||||21+的最小值是.【答案】43【解析】因为2=+b a ,所以14412444421+=+≥++=++=+aa a ab a a b a a b a a b a b a a ,当0>a 时,45141||||21=+≥+b a a ,当当0<a 时,43141||||21=+-≥+b a a 【题型专练】1.(2022·辽宁·模拟预测)已知正实数x ,y 满足211x y+=,则436xy x y --的最小值为()A .2B .4C .8D .12【答案】C 【解析】【分析】依题意可得2xy x y =+,则4362xy x y x y --=+,再由乘“1”法及基本不等式计算可得;【详解】解:由0x >,0y >且211x y+=,可得2xy x y =+,所以43648362xy x y x y x y x y--=+--=+()2142448y x x y x y x y ⎛⎫=++=+++ ⎪⎝⎭,当且仅当4y x x y =,即4x =,2y =时取等号.故选:C2.(2022·安徽·南陵中学模拟预测(理))若实数a ,b 满足123,12a b a b ⎛⎫+=>> ⎪⎝⎭,则2211a ba b +--的最小值为()A .6B .4C .3D .2【答案】A 【解析】【分析】对已知条件和要求最值的代数式恒等变形之后应用均值不等式即可求解【详解】()()232111a b a b +=⇒-+-=因为12a >,1b >,所以210a ->,10b ->又221111112211211211a b a b a b a b a b -+-++=+=++------所以()()1111211211211a b a b a b ⎛⎫+=+-+-⎡⎤ ⎪⎣⎦----⎝⎭21122224121a b b a --=++≥+=+=--当且仅当23211121a b a b b a +=⎧⎪--⎨=⎪--⎩即34a =,32b =时,取等号所以21126211211a b a b a b +=++≥----故选:A3.(2022·四川·石室中学三模(文))已知0a >,0b >且1a b +=,则1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是()A .49B .50C .51D .52【答案】B 【解析】【分析】将1a 中分子1替换为a +b ,将8b中分子8替换为8(a +b ),化简即可利用基本不等式求该式子的最小值.【详解】由已知,得188********a b a b b a a b a b a b ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++=++ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭916262650b a a b =++≥+=,当且仅当916b a a b =,即37a =,47b =时等号成立.因此,1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是50.故选:B .4.(2022·河南·宝丰县第一高级中学模拟预测(文))已知正数a ,b 满足0ab a b --=,则4a b +的最小值为___________.【答案】9【解析】【分析】由0ab a b --=得111a b +=,则()4141a a b b a b ⎛⎫+=+ ⎪⎝⎭+,展开利用基本不等式可求得最值.【详解】由0ab a b --=得111a b +=,所以()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b=,即32a =,3b =时取等号,故4a b +的最小值为9.故答案为:95.(2022·天津·南开中学模拟预测)设0x >,0y >,1x y +=,则212x xy+的最小值为______.1.【解析】【分析】两次运用“1”进行整体代换,结合基本不等式,即可得结果.【详解】因为1x y +=,所以2211122222222x x x y x x x y x yxy xy y y x y y x+++++==++=++1122222x x y y y x =++++1112x y y x =++≥=当且仅当1,2x y ==212x xy+1,1.6.(2022·重庆·三模)已知0a >,0b >,且2233a b ab a b +=+,则3a b +的最小值为___________.【答案】4【解析】【分析】由题得313a b b a+=+,再利用基本不等式求出2(3)a b +的最小值即得解.【详解】解:由题得331(3)3,3a b ab a b a b a b ab b a++=+∴+==+,所以23133(3)()(3)101016a b a b a b b a b a +=++=++≥+=.(当且仅当1a b ==时取等)因为34a b +≥,所以3a b +的最小值为4.故答案为:4题型三常规凑配法【例1】(2021·云南文山壮族苗族自治州)已知(3,)x ∈+∞,函数43y x x =+-的最小值为()A .4B .7C .2D .8【答案】B【解析】因为3()x ∈+∞,,所以43003x x ->>-,,44(3)33=733y x x x x =+=-++≥+--当且仅当43=3x x --即5x =时取等号,所以43y x x =+-的最小值为7.故选:B 【例2】(2021·安徽省泗县第一中学)函数19()(1)41f x x x x =+>-的最小值为()A .134B .3C .72D .94【答案】A【解析】因为1x >,所以10x ->,所以9191113()(1)4141444x f x x x x =+=-+++=-- ,当且仅当1941x x -=-,即7x =时等号成立,所以()f x 的最小值为134.故选:A .【例3】若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是__________.【答案】51≥a 【解析】max221313⎪⎭⎫ ⎝⎛++≥⇔++≥x x x a x x x a ,因51131132≤++=++xx x x x ,所以51≥a 【例4】设0abc >>>,则221121025()a ac c ab a a b ++-+-的最小值是(A )2(B )4(C)(D )5【答案】4【解析】原式()()()()()22251212251011c a b a a b a a ab ab c ac a b a a b a a ab ab -+-⋅-+⋅≥+-+-+-++=4022=++=【例5】(2022·全国·高三专题练习(理))若11x -<<,则22222x x y x -+=-有()A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】【分析】将给定函数化简变形,再利用均值不等式求解即得.【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x -=-,即0x =时取“=”,所以当0x =时,22222x x y x -+=-有最大值1-.故选:A 【题型专练】1.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是()A .4B .3C .D .3【答案】D 【解析】由()13131y x x =-++-,利用基本不等式求最小值即可.【详解】因为1x >,所以()131331y x x =-++≥+-3=,当且仅当()1311x x -=-,即13x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3.故选:D.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.2.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x y x y +--的最小值为()A .3B .52+C .3D .3+【答案】D 【解析】【分析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得.【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >,由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=------,当且仅当2111x y =--,即112x y =+=+“=”,所以211x y x y +--的最小值为3+故选:D3.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3【解析】【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.题型四换元法【例1】(2021·永丰县永丰中学高一期末)函数21()1x x f x x ++=-(1x >)的最小值为()A .B .3+C .2+D .5【答案】B【解析】因为1x >,设01>-=x t ,所以1+=t x 所以()()332333311122+≥++=++=++++=tt t t t t t t t f ,当且仅当tt 3=,即3=t ,所以1x =+时取等号,所以函数21()1x x f x x ++=-(1x >)的最小值为3+B【例2】(2021·全国高一课时练习)函数2y =___________.【答案】4【解析】令1t =≥,则244y t t==+≥,当且仅当2t =,即x =时,min 4y =.所以函数2y =4.故答案为:4题型五消参法消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!【例1】已知22451()x y y x y +=∈R ,,则22x y +的最小值是.【答案】54【解析】因22451x y y +=,所以42215y x y-=,所以422222222211142425555555y y y x y y y y y y -+=+=-+=+≥=⨯=当且仅当221455y y =,即212y =时取等号【例2】若实数x ,y 满足133(0)2xy x x +=<<,则313x y +-的最小值为.【答案】8【解析】因33xy x +=,所以33x y =+,所以33y x=+,因此311133668333y y x y y y +=++=-++≥+=---当且仅当133y y -=-时取等号【题型专练】1.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,的最大值为___________.【答案】【解析】【分析】将点(1,1)-代入直线方程可得3a b +=.【详解】直线30ax by --=过点(1,1)-,则3a b +=又0,0a b >>,设t =,则0t >21262t a b =+++++由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立.故答案为:2.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z+-的最大值为()A .0B .3C .94D .1【答案】D 【解析】【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴22114343xy xy x y z x xy y y x ==-++-,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+ ,当且仅当1y =时取等号,即212x y z+-的最大值是1.故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.3.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A .2B.2C.2D .6【答案】B 【解析】【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842,用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解.【详解】由220ab a +-=,得22a b =+,所以()a b b b b b +=+=++-=++88422224222 ,当且仅当,a b b b ==+++28222,即a b ==2取等号.故选:B.题型六双换元若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.【例1】若00a b >>,,且11121a b b =+++,则2a b +的最小值为.【答案】1【解析】设21a b x b y +=⎧⎨+=⎩,则121x y a b y --⎧=⎪⎨⎪=-⎩,所以111x y =+,因此21223a b x y y x y =--+-=+-+因()111124x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭所以2431a b ≥-=+【例2】已知0x y >,,求44x yx y x y+++的最大值.【答案】1【解析】设4x y a x y b +=⎧⎨+=⎩,则343a b x b a y -⎧=⎪⎪⎨-⎪=⎪⎩,因此441453343333333a b b ax y b a b a x y x y a b a b a b --⎛⎫+=+=-+-=-+ ⎪++⎝⎭因2333b a a b +≥=所以421433x x y x y +≥-=++【例3】(2022·浙江省江山中学高三)设0a >,0b >,若221a b +=2ab -的最大值为()A.3B.C.1D.2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()124a b b -+=进而根据三角换元得5cos ,(062sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可.【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()124a b b -+=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩,由于0a >,0b >,故cos 02sin 0θθθ⎧+>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-+≤当且仅当4πθ=时取等号.故选:D.【题型专练】1.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+【解析】【分析】令2,,(0,0)c m c n m n -==>>,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。
高中不等式例题(超全超经典)
技巧一:凑项例1:已知 ,求函数 的最大值。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数
例1.当 时,求 的最大值。
技巧三:分离例3.求 的值域。
技巧四:换元
解析二:本题看似无法运用基本不等式,可先换元,令t=x+1,化简原式在分离求最值。
当 ,即t= 时, (当t=2即x=1时取“=”号)。
提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。如关于 的不等式 的解集为 ,则不等式 的解集为__________(答:(-1,2))
例2.(1)求函数 的最大和最小值;
(2)设 ,函数 .
若 ,求 的最大值
1.不等式的性质:
二.不等式大小比较的常用方法:
1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;
2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;
6.利用函数的单调性;7.寻找中间量或放缩法;8.图象法。其中比较法(作差、作商)是最基本的方法。
三.重要不等式
7.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.如
(1)若 ,则 的取值范围是__________(答: 或 );
(2)解不等式
(答: 时, ; 时, 或 ; 时, 或 )
1.一元一次不等式的解法。2.一元二次不等式的解法
3.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现 的符号变化规律,写出不等式的解集。如
高中不等式试题及答案解析
高中不等式试题及答案解析试题一:已知不等式 \( ax^2 + bx + c > 0 \),其中 \( a < 0 \),求 x 的取值范围。
答案解析:由于 \( a < 0 \),二次函数 \( ax^2 + bx + c \) 的图像是一个开口向下的抛物线。
不等式 \( ax^2 + bx + c > 0 \) 表示函数值在 x 轴上方的区域。
要找到 x 的取值范围,我们需要找到抛物线的根,即解方程 \( ax^2 + bx + c = 0 \)。
设 \( x_1 \) 和 \( x_2 \) 是方程 \( ax^2 + bx + c = 0 \) 的两个根,根据韦达定理,我们有:\[ x_1 + x_2 = -\frac{b}{a} \]\[ x_1 x_2 = \frac{c}{a} \]由于 \( a < 0 \),\( x_1 \) 和 \( x_2 \) 必定异号,这意味着\( x_1 x_2 < 0 \)。
因此,不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( x \in (x_1, x_2) \)。
试题二:若 \( x > 0 \),求不等式 \( \frac{1}{x} + x \geq 2 \) 成立的条件。
答案解析:我们可以使用 AM-GM 不等式(算术平均数-几何平均数不等式)来解决这个问题。
对于任意正数 \( a \) 和 \( b \),有:\[ \frac{a + b}{2} \geq \sqrt{ab} \]令 \( a = \frac{1}{x} \) 和 \( b = x \),我们得到:\[ \frac{\frac{1}{x} + x}{2} \geq \sqrt{\frac{1}{x} \cdot x} \]\[ \frac{1}{2x} + \frac{x}{2} \geq 1 \]两边乘以 2,得到:\[ \frac{1}{x} + x \geq 2 \]当且仅当 \( a = b \) 时,AM-GM 不等式取等号,即 \( \frac{1}{x} = x \)。
高中数学经典题型-不等式第1专辑(含详细答案)
故:选项 A 排除
C、
2a+b a+2b
>
a b 选项 D、
a+b 2
>
2ab a+b
解
去分母,两边同时乘以 b(a+2b)得
2ab+b²>a²+2ab
把右边的全部移到左边,得:
解
去分母,两边同时乘以 2(a+b)得 (a+b)²>4ab 左边展开, a²+2ab+b²>4ab 把左边的 2ab 移到右边,得 a²+b²>4ab - 2ab 即 a²+b²> 2ab 这是不等式的基本公式,是成立的。
A
答案:选 A
第 8 题
设 a> b >0,那么 2a² A、2 B、4
8 b²-ab C、8
的最小值是( D、16
)
A12
本题有一定的难度,请同学们自己先做一 遍,实在做不出来,再看后面的答案
题目:求 2a²
仔细观察 8 b²-ab
-
8 b²-ab
解
的最小值 a² 4
因为 a=(a-b)+b ≥2 即:a≥2
2ab +b²
- a² - 2ab> 0
化简得:
b²
- a²>0,
即(b-a)(a+b)>0------① a、b 是正数,则 a+b 为正。 a > b,所以 b-a 为负,故:①不成立
故:选项 C 排除
选D
经典结论:类似这种讨论 a 与 b 的关系,采取去分母的办法, 既简单,又快捷。
第 5 题
同理: 三式相加得, ( 1 a + 1 b +
1 b
高中数学经典代数不等式100题及解答
x2 y 2 x y 2 xy xy 2 2 x y
x y x y
欢迎加入高中数学竞赛及高考群:766755640
7 : a, b, c 0, prove : solution one : S .O.S .
2(a 3 b3 c 3 ) 9(a b c) 2 2 33 abc (a b 2 c 2 )
2(a 3 b3 c 3 ) 9(a b c) 2 6 27 2 abc (a b 2 c 2 ) 9 abc 2 a b2 c2 abc solution two : pqr 做代换 : p a b c, q ab bc ca, r abc
8 : x, y, z 0, prove : 3 xyz
x yz 3 3 2x 2z x y z x y 不妨x y z , 原不等式 3 xyz 3 xyz z 3 3 3 3 x y y 注意到 : 3 xyz 3 y 2 z z , done. 3 3 3
x y yz zx
9 : a, b, c, x, y, z 0, prove : 3 (a x)(b y )(c z ) 3 abc 3 xyz
3 a b c abc 3 3 ( a x )(b y )(c z ) a x b y c z 注意到 : 3 xyz y z x 3 a x b y c z 3 ( a x )(b y )(c z ) 两式相加整理得原不等式
高中数学不等式经典题型专题训练试题(含答案)
高中数学不等式经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共10小题,每题2分,共20分)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值63.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<28.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.二.填空题(共10小题,每题2分,共20分)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.12.已知a,b∈R+,且2a+b=1则的最大值是______.13.已知向量,若⊥,则16x+4y的最小值为______.14.若x>0,y>0,且+=1,则x+y的最小值是______.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.17.若实数a+b=2,a>0,b>0,则的最小值为______.18.若x,y满足约束条件,则z=3x-y的最小值是______.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.20.已知f(x)=,不等式f(x)≥-1的解集是______.三.简答题(共10小题,共60分)21.(6分)已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.22.(6分)设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.23.(6分)已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥24.(6分)设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.25.(6分)已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•.(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.26.(6分)27.(4分)已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.28.(4分)若a,b,c∈R+,且++=1,求a+2b+3c的最小值.29.(10分)某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)30.(6分)已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.参考答案一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b答案:D解析:解:由题意知,a=sin14°+cos14°==,同理可得,b=sin16°+cos16°=,=,∵y=sinx在(0,90°)是增函数,∴sin59°<sin60°<sin61°,∴a<c<b,故选D.2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值6答案:D解析:解:画出不等式组表示的平面区域如图中阴影部分所示.当目标函数z=2x-y过直线x=3与直线y=0的交点(3,0),目标函数取得最大值6;当目标函数z=2x-y过直线x=0与直线x-y+2=0的交点(0,2)时,目标函数取得最小值-2.故选D.3.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.答案:D解析:解:y=sinx+cosx+sinxcosx=sinx(1+cosx)+1+cosx-1=(1+sinx)(1+cosx)-1≤[(1+sinx)2+((1+cosx)2]-1(当且仅当1+sinx=1+cosx时成立,此时sinx=cosx=)即y(max)=+故选D4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}答案:A解析:解:原不等式化为|x|2-|x|-2<0因式分解得(|x|-2)(|x|+1)<0因为|x|+1>0,所以|x|-2<0即|x|<2解得:-2<x<2.故选A5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.答案:B解析:解:∵不等式f(x)=ax2-x-c>0的解集为(-2,1),∴a<0,且-2,1是对应方程ax2-x-c=0的两个根,∴(-2,0),(1,0)是对应函数f(x)=ax2-x-c与x轴的两个交点,∴对应函数y=f(x)的图象为B.故选B.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a答案:A解析:解:∵函数y=0.2x是减函数,0.3>0.2,故有a=0.20.3<0.20.2=1,又a=0.20.3>0,可得b>a >0.由于函数y=log2x在(0,+∞)上是增函数,故c=log20.4<log21=0,即c<0.综上可得,b>a>c,故选A.7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<2答案:D解析:解:采用特殊值法,取a=,b=.则a2=,b2=,ab=,故知A,C错;对于B,由于函数y=是定义域上的减函数,∴,故B错;对于D,由于函数y=2x是定义域上的增函数,∴2b<2a<2,故D对.故选D.8.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ答案:D解析:解:对于AB中的α,β可以分别令为30°,60°则知道A,B均不成立对于C中的α,β可以令他们都等于15°,则知道C不成立cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ故选D9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n 答案:C解析:解:观察B,D两个选项,由于底数2>1,故相关的函数是增函数,由0<m<n,∴2m<2n,log2m<log2n,所以B,D不对.又观察A,C两个选项,两式底数满足0<<1,故相关的函数是一个减函数,由0<m<n,∴,所以A不对,C对.故答案为C.10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.答案:D解析:解:∵a<b<0,∴,A正确,-a>-b>0,,B正确,|a|>|b|=-b,C正确;,故D不正确.故选D.二.填空题(共__小题)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.12.已知a,b∈R+,且2a+b=1则的最大值是______.答案:解析:解:∵2a+b=1,∴4a2+b2=1-4ab,∴S==4ab+2-1,令=t>0,则S=4-,∵2a+b=1,∴1≥2⇒0<t≤故当t=时,S有最大值为:故答案为:.13.已知向量,若⊥,则16x+4y的最小值为______.答案:8解析:解:∵∴4(x-1)+2y=0即4x+2y=4∵=当且仅当24x=22y即4x=2y=2取等号故答案为814.若x>0,y>0,且+=1,则x+y的最小值是______.答案:25解析:解:∵x>0,y>0,且+=1,∴x+y=(x+y)(+)=17++≥17+2=25当且仅当=,即x=5,y=20时取等号,∴x+y的最小值是25,故答案为:25.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).答案:20解析:解:设矩形高为y,由三角形相似得:=,且x>0,y>0,x<40,y<40,⇒40=x+y≥2,仅当x=y=20m时,矩形的面积s=xy取最大值400m2.故答案为:20.16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.17.若实数a+b=2,a>0,b>0,则的最小值为______.答案:解析:解:∵实数a+b=2,a>0,b>0,则=+=++≥+2=+,当且仅当b=a=4-2时取等号.故答案为:.18.若x,y满足约束条件,则z=3x-y的最小值是______.答案:-4解析:解:由约束条件作出可行域如图,化目标函数z=3x-y为y=3x-z,由图可知,当直线y=3x-z过点C(0,4)时直线在y轴上的截距最大,z有最小值为-4.故答案为:-4.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.答案:[2,]解析:解:∵a,b∈R,且4≤a2+b2≤9;∴设a=rcosθ,b=rsinθ,且2≤r≤3,∴s=a2-ab+b2=r2cos2θ-r2sinθcosθ+r2sin2θ=r2(1-sinθcosθ)=r2(1-sin2θ),由三角函数的图象与性质,得;当sin2θ取最大值1且r取最小值2时,s取得最小值2,当sin2θ取最小值-1且r取最大值3时,s取得最大值;综上,a2-ab+b2的范围是[2,].故答案为:.20.已知f(x)=,不等式f(x)≥-1的解集是______.答案:{x|-4≤x≤2}解析:解:∵已知f(x)=,故由不等式f(x)≥-1可得①,或②.解①可得-4<x≤0,解②可得0<x≤2.综上可得,不等式的解集为{x|-4≤x≤2},故答案为{x|-4≤x≤2}.三.简答题(共__小题)21.已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.答案:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.解析:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.22.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.答案:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.解析:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.23.已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥.答案:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.解析:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.24.设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.答案:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)解析:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)25.已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.答案:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.解析:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.26、解:由柯西不等式:(1+3+5)²≤(a+b+c)()因为:a+b+c=12所以(1+3+5)²≤12*()81≤12*()≤当且仅当==时取等号即:最小值为27.已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.答案:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.解析:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.28.若a,b,c∈R+,且,求a+2b+3c的最小值.答案:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.解析:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.29.某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)答案:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.解析:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.30.已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.答案:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.解析:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.。
高中数学必修5基本不等式精选题目(附答案)
高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。
高中数学不等式经典练习题1(含答案)
高中数学 不等式 经典练习题【编著】黄勇权一、选择题1、若a ∈R ,下列不等式恒成立的是( )A 、a ²+1≥ aB 、a ²+4>4aC 、 1a>1 D 、2a >2a-1 2、已知x >y >0,若x+y=1,则下列数中最大的是( ) A 、12 B 、 x+y 2C 、2xyD x ²+y ² 3、a ∈R ,b ∈R ,若a ²+b ²=1,则a+b ( )A 、 有最小值 - 2B 、有最小值-1C 、 有最小值 2D 、有最小值14、a ,b 为任意实数,若a >b ,则有( )A 、 a ²>b ²B 、(a-1 )²>(b-1)²C 、丨a-1丨> 丨b-1丨D 、2a-1>2b-15、实数a ,b >0,则ba b a ++的最大值是 。
A 、 1 B 、 2 C 、 3 D 、 26、已知 x >0,y >0,z >0,若 x+y+z= 3,则 xy+xz+yz 的最大值是 。
A 、3、B 、 3C 、 2D 、 17、已知a ,b ,c ∈R ,若a >b ,以下不等式成立的是( )A 、 ac >bcB 、 a ³>b ³C 、1b 11a 1++> D 、22b1a 1> 8、实数a ≥1,b ≥0,若3a ²+6a+2b ²=3,则(a+1)1b 32+的最大值 。
A 、 2B 、 3C 、 53 2D 、 523 9、已知a 、b 为正实数,且满足2ab=2a+b+3,则a+2b 的最小值是 。
A 、 1 B 、 3 C 、4 D 、610、已知x ,y ,z 为正数,若ab+bc+ca=1,则a+b+c 的最小值是A 、 2B 、 3C 、2D 、3二、填空题1、已知实数x ,y 满足 1x + 4y= 2 xy ,则xy 则最小值是 。
完整版)高中数学不等式习题及详细答案
完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。
A。
最大值为 5,最小值为 1B。
最大值为 5,最小值为 $\frac{11}{2}$C。
最大值为 1,最小值为 $\frac{11}{2}$D。
最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。
A。
3B。
$\frac{7}{2}$C。
4D。
$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。
A。
$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。
$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。
$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。
$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。
A。
$(-1,+\infty)$B。
$(-\infty,-1)\cup (1,+\infty)$C。
$(-\infty,-1)\cup (1,+\infty)$D。
$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。
A。
2B。
$\frac{2}{3}$C。
4D。
$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。
A。
18B。
高中数学不等式证明典型例题
不等式证明典型例题例1 若10<<x ,证明)1(log )1(log x x a a +>-(0>a 且1≠a ).分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比较法证明. 解法1 (1)当1>a 时, 因为 11,110>+<-<x x ,所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a +---= 0)1(log 2>--=x a .(2)当10<<a 时, 因为 11,110>+<-<x x所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合(1)(2)知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.因为 )1(log )1(log x x a a +-- ax a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a +--=[])1lg()1lg(lg 1x x a +---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-. 例2 设0>>b a ,求证:.ab ba b a b a >证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba ∴1)(>-ba b a . ∴a b b a b a b a .1> 又∵0>abb a , ∴.ab ba b a b a >.例3 对于任意实数a 、b ,求证444()22a b a b ++≥(当且仅当a b =时取等号) 证明:∵ 222a b ab +≥(当且仅当22a b =时取等号) 两边同加4444222():2()()a b a b a b ++≥+,即:44222()22a b a b ++≥ (1) 又:∵ 222a b ab +≥(当且仅当a b =时取等号) 两边同加22222():2()()a b a b a b ++≥+∴222()22a b a b ++≥ ∴ 2224()()22a b a b ++≥ (2) 由(1)和(2)可得444()22a b a b ++≥(当且仅当a b =时取等号). 例4 已知a 、b 、c R +∈,1a b c ++=,求证1119.a b c++≥ 证明:∵1a b c ++=∴ 111a b c ++a b c a b c a b c a b c++++++=++ (1)(1)(1)b c a c a b a a b b c c =++++++++3()()()b a c a c ba b a c b c=++++++∵2b a a b +≥=,同理:2c a a c+≥,2c bb c +≥。
高中数学经典不等式专题(精品)
高中数学经典不等式专题1、 证明:2221111+...223n+++<; 2、 若:332a b +=,求证:2a b +≤ ; 3、 若:n N +∈,求证:1111...12122n n n≤+++<++; 4、 若:,0a b >,且3ab a b =++,求:a b +的取值范围 ;5、 若:,,a b c 是ABC ∆的三边,求证:111a b ca b c+>+++ ; 6、当2n ≥时,求证:222111111...12123n n n-<+++<-+ ;7、 若x R ∈,求y =的值域 ; 8、求函数y =;9、 若,,0a b c >,求证:2229a b b c c a a b c++>+++++ ; 10、 若,,a b c R ∈,且22225a b c ++=,试求:22a b c -+的取值范围 11、 若,,a b c R ∈,且226a b c --=,求222a b c ++的最小值12、 若,,a b c R ∈,且222(1)(2)(3)11654a b c -+-++=,求a b c ++的最大值和最小值; 13、 若,,0a b c >,,,0x y z >,且满足22225a b c ++=,22236x y z ++=,30ax by cz ++=,求:a b cx y z++++的值;14、 求证:21153nk k=<∑; 15、 当2n ≥时,求证:12(1)3n n<+<;16、求证:113135135 (21)...224246246 (2)n n ⋅⋅⋅⋅⋅⋅⋅-++++<⋅⋅⋅⋅⋅⋅⋅ ; 17、求证:1)1...1)<+< ; 18、 已知:0x >,求证:ln(1)1xx x x<+<+ ;19、 已知:n N +∈,求证:11111...ln(1)1...2312x n n+++<+<++++ ;20、 已知:2n ≥,求证:2(1)n n n >- ;21、 已知:n N +∈,求证:1111 (23212)n n++++>- ;22、设:...n S 2(1)2(1)n n n S n +<<+ ; 23、 已知:n N +∈,求证:1111 (21231)n n n <+++<+++ .【解答】 1. 证明:2221111+...223n +++< ; 1、证明:221222111111111112(1)1nn n n k k k k k k k k k k n ====⎡⎤⎛⎫=+<+=+-=+-< ⎪⎢⎥--⎣⎦⎝⎭∑∑∑∑. 从第二项开始放缩后,进行裂项求和.另:本题也可以采用积分法证明.构建函数:1()2f x x =,则()f x 在x R +∈区间为单调递减函数.于是:222112111111111111()221nnn n k k dx k kx x n n ===+<+=-=--=-<∑∑⎰从第二项开始用积分,当函数是减函数时,积分项大于求和项时,积分限为[1,]n ;积分项小于求和项时,积分限为[2,1]n +. 2. 若:332a b +=,求证:2a b +≤;2、证明:3322()()()a b a b a b ab ab a b +=++-≥+,即:()2ab a b +≤则:3()6ab a b +≤,333()8a b ab a b +++≤,即:3()8a b +≤,即:2a b +≤. 立方和公式以及均值不等式配合.另:本题也可以采用琴生不等式证明.构建函数:3()f x x =,则在在x R +∈区间为单调递增函数,且是下凸函数. 对于此类函数,琴生不等式表述为:函数值得平均值不小于平均值的函数值.即:()()...() (1212)()f x f x f x x x x n n f n n++++++≥ 对于本题:()()()22f a f b a b f ++≥ 即:33322a b a b ++⎛⎫≥ ⎪⎝⎭即:33321222a b a b ++⎛⎫≤== ⎪⎝⎭,即:12a b +≤,即:2a b +≤ 琴生不等式可秒此题.3. 若:n N +∈,求证:1111...12122n n n≤+++<++;3、由:n n n k n +≥+> (1,2,...,)k n =得:1112n n k n≤<+ ,则:1111112nn nk k k n n k n===≤<+∑∑∑, 即: 111...212n n n n n n n n ≤+++<+++故:1111...12122n n n ≤+++<++ . 从一开始就放缩,然后求和.另:本题也可以采用不等式性质证明.所证不等式中的任何一项如第k 项,均满足1112n n k n≤<+,当有n 项累加时, 不等式两个边界项乘以n 倍,则不等式依然成立. 即:大于最小值得n 倍,小于最大值的n 倍.另外,111...122n n n+++++的最大值是ln 20.693147...≈,本题有些松. 4.若:,0a b >,且3ab a b =++,求:a b +的取值范围 ; 4、解:222()244(3)4()12a b a b ab ab a b a b +=++≥=++=++,令:t a b =+,则上式为:24120t t --≥. 解之得:6t ≥. 均值不等式和二次不等式. 5. 若:,,a b c 是ABC ∆的三边,求证:111a b ca b c+>+++ ; 5、证明:构造函数()1xf x x=+,则在0x >时,()f x 为增函数. 所以,对于三角形来说,两边之和大于第三边,即:a b c +>,那么,()()f a b f c +>,即:11a b ca b c+>+++ . 111111a b a b a b c a b a b a b a b c ++>+=>+++++++++. 构造函数法,利用单调性,再放缩,得到结果.另:不等式的入门证法就是“作差法”和“作商法”. “作差法”即两项相减得差与0比较;作商法”即同号两项相除得商与1比较.本题亦可以采用“作差法”.6. 当2n ≥时,求证:222111111...12123n n n-<+++<-+ ; 6. 证明:当2n ≥时,11n n n -<<+,都扩大n 倍得:2(1)(1)n n n n n -<<+, 取倒数得:2111(1)(1)n n n n n >>-+,裂项:21111111n n n n n ->>--+, 求和:222211111()()11nn nk k k k k k kk ===->>--+∑∑∑, 即: 2221111111 (2321)n n n ->+++>-+ 先放缩,裂项求和,再放缩. 另:本题也可以采用积分证明.构建函数:1()2f x x =,则()f x 在x R +∈区间为单调递减函数. 由面积关系得到:111()122k k dx f k dx k kx x +>>⎰⎰- 即:111121k k x x kk k +->>--即:11111211k kkk k ->>--+本式实际上是放缩法得到的基本不等式,同前面裂项式.后面的证法同前.7、若x R ∈,求y = ;7、解:y ==设:1(,2m x=+,1(,2n x =-,则:4m x ⎛=+ ⎝1n x ⎛=- ⎝(1,0)m n -=代入向量不等式:m n m n -<-得:1y m n m n =-<-=,故:11y -<<. 这回用绝对值不等式.本题另解.求函数y =.求导得:'0y ==则:x =±∞,故函数y =x =±∞. 函数为奇函数,故我们仅讨论正半轴就可以了,即在[0,)x ∈+∞.y ===lim 1m x y →+∞==由于是奇函数,故在(,0)x ∈-∞,y ===lim (1m x y →-∞==-故:(1,1)y ∈-. 8、求函数y =;8、解:将函数稍作变形为:M Ny == ,设点(,)M M M x y ,点(,)N N N x y ,则(2,0)M ,(cos ,sin )N θθ-, 而点N 在单位圆上,y 就是一条直线的斜率,是过点M 和圆上点N 直线倍,关键是直线过圆上的N 点.直线与单位圆的交点的纵坐标范围 就是:11y -≤≤ .故y 的最大值是1,最小值是-1.原本要计算一番,这用分析法,免计算了.另:如果要计算.先变形:2cos y θθ=-变形为:2cos cos y y y θθθθ-==+;即:2))y θθθϕ=+=+;sin()θϕ=+,即:1sin()1θϕ-≤=+≤;即:22413y y≤+,即:2243y y ≤+,即:21y ≤,即:11y -≤≤ 如果要计算,需要用到辅助角公式.9、若,,0a b c >,求证:2229a b b c c a a b c++≥+++++ 9、证明:由柯西不等式:()()()2111a b b c c a a b b c c a ⎛⎫++⋅+++++≥⎡⎤ ⎪⎣⎦+++⎝⎭ 即:()()2111239a b c a b b c c a ⎛⎫++⋅++≥=⎡⎤ ⎪⎣⎦+++⎝⎭即:()2229a b b c c a a b c ⎛⎫++≥ ⎪+++++⎝⎭ 柯西不等式.本题也可以采用排序不等式证明.首先将不等式变形:92a b c a b c a b c a b b c c a ++++++++≥+++; 即:932c a b a b b c c a +++≥+++,即:32c a b a b b c c a ++≥+++. 由于对称性,不妨设:a b c ≥≥,则:a b a c b c +≥+≥+;即:111b c a c a b≥≥+++. 有排序不等式得:正序和a b c a b cb c a c a b a c a b b c ++≥++++++++乱序和; 正序和a b c a b cb c a c a b a b b c a c++≥++++++++乱序和; 上两式相加得:23a b c a b b c a cb c a c a b a b b c a c +++⎛⎫++≥++= ⎪++++++⎝⎭即:32c a b a b b c c a ++≥+++ 证毕. 排序不等式.10、若,,a b c R ∈,且22225a b c ++=,试求:22a b c -+的取值范围 ; 10、解:柯西不等式:()()()222222212222a b c a b c ⎡⎤+-+++≥-+⎣⎦;即:()292522a b c ⨯≥-+,故:2215a b c -+≤; 所以:152215a b c -≤-+≤.柯西不等式.另:本题亦可采用求极值的方法证明. 构建拉格朗日函数:1222(,,)22(25)L a b c a b c a b c λ=-++++-由在极值点的导数为0得:210L aa λ∂=+=∂,则:2a λ=-,即:2a λ=-;220L b a λ∂=-+=∂,则:b λ=,即:b λ=; 220L b a λ∂=+=∂,则:c λ=-,即:c λ=-. 代入22225a b c ++=得:103λ=± 极值点为:523a λ=-=,103b λ==±,103c λ=-= 则:2215y a b c m =-+=,即:152215a b c -≤-+≤11、若,,a b c R ∈,且226a b c --=,求222a b c ++的最小值 ; 11、解:设:(2,1,2)m =--,(,,)n x y z =,则:22222(1)(2)9m =+-+-=;2222n a b c =++;22m n a b c ⋅=--; 代入m n m n ≥⋅得:()()222292236a b c a b c ++≥--=;即:2224a b c ++≥,故:最小值为4.向量不等式.向量不等式是柯西不等式的特殊形式,本题当然可用柯西不等式.2222222[2(1)(2)]()(22)a b c a b c +-+-++≥--,即:22222222(22)6()4[2(1)(2)]9a b c a b c --++≥==+-+- 用拉格朗日乘数法也行.构建拉氏函数:222(,,)(226)L a b c a b c a b c λ=+++--- 在极值点的导数为0,即:220La a λ∂=+=∂,即:a λ=-; 20Lb b λ∂=-=∂,即:2b λ=; 220Lc cλ∂=-=∂,即:c λ=. 代入226a b c --=得:43λ=-则:43a =,23b =-,43c =-故:2222224243643339a b c ⎛⎫⎛⎫⎛⎫++≤+-+-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求极值时,要判断是极大值还是极小值,只需用赋值法代一下.12、若,,a b c R ∈,且222(1)(2)(3)11654a b c -+-++=,求a b c ++的最大值和最小值; 12、解:柯西不等式:()()()2222222134212342a c a b c ⎡⎤--⎛⎫⎛⎫⎡⎤++++≥-+++-⎡⎤⎢⎥ ⎪ ⎪⎣⎦⎢⎥⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦ 即:()22512a b c ⨯≥++-;故:()525a b c -≤++-≤; 于是:()37a b c -≤++≤. 柯西不等式.另:本题也可以采用换元法求解.有人说:222(1)(2)(3)11654a b c -+-++=是一个椭球面,没错. 它是一个不等轴的椭球. 它的三个半轴长分别为:4A =,B =2C =设:1x a =-,2y b =+,3z c =-,则这个椭球的方程为:2221222x y z A B C++= ① 现在来求a b c ++的最大值和最小值. 采用三角换元法:令:sin cos x A θϕ=,sin sin y B θϕ=,cos z C θ= 代入方程①检验,可知它满足方程. 采用辅助角公式化简:sin cos sin sin cos f x y z A B C θϕθϕθ=++=++4sin cos sin 2cos θϕθϕθ=++)2cos θϕϕθ=++)sin 2cos αϕθθ=++]θθ)θφ+故:f x y z =++的峰值是: 当2sin ()1αϕ+=时,5f m===即:55x y z -≤++≤而1232x y z a b c a b c ++=-+++-=++-, 故:525a b c -≤++-≤,即:37a b c -≤++≤.13、若,,0a b c >,,,0x y z >,且满足22225a b c ++=,22236x y z ++=,30ax by cz ++=,求:a b cx y z++++的值 ;13、解:本题满足:()()()2222222a b c x y z ax by cz ++++=++即柯西不等式中等号成立的条件. 故有:0a b cx y zλ===>,即:a x λ=,b y λ=,c z λ=. 则:2222222()a b c x y z λ++=++;即:22222222536a b c x y z λ++==++,即:56λ=故:56a b c a b c x y z x y z λ++=====++ . 柯西不等式中等号成立. 14、求证:21153nk k=<∑ ; 14、证明:222212222114411111124412121nn n n nk k k k k k k k k k k =====⎛⎫=+=+<+=+- ⎪--+⎝⎭∑∑∑∑∑1115121232133n ⎛⎫=+⨯-<+⨯= ⎪+⎝⎭注意变形为不等式的方法,虽然仍是放缩法.另:本题也可以采用积分法证明. 构建函数:1()2f x x =,则()f x 在x R +∈区间为单调递减函数. 2222313311151511444nn n n k k k dx k k k x ====++=+≤+∑∑∑⎰ 3515111541192054431212123nx n n +⎛⎫=-=--=-<== ⎪⎝⎭ 15、当2n ≥时,求证:12(1)3n n<+< ;15、证明:① 由二项式定理得:1212011111111...12nnk n n n n n n k n k C C C C C n n n n n n =⎛⎫+=⋅=+⋅+⋅++⋅+⋅= ⎪⎝⎭>∑ ② 由二项式定理得:11111!11!1111!()!!()!nn n nkn k k kk k k n n C n n k n k n k n k n ===⎛⎫+=+⋅=+⋅=+ ⎪--⎝⎭∑∑∑ 1121(1)(2)(1)111...111!!!nn nk k k n n n n k k n n n n k k ===---+⎡⎤=+⋅⋅⋅⋅⋅<+=++⎢⎥⎣⎦∑∑∑ 22211111222213!(1)1n n nk k k k k k k k n ===⎛⎫=+<+=+-=+-< ⎪--⎝⎭∑∑∑本题①由二项式中,保留前两项进行放缩得到:1(1)2n n+>;本题②由二项式中,分子由从n 开始的k 个递减数连乘,分母由k 个n 连乘,得到的分数必定小于1. 于是得到:1(1)3n n+<.另:本题也可以利用函数的基本性质证明.构建函数:1()1x f x x ⎛⎫=+ ⎪⎝⎭,则在1x ≥时,函数为单调递增函数.故:在2x ≥时,1()(1)(11)2f x f ≥=+= 利用基本不等式:ln(1)x x +<,即:1x x e +<则:()111()11()3x y yf x y e e y x ⎛⎫=+=+<=< ⎪⎝⎭.本方法需要运用ln(1)x x +<,该不等式成立的条件是:0x >.16、求证:113135135 (21)...224246246 (2)n n ⋅⋅⋅⋅⋅⋅⋅-++++<⋅⋅⋅⋅⋅⋅⋅; 16、证明:()()22221(21)(21)n n n n >-=-+,故:212221n nn n -<+; 令:135(21)...246(2)n n S n -=⋅⋅⋅⋅, 246(2)...357(21)n n T n =⋅⋅⋅⋅+ ;则:n n S T <,即:2135(21)246(2)1......246(2)357(21)21n n n n n S S T n n n -<⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅=++ ;故:n S <①由><<,故:代入①式得:n S <则:原式=1211...1nnn k k k S S S S ==+++=<=<∑∑本题的关键在于把根式或其他式子换成两个相邻的根式差, 然后利用求和来消去中间部分,只剩两头. 17、求证:1)1...1)<+< ; 17、证明:由<2>=;即:1121)nnk k ==>=∑ ① 由:()()()22222281811882n n n n ->--=-得:()281n->==即:281n->,即:2(21)2(21)1 n n n n++-->,即:21>1 ><,多项求和:)111n nk k==<=②由①②,本题得证.本题还是采用级数求和的放缩法.18、已知:0x>,求证:ln(1)1xx xx<+<+;18、证明:(1)构造函数:()ln(1)f x x x=-+,则:(0)0f=.当0x>时,函数的导数为:1'()101f xx=->+,即当0x>时,函数()f x为增函数. 即:()(0)0f x f>=;故:()ln(1)0f x x x=-+>,即:ln(1)x x+<.(2) 构造函数:()ln(1)1xg x xx=+-+,则:(0)0g=.当0x>时,其导数为:()()2211'()01111x xg xx x x x⎡⎤=--=>⎢⎥++++⎢⎥⎣⎦.即当0x>时,函数()g x为增函数. 即:()(0)0g x g>=;故:()ln(1)01xg x xx=+->+,即:ln(1)1xxx<++.由(1)和(2),本题证毕.本题采用构造函数法,利用函数单调性来证题.19、已知:n N+∈,求证:11111...ln(1)1...2312xn n+++<+<++++;19、证明:先构造函数:1()f xx=,在函数图象上分别取三点A,B,C,即:1(,)A kk,1(1,)1B kk--,1(1,)1C kk++,我们来看一下这几个图形的面积关系:S S S S<=<;即:1111()1k kkk dx f k dx xx +-⋅<⋅<⋅⎰⎰ ;即:11ln ()ln k kk k x f k x +-<< ;即:1ln(1)ln ln ln(1)k k k k k +-<<-- ; (1) 1ln(1)ln k k k+-<求和:11111(ln(1)ln )1...2nnk k k k kn ==+-<=+++∑∑;即:11ln(1)1...2n n+<+++;(2) 1ln ln(1)k k k<--求和:;即:121111...ln(1)231n k n k n +==+++<++∑; 由(1)和(2)证毕.本题采用构造函数法,利用函数的面积积分来证题. 20、 已知:当2n ≥时,求证:2(1)n n n >- ;20、 证明:当21r n ≤≤-时,1r n nC C n >=. 由二项式定理得:11112(11)(1)nn n nnkk nnk k k C C n n n --====+=>>=-∑∑∑证毕.本题利用二项式定理进行放缩得证.21、 已知:n N +∈,求证:1111 (23212)n n++++>- ;21、 证明:设:1111 (2321)n n S =++++-,则:111111111111111()()()...(...)234567*********n n n n n n S --=++++++++++++-++-2233331111111111111()()()...(...)222222222222n n n n n >++++++++++++-11111111()()()...()1(1)2222222222n n n n n n =+++++-=+-=+->证毕.将1以后的项数,按2的次方个数划分成n 组,每组都大于12,这样放缩得证.22、设:...S求证:2(1)2(1)n n n S n +<<+ ; 22、证明:由(1)122k k k k ++<<=+得:12k k <<+,求和得:11112nnnk k k k k ===⎛⎫<+ ⎪⎝⎭∑∑即:2(1)(1)(2)(1)22222n n n n n n n n n S ++++<<+=< 即:2(1)2(1)n n n S n +<<+..23、 已知:n N +∈,求证:1111 (21231)n n n <+++<+++ . 23、 证明:设:111 (1231)n S n n n =++++++ ; 采用倒序相加得:111111112...131********n S n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=++++++++ ⎪ ⎪ ⎪ ⎪++++-++⎝⎭⎝⎭⎝⎭⎝⎭;各括号内通分得:()()()()()()()()424242422...131********n n n n n S n n n n n n n n ++++=++++++++-++;即:()()()()()()()()1111(21)...131********n S n n n n n n n n n ⎡⎤=+++++⎢⎥++++-++⎣⎦ ①;由:()()()()222(1)(31)21212121n n n n n n n n n ++=+-++=+-<+⎡⎤⎡⎤⎣⎦⎣⎦; ()()()()()222(2)(3)21(1)21(1)21121n n n n n n n n n +=+--++-=+--<+⎡⎤⎡⎤⎣⎦⎣⎦; ()()()()()222(3)(31)21(2)21(2)21221n n n n n n n n n +-=+--++-=+--<+⎡⎤⎡⎤⎣⎦⎣⎦; ……()()()()()222(31)(1)21(2)21(2)21221n n n n n n n n n n n n ++=+--++-=+--<+⎡⎤⎡⎤⎣⎦⎣⎦ 共有:(31)(1)121n n n +-++=+项. 将上述不等式代入①式得:()()()()2222111(21)(21)...(21)121212121n n S n n n n n n ⎡⎤+>++++=+⋅=⎢⎥++++⎢⎥⎣⎦; 即:1S > ②另:1111112122 (2123111111)n n n S n n n n n n n n ++=+++<+++=<=++++++++; 即: 2n S < ③ 由②和③,本题得证.本题中n S 有(21)n +项,将其放缩为同分母的分式是解题关键.。
高中数学不等式经典题型集锦(含答案)
高中数学不等式经典题型集锦姓名班级学号得分注意事项:1、本试题满分100分,考试时间90分钟2、答题前填好自己的姓名、班级、考号等信息3.请将答案正确填写在答题卡上一.单选题(每题3分,共48分)1.若t∈(0,1],则t+有最小值()A.2B.3 C.-2D.不存在2.不等式(1+x)(2-x)(3+x2)>0的解集是()A.φB.RC.{x|-1<x<2} D.{x|x>2或x<-1}3.如果实数x,y满足:,则目标函数z=4x+y的最大值为()A.2 B.3 C.D.44.设变量x,y满足约束条件,则z=6x-y的最小值为()A.-8 B.0 C.-2 D.-75.在△ABC中,E为AC上一点,且,P为BE上一点,且(m>0,n>0),则取最小值时,向量=(m,n)的模为()A.B.C.D.26.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3 C.2 D.7.不等式x2-ax-12a2<0(a<0)的解集是()A.(-3a,4a)B.(4a,-3a)C.(-3,4)D.(2a,6a)8.若第一象限的点(a,b)关于直线x+y-2=0的对称点在直线2x+y+3=0上,则的最小值是()A.1 B.3 C.D.9.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则的最小值是()A.5 B.6 C.8 D.910.若a,b,c>0且,则2a+b+c的最小值为()A.B.C.D.11.已知x,y满足,且z=2x-y的最大值是最小值的4倍,则a的值是()A.B.C.2 D.-212.不等式的解集是()A.[1,+∞)B.(2,+∞)∪(-∞,-1]C.[2,+∞)∪(-∞,-1] D.[3,+∞)∪(-∞,2)13.若不等式x2-ax+b<0的解集为(1,2),则不等式<的解集为()A.(,+∞)B.(-∞,0)∪(,+∞)C.(,+∞)D.(-∞,0)∪(,+∞)14.若关于x的不等式-+ax>-1的解集为{x|-1<x<2},则实数a=()A.B.C.-2 D.215.若a>0,b>0,则不等式-b<<a等价于()A.<x<0或0<x<B.-<x<C.x<-或x>D.x<或x>16.二次函数f(x)=ax2+bx+c中,a>0且a≠1,对于任意的x∈R都有f(x-3)=f(1-x),设m=f(),n=f[],则()A.m<n B.m=nC.m>n D.m,n的大小关系不确定二.填空题(每题3分,共27分)17.设,x,y∈R,a>1,b>1,若a x=b y=4,a+b=2,则的最大值为______.18.已知3a+2b=1,a,b∈R*,则的最小值______.19.已知实数x,y满足x>y>0且x+y=1,则的最小值是______.20.若x>0,y>0,且+=2,则6x+5y的最小值为______.21.已知x,y为正数,且x++3y+=10,则x+3y的最大值为______.22.若实数a,b满足2a+2b=1,则a+b的最大值是______.23.已知0<b<a<c≤4,ab=2,则的最小值是______.24.设x,y∈R,且x2+xy+y2=9,则x2+y2的最小值为______.25.若x>0,y>0,且y=,则x+y的最小值为______.三.简答题(每题5分,共25分)26.已知a,b,c为正数,证明:≥abc.27.已知不等式|x+2|+|x-2丨<10的解集为A.(1)求集合A;,不等式a+b>(x-4)(-9)+m恒成立,求实数m的(2)若∀a,b∈A,x∈R+取值范围.28.设,则的最小值为______.,x+y+z=3.29.已知x,y,z∈R+(1)求++的最小值(2)证明:3≤x2+y2+z2<9.30.已知关于x的不等式在x∈(a,+∞)上恒成立,求实数a的最小值.参考答案一.单选题(共__小题)1.若t∈(0,1],则t+ 有最小值()A.2B.3 C.-2D.不存在答案:B解析:解:构造函数f(t)=t+,根据双勾函数的图象和性质,f(t)在(0,)上单调递减,在(,+∞)上单调递增,所以,当t∈(0,1]时,f(t)单调递减,=f(1)=3,即f(t)min故答案为:B.2.不等式(1+x)(2-x)(3+x2)>0的解集是()A.φB.RC.{x|-1<x<2} D.{x|x>2或x<-1}答案:C解析:解:∵3+x2>0,∴原不等式即为(1+x)(2-x)>0,再化为(1+x)(x-2)<0,解得-1<x<2.故选C3.如果实数x,y满足:,则目标函数z=4x+y的最大值为()A.2 B.3 C.D.4答案:C解析:解:约束条件的可行域如下图示:由图易得目标函数z=4x+y在A(,)处取得最大,最大值,故选C.4.设变量x,y满足约束条件,则z=6x-y的最小值为()A.-8 B.0 C.-2 D.-7答案:D解析:解:由约束条件作出可行域如图,联立,得B(-1,1),化目标函数z=6x-y为y=-6x+z,由图可知,当直线y=-6x+z过B时,直线在y轴上的截距最大,z最小为6×(-1)-1=-7.故选:D.5.在△ABC中,E为AC上一点,且,P为BE上一点,且(m>0,n>0),则取最小值时,向量=(m,n)的模为()A.B.C.D.2答案:C解析:解:∵,∴=m+4n,又∵P为BE上一点,不妨设=λ,(0<λ<1),∴=+=+λ=+λ()=(1-λ)+λ,∴m+4n=(1-λ)+λ,∵,不共线,∴,∴m+4n=1,∴=()(m+4n)=5++≥5+2=9当且仅当=即m=且n=时,上式取到最小值,∴向量=(m,n)的模||==故选:C6.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3 C.2 D.答案:A解析:解:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=(a2+2ab+2ac+4bc)+b2+c2-2bc=12+(b-c)2≥12,当且仅当b=c时取等号,∴a+b+c≥故选项为A7.不等式x2-ax-12a2<0(a<0)的解集是()A.(-3a,4a)B.(4a,-3a)C.(-3,4)D.(2a,6a)答案:B解析:解:x2-ax-12a2<0,因式分解得:(x-4a)(x+3a)<0,可化为:或,∵a<0,∴4a<0,-3a>0,解得:4a<x<-3a,则原不等式的解集是(4a,-3a).故选B8.若第一象限的点(a,b)关于直线x+y-2=0的对称点在直线2x+y+3=0上,则的最小值是()A.1 B.3 C.D.答案:C解析:解:设A(a,b)关于直线x+y-2=0的对称点B(x0,y)在直线2x+y+3=0上,∴线段AB的中点(,)在直线x+y-2=0上,由题意得:,∴a+2b=9,∴+=+=++≥+2=,当且仅当:=即b=2a时“=”成立,故选:C.9.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则的最小值是()A.5 B.6 C.8 D.9答案:D解析:解:由x2+y2+2x-4y+1=0得:(x+1)2+(y-2)2=4,∴该圆的圆心为O(-1,2),半径r=2;又直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,∴直线2ax-by+2=0(a>0,b>0)经过圆心O(-1,2),∴-2a-2b+2=0,即a+b=1,又a>0,b>0,∴=()•(a+b)=1+++4≥5+2=9(当且仅当a=,b=时取“=”).故选D.10.若a,b,c>0且,则2a+b+c的最小值为()A.B.C.D.答案:D解析:解:若a,b,c>0且,所以,∴,则(2a+b+c)≥,故选项为D.11.已知x,y满足,且z=2x-y的最大值是最小值的4倍,则a的值是()A.B.C.2 D.-2答案:B解析:解:由题意可得,∴a<1,不等式组表示的平面区域如图所示,三角形的三个顶点坐标分别为(a,a),(a,2-a),(1,1).由z=2x-y可得y=2x-z,则z表示直线y=2x-z在y轴上的截距的相反数,截距越大,z越小作直线L:y=-2x,把直线向可行域平移,当直线经过(1,1)时,z最大为1,当直线经过点(a,2-a)时,z最小为3a-2,∵z=2x-y的最大值是最小值的4倍,∴4(3a-2)=1,即12a=9,∴a=.故选B.12.不等式的解集是()A.[1,+∞)B.(2,+∞)∪(-∞,-1]C.[2,+∞)∪(-∞,-1] D.[3,+∞)∪(-∞,2)答案:B解析:解:不等式化为即,即,转化为:所以不等式的解集为:(-∞,-1]∪(2,+∞).故选B.13.若不等式x2-ax+b<0的解集为(1,2),则不等式<的解集为()A.(,+∞)B.(-∞,0)∪(,+∞)C.(,+∞)D.(-∞,0)∪(,+∞)答案:B解析:解:因为不等式x2-ax+b<0的解集为(1,2),所以1+2=a,1×2=b,即a=3,b=2,所以不等式<为,整理得,解得x<0或者x>,所以不等式的解集为:(-∞,0)∪(,+∞).故选B.14.若关于x的不等式-+ax>-1的解集为{x|-1<x<2},则实数a=()A.B.C.-2 D.2答案:A解析:解:由的解集是{x|-1<x<2},可知-1与2是方程的两根,∴,解得 a=.故选A.15.若a>0,b>0,则不等式-b<<a等价于()A.<x<0或0<x<B.-<x<C.x<-或x>D.x<或x>答案:D解析:解:故选D.16.二次函数f(x)=ax2+bx+c中,a>0且a≠1,对于任意的x∈R都有f(x-3)=f(1-x),设m=f(),n=f[],则()A.m<n B.m=nC.m>n D.m,n的大小关系不确定答案:A解析:解:∵二次函数f(x)=ax2+bx+c中,a>0且a≠1,对于任意的x∈R都有f(x-3)=f(1-x),∴二次函数f(x)关于直线x==-1对称.∴m=f()=f(-2),n=f[]=f()=,∵a>0且a≠1,∴函数f(x)在(-∞,-1]上单调递减,∴.∴n>m.故选:A.二.填空题(共__小题)17.设,x,y∈R,a>1,b>1,若a x=b y=4,a+b=2,则的最大值为______.答案:解析:解:∵a>1,b>1,a+b=2,∴,即ab≤2,当且仅当时取等号.∵a x=b y=4,∴xlga=lg4,ylgb=lg4,∴===.故答案为.18.已知3a+2b=1,a,b∈R*,则的最小值______.答案:解析:解;∵3a+2b=1,a,b∈R*,∴3a∵====∴的最小值为故答案:.19.已知实数x,y满足x>y>0且x+y=1,则的最小值是______.答案:解析:解:∵x>y>0且x+y=1,∴.则=+=+=f(x),f′(x)=-=,令f′(x)>0,解得<x<1,此时函数f(x)单调递增;令f′(x)<0,解得,此时函数f(x)单调递减.∴当x=时,函数f(x)取得最小值,=.故答案为:.20.若x>0,y>0,且+=2,则6x+5y的最小值为______.答案:解析:解:6x+5y===,当且仅当,a=时取等号.故答案为:.21.已知x,y为正数,且x++3y+=10,则x+3y的最大值为______.答案:8解析:解:∵x++3y+=10,∴(x+3y)(x++3y+)=10(x+3y),∴(x+3y)2-10(x+3y)+10++=0,∵+≥6(=,即x=y时取等号)∴(x+3y)2-10(x+3y)+16≤0,∴2≤x+3y≤8,∴x+3y的最大值为8,此时x=y=2.故答案为:8.22.若实数a,b满足2a+2b=1,则a+b的最大值是______.答案:-2解析:解:∵2a+2b=1,∴=,即,∴a+b≤-2,当且仅当,即a=b=-1时取等号,∴a=b=-1时,a+b取最大值-2.故答案为:-2.23.已知0<b<a<c≤4,ab=2,则的最小值是______.答案:解析:解:∵已知0<b<a<c≤4,ab=2,∴0<b<1,2<a,a->0.则=+=+=(a-)+()+≥2+=4+=,当且仅当(a-)=()且c=时,等号成立,故答案为:.24.设x,y∈R,且x2+xy+y2=9,则x2+y2的最小值为______.答案:6解析:解:∵,解得x2+y2≥6,当且仅当x=y=时取等号.故答案为6.25.若x>0,y>0,且y=,则x+y的最小值为______.答案:18解析:解:∵x>0,y>0,且y=>0,解得x>2.∴x+y===x-2++2≥+2=18,当且仅当x=6时取等号,此时x+y的最小值为18.故答案为:18.三.简答题(共__小题)26.已知a,b,c为正数,证明:≥abc.答案:证明:∵a,b,c为正数,∴a2(b2+c2)≥2a2bc①,b2(a2+c2)≥2b2ac②,c2(b2+a2)≥2c2ba③①+②+③可得:2(a2b2+b2c2+c2a2)≥2abc(a+b+c)∴≥abc.27.已知不等式|x+2|+|x-2丨<10的解集为A.(1)求集合A;,不等式a+b>(x-4)(-9)+m恒成立,求实数m的(2)若∀a,b∈A,x∈R+取值范围.答案:解:(1)不等式|x+2|+|x-2丨<10等价于,或或,解得-5<x<5,故可得集合A=(-5,5);,(2)∵a,b∈A=(-5,5),x∈R+∴-10<a+b<10,∴(x-4)(-9)=1--9x+36=37-(+9x)≤37-2=25,∵不等式a+b>(x-4)(-9)+m恒成立,∴m+25≤-10,解得m≤-3528.设,则的最小值为______.答案:解:∵,∴1-2x>0∴==13+≥13+=25 当且仅当,即x=时,的最小值为25故答案为:25,x+y+z=3.29.已知x,y,z∈R+(1)求++的最小值(2)证明:3≤x2+y2+z2<9.答案:,x+y+z=3.(1)解:∵x,y,z∈R+∴++===3,当且仅当x=y=z=1时取等号,∴++的最小值是3.(2)证明:∵(x-y)2+(x-z)2+(y-z)2≥0,∴2(x2+y2+z2)≥2xy+2xz+2yz,∴3(x2+y2+z2)≥(x+y+z)2=32,∴x2+y2+z2≥3;又x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+xz)<0.综上可得:3≤x2+y2+z2<9.解析:(30.已知关于x的不等式在x∈(a,+∞)上恒成立,求实数a的最小值.答案:解:不等式在x∈(a,+∞)上恒成立,设y=,∴x-1≥2,x≥3,故实数a的最小值3.。
高中数学不等式解法15种典型例题
x + 5 0 (x + 4)(x
−
2)
0
x x
−5 −4或x
2
∴原不等式解集为 x x −5或 − 5 x −4或x 2
说明:用“穿根法”解不等式时应注意:①各一次项中 x 的系数必为正;②对
于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇 穿偶不穿”,其法如下图.
典型例题七
∴原不等式解集是{x x −2,或1 x 5,或x 6} . 说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解. 解法二中,“定符号”是关键.当每个因式 x 的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决 定含0的区间符号,其他各区间正负相间.在解题时要正确运用.
2x2 3x2
− −
3x 7x
+ +
1200或32xx22
− −
3x 7x
+ +
1 0 20
∴原不等式解集为
(−,
1) 3
(
1 2
,1)
(2,+)
。
x 1 或 1 x 1或x 2 32
解法二:原不等式等价于 (2x −1)(x −1) 0 (3x −1)(x − 2)
(2x −1)(x −1)(3x −1) (x − 2) 0 用“穿根法”∴原不等式解集为 (−, 1) (1 ,1) (2,+)
画数轴,找因式根,分区间,定符号. (x − 1)(x − 5) 符号 (x + 2)(x − 6)
解之,得原不等式的解集为{x −1 x 2或x 3}.
说明:此题易出现去分母得 x2 + 2x − 2 x(3 + 2x − x2 ) 的错误解法.避免误解的方法是移项使一边为0再解. 另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.
高中不等式练习题及答案
不等式1、解不等式:1211922+-+-x x x x ≥7. 2、解不等式:x 4-2x 3-3x 2<0.3、解不等式:65592+--x x x ≥-2. 4、解不等式:2269x x x -+->3.5、解不等式:232+-x x >x +5.6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。
7、若x,y >0,求y x yx ++的最大值。
8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大, 求参数m 的取值范围。
9、解不等式:log a (x +1-a)>1.10解不等式38->-x x .11.解log (2x – 3)(x 2-3)>012.不等式049)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。
13.求y x z +=2的最大值,使式中的x 、y 满意约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y14在函数x y 1=的图象上,求使y x 11+取最小值的点的坐标。
15函数4522++=x x y 的最小值为多少?16.若a -1≤x 21log ≤a 的解集是[41,21],则求a 的值为多少?17.设,10<<a 解不等式:()02log 2<--x x a a a18.已知函数y =13422+++x n x mx 的最大值为7,最小值为-1,求此函数式。
19.已知2>a ,求证:()()1log log 1+>-a a a a20.已知集合A=⎭⎬⎫⎩⎨⎧-<-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛<---)26(log )9(log |,212|31231)1(3322x x x B x x x x , 又A ∩B={x|x 2+ax+b <0},求a+b 等于多少?21画出下列不等式组表示的平面区域,⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤+.110,100,3623,242y x y x y x1、[-21,1]∪(1,34) 2、(-1,0)∪(0,3) 3、(-∞,2)∪(3,+∞) 4、(0,3) 5、(-∞,-1323) 6、1, 43 7、2 8、-2<m <0 9、解:(I)当a>1时,原不等式等价于不等式组:⎩⎨⎧>-+>-+.101a a x a x , 解得x>2a-1.(II)当0<a<1时,原不等式等价于不等式组:⎩⎨⎧<->-+.101a a x a x +, 解得:a-1<x<2a-1.综上,当a>1时,不等式的解集为{x|x>2a-1};当0<a<1时,不等式的解集为{x|a-1<x<2a-1}.10、原不等价于不等式组(1)⎪⎩⎪⎨⎧->-≥-≥-2)3(80308x x x x 或(2)⎩⎨⎧<-≥-0308x x 由(1)得22153+<≤x , 由(2)得x <3, 故原不等式的解集为⎭⎬⎫⎩⎨⎧+<2215|x x。
高中数学不等式练习题(附答案)
高中数学不等式练习题(附答案) 高中数学不等式练题一.选择题(共16小题)1.若a>b>0,且ab=1,则下列不等式成立的是()A。
a+log2(a+b)<2aB。
log2(a+b)<a+bC。
a+log2(a+b)<a+bD。
log2(a+b)<a+b<2a2.设x、y、z为正数,且2x=3y=5z,则()A。
2x<3y<5zB。
5z<2x<3yC。
3y<5z<2xD。
XXX<2x<5z3.若x+2y=k,且k<5,则x+2y的最大值为()A。
1B。
3C。
5D。
94.设x+y=1,且z=2x+y,则z的最小值是()A。
﹣15B。
﹣9C。
1D。
95.已知x+2y=3,且z=x+2y,则z的最大值是()A。
3B。
4C。
5D。
66.设x+y=1,且z=x+y,则z的最大值为()A。
1B。
2C。
3D。
47.设x+y=2,且x﹣y<3,则z=x﹣y的取值范围是()A。
[﹣3,3]B。
[﹣3,2]C。
[2,3]D。
[3,+∞)8.已知变量x,y满足约束条件x+y<1,则z=x﹣y的最小值为()A。
﹣3B。
﹣1C。
1D。
39.若变量x,y满足约束条件x+y<1,则目标函数z=﹣2x+y的最大值为()A。
1B。
﹣1C。
﹣2D。
﹣310.若a,b∈R,且ab>0,则a+b+2/(1/a+1/b)的最小值是()A。
1B。
2C。
3D。
411.已知0<c<1,a>b>1,下列不等式成立的是()A。
ca>cbB。
ac<bcC。
loga c>logb cD。
logb c>loga c的最小值是()12.已知x>0,y>0,lg2x+lg8y=lg2,则xy的最小值是()A。
2B。
4C。
8D。
1613.设a>2,b>2,且a+b=3,则a2+b2的最小值是()A。
6B。
8C。
9D。
1014.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是()A。
35B。
105C。
140D。
21015.设正实数x,y满足x>1,y>1,不等式(x+1/y)(y+1/x)≥XXX成立,则m的最小值为()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念、方法、题型、易误点及应试技巧总结不等式一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c d>); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或>4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。
如(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0; ⑧11,a b a b>>若,则0,0a b ><。
其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);(3)已知c b a >>,且,0=++c b a 则ac的取值范围是______(答:12,2⎛⎫-- ⎪⎝⎭)二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ;8.图象法。
其中比较法(作差、作商)是最基本的方法。
如(1)设0,10>≠>t a a 且,比较21log log 21+t t a a 和的大小(答:当1a >时,11log log 22a at t +≤(1t =时取等号);当01a <<时,11log log 22a at t +≥(1t =时取等号)); (2)设2a >,12p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >);(3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当43x =时,1+3log x =2log 2x )三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。
如 (1)下列命题中正确的是A 、1y x x =+的最小值是2B、2y =的最小值是2C 、423(0)y x x x =-->的最大值是2-D 、423(0)y x x x=-->的最小值是2-(答:C );(2)若21x y +=,则24x y +的最小值是______(答:);(3)正数,x y 满足21x y +=,则yx 11+的最小值为______(答:3+);4.常用不等式有:(12211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) ;(2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c==时,取等号);(3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。
如如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)五.证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。
).常用的放缩技巧有:211111111(1)(1)1n n n n n n n n n-=<<=-++--=<<=如(1)已知c b a >>,求证:222222ca bc ab a c c b b a ++>++ ; (2) 已知R c b a ∈,,,求证:)(222222c b a abc a c c b b a ++≥++;(3)已知,,,a b x y R +∈,且11,x y a b>>,求证:x y x a y b >++; (4)若a 、b 、c 是不全相等的正数,求证:lg lg lg lg lg lg 222a b b c c a a b c +++++>++;(5)已知R c b a ∈,,,求证:2222a b b c +22()c a abc a b c +≥++;(6)若*n N ∈,求证:(1)n +<n ;(7)已知||||a b ≠,求证:||||||||||||a b a b a b a b -+≤-+;(8)求证:2221111223n++++<。
六.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
如 (1)解不等式2(1)(2)0x x -+≥。
(答:{|1x x ≥或2}x =-);(2)不等式(0x -的解集是____(答:{|3x x ≥或1}x =-);(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为∅,则不等式()()0f x g x >的解集为______(答:(,1)[2,)-∞+∞);(4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81[7,)8)七.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
如(1)解不等式25123xx x -<--- (答:(1,1)(2,3)-);(2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02>-+x bax 的解集为____________ (答:),2()1,(+∞--∞ ).八.绝对值不等式的解法:1.分段讨论法(最后结果应取各段的并集):如解不等式|21|2|432|+-≥-x x (答:x R ∈);(2)利用绝对值的定义;(3)数形结合;如解不等式|||1|3x x +->(答:(,1)(2,)-∞-+∞)(4)两边平方:如若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。
(答:4{}3)九.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。
注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如(1)若2log 13a <,则a 的取值范围是__________(答:1a >或203a <<);(2)解不等式2()1ax x a R ax >∈- (答:0a =时,{|x 0}x <;0a >时,1{|x x a >或0}x <;0a <时,1{|0}x x a<<或0}x <)提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。
如关于x 的不等式0>-b ax 的解集为)1,(-∞,则不等式02>+-bax x 的解集为__________(答:(-1,2))十一.含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+. 如设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+ 十二.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 如(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:)1,+∞);(2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____ (答:1a <); (3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:(712-,312+)); (4)若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:3[2,)2-);(5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:12m >-)2). 能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____(答:1a >)3). 恰成立问题若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ;若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .。