02-2结构力学第二章 平面体系的几何组成分析-作业答案

合集下载

结构力学第二章-平面体系的几何组成分析

结构力学第二章-平面体系的几何组成分析
14
2.4 实铰和虚铰
Ⅰ1
Ⅰ A
Ⅱ(参照刚片) (a) 实铰的相对位置固定
Ⅰ Ⅰ1
虚铰O O1
Ⅱ(参照刚片) (b) 虚铰的相对位置变化
图2.8 实铰和虚铰示例
15

A Ⅱ
(a) 两刚片用铰结在一起的 两链杆相连

A Ⅱ
(b) 两刚片用铰直接相连
图2.9实铰的常见情形
16
才从微小运动看,两根链杆所起的作 用相当于在链杆交点处的一个铰所起 的约束作用,此铰可称虚铰。
是一个刚片。一根梁、一根链杆或者支承体系的基础也 可看作是一个刚片。
形状可任意替换
7
2. 2 自由度
体系运动时可以独立改变的几何坐标的数目,称为 该体系的自由度。平面上的一个点的自由度为2(或称 作有2个自由度),平面上一个刚片的自由度为3。
平面内一刚片
平面内一点 n=2 n=3
x
y
8
2.3 约束
3
c.几何瞬变体系:不考虑材料的变形,在任何荷载作用下, 几何形状和位置可能产生微小的改变,随之即变成几何不 变体系的体系。
FP
FP
组成几何不变体系的条件:
• 具有必要的约束数; • 约束布置方式合理
4
d.几何常变体系:体系缺少约束或约束布置不恰当,没有确定的几 何形状与空间位置的体系(可发生持续大量的刚体位移)。
第2章 平面体系的几何组成分析
1
本章导读
学习内容: 1.掌握几何不变体系、几何可变体系、瞬变体系的概念, 2.掌握刚片、自由度、约束、实铰与虚铰的概念; 3.了解平面体系的计算自由度及其计算方法; 4.掌握平面几何不变体系的基本组成规则及其运用; 5.了解体系的几何组成与静力特性之间的关系。

李廉锟第四版《结构力学》第2章平面体系的机动分析习题+参考答案

李廉锟第四版《结构力学》第2章平面体系的机动分析习题+参考答案

《结构力学》李廉锟第四版第二章平面体系的机动分析习题2-1~2-17试对图示平面体系进行机动分析题2-1题2-2题2-3题2-4题2-5题2-6题2-7题2-8题2-9(a、b处非结点)题2-10(k处非结点)题2-11题2-12题2-13题2-14题2-15(k处非结点)题2-16题2-172-18、2-19添加最少数目的链杆和支承链杆,使体系成为几何不变,而且无多余约束。

题2-18题2-19《结构力学》李廉锟第四版第二章平面体系的机动分析参考答案题2-1说明:自上往下依次拆除二元体,或者自下往上依次添加二元体,故体系为有一个多余约束的几何不变体系(多余约束:中间的横杆或者也可以看成支座上多了一根水平杆)。

题2-2说明:如图所示取刚片1和刚片2,采用二刚片规则(两刚片用一个铰和一根不通过此铰的链杆相联),为几何不变体系,而且没有多余联系。

刚片1由二元体组成,刚片2从大地向上组装二元体组成。

题2-3说明:先不考虑支座的三根链杆,考虑上部几何构造,去掉二元体简化分析,取如上图所示刚片1、刚片2和刚片3。

刚片1和刚片2通过一个实铰联结;刚片1和刚片3通过两根平行链杆联结,交于无穷远处;刚片2和刚片3通过两根平行链杆联结,交于无穷远处;三铰不共线,故上部无多余约束且几何不变。

最后上部与大地通过一个铰和一根不通过此铰的链杆相联,故整个体系为无多余约束的几何不变体系。

题2-4说明:如上图所示取刚片1、刚片2和刚片3,刚片1和刚片2交于铰12O ,刚片1和刚片3交于铰13O ,刚片2和刚片3交于铰23O ,三铰不共线,故原体系为无多余约束的几何不变体系。

题2-5说明:将大地等效成一根链杆,取如图所示刚片1和刚片2,显然两刚片通过三根链杆相联,且三根链杆既不相互平行也不相交于一点,故原体系为无多余约束的几何不变体系。

题2-6说明:先拆除二元体以简化分析,可知右部分为常变部分;左部分为有一个多余约束的几何不变体系,故体系为几何常变体系。

结构力学课后习题答案(朱慈勉)

结构力学课后习题答案(朱慈勉)

朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。

(a)(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。

(a)(ⅡⅢ)Ⅲ几何不变2-4 试分析图示体系的几何构造。

(a)几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系(ⅠⅢ)(ⅡⅢ)几何不变(d)Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。

(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。

(a)2P F a 2P F a4P F Q34P F 2P F(b)aa aaa2m6m2m4m2m2020Q10/326/310(c)18060(d)3m2m2m3m3m4m3m2m 2m2mA2m2m2m2m7.5514482.524MQ3-3 试作图示刚架的内力图。

(a)242018616MQ18(b)4kN ·m3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D30303011010QM 210(c)45MQ(d)3m3m6m6m2m 2m444444/32MQN(e)4481``(f)4m4m2m3m4m222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。

(a)F P(b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F两铰的位lx l lx置。

结构力学课后习题答案重庆大学

结构力学课后习题答案重庆大学

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 (5)图(6) 习题(6)(a)图所示体系去掉二元体ABC 后,成为习题(6) (b)图,故原体系是几何可变体系。

( )(7) 习题(6)(a)图所示体系去掉二元体EDF 后,成为习题(6) (c)图,故原体系是几何可变体系。

( )(a)(b)(c)D习题 (6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题 填空(1) 习题(1)图所示体系为_________体系。

习题(1)图(2) 习题(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题(3)图(4) 习题(4)图所示体系的多余约束个数为___________。

习题(4)图(5) 习题(5)图所示体系的多余约束个数为___________。

习题(5)图(6) 习题(6)图所示体系为_________体系,有_________个多余约束。

习题(6)图(7) 习题(7)图所示体系为_________体系,有_________个多余约束。

结构力学课后习题答案

结构力学课后习题答案

结构⼒学课后习题答案附录B 部分习题答案2 平⾯体系的⼏何组成分析2-1 (1)× (2)× (3)√ (4)× (5)× (6)×。

2-2 (1)⽆多余约束⼏何不变体系;(2)⽆多余约束⼏何不变体系;(3)6个;(4)9个;(5)⼏何不变体系,0个;(6)⼏何不变体系,2个。

2-3 ⼏何不变,有1个多余约束。

2-4 ⼏何不变,⽆多余约束。

2-5 ⼏何可变。

2-6 ⼏何瞬变。

2-7 ⼏何可变。

2-8 ⼏何不变,⽆多余约束。

2-9⼏何瞬变。

2-10⼏何不变,⽆多余约束。

2-11⼏何不变,有2个多余约束。

2-12⼏何不变,⽆多余约束。

2-13⼏何不变,⽆多余约束。

2-14⼏何不变,⽆多余约束。

5-15⼏何不变,⽆多余约束。

2-16⼏何不变,⽆多余约束。

2-17⼏何不变,有1个多余约束。

2-18⼏何不变,⽆多余约束。

2-19⼏何瞬变。

2-20⼏何不变,⽆多余约束。

2-21⼏何不变,⽆多余约束。

2-22⼏何不变,有2个多余约束。

2-23⼏何不变,有12个多余约束。

2-24⼏何不变,有2个多余约束。

2-25⼏何不变,⽆多余约束。

2-26⼏何瞬变。

3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6) √;(7) √;(8) √。

3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下; (5) 16,右,128,右;(6) 27,下,93,左。

3-3 (a) 298AC M ql =-,Q 32AC F ql =;(b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B = -4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。

结构力学习题及答案

结构力学习题及答案

构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。

假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。

题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。

〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。

〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。

习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。

(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。

《结构力学》课后习题答案 重庆大学出版社

《结构力学》课后习题答案 重庆大学出版社

第1章绪论(无习题)第2章平面体系的几何组成分析习题解答习题2.1是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( ) (2) 若平面体系的计算自由度W=0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W<0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( ) (5) 习题2.1(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( ) AE CFBD 习题2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( ) (7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

( ) B EF DAC(a)(b)(c) 习题 2.1(6)图【解】(1)正确。

(2)错误。

是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF不是二元体。

(6)错误。

ABC不是二元体。

(7)错误。

EDF不是二元体。

习题2.2填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图 (2) 习题2.2(2)图所示体系为__________体系。

习题 2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题 2.2(3)图 (4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题 2.2(4)图 (5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题 2.2(5)图 (6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

《结构力学》课后习题答案__重庆大学出版社

《结构力学》课后习题答案__重庆大学出版社

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

02-2结构力学第二章 平面体系的几何组成分析-作业答案汇总

02-2结构力学第二章 平面体系的几何组成分析-作业答案汇总

38 3 2 29 3 3
3个单铰结点, 3个折算为2个单铰结点的复铰结点
支杆
b3
11/73
(II III) 刚片II
(I II)
刚片III
几何不变且无多余约束
j9 单链杆:12根 复链杆:2根 折算为6根单链杆
W 2 j b 29 12 6 0
5/73
【作业1】分析图示体系的几何构造
图3

【作业1】分析图示体系的几何构造
图4
先考察如图所示结构
∞(II III)
9/73
【作业2】求图示系统的计算自由度
刚片 m 1 单刚结点 g 4 铰结点 h 0 支杆 b 3
内部无多余约束刚片
W 3m 3g 2h b
31 3 4 3 12
10/73
【作业2】求图示系统的计算自由度
刚片 m 8
单刚结点 g 2
W 3m 3g 2h b
铰结点 h 9
刚片 m 14 单铰链结点 h 18
刚片II
刚片III
(I II)
(I III) 刚片I
瞬变体系
其中折算为2个单铰结点的 复铰结点有6个
∞(II III)
其中折算为3个单铰结点的 复铰结点有2个 单刚结点 2个 g 2 和基础相连的支杆 0个 b 0
W 3m 3g 2h b
314 3 2 218 0
∞(II III)
刚片II (I II) (I III) 刚片III
刚片I
几何不变且无多余约束
(I II) 刚片II (I III) 刚片III
刚片I
几何不变且无多余约束
7/73
【作业2】求图示系统的计算自由度
图1 并进行几何构造分析

结构力学作业参考

结构力学作业参考

结构力学课程作业答案第一章绪论1、按照不同的构造特征和受力特点,平面杆件结构可分为哪几类?2、何为静定结构和超静定结构?从几何构造分析的角度看,结构必须是几何不变体系。

根据多余约束 n ,几何不变体系又分为:有多余约束( n > 0)的几何不变体系——超静定结构;无多余约束( n = 0)的几何不变体系——静定结构。

从求解内力和反力的方法也可以认为:静定结构:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。

超静定结构:若结构的全部支座反力和杆件内力,不能只有静力平衡条件来确定的结构。

3、土建、水利等工程中的荷载,根据其不同的特征,主要有哪些分类?第二章平面结构的几何组成分析作业题:1、何为平面体系的几何组成分析?按照机械运动及几何学的观点,对平面结构或体系的组成情况进行分析,称为平面体系的几何组成分析。

2、何为几何不变体系?何为几何可变体系?几何不变体系—若不考虑材料的应变,体系的位置和形状不会改变。

几何可变体系—若不考虑材料的应变,体系的位置和形状是可以改变的。

3、几何组成分析的目的是什么?1)保证结构的几何不变性,以确保结构能承受荷载和维持体系平衡.2)判别某一体系是否为几何不变,从而决定它能否作为结构.3)研究几何不变体系的组成规则,以保证所设计的结构是几何不变体系,从而能承受荷载而维持平衡.4)根据体系的几何组成分析,正确区分静定结构和超静定结构,从而选择适当的计算方法进行结构的反力和内力计算.5)通过几何组成分析,明确结构的构成特点,从而选择结构受力分析的顺序以简化计算.4、何为一个体系的自由度?知悉体系计算自由度的公式。

5、试对下图所示体系进行几何组成分析。

图1图2图3图46、试求图示各体系的计算自由度数W。

7、例2-1 例2-28、习题 2.1~2.12 试对图示体系作几何组成分析。

第三章静定梁、静定平面刚架和三角拱的计算作业题:1、单跨静定梁有简支梁、外伸梁、悬臂梁等形式。

结构力学-平面体系的几何组成分析知识重点及习题解析

结构力学-平面体系的几何组成分析知识重点及习题解析

《结构力学》平面体系的几何组成分析知识重点及习题解析一、基本概念1.1、几何不变体系若不考虑材料变形,在任意荷载作用下几何形状和位置均能保持不变的体系。

1.2、几何可变体系即使不考虑材料变形,在很小的荷载作用下,也会发生机械运动而不能保持原有几何形状和位置的体系。

1.3、瞬变体系原可发生形状或位置的改变,但经微小位移后即转化为几何不变的体系。

1.4、刚片平面杆件体系中的几何不变的部分,也可以是一根杆件或大地等。

1.5、虚铰连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰,不过这个铰的位置随着链杆的转动而改变,这种铰称为虚铰。

1.6、自由度物体运动时可以独立变化的几何参数的数目,也即确定物体位置所需的独立坐标数目。

1.7、约束减少自由度的装置,称为联系或约束。

1.8、必要约束能改变体系自由度的约束,也即使体系成为几何不变而必须的约束。

1.9、多余约束不能减少体系自由度的约束。

1.10、计算自由度并非体系的真实自由度,而是体系的自由度数目减约束数目。

计算公式如下:W=3m-(2h+r)式中W一计算自由度;m一刚片数;h—单铰数,连接n个杆件的复铰相当于n-1个单铰;r—支座链杆数。

对于铰结链杆体系,还可用如下公式计算:W=2j-(b+r)式中j一结点数;b一杆件数二、几何不变体系的基本组成规则2.1、三刚片规则三个刚片用不在不同一条直线上的三个单铰两两铰连,组成的体系是几何不变的。

2.2、二刚片规则两个刚片用一个铰和一根不通过此铰的链杆相连,为几何不变体系;或者两个刚片用三根不全平行也不交于同一点的链杆相连,为几何不变体系。

2.3、二元体规则在一个体系上增加或拆除二元体,不会改变原有体系的几何构造性质。

三、几何构造与静定性的关系所谓体系的静定性,是指体系在任意荷载作用下的全部反力和内力是否可以根据静力平衡条件确定。

静定结构的几何构造特征是几何不变且无多余约束,而有多余约束的几何不变体系则是超静定结构。

结构力学第二章-平面体系的几何组成分析

结构力学第二章-平面体系的几何组成分析

1
1
3
2 3
有几个刚片?
有几个单铰?
有几个支座链杆?
W=3×8-(2 ×10+4)=0
22
【例3】:计算图示体系的自由度
1
2 按刚片计算
9根杆, 9个刚片
有几个单铰?
3
3 3根支座链杆
按铰结链杆计算
2
1
W=2 ×6-(9+3)=0
23
例4:计算图示体系的自由度
1①
2
②3
解: m 3, h 2, r 4
3
c.几何瞬变体系:不考虑材料的变形,在任何荷载作用下, 几何形状和位置可能产生微小的改变,随之即变成几何不 变体系的体系。
FP
FP
组成几何不变体系的条件:
• 具有必要的约束数; • 约束布置方式合理
4
d.几何常变体系:体系缺少约束或约束布置不恰当,没有确定的几 何形状与空间位置的体系(可发生持续大量的刚体位移)。
多余约束
d.必要约束:在一个体系中增加或减少一个约束,将改变体 系的自由度,则此约束称为必要约束。
结论:只有必要约束才能对体系自由度有影响
12
内容扩展内容
支杆、 固定铰支座、 定向支座、 固定支座的约束效果

视作
Ⅰ(地基)
(a) 支杆 (活动铰支座)
(b) 固定铰支座
(c) 定向支座
(d) 固定支座
I II III
3. 三个刚片之间的组成方式 三个刚片之间用三个铰两两相连,且三个铰
不在一直线上,则组成无多余约束的几何不变体
系。
三角形规律
I
30
1. 二元体规则
在体系中添加或去掉二元体,不会改变体系的几何性质和多余约 束数。

郑州大学远程结构力学练习及答案本科闭卷

郑州大学远程结构力学练习及答案本科闭卷
求图示梁C点竖向位移。EI为常数
(d)去掉右端二元体后剩下部分如图,刚片ⅠⅡ用两杆水平支杆相联(形成水平无穷远处的虚铰),ⅠⅢ用两根竖向支杆相联(形成竖向无穷远处的虚铰)ⅡⅢ用铰A相联。三铰不共线,故原体系几何不变无多余约束。
(a)先去除基础,由一基本三角形开始,增加二元体扩大刚片的范围,将体系归结为两刚片用一个铰一根链杆相连(题(a)答图),故原体系为无多余约束的几何不变系。
第四章 静定结构影响线
1、判断题
静定结构的内力和反力影响线是直线或折线组成。(D)
荷载的临界位置必然有一集中力作用在影响线顶点,若有一集中力作用在影响线顶点也必为一荷载临界位置。(C)
图示影响线是A截面的弯矩影响线。(D)
图示影响线中K点的竖标表示FP=1作用在K点时产生的K截面的弯矩。(C)
判断题
BDD
B在答案A中,A处有反力,AB杆有弯矩;在答案C中,CB段剪力为零,弯矩图平行轴线;在答案D中,梁的弯矩图凸向有误,结点不平衡,柱子有弯矩。
D在答案A中,BC是附属部分,不受力;在答案B中,B处水平反力为零,CB段无弯矩;在答案C中,C点弯矩图不应有尖点,应光滑相连。
B在答案A中,A处水平反力为零,AB段无弯矩;在答案C中,C铰处截面弯矩为零;在答案D中,BC部分能平衡外力,其它部分不受力。
ABCD
图(b)是图(a)的某量值的影响线,其中竖标yD表示FP=1作用在(D)
AK点是产生的FQD的值
BK点是产生的MD的值
CD点是产生的FQK的值
DD点是产生的MK的值
2、单项选择题
B单跨静定梁的剪力影响线是两条平行线。
2.2 A荷载作用在基本部分对附属部分无影响。
B因为画影响线用的是单位荷载FP=1,它的量纲是[力]/[力],无量纲。所以由P=1产生的任何影响量都应该在原量值的基础上再/[力]。

《结构力学》课后习题答案__重庆大学出版社

《结构力学》课后习题答案__重庆大学出版社

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

《结构力学》课后习题答案__重庆大学出版社

《结构力学》课后习题答案__重庆大学出版社

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

《结构力学》习题解答(内含解答图)

《结构力学》习题解答(内含解答图)
习题2-12图习题2-12解答图
习题2-13试对图示体系进行几何组成分析。
习题2-13图习题2-13解答图
解:将原图结点进行编号,并将支座6换为单铰,如图(b)。取基础为刚片Ⅰ,△134为刚片Ⅱ,△235为刚片Ⅲ,由规则一知,三刚片用三个不共线的铰联结组成几何不变体。在此基础上增加二元体674、785,而杆38看作多余约束。杆910由铰联结着链杆10,可看作二元体,则整个体系为有一个多余约束的几何不变体系。
习题2-7试对图示体系进行几何组成分析。
习题2-7图习题2-7解答图
解:将题中的折杆用直杆代替,如图(b)所示。杆CD和链杆1由铰D联结构成二元体可以去掉;同理,去掉二元体杆CE和链杆2,去掉二元体ACB,则只剩下基础,故整个体系为几何不变体系,且无多余约束。
另外也可用基础与杆AC、杆BC是由不共线的三个铰联结,组成几何不变体,在此几何不变体上增加二元体杆CD和链杆1、杆CE和链杆2的方法分析。,
习题2-8试对图示体系进行几何组成分析。
习题2-8图习题2-8解答图
解:为了便于分析,对图中的链杆和刚片进行编号,分析过程见图2-21(b)。首先去掉二元体NMI、JNI,然后分析剩余部分。杆AD由固定支撑与基础联结形成一体,构成几何不变体,在此基础上增加二元体DEB、EFC、EHF形成刚片Ⅰ(注意固定铰支座与铰相同);铰结△GIJ为刚片Ⅱ;刚片I与刚片Ⅱ之间用不交于一点的杆DI、杆GI、杆HJ相连,组成几何不变体。
习题2-18试对图示体系进行几何组成分析。
解:将原图结点进行编号,并将固定铰支座换为单铰,如图(b)。折杆AD上联结杆EF,从几何组成来说是多余约束;同理,折杆CD上联结杆EF也是多余约束。取基础为刚片Ⅰ,折杆AD为刚片Ⅱ,折杆CD为刚片Ⅲ。刚片Ⅰ与刚片Ⅱ是由链杆A和杆BD相连,刚片Ⅰ与刚片Ⅲ是由链杆C相连,注意,杆BD只能使用一次。由规则二知,体系为几何可变体系。

李廉锟版 结构力学 第二章 平面体系的机动分析 习题参考答案

李廉锟版 结构力学 第二章 平面体系的机动分析 习题参考答案

结构力学习题参考答案第二章平面体系的机动分析复习思考题习题8. 图2-27所示体系因A、B、C三铰共线所以是瞬变的,这样分析正确否?为什么?解:【这道题对理解思路挺有帮助的。

】第一步:计算计算自由度WW=3m-(2h+r)=3×6-7×2=4>3 所以结构是常变体系。

第二步:分析几何构造性。

去二元体(I刚片和1杆),剩下部分是II、III刚片通过2根杆相连,是常变体系。

但是,为什么会得到如题中的结论呢?是因为2杆重复利用了,相当于在体系中多加了一根杆,增加一个联系,从而得出错误结论。

几何构造性分析,所有杆件不能重复、不能遗漏。

解:第一步:计算计算自由度WW=2j-(b+r)=2×10-(17+4)=-1,有一个多余联系。

第二步:分析几何构造性。

从上至下依次去二元体,最后发现有一根杆是多余的。

该体系是有一个多于联系的几何不变体系。

习题2-2 试对图示平面体系进行机动分析。

解:第一步:计算计算自由度WW=2j-(b+r)=2×14-(25+3)=0这表明体系具有几何不变所需最少的联系数目。

第二步:分析几何构造性。

去掉二元体后如图所示,分别在三角形基础上依次增加二元体从而形成刚片I、II,此刚片I、II通过一铰和一根不通过此铰的杆相连,得到的体系是几何不变的,且没有多余联系。

解:第一步:计算计算自由度3(2)321(2303)0W m h r =−+=×−×+=或者2()212(213)0W j b r =−+=×−+= 这表明体系具有几何不变所需最少的联系数目。

第二步:分析几何构造性此体系的支座链杆只有三根,且不完全平行也不交于一点,若体系为一刚片,则他与地基是按两刚片规则组成的,因此只需分析体系本身是不是一个几何不变的刚片即可。

去掉M 和C 两个二元体。

在b 图中,KFL 刚片、ABF 刚片和GEJ 刚片通过不共线的三个铰(Ⅰ,Ⅱ)、(Ⅱ,Ⅲ)和(Ⅰ,Ⅲ)两两连接,由三刚片规则可知,体系为几何不变体系,且无多余联系。

结构力学(二)·随堂练习2020秋华南理工大学网络教育答案

结构力学(二)·随堂练习2020秋华南理工大学网络教育答案

结构力学(二)第一章绪论第二章平面体系的机动分析3.(判断题) 图示体系为无多余约束的几何不变体系。

()答题:对. 错. (已提交)参考答案:√问题解析:A. 几何不变,无多余约束B. 几何不变,有一个多余约束C. 瞬变体系D. 几何不变,有2个多余约束答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题) 图示体系为。

A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:8.(判断题) 下图的体系为几何不变体系。

()答题:对. 错. (已提交)参考答案:×问题解析:A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:B问题解析:10.(单选题) 下图所示正六边形体系为。

A. 几何常变体系B. 无多余约束的几何不变体系C. 瞬变体系D. 有多余联系的几何不变体系答题: A. B. C. D. (已提交)参考答案:C问题解析:第三章静定梁与静定刚架问题解析:4.(判断题) 如图所示力作用在梁上,最右边支座反力不为0。

()答题:对. 错. (已提交)6.(单选题) 图示两结构及其受载状态,它们的内力符合:()A. 弯矩相同,剪力不同B. 弯矩相同,轴力不同C. 弯矩不同,剪力相同D. 弯矩不同,轴力不同答题: A. B. C. D. (已提交)参考答案:B问题解析:7.(单选题) 图示结构MDC(设下侧受拉为正)为:()A. -PaB. PaC. -Pa/2D. -Pa/2答题: A. B. C. D. (已提交)参考答案:C8.(单选题) 图a结构的最后弯矩图为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∞(II III) ∞(II III)
刚片II (I II)
(I II) 刚片II (I III)
(I III)
刚片III
刚片III
刚片I
几何不变且无多余约束
刚片I
几何不变且无多余约束
7/73
【作业2】求图示系统的计算自由度
图2
图1 并进行几何构造分析
图3
8/73
【作业2】求图示系统的计算自由度
图1 并进行几何构造分析 刚片II 刚片III ∞(II III) (I II) 刚片I (I III)
刚片 m 14 单铰链结点 h 18 其中折算为2个单铰结点的 复铰结点有6个 其中折算为3个单铰结点的 复铰结点有2个 g2 单刚结点 2个 和基础相连的支杆 0个 b 0
W 3m 3g 2h b 3 14 3 2 2 18 0
1/73
第二章 平面体系的几何组成分析 课堂练习
Last Edit: 2014.02.20
【作业1】分析图示体系的几何构造
图1
图2 并求体系的计算自由度
图3
图4* 本题选做
3/73
【作业1】分析图示体系的几何构造
图1 刚片I 刚片II
几何不变且无多余约束
4/73
【作业1】分析图示体系的几何构造
W 3m 3g 2h b 3 8 3 2 2 9 3 3
11/73
瞬变体系
9/73
【作业2】求图示系统的计算自由度
内部无多余约束刚片 刚片
m 1
单刚结点 g 4 铰结点 支杆
h0 3 4 3 12
10/73
【作业2】求图示系统的计算自由度
刚片
m8
单刚结点 g 2
铰结点 h9 3个单铰结点, 3个折算为2个单铰结点的复铰结点 支杆 b3
图2
(I III) 刚片I
(II III) 刚片II
(I II) 刚片III
j 9
几何不变且无多余约束
单链杆:12根 复链杆:2根 折算为6根单链杆
W 2 j b 2 9 12 6 0
5/73
【作业1】分析图示体系的几何构造
图3
瞬变体系
刚片I
刚片II
6/73
【作业1】分析图示体系的几何构造 先考察如图所示结构 图4
相关文档
最新文档