浙教版八年级下册第四章平行四边形 第2讲(平行四边形的判定及三角形中位线)培优讲义(含解析)

合集下载

【最新】浙教版八年级数学下册第四章《4.2 平行四边形及其性质(第2课时)》公开课课件.ppt

【最新】浙教版八年级数学下册第四章《4.2 平行四边形及其性质(第2课时)》公开课课件.ppt
分析:可利用平行四边形边的对边相等来证明 .

证明:
∴MN∥PQ,AB∥CD.
∴四边形ABCD是平行四边形.
MA PB
DN CQ
∴AB=CD.
已知直线a //b,过直线a上 任意两点,A、B分别向直线b 作垂线,交直线b于点C、点D。 (如右图)
A
B
a
C
D
b
(1)线段AC、BD所在的直线有怎样的位置关系?
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
2、平行线之间的距离的概念
平行线中的一条直线上的任意一点到另一条直线 的距离,叫做这两条平行线之间的距离。
3、两个重要推论:
①夹在两条平行线之间的平行线段相等; ③夹在两条平行线间的垂线段相等;
爱再数爱学数见周学报
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/162020/12/16Wednesday, December 16, 2020
。2020年12月16日星期三2020/12/162020/12/162020/12/16

浙教版八年级数学下册第四章《平行四边形的判定定理(2)》公开课课件2(共9张PPT)

浙教版八年级数学下册第四章《平行四边形的判定定理(2)》公开课课件2(共9张PPT)

• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/302021/7/302021/7/302021/7/30
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
∴△ABE≌△CDF
D OF
C

八年级数学下册 4.4 平行四边形的判定定理课件(2) (新版)浙教版

八年级数学下册 4.4 平行四边形的判定定理课件(2) (新版)浙教版

A E B
D F C
第五页,共8页。
变式:已知:如图,在 ABCD中,∠BAD和∠BCD的 平分线AE、CF分别与对角线BD相交于点E,F。 求证:四边形AECF是平行四边形。
AM
D
E
F
B
NC
第六页,共8页。
例2:如图,在△ABC中,AB=14,BC=18,AD是 AC边上(biān shànɡ)的中线,求AC的取值范围。
A D
B
C
第七页,共8页。
说能出你这节课的收获(shōuhuò)和体 验让大家与你分享吗?
第八页,共8页。
D
C
O
A
B
定理 对角线互相(hù xiāng)平分的四边形是平行 (dìnglǐ四边形
第三页,共8页。
例1:已知:如图,E,F是 ABCD的对角线BD上 的两点,且∠BAE=∠DCF 求证:四边形AECF是平行四边形。
A E B
பைடு நூலகம்
D OF
C
第四页,共8页。
变式:已知:如图,在 ABCD中,∠BAD和∠BCD的 平分线AE、CF分别与对角线BD相交于点E,F。 求证:四边形AECF是平行四边形。
第一页,共8页。
说一说:我们已经(yǐ jing)学过平行 四边形的哪些判定方法?
定义(dìngyì): 两组对边分别平行 的四边形是 定理1: 一组对边平平行行四且相边等形的四边形
平行四边形
定理(dìnglǐ)2:两组对边分别相等的 四边形是平行四边形
第二页,共8页。
已知:如图,在四边形ABCD中,对角线AC与BD相 交(xiāngjiāo)于点O,AO=OC,OB=OD。 求证:四边形ABCD是平行四边形

浙教版初中八年级下册数学精品教学课件 第四章 平行四边形4.5 三角形的中位线

浙教版初中八年级下册数学精品教学课件 第四章 平行四边形4.5 三角形的中位线
本节知识归纳
考点 利用三角形的中位线定理计算
典例2[2022·丽水中考]如图,在中,,,分别是,,的中点.若,,则四边形的周Байду номын сангаас是()
B
A.B.C.D.
[解析],,分别是,,的中点,,,∴四边形的周长.
第4章 平行四边形
4.5 三角形的中位线
学习目标
1.了解三角形的中位线的概念.2.了解三角形的中位线定理.3.会用三角形的中位线定理解决一些简单问题.
知识点 三角形的中位线及三角形的中位线定理 重点
三角形的中位线
内容
连结三角形两边中点的线段叫做三角形的中位线.
点,分别是,的中点.
符号语言
如图所示,,,是的中位线.
①;
②;

教材深挖中点四边形教材第99页例题中的四边形是通过连结四边形各边的中点形成的,这样的四边形称为中点四边形,并且一定是平行四边形,与四边形的形状无关.
任意四边形的中点四边形都是平行四边形
典例1如图,对角线,相交于点,是的中点,连结,若,,则的周长是()
A
A.B.C.D.
[解析]∵四边形是平行四边形,.是的中点,是的中位线,,的周长.
图示
区别
连结三角形两边中点的线段.如线段.
连结三角形一个顶点与它对边中点的线段.如线段.
.
联系
三角形的中位线与第三边上的中线互相平分.如的中位线与其中线互相平分.
敲黑板
与三角形中位线有关的结论
(1)三角形有三条中位线.
(2)三角形的三条中位线把原三角形分成4个全等的小三角形,每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的.如图,点,,分别是三角形三边,,的中点,则

浙教版八年级数学下册第四章《4.2 平行四边形及其性质(第二课时) 》公开课课件

浙教版八年级数学下册第四章《4.2 平行四边形及其性质(第二课时) 》公开课课件

能力冲浪
1.已知:如图, ABCD中, E, F分别是AB上 的点,且DE=BF.求证:AE=CF.

E


F

Байду номын сангаас 能力冲浪
2、如图,在 ABCD中,AB=8cm,AD=5cm, ∠BAD的平分线交CD于点E,∠ABC的平分线交CD 于点F,求线段EF的长。
D FE C
A
B
说一说你今天学到了什么
布置作业

C
l1 证明:
∵ l1 ∥ l2,AB∥CD.
∴四边形ABCD是平行四边形.
l2 ∴AB=CD.

D
夹在两条平行线间的平行线段相等。
如图,l1 // l2, AB⊥l1,CD⊥l2. EF与GH 相等吗?请说明理由.
EG
l1
l2 F H
夹在两条平行线间的垂线段相等。 垂线段EF的长度就是平行线l1、l2之间的距离
___1_0__
D
C
AE
BF
利用面积相等求两平行线间的距离.
练一练: 3、如图,E是直线CD上的一点。已知 的面积为52cm2, (1)△ABE的面积为 __2_6___cm2
ABCD
(2)若AB=4cm,则AB和DE间的距离为 __1_3__cm D CE
A 4B 利用三角形面积求两平行线间的距离
4.2平行四边形及其性质(2)
如图,l1 // l2, AB, CD是夹在l1与l2之间 的平行线段. AB 与CD相等吗?请说明理由.

C
l1 证明:
∵ l1 ∥ l2,AB∥CD. ∴四边形ABCD是平行四边形.

l2 ∴AB=CD. D

八年级数学下册第4章平行四边形4.5三角形的中位线教案新版浙教版

八年级数学下册第4章平行四边形4.5三角形的中位线教案新版浙教版

4.5 三角形的中位线教学目标1、了解三角形的中位线的定义.2、理解并掌握三角形的中位线的性质.3、能运用三角形的中位线的性质解决相关的几何问题.教学重难点重点:三角形的中位线的性质.难点:三角形的中位线的性质的运用.教学过程一、课前游戏(猜一猜)打一数学名词:齐头并进(平行);风筝跑了(线段).二、合作学习1、猜一猜怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?2、合作学习剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片.a.如果要求剪得的两张纸片能拼成平行四边形,剪痕的位置有什么要求?b.要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的图形变换?三、获取新知1、归纳定义:连结三角形两边中点的线段叫三角形的中位线.几何语言描述:因为D,E分别为AB,AC的中点,所以DE为△ABC的中位线,同理DF,EF 也为△ABC的中位线.总结:三角形有三条中位线.2、三角形的中位线和三角形的中线的区别.3、探索三角形的中位线的性质(1)猜想结论:已知:如图,D,E分别是△ABC的边AB,AC的中点.求证:DE∥BC,DE=BC.引导学生用不同的方法去得出结论(三角形的中位线平行于第三边,并且等于第三边的一半)(2)应用.“五一”放假的时候,小明去乡下老家玩,发现村头有一大水塘,于是小明拿一根皮尺去测量这水塘两端点AB之间的距离.可当他将皮尺的一端系在A处时发现皮尺短了,拉不到B 处,怎样才能既测出AB间的距离又快捷方便呢?小明没辙了,聪明的你有办法解小明的难题吗?利用所学知识解决实际生活中的问题.(3)例已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.四、练习如图,已知△ABC,D,E,F分别是AB,AC,BC边上的中点.(1)若∠ADE=60°,则∠B=________°,为什么?(口答)(2)若BC=8 cm,则DE=_______cm,为什么?(口答)(3)若△ABC的周长为18 cm,它的三条中位线围成的△DEF的周长是______,图中有____个平行四边形.五、小结定义:连结三角形两边中点的线段叫做三角形的中位线.性质:三角形的中位线平行于第三边,并且等于第三边的一半.应用:①证明平行问题.②证明一条线段是另一条线段的2倍或.。

初中数学 浙教版八年级下册4-4平行四边形的判定定理(2课时)(教案)

初中数学 浙教版八年级下册4-4平行四边形的判定定理(2课时)(教案)

《平行四边形判定定理》教学设计【内容出处】浙江教育出版社八年级数学下册第4章第4课。

【素养指向】“直观想象”之“平行四边形的判定”。

【教学目标】1.能根据平行四边形的性质定理猜测判定定理,并尝试给出证明。

2.能根据边的关系判定一个四边形是否是平行四边形。

3.掌握平行四边形的判定定理“对角线互相平分的四边形是平行四边形”。

4.会综合应用平行四边形的性质定理和判定定理解决简单的几何问题。

【时间预设】课内2课时加课前10分钟、课后15分钟。

第一课时【侧重目标】侧重目标1,2。

【内容段落】内容段落一,探究判定。

【教学过程】一、先行学习复习平行四边形的主要性质,并写出性质定理的逆命题。

二、交互学习段落一探究判定〖小组合学〗根据平行四边形边的性质,判断逆命题是否成立。

怎样判定一个四边形是平行四边形?猜想一:一组对边平行且相等的四边形是平行四边形.猜想二:一组对边平行且另一组对边相等的四边形是平行四边形.猜想三:两组对边分别相等的四边形是平行四边形.证明猜想成立或举例说明某猜想不成立.〖展示评析〗小组推荐代表展示交流,其他小组质疑与纠错,交流评析后得到:以上猜想中正确的是猜想一和三,猜想二的反例为等腰梯形。

三、后续学习1.课本作业题第1,2,4,5题。

2.导学我达标第3,6,7题。

第二课时【侧重目标】侧重目标3,4。

【内容段落】内容段落二,实践应用。

【教学过程】一、交互学习段落二实践应用。

浙教版八年级下册第四章平行四边形 第2讲(平行四边形的判定及三角形中位线)培优讲义(含解析)

浙教版八年级下册第四章平行四边形 第2讲(平行四边形的判定及三角形中位线)培优讲义(含解析)

平行四边形第2讲(平行四边形的判定及三角形中位线)命题点一:平行四边形判定定理的应用【思路点拨】延长AC后,证明AD∥BC,然后转化为证明三角形全等,得到四边形对角线互相平分,从而证得四边形ABCD是平行四边形.在解决几何证明时,全等三角形是解题的有效手段.例1如图,四边形ABCD的对角线AC,BD交于点P,过点P作直线,交AD于点E,交BC于点F,若PE=PF,且AP+AE=CP+CF.证明:四边形ABCD为平行四边形.解:延长AC,在点C上方取点N,点A下方取点M,使AM=AE,CN=CF,则由已知可得PM=PN,易证△PME≌△PNF,且△AME,△CNF都是等腰三角形.∴∠M=∠N,∠MEP=∠NFP.∴∠AEP=∠PF C.∴AD∥B C.可证得△PAE≌△PCF,得PA=PC,再证△PED≌△PFB,得PB=P D.∴四边形ABCD为平行四边形.例2已知四边形ABCD是平行四边形,且满足AB=BC,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.如图所示,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.解:如图,连结EF,过点A作AH⊥EC于点H,过点F作FG⊥EC于点G.∵四边形ABCD是平行四边形,且AB=BC,∠ABC=60°,∴△ABC为等边三角形.∴AB=A C.∵∠EAF=∠BAC=60°,∴∠EAB=∠FA C.∵∠AEB=∠ABH-∠EAB=60°-15°=45°,且AB∥CD,∴∠AFC=∠BAF=60°-15°=45°.∴△ABE≌△ACF.∴BE=CF.∵BH=CH=2,AH=23,∴EH=AH=2 3.∴EB=CF=EH-BH=23-2.∵∠FCG=∠ABC=60°,∴FG=32(23-2)=3- 3.【思路点拨】对于平行四边形的证明,首先通过证明△ADP≌△BEP,可得DP=EP,从而通过对角线互相平分证得结论.而对于等腰三角形的证明,通过直角三角形的重要性质:斜边上的中线等于斜边的一半.例3如图,P是△ABC的边AB上一点,连结CP,BE⊥CP于点E,AD⊥CP,交CP的延长线于点D.(1)如图①,当P为AB的中点时,连结AE,BD,证明:四边形ADBE是平行四边形.(2)如图②,当P不是AB的中点时,取AB中点Q,连结QD,QE,证明:△QDE是等腰三角形.答图解:(1)∵P为AB的中点,∴AP=BP.∵BE⊥CP,AD⊥CP,∴∠ADP=∠BEP=90°,且AD∥BE.又∵∠APD=∠BPE,∴△ADP≌△BEP.∴DP=EP.又∵AP=BP,∴四边形ADBE是平行四边形.(2)如图,延长DQ交BE于点F.∵AD⊥CP,BE⊥CP,∴AD∥BE.∴∠DAQ=∠FBQ.又∵∠AQD=∠BQF,AQ=BQ,∴△ADQ≌△BFQ.∴DQ=FQ.又∵BE⊥DC,∴QE是Rt△DEF斜边上的中线.∴QE=QF=Q D.∴△QDE是等腰三角形.例4如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF.(2)在题(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答).(3)若ED=EF,ED与EF垂直吗?若垂直,请给出证明.解:(1)如图①,连结CE.在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥B C.∵E是AB的中点,∴AE=EC,CE⊥A B.∴∠ACE=∠BCE=45°.∴∠ECF=∠EAD=135°.∵ED ⊥EF ,∴∠CEF =∠AED =90°-∠CE D .在△CEF 和△AED 中,∵⎩⎨⎧∠CEF =∠AED ,EC =AE ,∠ECF =∠EAD ,∴△CEF ≌△AE D .∴ED =EF .(2)连结CE .由题(1)知△CEF ≌△AED ,CF =A D .∵AD =AC ,∴AC =CF .∵DP ∥AB ,∴FP =P B .∴CP =12A B .∴四边形ACPE 为平行四边形.(3)垂直.理由如下:过点E 作EM ⊥DA ,交DA 延长线于点M ,过点E 作EN ⊥AC 于点N . 在△AME 与△CNE 中∵⎩⎨⎧∠M =∠CNE =90°,∠EAM =∠NCE =45°,AE =CE ,∴△AME ≌△CNE .∴ME =NE .又∵∠DME =∠ENF =90°,DE =EF , ∴△DME ≌△FNE .∴∠ADE =∠CFE .在△ADE 与△CFE 中,∵⎩⎨⎧∠ADE =∠CFE ,∠DAE =∠FCE ,DE =EF ,∴△ADE ≌△CFE (AAS ).∴∠DEA =∠FE C .∵∠DEA +∠DEC =90°,∴∠FEC +∠DEC =90°.∴∠DEF =90°.∴ED ⊥EF .例5如图,E,F为△ABC中AB,BC的中点,在AC上取G,H两点,使得AG=GH=HC,EG与FH的延长线相交于点D,求证:四边形ABCD为平行四边形.证明:如图,连结BG,BH,连结BD交AC于点O.∵AG=GH,∴G是AH的中点.∵在△ABH中,E是AB的中点,∴EG∥BH.∴GD∥BH.∵GH=HC,∴H是CG的中点.∵在△CBG中,F是BC的中点,∴FH∥BG.∴DH∥BG.∴四边形BHDG是平行四边形.∴OG=OH,OB=O D.又∵AG=HC,∴OA=O C.∴四边形ABCD是平行四边形.命题点二:三角形中位线的性质和应用例6如图,AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M,N分别为BC,AE的中点.求证:MN∥A D.证明:如图,连结BE,取BE中点F,连结FN,FM. ∵FN为△EAB的中位线,∴FN=12AB,FN∥A B.∵FM为△BCE的中位线,∴FM=12CE,FM∥CE.∵CE=AB,∴FN=FM.∴∠3=∠4.∵∠4=∠5,∴∠3=∠5.∵∠1+∠2=∠3+∠5,∠1=∠2,∴∠2=∠5.∴NM∥A D.例7如图①,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).(1)如图②,在四边形ADBC中,AB与CD相交于点O,AB=CD,E,F分别是BC,AD的中点,连结EF,分别交DC,AB于点M,N,判断△OMN的形状,请直接写出结论.(2)如图③,在△ABC中,AC >AB,D点在AC上,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,与BA的延长线交于点G.若∠EFC=60°,连结GD,判断△AGD的形状并证明.解:(1)△OMN为等腰三角形.(2)△AGD为直角三角形,证明如下:如图②,连结BD,取BD的中点H,连结HF,HE.∵F是AD的中点,∴HF∥AB,HF=AB 2.同理,HE∥CD,HE=CD 2.∵AB=CD,∴HF=HE.∵∠EFC=60°,∴∠HEF=60°. ∴∠HEF=∠HFE=60°.∴△EHF是等边三角形.∴∠3=∠HFE=∠EFC=∠AFG=60°.∴△AGF是等边三角形.∵AF=FD,∴GF=F D.∴∠FGD=∠FDG=30°.∴∠AGD=90°,即△AGD是直角三角形.例8如图,E,F分别是四边形ABCD的对角线AC,BD的中点,求证:EF<12(AB+CD).证明:如图,取BC的中点为G,连结EG,FG.∵点E,F分别为四边形ABCD的对角线AC,BD的中点,∴FG=12DC,EG=12A B.答图∵在△EFG中,EF<EG+FG,∴EF<12(AB+CD).课后练习1.A,B,C是平面内不在同一条直线上的三点,D是该平面内任意一点,若A,B,C,D四个点恰能构成一个平行四边形,则在该平面内符合这样条件的点D有( C ) A.1个 B.2个 C.3个 D.4个2.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8, 点D在BC上,在以AC为对角线的所有▱ADCE中,DE能取的最小值是( B )A.4 B.6 C.8 D.103.如果三角形的两边长分别是方程x2-8x+15的两个根,那么连结这个三角形三边的中点,得到的新三角形的周长可能是( A )A.5.5 B.5 C.4.5 D.44.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN =3,则△ABC的周长是( D )A.38 B.39 C.40 D.415.如图,P是▱ABCD内一点,且S△PAB=5,S△PAD=2,则涂色部分的面积为( B )A.4 B.3 C.5 D.66.如图所示,在四边形ABCD中,AD=BC,P是对角线的中点,E,F分别是AB与CD的中点.若∠PEF=20°,则∠EPF的度数是 140°.7.如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,F为CE的中点,G为CD上的一点,连结DF,EG,AG,∠1=∠2.若CF=2,AE=3,则BE的长是7 .8.如图,AD∥BC,∠EAD=∠EAB,∠EBA=∠EBC,直线DC过点E交AD于点D,交BC于点C.若AD=3,BC=4,则AB= 7 .9.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点.若MN=2,则AE=2 2 .10.如图,四边形ABCD的对角线AC,BD相交于点F,M,N分别为AB,CD的中点,MN分别交BD,AC于点P,Q,且满足∠FPQ=∠FQP,若BD=10,则AC为 10 .11.如图,四边形ABCD为平行四边形,E为BC的中点,DF⊥AE于点F,H为DF的中点,求证:CH⊥DF.证明:如图,分别延长AE和DC,交于点P.∵AB∥CP,∴∠ABE=∠PCE.又∵CE=BE,∠AEB=∠PEC,∴△ABE≌△PCE.∴PC=A B.又∵AB=CD,∴PC=CD,即C为PD的中点.∵H为DF的中点,∴CH为△DFP的中位线.又∵DF⊥AE,∴CH⊥DF.12.已知两个共一个顶点的等腰直角三角形ABC,等腰直角三角形CEF,∠ABC=∠CEF=90°,连结AF,M是AF的中点,连结MB,ME.(1)如图①,当CB与CE在同一直线上时,求证:MB∥CF.(2)如图①,若CB=a,CE=2a,求BM,ME的长.(3)如图②,当∠BCE=45°时,求证:BM=ME.解:(1)延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=B D.∴B为线段AD的中点.又∵M为线段AF的中点,∴BM为△ADF的中位线.∴BM∥CF.(2)由题(1)知AB=BC=BD=a,AC=CD=2a,BM=12 DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形.∴CE=EF=GE=2a,CG=CF=22A.∴E为FG中点.又∵M为AF中点,∴ME=12AG.∵CG=CF=22a,CA=CD=2a,∴AG=DF=2A.∴BM=ME=12×2a=22A.(3)延长AB交CE于点D,连结DF,则易知△ABC与△BCD均为等腰直角三角形.∴AB=BC=BD,AC=C D.∴B为AD的中点.又∵M 为AF 中点,∴BM =12DF .延长FE 与CB 交于点G ,连结AG ,则易知△CEF 与△CEG 均为等腰直角三角形. ∴CE =EF =EG ,CF =CG .∴E 为FG 中点. 又∵M 为AF 的中点,∴ME =12AG .在△ACG 与△DCF 中,∵⎩⎨⎧AC =CD ,∠ACG =∠DCF ,CG =CF ,∴△ACG ≌△DCF (SAS ). ∴DF =AG .∴BM =ME .13.(2018·武汉市自主招生模拟题)如图,在四边形ABCD 中,M 为AB 的中点,且MC =MD ,分别过C ,D 两点作边BC ,AD 的垂线,设两条垂线的交点为P ,若∠PAD =35°,则∠PBC 的度数的是( B )A .45°B .35°C .55°D .65°14.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF .设正方形的中心为O ,连结AO ,若AB =4,AO =62,则AC 的长为 16 .15.已知在△ABC 中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使得DE =DF ,过点E ,F 分别作CA ,CB 的垂线,相交于点P .求证:∠PAE =∠PBF .证明:如图,分别取AP ,BP 的中点M ,N ,并连结EM ,DM ,FN ,DN .根据三角形中位线定理,可得DM∥BP,DM=12BP=BN,DN∥AP,DN=12AP=AM.∴∠AMD=∠APB=∠BN D.∵M,N分别为Rt△AEP,Rt△BFP斜边的中点,∴EM=AM=DN,FN=BN=DM.∵DE=DF,∴△DEM≌△DFN(SSS).∴∠EMD=∠FN D.∴∠EMD-∠AMD=∠FND-∠BN D.∴∠AME=∠BNF.∴△AME,△BNF为顶角相等的等腰三角形.∴∠PAE=∠PBF.。

【最新】浙教版八年级数学下册第四章《平行四边形及其性质(2)》公开课课件(共16张PPT).ppt

【最新】浙教版八年级数学下册第四章《平行四边形及其性质(2)》公开课课件(共16张PPT).ppt
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2020/12/162020/12/162020/12/162020/12/16
谢谢观看
夹在两条平行线间的平行线段相等。
如图,已知直线a//b。 aP H
b MN
垂线段PM的长度就是平行线a、b之间的距离. 即两平行直线间的距离就是从一条直线上任一 点到另一条直线的距离.
夹在两条平行线间的垂线段相等。
如图:在笔直的铁轨上夹在两根铁轨之间 的枕木是否一样长?
夹在两条平行线间的垂线段相等。
内任一点,PD∥AB,PE∥BC,
PF∥AC,则PD+PE+PF=
.
A F
P
B
D
ቤተ መጻሕፍቲ ባይዱ
E C
4、在△ABC中,AB=AC,点P为所在 平面内一点,过点P分别作PE∥AC交 AB于点E, PF∥AB交BC于点D,交AC 于点F. 若点P在BC边上,此时PD=0, 可得结论:PD+PE+PF=AB.
请直接应用上述信息解决下列问题:
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.

【最新】浙教版八年级数学下册第四章《4.4 平行四边形的判定定理(第2课时)》公开课课件.ppt

【最新】浙教版八年级数学下册第四章《4.4 平行四边形的判定定理(第2课时)》公开课课件.ppt
。2021年1月12日星期二2021/1/122021/1/122021/1/12 • 15、会当凌绝顶,一览众山小。2021年1月2021/1/122021/1/122021/1/121/12/2021 • 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/122021/1/12January 12, 2021
(SAS)
A O
D
∴AB=CD
B
C
同理 : AD=CB
∴四 边形ABCD是平行四边形(两组对 边分别相等的四 边形是平行四边形。)
平行四边形判定定理3
对角线互相平分的四边形是平行四边形.
D
几何语言:
A ∵ AO=OC,OB=OD。 ∴ 四边形ABCD是平行四边形
C O
B
知识梳理
判定平行四边形的方法:
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
D
证 明 :连 接 A C , 交 B D 于 点 O .
在 ABCD中 , BO=DO, AO=CO (平行四边形的对角线互相平分).
E OF
A B //C D ( 平 行 四 边 形 定 义 ) , ABE CDE。

浙教版八年级数学下册:4.4平行四边形的判定定理(第2课时)

浙教版八年级数学下册:4.4平行四边形的判定定理(第2课时)

平行四边形判定的探索 例2 请判断下列命题是否正确?如果正确, 请给出证明;如果不正确,请举出反例. (1)一组对角相等,一条对角线被另一条对 角线平分的四边形是平行四边形; (2)一组对边相等,一条对角线被另一条对 角线平分的四边形是平行四边形.
分析:(1)不正确,构造反例: 如图,作线段AC的中垂线MN,垂足为O. MN上AC 的两侧取点B,D,且OB≠OD,连结AB,BC,CD, DA. 四边形ABCD满足一组对角相等 (∠BAD=∠BCD),一条对角线被另一条对角线 平分(OA=OC),但OB≠OD,所以四边形ABCD不 是平行四边形.
解:(1)不正确,反例见分析; (2)不正确,反例见分析.
注意点:在举反例的过程中,不仅复习了平行 四边形的判定,还知道了由判定衍生的命题的真假.
ห้องสมุดไป่ตู้
例1 下列能确定四边形是平行四边形的条件是( A. 一组对边平行,另一组对边相等 B. 一组对边平行,一组对角相等 C. 一组对边平行,一组邻角相等 D. 一组对边平行,两条对角线相等
错答:A或D 正答:B 错因:对平行四边形的判定定理不理解.

例2 在平面直角坐标系中,有A(0,1),B(-1, 0),C(1,0)三点. 若点D与A,B,C三点构成 平行四边形,请写出所有符合条件的点D的坐 标 . 错答:(2,1) 正答:(-2,1)或(0,-1)或(2,1)
错答:没有分类讨论:当AB为对角线时, D(-2,1);当BC为对角线时,D(0,-1); 当AC为对角线时,D(2,1).
(2)不正确,构造反例: 如图,作平行四边形ABCD,连结AC,BD,交点为 O,并使得AO>AB. 以点A为圆心,AB为半径画弧, 则该弧必与线段OB相交,设交点为E,连结AE, EC. 四边形AECD满足一组对边相等(AE=CD), 一条对角线被另一条对角线平分(OA=OC),但 OE≠OD,所以四边形AECD不是平行四边形.

浙教版数学八年级下册第4章《4.5三角形的中位线》课件

浙教版数学八年级下册第4章《4.5三角形的中位线》课件
(3)平行四边形的对角相等. A C,B D
(4)平行四边形的对角线互相平分. AO CO,BO DO
课前复习
【2】平行四边形的判定方法
方法
文字语言
定义法
两组对边分别平行的
四边形是平行四边形
平行四边形
判定定理1
一组对边平行且相等
的四边形是平行四边

平行四边形
判定定理2
平行四边形
判定定理3
图形语言
几何语言
∵ AD∥CB, AB∥DC
∴四边形ABCD是平行
四边形.
∵AB//CD,AB =CD
∴四边形ABCD是平行
四边形.
两组对边分别相等的
四边形是平行四边形
∵ AD=CB,AB=DC
∴四边形ABCD是平行
四边形.
对角线互相平分的四
边形是平行四边形
∵ AO=CO, BO=DO,
∴ 四边形ABCD是平行
∴∠ECA=∠FCD.
∵AE⊥BD,∴∠AEB=90°,
课前练习
∴∠ABD+∠BAE=∠BAE+∠EAC,
∴∠EAC=∠ABD,
∴∠EAC=∠CDF.
∵AC=CD,
∴△AEC≌△DFC(ASA),
∴AE=DF,EC=FC.
又∵∠FCE=90°,
∴△ECF是等腰直角三角形,
∴EF= 2EC,
∴ED=DF+EF=AE+ 2EC.
点,FC 与 BE 交于点 G.求证:GF=GC.
例题探究
证明:如图,取 BE 的中点 H,连结 FH,CH.
∵F 是 AE 的中点,H 是 BE 的中点,∴FH 是△ABE 的中位线.
1
∴FH∥AB 且 FH= AB.

浙教版八年级数学下册第四章《4.4 平行四边形的判定(第二课时)》优课件

浙教版八年级数学下册第四章《4.4 平行四边形的判定(第二课时)》优课件

∴BO-BE=DO-DF,即EO=FO
∴四边形AECF是平行四边形
练习1
如图:在 ABCD中,E,F是对角线AC上的两个点; G,H是对角线B,D上的两点.已知AE=CF,DG=BH, 求证:四边形EHFG是平行四边形.
证明: 在 ABCD中,
OA=OC,OB=OD
D G
O
C F
∵AE=CF,DG=BH
的四边形是 平行四边形
一组对边平行且相等
从对角线看: 两组对角线互相平分
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月5日星期二2022/4/52022/4/52022/4/5 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/52022/4/52022/4/54/5/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/52022/4/5April 5, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
4.4 平行四边形的 判定(2)
A
平行四边形有哪些性质? B Ⅰ.边: 平行四边形对边平行且相等
D C
Ⅱ.角: 平行四边形对角相等、邻角互补
Ⅲ. 对角线: 平行四边形对角线互相平分.
我们学过平行四边形有哪些判定方法?
从边看:
两组对边分别平行 两组对边分别相等
一组对边平行且相等
的四边形是平行 四边形
∴即AOEE-O=EO=OFC,-OOF,GO=DO-OHG=OB-OAH
E
H B
∴四边形EHFG是平行四边形
练习2
如图 A 3 , ( 2 )B , 1 ( 1 , C ) 3 , ( , 2 )D , 1 1 ( , )

2021年浙教版八年级数学下册第四章《44平行四边形的判定(2)》公开课课件.ppt

2021年浙教版八年级数学下册第四章《44平行四边形的判定(2)》公开课课件.ppt

。2021年1月9日星期六2021/1/92021/1/92021/1/9
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/92021/1/92021/1/91/9/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/92021/1/9January 9, 2021
E,使AE=CF。求证:四边形EBFD是平行四边形

D
F
C
A
E
B
尺规作图
已知线段a、b,∠ .求作一个平行四边形,使它
的对角线分别等于线段a, b, 两条对角线的夹角
等于∠ .
a
b
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/92021/1/9Saturday, January 09, 2021
• 10、人的志向通常和他们的能力成正比例。2021/1/92021/1/92021/1/91/9/2021 8:47:26 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/92021/1/92021/1/9Jan-219-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/92021/1/92021/1/9Saturday, January 09, 2021 • 13、志不立,天下无可成之事。2021/1/92021/1/92021/1/92021/1/91/9/2021
4.4 平行四边形的判定
判定一个四边形是平行四边形已学过哪些方法?
定义:两组对边分别平行的四边形叫平行四边形
定理1 一组对边平行并且相等的四边形是平行四边形

浙教版八年级数学下册第四章《4.2平行四边形及其性质(第二课时)》公开课课件

浙教版八年级数学下册第四章《4.2平行四边形及其性质(第二课时)》公开课课件
7、风声雨声读书声,声声入耳;家事国事天下事,事事关心。2021/10/252021/10/25October 25, 2021 8、先生不应该专教书,他的责任是教人做人;学生不应该专读书,他的责任是学习人生之道。2021/10/252021/10/252021/10/252021/10/25
练习1
复习归纳
A
D
B
C
我们已经学过平行四边形的哪些性质?
性质1:平行四边形的对角相等,邻角互补 性质2:平行四边形的对边平行且相等
夹在两条平行线间的平行线段相等
夹在两条平行线间的垂线段相等
4.2 平行四边形 及其性质(2)
请你来设计 为迎接“五一”旅游黄金周的到来,某风 景区正在精心“装扮”,静待佳客来临。 打算在风景区的入口处建一个形状如图所 示的花坛
E
别是OA,OC的中点
求证:△OBE≌△ODF
B
OF C
你学会了吗
1、如图,在 ABCD中,AC与BD相交于点O, (1)若AC=18cm,BD=24cm,则AO= 9cm , BO= 12cm .
又若AB=13厘米,则△COD的周长为 34cm 。
(2)若△AOB的周长 为30cm,AB=12cm,则对角 线AC与BD的和是36cm 。
D
F
C
O
A
B
E
我变,我变变变!
DF
C
O
A
EB
D
CE
FA
O B
D
F
O
A
C E
B
F
D
C
O
A
B
E
找一找
在这些图形中面积相等的图形有哪些?
DF
C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形第2讲(平行四边形的判定及三角形中位线)命题点一:平行四边形判定定理的应用【思路点拨】延长AC后,证明AD∥BC,然后转化为证明三角形全等,得到四边形对角线互相平分,从而证得四边形ABCD是平行四边形.在解决几何证明时,全等三角形是解题的有效手段.例1如图,四边形ABCD的对角线AC,BD交于点P,过点P作直线,交AD于点E,交BC于点F,若PE=PF,且AP+AE=CP+CF.证明:四边形ABCD为平行四边形.解:延长AC,在点C上方取点N,点A下方取点M,使AM=AE,CN=CF,则由已知可得PM=PN,易证△PME≌△PNF,且△AME,△CNF都是等腰三角形.∴∠M=∠N,∠MEP=∠NFP.∴∠AEP=∠PF C.∴AD∥B C.可证得△PAE≌△PCF,得PA=PC,再证△PED≌△PFB,得PB=P D.∴四边形ABCD为平行四边形.例2已知四边形ABCD是平行四边形,且满足AB=BC,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.如图所示,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.解:如图,连结EF,过点A作AH⊥EC于点H,过点F作FG⊥EC于点G.∵四边形ABCD是平行四边形,且AB=BC,∠ABC=60°,∴△ABC为等边三角形.∴AB=A C.∵∠EAF=∠BAC=60°,∴∠EAB=∠FA C.∵∠AEB=∠ABH-∠EAB=60°-15°=45°,且AB∥CD,∴∠AFC=∠BAF=60°-15°=45°.∴△ABE≌△ACF.∴BE=CF.∵BH=CH=2,AH=23,∴EH=AH=2 3.∴EB=CF=EH-BH=23-2.∵∠FCG=∠ABC=60°,∴FG=32(23-2)=3- 3.【思路点拨】对于平行四边形的证明,首先通过证明△ADP≌△BEP,可得DP=EP,从而通过对角线互相平分证得结论.而对于等腰三角形的证明,通过直角三角形的重要性质:斜边上的中线等于斜边的一半.例3如图,P是△ABC的边AB上一点,连结CP,BE⊥CP于点E,AD⊥CP,交CP的延长线于点D.(1)如图①,当P为AB的中点时,连结AE,BD,证明:四边形ADBE是平行四边形.(2)如图②,当P不是AB的中点时,取AB中点Q,连结QD,QE,证明:△QDE是等腰三角形.答图解:(1)∵P为AB的中点,∴AP=BP.∵BE⊥CP,AD⊥CP,∴∠ADP=∠BEP=90°,且AD∥BE.又∵∠APD=∠BPE,∴△ADP≌△BEP.∴DP=EP.又∵AP=BP,∴四边形ADBE是平行四边形.(2)如图,延长DQ交BE于点F.∵AD⊥CP,BE⊥CP,∴AD∥BE.∴∠DAQ=∠FBQ.又∵∠AQD=∠BQF,AQ=BQ,∴△ADQ≌△BFQ.∴DQ=FQ.又∵BE⊥DC,∴QE是Rt△DEF斜边上的中线.∴QE=QF=Q D.∴△QDE是等腰三角形.例4如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF.(2)在题(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答).(3)若ED=EF,ED与EF垂直吗?若垂直,请给出证明.解:(1)如图①,连结CE.在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥B C.∵E是AB的中点,∴AE=EC,CE⊥A B.∴∠ACE=∠BCE=45°.∴∠ECF=∠EAD=135°.∵ED ⊥EF ,∴∠CEF =∠AED =90°-∠CE D .在△CEF 和△AED 中,∵⎩⎨⎧∠CEF =∠AED ,EC =AE ,∠ECF =∠EAD ,∴△CEF ≌△AE D .∴ED =EF .(2)连结CE .由题(1)知△CEF ≌△AED ,CF =A D .∵AD =AC ,∴AC =CF .∵DP ∥AB ,∴FP =P B .∴CP =12A B .∴四边形ACPE 为平行四边形.(3)垂直.理由如下:过点E 作EM ⊥DA ,交DA 延长线于点M ,过点E 作EN ⊥AC 于点N . 在△AME 与△CNE 中∵⎩⎨⎧∠M =∠CNE =90°,∠EAM =∠NCE =45°,AE =CE ,∴△AME ≌△CNE .∴ME =NE .又∵∠DME =∠ENF =90°,DE =EF , ∴△DME ≌△FNE .∴∠ADE =∠CFE .在△ADE 与△CFE 中,∵⎩⎨⎧∠ADE =∠CFE ,∠DAE =∠FCE ,DE =EF ,∴△ADE ≌△CFE (AAS ).∴∠DEA =∠FE C .∵∠DEA +∠DEC =90°,∴∠FEC +∠DEC =90°.∴∠DEF =90°.∴ED ⊥EF .例5如图,E,F为△ABC中AB,BC的中点,在AC上取G,H两点,使得AG=GH=HC,EG与FH的延长线相交于点D,求证:四边形ABCD为平行四边形.证明:如图,连结BG,BH,连结BD交AC于点O.∵AG=GH,∴G是AH的中点.∵在△ABH中,E是AB的中点,∴EG∥BH.∴GD∥BH.∵GH=HC,∴H是CG的中点.∵在△CBG中,F是BC的中点,∴FH∥BG.∴DH∥BG.∴四边形BHDG是平行四边形.∴OG=OH,OB=O D.又∵AG=HC,∴OA=O C.∴四边形ABCD是平行四边形.命题点二:三角形中位线的性质和应用例6如图,AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M,N分别为BC,AE的中点.求证:MN∥A D.证明:如图,连结BE,取BE中点F,连结FN,FM. ∵FN为△EAB的中位线,∴FN=12AB,FN∥A B.∵FM为△BCE的中位线,∴FM=12CE,FM∥CE.∵CE=AB,∴FN=FM.∴∠3=∠4.∵∠4=∠5,∴∠3=∠5.∵∠1+∠2=∠3+∠5,∠1=∠2,∴∠2=∠5.∴NM∥A D.例7如图①,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).(1)如图②,在四边形ADBC中,AB与CD相交于点O,AB=CD,E,F分别是BC,AD的中点,连结EF,分别交DC,AB于点M,N,判断△OMN的形状,请直接写出结论.(2)如图③,在△ABC中,AC >AB,D点在AC上,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,与BA的延长线交于点G.若∠EFC=60°,连结GD,判断△AGD的形状并证明.解:(1)△OMN为等腰三角形.(2)△AGD为直角三角形,证明如下:如图②,连结BD,取BD的中点H,连结HF,HE.∵F是AD的中点,∴HF∥AB,HF=AB 2.同理,HE∥CD,HE=CD 2.∵AB=CD,∴HF=HE.∵∠EFC=60°,∴∠HEF=60°. ∴∠HEF=∠HFE=60°.∴△EHF是等边三角形.∴∠3=∠HFE=∠EFC=∠AFG=60°.∴△AGF是等边三角形.∵AF=FD,∴GF=F D.∴∠FGD=∠FDG=30°.∴∠AGD=90°,即△AGD是直角三角形.例8如图,E,F分别是四边形ABCD的对角线AC,BD的中点,求证:EF<12(AB+CD).证明:如图,取BC的中点为G,连结EG,FG.∵点E,F分别为四边形ABCD的对角线AC,BD的中点,∴FG=12DC,EG=12A B.答图∵在△EFG中,EF<EG+FG,∴EF<12(AB+CD).课后练习1.A,B,C是平面内不在同一条直线上的三点,D是该平面内任意一点,若A,B,C,D四个点恰能构成一个平行四边形,则在该平面内符合这样条件的点D有( C ) A.1个 B.2个 C.3个 D.4个2.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8, 点D在BC上,在以AC为对角线的所有▱ADCE中,DE能取的最小值是( B )A.4 B.6 C.8 D.103.如果三角形的两边长分别是方程x2-8x+15的两个根,那么连结这个三角形三边的中点,得到的新三角形的周长可能是( A )A.5.5 B.5 C.4.5 D.44.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN =3,则△ABC的周长是( D )A.38 B.39 C.40 D.415.如图,P是▱ABCD内一点,且S△PAB=5,S△PAD=2,则涂色部分的面积为( B )A.4 B.3 C.5 D.66.如图所示,在四边形ABCD中,AD=BC,P是对角线的中点,E,F分别是AB与CD的中点.若∠PEF=20°,则∠EPF的度数是 140°.7.如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,F为CE的中点,G为CD上的一点,连结DF,EG,AG,∠1=∠2.若CF=2,AE=3,则BE的长是7 .8.如图,AD∥BC,∠EAD=∠EAB,∠EBA=∠EBC,直线DC过点E交AD于点D,交BC于点C.若AD=3,BC=4,则AB= 7 .9.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点.若MN=2,则AE=2 2 .10.如图,四边形ABCD的对角线AC,BD相交于点F,M,N分别为AB,CD的中点,MN分别交BD,AC于点P,Q,且满足∠FPQ=∠FQP,若BD=10,则AC为 10 .11.如图,四边形ABCD为平行四边形,E为BC的中点,DF⊥AE于点F,H为DF的中点,求证:CH⊥DF.证明:如图,分别延长AE和DC,交于点P.∵AB∥CP,∴∠ABE=∠PCE.又∵CE=BE,∠AEB=∠PEC,∴△ABE≌△PCE.∴PC=A B.又∵AB=CD,∴PC=CD,即C为PD的中点.∵H为DF的中点,∴CH为△DFP的中位线.又∵DF⊥AE,∴CH⊥DF.12.已知两个共一个顶点的等腰直角三角形ABC,等腰直角三角形CEF,∠ABC=∠CEF=90°,连结AF,M是AF的中点,连结MB,ME.(1)如图①,当CB与CE在同一直线上时,求证:MB∥CF.(2)如图①,若CB=a,CE=2a,求BM,ME的长.(3)如图②,当∠BCE=45°时,求证:BM=ME.解:(1)延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=B D.∴B为线段AD的中点.又∵M为线段AF的中点,∴BM为△ADF的中位线.∴BM∥CF.(2)由题(1)知AB=BC=BD=a,AC=CD=2a,BM=12DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形.∴CE=EF=GE=2a,CG=CF=22A.∴E为FG中点.又∵M为AF中点,∴ME=12 AG.∵CG=CF=22a,CA=CD=2a,∴AG=DF=2A.∴BM=ME=12×2a=22A.(3)延长AB交CE于点D,连结DF,则易知△ABC与△BCD均为等腰直角三角形.∴AB=BC=BD,AC=C D.∴B为AD的中点.又∵M 为AF 中点,∴BM =12DF .延长FE 与CB 交于点G ,连结AG ,则易知△CEF 与△CEG 均为等腰直角三角形. ∴CE =EF =EG ,CF =CG .∴E 为FG 中点. 又∵M 为AF 的中点,∴ME =12AG .在△ACG 与△DCF 中,∵⎩⎨⎧AC =CD ,∠ACG =∠DCF ,CG =CF ,∴△ACG ≌△DCF (SAS ). ∴DF =AG .∴BM =ME .13.(2018·武汉市自主招生模拟题)如图,在四边形ABCD 中,M 为AB 的中点,且MC =MD ,分别过C ,D 两点作边BC ,AD 的垂线,设两条垂线的交点为P ,若∠PAD =35°,则∠PBC 的度数的是( B )A .45°B .35°C .55°D .65°14.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF .设正方形的中心为O ,连结AO ,若AB =4,AO =62,则AC 的长为 16 .15.已知在△ABC 中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使得DE =DF ,过点E ,F 分别作CA ,CB 的垂线,相交于点P .求证:∠PAE =∠PBF .证明:如图,分别取AP ,BP 的中点M ,N ,并连结EM ,DM ,FN ,DN .根据三角形中位线定理,可得DM∥BP,DM=12BP=BN,DN∥AP,DN=12AP=AM.∴∠AMD=∠APB=∠BN D.∵M,N分别为Rt△AEP,Rt△BFP斜边的中点,∴EM=AM=DN,FN=BN=DM.∵DE=DF,∴△DEM≌△DFN(SSS).∴∠EMD=∠FN D.∴∠EMD-∠AMD=∠FND-∠BN D.∴∠AME=∠BNF.∴△AME,△BNF为顶角相等的等腰三角形.∴∠PAE=∠PBF.。

相关文档
最新文档