相似三角形在实际生活中的应用
相似三角形的应用于社会发展
相似三角形的应用于社会发展相似三角形是几何学中的重要概念,其应用范围广泛,不仅仅局限于数学领域。
在社会发展中,相似三角形的原理和方法被广泛应用于各个领域,为社会的进步和发展提供了宝贵的帮助。
本文将从城市规划、经济发展和教育培训等方面来论述相似三角形在社会发展中的应用。
一、城市规划城市规划是现代社会中非常重要的一个领域,它直接关系到城市的宜居性和可持续发展。
在城市规划中,相似三角形的原理被广泛应用于建筑设计和道路布局等方面。
在建筑设计中,通过应用相似三角形的原理,可以计算出建筑物的比例关系,从而提高建筑的美观性和空间利用效率。
例如,研究表明,如果在高层建筑中采用逐层递减的比例,即每一层的面积与上一层的面积成相似三角形的比例关系,可以减轻建筑的压迫感,提高住户的舒适度。
在道路布局中,相似三角形的原理也被广泛应用。
通过研究城市的交通流量和道路宽度之间的比例关系,可以优化道路布局,提高交通的通行效率。
例如,根据相似三角形的原理,可以根据不同的交通需求,合理确定不同道路之间的宽度比例,从而确保车辆的安全通行和人流的顺畅。
二、经济发展相似三角形的应用不仅局限于城市规划领域,它在经济发展中也发挥着重要的作用。
通过研究经济数据之间的比例关系,可以揭示经济发展的规律,并为决策者提供科学的依据和指导。
例如,在研究国民经济的发展趋势时,可以通过分析不同经济指标之间的比例关系,来预测未来的经济发展趋势。
如果发现某些经济指标之间存在相似三角形的比例关系,可以根据这种关系来预测未来的经济增长率,从而制定相应的发展战略和政策。
相似三角形的应用还可以帮助企业做出有效的市场定位和产品定价决策。
通过分析市场上不同产品之间的价格和质量之间的比例关系,可以确定同类产品的市场定价范围,提高企业的市场竞争力。
三、教育培训在教育培训领域,相似三角形的原理被广泛应用于教学和学习过程中。
通过研究相似三角形的性质和应用,可以帮助学生更好地理解和掌握数学知识,提高数学学习的效果。
相似三角形在生活中的应用——走进生活_探索自然
[初中数学论文]相似三角形的应用——走进生活,探索自然[教材分析]本节内容是在学习了相似三角形识别及性质以后,让学生以此为工具建立数学模型,解决一些简单的实际问题,体会数学的价值。
经历“问题情境——建立模型——解释、应用与拓展”的过程,感受数学与现实生活的密切关系。
[设计思路]提供挑战性的问题情境(测量金字塔的高),激发学生进行思考和自主探索。
通过“与同学交流想法”,使学生在探索的过程中,进一步理解所学的知识,参与运用相似三角形的知识来解决问题的活动。
[教学目标]1.知识目标:进一步加深对相似三角形的识别和相似三角形的性质的理解,会利用相似三角形解决一些简单的实际问题。
2.能力目标:通过把实际问题转化成有关相似三角形的数学模型,初步了解数学建模的思想,培养学生分析问题、解决问题的能力。
3.情感目标:让学生体会数学源于实践又服务于实践的特点,培养应用意识,激发其学习的热情,体验探索问题的快乐,使之爱学、会学、会用。
[教学重点与难点]1.重点:利用相似三角形的相关知识解决实际问题。
2.难点:如何把实际问题转化成有关相似三角形的数学模型。
[教学过程]一、创设问题情境师:(多媒体演示,展示各种图片)同学们,今天让我们先一起来走进世界文明古迹:神秘的埃及金字塔建于4500年前,是古埃及国王与王后的陵墓,迄今已发现大大小小的金字塔110座,大多建于埃及古王朝时期。
师:现在画面所定格的是埃及现存规模最大的胡夫金字塔。
据考证,建成这座大金字塔共动用了10万人花了20年时间。
在一个烈日高照的下午,埃及著名的考古专家穆罕穆德拉着儿子小穆罕穆德来到了胡夫金字塔脚下,他想借机考一考年仅14岁的小穆罕穆德:给你一根2米高的木杆,一把皮尺,你能利用所学知识来测出塔高吗?没一会儿,小穆罕穆德就顺利解决了这个问题,你知道聪明的小穆罕穆德是如何来测量的吗?生:(思考片刻) 二、尝试探索,解决问题师:为了解决这个问题,我们先从简单问题入手。
相似三角形和全等三角形
相似三角形和全等三角形相似三角形和全等三角形是初中数学中的重要知识点,本文将分别介绍相似三角形和全等三角形的定义、性质以及应用。
一、相似三角形1. 定义相似三角形是指具有相同形状但大小不同的三角形。
即两个三角形的对应角度相等,但对应边长不相等。
2. 性质相似三角形有一些重要的性质:(1) 相似三角形的对应边成比例。
(2) 相似三角形的对应高线、中线、角平分线也成比例。
(3) 相似三角形的面积成比例的平方。
(4) 相似三角形的周长成比例。
(5) 相似三角形的内角和相等。
3. 应用相似三角形在实际应用中有着广泛的用途。
比如:(1) 制图时,可以利用相似三角形的性质,根据已知图形的大小比例绘制出所需图形。
(2) 在建筑工程中,可以通过相似三角形的性质,测量出高度、距离等。
(3) 在计算机图形学中,利用相似三角形的性质,可以将一个图形放大或缩小。
二、全等三角形1. 定义全等三角形是指具有相同大小和形状的三角形。
即两个三角形的对应边长相等,对应角度也相等。
2. 性质全等三角形有一些重要的性质:(1) 全等三角形的对应角度相等。
(2) 全等三角形的对应边相等。
(3) 全等三角形的对应高线、中线、角平分线也相等。
(4) 全等三角形的面积相等。
(5) 全等三角形的周长相等。
3. 应用全等三角形在实际应用中也有着广泛的用途。
比如:(1) 在建筑工程中,可以利用全等三角形的性质,确定角度、距离等。
(2) 在制图时,可以利用全等三角形的性质,绘制出所需图形。
(3) 在计算机图形学中,利用全等三角形的性质,可以进行图形变换,如旋转、平移等。
相似三角形和全等三角形在数学和实际应用中有着广泛的用途。
掌握它们的定义、性质和应用,对于提高数学水平和解决实际问题都具有重要意义。
相似三角形的应用-2022年中考数学一轮复习考点(浙江专用)(解析版)
考点15 相似三角形的应用【命题趋势】相似三角形的应用在中考中主要考察热点有:8字图、A字图等简单相似模型。
出题类型可以是选择填空这类小题,也可以是18~19这类解答题,难度通常不大,问题背景多以现实中的实物如树高、楼高、物体尺寸等为背景,提炼出数学模型,进而利用(或构造)简单相似模型求解长度等问题。
【中考考查重点】一、相似三角形在实际生活中的应用二、位似图形三、相似三角形与函数综合考向一:相似三角形在实际生活中的应用相似三角形在实际生活中的应用:(一)建模思想:建立相似三角形的模型(二)常见题目类型:1.利用投影、平行线、标杆等构造相似三角形求解2.测量底部可以到达的物体的高度3.测量底部不可以到达的物体的高度4.测量河的宽度【同步练习】1.如图,小明周末晚上陪父母在马路上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为()A.1米B.2米C.3米D.4米【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE 长.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴=,即=,解得AP=8,由GD∥AP可得,△EDG∽△EAP,∴=,即=,解得ED=2,故选:B.2.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为()A.2米B.3米C.米D.米【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴=,∴=,∴CD=3米,故选:B.3.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为.【分析】根据同一时刻物高与影长成正比列式求解即可.【解答】解:设木竿PQ长为xm,依题意得=,解得x=1.6,答:木竿PQ长度为1.6m,故答案为:1.6m.4.如图,有一块三角形余料,它的边BC=100m,高线AH=80m,要把它加工成矩形零件,使矩形的一边EF在BC上,其余两个顶点D、G分别在边AB、AC上,设矩形DEFG的一边长DE=xm,矩形DEFG的面积为S.(1)矩形DEFG的另一边长DG是多少?(用关于x的代数式表示)(2)求S关于x的函数表达式和自变量x的取值范围.(3)当x为多少时,矩形DEFG的面积S有最大值?最大值是多少?【分析】(1)利用矩形的性质,DG∥EF,利用同位角相等,证△ADG∽△ABC,利用相似三角形的性质求解即可;(2)由(1)可知,DG=(80﹣x),然后即可求出用x表示的矩形面积的关系式.(3)利用配方法求出最大值即可.【解答】解:(1)∵四边形DEFG是矩形,∴DG∥EF,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,∴=,∴DG=(80﹣x)(m);(2)矩形面积S=x•(80﹣x)=﹣x2+100x(0<x<80);(3)∵S=﹣(x2﹣80x)=﹣(x﹣40)2+2000,∵﹣<0,∴x=40时,S的值最大,最大值为2000.答:当x=40时,S的值最大,最大值为2000m2.考向二:位似图形位似图形满足的条件:①所有经过对应点的直线都相交于同一点(该点叫做位似中心);②这个交点到两个对应点的距离之比都相等(这个比值叫做位似比)【同步练习】1.如图,BC∥ED,下列说法不正确的是()A.AE:AD是相似比B.点A是两个三角形的位似中心C.B与D、C与E是对应位似点D.两个三角形是位似图形【分析】根据位似变换的概念和性质判断即可.【解答】解:A、当BC∥ED时,△AED∽△ACB,AE:AC是相似比,本选项说法不正确,符合题意;B、点A是两个三角形的位似中心,本选项说法正确,不符合题意;C、B与D、C与E是对应位似点,本选项说法正确,不符合题意;D、两个三角形是位似图形,本选项说法正确,不符合题意;故选:A.2.如图,已知△ABC和△ADE是以点A为位似中心的位似图形,且△ABC和△ADE的周长比为2:1,则△ABC和△ADE的位似比是()A.1:4B.4:1C.1:2D.2:1【分析】利用位似的性质求解.【解答】解:∵△ABC和△ADE是以点A为位似中心的位似图形,∴△ABC∽△ADE,位似比等于相似比,∵△ABC和△ADE的周长比为2:1,∴△ABC和△ADE的相似比为2:1,∴△ABC和△ADE的位似比是2:1.故选:D.3.如图,在网格图中,以O为位似中心,把△ABC缩小到原来的,则点A的对应点为()A.D点B.E点C.D点或G点D.D点或F点【分析】作射线AO,根据位似变换的概念判断即可.【解答】解:作射线AO,由图可知,点D和点G都在射线AO上,且=,=,则点A的对应点为D点或G点,故选:C.4.如图,在7×4方格纸中,点A,B,C都在格点上,用无刻度直尺作图.(1)在图1中的线段AC上找一个点E,使AE=AC;(2)在图2中作一个格点△CDE,使△CDE与△ABC相似.【分析】(1)构造相似比为的相似三角形即可解决问题;(2)利用勾股定理的逆定理判断出∠ACB=90°,从而解决问题.【解答】解:(1)如图,构造相似比为的相似三角形,则点E即为所求;(2)如图,∵BC2=5,AC2=20,AB2=25,∴BC2+AC2=AB2,∴∠ACB=90°,AC=2BC,∴△CDE即为所求.5.如图,在平面直角坐标系中,△ABC的顶点为A(2,1),B (1,3),C(4,1),若△A1B1C1与△ABC是以坐标原点O为位似中心的位似图形,点A、B、C的对应点分别为A1、B1、C1,且A1的坐标为(4,2).(1)请在所给平面直角坐标系第一象限内画出△A1B1C1;(2)分别写出点B1、C1的坐标.【分析】(1)(2)利用点A和点A1的坐标特征确定位似比为2,然后把点B、C的横纵坐标都乘以2得到点B1、C1的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1;(2)点B1的坐标为(2,6),点C1的坐标为(8,2).考向三:相似三角形与函数综合【方法提炼】【同步练习】1.(2021•无棣县二模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④【分析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E 时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED 的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:根据图(2)可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,相似三角形与函数的综合重点是利用相似三角形的性质,设置参数,构建对应函数模型,再利用函数的性质求解后续问题在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.2.(2020•达州)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P 为线段BC上的一动点,且和B、C不重合,连接P A,过点P作PE⊥P A交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.83 1.33 1.50 1.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm… 1.17 2.00 2.50 2.67 2.50 2.00 1.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,的长度为自变量,的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.【分析】(1)根据两角对应相等两三角形相似证明即可.(2)①根据函数的定义判断即可.②设BP=xcm,CE=ycm.利用相似三角形的性质构建二次函数,利用二次函数的性质求出y的最大值即可解决问题.【解答】(1)证明:∵AB∥CD,∴∠B+∠C=180°,∵∠B=90°,∴∠B=∠C=90°,∵AP⊥PE,∴∠APE=90°,∴∠APB+∠EPC=90°,∵∠EPC+∠PEC=90°,∴∠APB=∠PEC,∴△ABP∽△PCE.(2)解:①根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP的长度为自变量,EC的长度为因变量,故答案为:BP,EC.②设BP=xcm,CE=ycm.∵△ABP∽△PCE,∴=,∴=,∴y=﹣x2+mx=﹣(x﹣m)2+,∵﹣<0,∴x=m时,y有最大值,∵点E在线段CD上,CD=2cm,∴≤2,∴m≤4,∴0<m≤4.1.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“”字高度为72.7mm,当测试距离为3m时,最大的“”字高度为()A.121.17mm B.43.62mm C.29.08mm D.4.36mm【分析】直接利用平行线分线段成比例定理列比例式,代入可得结论.【解答】解:由题意得:CB∥DF,,∵AD=3m,AB=5m,BC=72.7mm,,∴DF=43.62(mm),故选:B.2.如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.3.国旗法规定:所有国旗均为相似矩形,在下列四面国旗中,其中只有一面不符合标准,这面国旗是()A.B.C.D.【分析】根据已知条件分别求出矩形的长与宽的比,即可得到结论.【解答】解:A、=,B、=,C、=,D、=,∵==≠,∴B选项不符合标准,故选:B.4.如图,△ABC与△A′B′C′位似,位似中心为点O,,△ABC的面积为9,则△A′B′C′面积为()A.B.6C.4D.【分析】根据位似图形的概念得到△ABC∽△A′B′C′,根据相似三角形的面积之比等于相似比的平方解答.【解答】解:根据题意知,△ABC∽△A′B′C′,∵,∴△ABC的面积:△A′B′C′面积=9:4.又∵△ABC的面积为9,∴△A′B′C′面积为4.故选:C.5.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,若OA:AA′=2:5,则△ABC与△A′B′C′的周长比为()A.2:3B.4:3C.2:9D.4:9【分析】根据题意求出OA:OA′=2:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=2:5,∴OA:OA′=2:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=2:3,∴△ABC与△A′B′C′的周长比为2:3,故选:A.6.小明的身高为1.6m,某一时刻他在阳光下的影子长为2m,与他邻近的一棵树的影长为10m,则这棵树的高为m.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设这棵树的高度为xm,根据相同时刻的物高与影长成比例,则可列比例为:,解得:x=8.故答案为:8.7.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A、B的对应点分别是C、D).若物体AB的高为6cm,小孔O到物体和实像的水平距离BE、CE分别为8cm、6cm,则实像CD的高度为cm.【分析】根据相似三角形的判定和性质定理即可得到答案.【解答】解:∵AB∥CD,∴△OAB∽△OCD,∴,∴,∴CD=4.5,答:实像CD的高度为4.5cm,故答案为:4.5.8.小丽想利用所学知识测量旗杆AB的高度,如图,小丽在自家窗边看见旗杆和住宅楼之间有一棵大树DE,小丽通过调整自己的位置,发现半蹲于窗边,眼睛位于C处时,恰好看到旗杆顶端A、大树顶端D在一条直线上,小丽用测距仪测得眼睛到大树和旗杆的水平距离CH、CG分别为7米、28米,眼睛到地面的距离CF为3.5米,已知大树DE的高度为7米,CG∥BF交AB于点G,AB⊥BF于点B,DE⊥BF于点E,交CG于点H,CF⊥BF于点F.求旗杆AB的高度.【分析】根据相似三角形的判定与性质得出比例式求解即可.【解答】解:由题意知BG=HE=CF=3.5米,∴DH=DE﹣CF=7﹣3.5=3.5(米),∵AB⊥BF,DE⊥BF,∴AG∥DH,∴△CDH∽△CAG,∴=,即,∴AG=14米,∴AB=AG+GB=14+3.5=17.5(米),∴旗杆AB的高度为17.5米.9.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)求证:△APQ∽△ABC;(2)若这个矩形的边PN:PQ=1:2,则这个矩形的长、宽各是多少?【分析】(1)根据矩形的对边平行得到BC∥PQ,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设宽为xmm,则长为2xmm,同(1)列出比例关系求解即可.【解答】解:(1)∵四边形PNQM为矩形,∴MN∥PQ,即PQ∥BC,∴△APQ∽△ABC;(2)设边宽为xmm,则长为2xmm,∵四边形PNMQ为矩形,∴PQ∥BC,∵AD⊥BC,∴PQ⊥AD,∵PN:PQ=1:2,∴PQ为长,PN为宽,∵PQ∥BC,∴△APQ∽△ABC,∴=,由题意知PQ=2xmm,AD=80mm,BC=120mm,PN=xmm,∴=,解得x=,2x=.即长为mm,宽为mm.答:矩形的长mm,宽为mm.10.(2022•禅城区校级模拟)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B、C两点重合),点F是线段BA延长线的一动点,连接DE,EF,DF,EF交AD于点G,设BE,AF=y,已知y与x之间的函数关系式如图②所示,(1)图②中y与x的函数关系式为;(2)求证:△CDE∽△ADF;(3)当△DEG是等腰三角形时,求x的值.【分析】(1)利用待定系数法可得y与x的函数表达式.(2)利用两边成比例夹角相等证明△CDE∽△ADF即可.(3)分三种情况:①若DE=DG,则∠DGE=∠DEG,②若DE=EG,如图①,作EH ∥CD,交AD于H,③若DG=EG,则∠GDE=∠GED,分别列方程计算可得结论.【解答】(1)解:设y=kx+b,由图象得:当x=1时,y=2,当x=0时,y=4,代入得:,,∴y=﹣2x+4(0<x<2).故答案为:y=﹣2x+4(0<x<2).(2)证明:∵BE=x,BC=2∴CE=2﹣x,∴==,=,∴=,∵四边形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE.(3)解:假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=.②若DE=EG,如图①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△F AG,∴=,∴=,∴x1=,x2=(舍),经检验x=是分式方程的解,∴x=.③若DG=EG,则∠GDE=∠GED,∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴=,∵△CDE∽△ADF,∴==,∴=,∴2﹣x=,∴x=.综上,x=或或.1.(2021·浙江绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【分析】利用相似三角形的性质求解即可.【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.2.(2021·浙江嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是.【分析】根据图示,对应点所在的直线都经过同一点,该点就是位似中心.【解答】解:如图,点G(4,2)即为所求的位似中心.故答案是:(4,2).3.(2021·浙江温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式,代入计算即可.【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,AB=6,∴=,即=,解得,A′B′=9,故选:B.4.(2021·浙江金华)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.【分析】(1)由题意可得,△ABP∽△EDP,则=,进而可得出DE的长;(2)过点E′作∠E′FG=∠E′D′F,过点E′作E′G⊥BC′于点G,易得△ABP′∽△E′FP′,由此可得=,在Rt△BDD′中,由勾股定理可求出BD′的长,可求出∠BD′D的正切值,设P′F的长,分别表示E′F和E′D′及FG和GD′的长,再根据BD′=13,可建立等式,可得结论.【解答】解:(1)如图,由题意可得,∠APB=∠EPD,∠B=∠EDP=90°,∴△ABP∽△EDP,∴=,∵AB=6.5,BP=4,PD=8,∴=,∴DE=13;故答案为:13.(2)如图2,过点E′作∠E′FD′=∠E′D′F,过点E′作E′G⊥BC′于点G,∴E′F=E′D′,FG=GD′,∵AB∥MN,∴∠ABD′+∠E′D′B=180°,∴∠ABD′+∠E′FG=180°,∵∠E′FB+∠E′FG=180°,∴∠ABP′=∠E′FP′,又∠AP′B=∠E′P′F,∴△ABP′∽△E′FP′,∴=即,=,设P′F=4m,则E′F=6.5m,∴E′D′=6.5m,在Rt△BDD′中,∠BDD′=90°,DD′=5,BD=BP+PD=12,由勾股定理可得,BD′=13,∴cos∠BD′D=,在Rt△E′GD′中,cos∠BD′D==,∴GD′=2.5m,∴FG=GD′=2.5m,∵BP′+P′F+FG+GD′=13,∴4+4m+2.5m+2.5m=13,解得m=1,∴E′D′=6.5,∴EE′=DE+DD′﹣D′E′=13+5﹣6.5=11.5.故答案为:11.5.5.(2021·浙江湖州)已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.【分析】(1)①设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),得出AE=OF,AE∥OF,由平行四边形的判定可得出结论;②过点B作BD⊥y轴于点D,如图1,证明△AEO∽△BDO,由相似三角形的性质得出,则可得出答案;(2)过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P 的坐标为(b,),则AE=a,OE=,PH=﹣,证明△AEO∽△GHP,由相似三角形的性质得出,解方程得出,由三角形面积公式可得出答案.【解答】(1)①证明:设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),∴AE=OF=a,∵AE⊥y轴,∴AE∥OF,∴四边形AEFO是平行四边形;②解:过点B作BD⊥y轴于点D,如图1,∵AE⊥y轴,∴AE∥BD,∴△AEO∽△BDO,∴,∴当k=4时,,即,∴S△BOE=2S△AOE=1;(2)不改变.理由如下:过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P的坐标为(b,),则AE=a,OE=,PH=﹣,∵四边形AEGO是平行四边形,∴∠EAO=∠EGO,AE=OG,∵∠EGO=∠PGH,∴∠EAO=∠PGH,又∵∠PHG=∠AEO,∴△AEO∽△GHP,∴,∵GH=OH﹣OG=﹣b﹣a,∴,∴﹣k=0,解得,∵a,b异号,k>0,∴,∴S△POE=×OE×(﹣b)=×(﹣b)=﹣,∴对于确定的实数k,动点A在运动过程中,△POE的面积不会发生变化.1.(2021•温州模拟)如图,在正六边形桌面中心正上方有一盏吊灯,在灯光下,桌面在水平地面的投影是一个面积为m2的正六边形,已知桌子的高度为0.75m,桌面边长为1m,则吊灯距地面的高度为()A.2.25m B.2.3m C.2.35m D.2.4m【分析】首先根据正六边形的面积可得正六边形的边长,进而可通过构造相似三角形,由相似三角形性质求出.【解答】解:设正六边形的边长是xm,则x•x••6=,解得x=1.5,如图,依题意知DF=FE=0.5米,FG=0.75米,CG=0.75米,∵DE∥BC,∴△F AE∽△GAC,∴,即=,解得:AF=1.5,∴AG=1.5+0.75=2.25(m),答:吊灯距地面的高度为2.25m.故选:A.2.(2021•临海市一模)如图,为测量楼高AB,在适当位置竖立一根高2m的标杆MN,并在同一时刻分别测得其落在地面上的影长AC=20m,MP=2.5m,则楼高AB为()A.15m B.16m C.18m D.20m【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵,即,∴楼高=16米.故选:B.3.(2022•温州模拟)如图,在4×7的方格中,点A,B,C,D在格点上,线段CD是由线段AB位似放大得到,则它们的位似中心是()A.点P1B.点P2C.点P3D.点P4【分析】延长CA、DB交于点P 1,根据位似中心的概念得到答案.【解答】解:延长CA、DB交于点P1,则点P1为位似中心,故选:A.4.(2021•嘉兴二模)如图,在直角坐标系中,△ABC的顶点B的坐标为(﹣1,1),现以坐标原点O为位似中心,作与△ABC的位似比为的位似图形△A'B'C',则B'的坐标为()A.B.C.或D.或【分析】根据以原点为位似中心的对应点的坐标关系,把B点的横纵坐标都乘以或﹣得到B'的坐标.【解答】解:∵位似中心为坐标原点,作与△ABC的位似比为的位似图形△A'B'C',而B的坐标为(﹣1,1),∴B'的坐标为(﹣,)或(,﹣).故选:C.5.(2021•嘉善县一模)如图,在平面直角坐标系中,点A的坐标为(1,0),点D的坐标为(3,0),若△ABC与△DEF是位似图形,则的值是()A.B.C.D.【分析】根据位似图形的概念得到AC∥DF,【解答】解:∵点A的坐标为(1,0),点D的坐标为(3,0),∴OA=1,OD=3,即=,∵△ABC与△DEF是位似图形,∴AC∥DF,∴△OAC∽△ODF,∴==,故选:B.6.(2021•瑞安市一模)数学兴趣小组计划测量公路上路灯的高度AB,准备了标杆CD,EF及皮尺,按如图竖直放置标杆CD与EF.已知CD=EF=2米,DF=2米,在路灯的照射下,标杆CD的顶端C在EF上留下的影子为G,标杆EF在地面上的影子是FH,测得FG=0.5米,FH=4米,则路灯的高度AB=米.【分析】延长CG交FH于M,根据相似三角形的判定和性质解答即可.【解答】解:如图,延长CG交FH于M,∵∠GMF=∠CMD,∠GFM=∠CDM=90°,∴△GFM∽△CDM,∴,设FM为a米,则a=(a+2)×,解得:a=,设BD=x米,AB=y米,同理可得,△CMD∽△AMB,∴,,可得,,整理得:,解得:,经检验是分式方程组的解,∴AB=5米.故答案为:5.7.(2022•鹿城区校级一模)如图,在8×8的网格中,△ABC是格点三角形,请分别在图1和图2中按要求作图.(1)在图1中以O为位似中心,作格点三角形△A1B1C1,使其与△ABC位似比为1:2.(2)在图2中作格点线段BM⊥AC.【分析】(1)连接OA,OB,OC,取OA,OB,OC的中点A1,B1,C1,连接A1B1,B1C1,C1A1即可;(2)利用数形结合的思想作出线段BM即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,线段BM即为所求.8.(2021•永嘉县校级模拟)已知一块等腰三角铁板废料如图所示,其中AB=AC=50cm,BC=60cm,现要用这块废料裁一块正方形DEFG铁板,使它的一边DE落在△ABC的一腰上,顶点F、G分别落在另一腰AB和BC上,求;(1)等腰三角形ABC的面积S△ABC;(2)正方形DEFG的边长.【分析】(1)过A作AH⊥BC于H,根据等腰三角形的性质得到BH=BC=30(cm),根据勾股定理得到AH===40(cm),由三角形的面积公式即可得到结论;(2)过B作BM⊥AC交FG于N,根据三角形的面积公式得到BM=48(cm),根据正方形的性质得到FG∥DE,根据相似三角形的性质即可得到结论.【解答】解:(1)过A作AH⊥BC于H,∵AB=AC=50cm,BC=60cm,∴BH=BC=30(cm),∴AH===40(cm),∴S△ABC=BC•AH=60×40=1200(cm2);(2)过B作BM⊥AC交FG于N,则S△ABC=AC•BM=1200,∵AC=50cm,∴BM=48(cm),∵四边形DEFG是正方形,∴FG∥DE,∴BN⊥FG,△BFG∽△BAC,∴=,∴,∴FG=,∴正方形DEFG的边长为.9.(2021•海曙区模拟)如图是某公园的一台滑梯,滑梯着地点B与梯架之间的距离BC=4m.(1)现在某一时刻测得身高1.8m的小明爸爸在阳光下的影长为0.9m,滑梯最高处A在阳光下的影长为1m,求滑梯的高AC;(2)若规定滑梯的倾斜角(∠ABC)不超过30°属于安全范围,请通过计算说明这架滑梯的倾斜角是否符合安全要求?【分析】(1)直接利用同一时刻太阳光下影长与物体高度成比例进而得出答案;(2)直接利用锐角三角函数关系得出∠ABC的取值范围.【解答】解:(1)由题意可得:=,解得:AC=2(m),答:滑梯的高AC为2m;(2)∵tan∠ABC===<tan30°=,∴∠ABC<30°,∴这架滑梯的倾斜角符合安全要求.10.(2021•婺城区校级模拟)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D 不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.【分析】(1)如图1中,作PH⊥BC于H.解直角三角形求出BH,PH,在Rt△PCH中,理由勾股定理即可解决问题.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.证明△POQ∽△BOC,推出∠OPQ=∠OBC=30°=∠PCQ,推出PQ=CQ=y,推出PC=y,在Rt△PHB 中,BH=x,PH=x,根据PC2=PH2+CH2,可得结论.(3)分两种情形:①如图2中,若直线QP交直线BC于B点左侧于E.②如图3中,若直线QP交直线BC于C点右侧于E.分别求解即可.【解答】解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC===.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴=,∴=,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=CQ=y,∴PC=y,在Rt△PHB中,BH=x,PH=x,∵PC2=PH2+CH2,∴3y2=(x)2+(4﹣x)2,∴y=(0≤x<8).(3)①如图2中,若直线QP交直线BC于B点左侧于E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于C点右侧于E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时PB=2+2,③如图4中,当点P在AB的延长线上时,∵△QCE与△BCP相似,∴∠CQE=∠CBP=120°,∴∠QCE=∠PCB=15°,作CF⊥AB于F.∵∠FCB=30°,∴∠FCP=45°,∴BF=BC=2,CF=PF=2,∴PB=2﹣2.综上所述,满足条件的PB的值为2+2或2﹣2.。
27.2.3相似三角形应用举例(教案)
5.空间观念与数据分析:培养学生运用相似三角形知识分析问题,发展空间观念和数据分析能力,提高数学素养。
三、教学难点与重点
1.教学重点
-理解相似三角形的性质:重点强调相似三角形的对应角相等、对应边成比例的基本性质,以及如何利用这些性质解决实际问题。
3.解决实际问题:结合生活实例,让学生运用相似三角形的性质解决一些实际问题,提高学生的应用能力和解决问题的能力。
4.总结相似三角形在实际生活中的应用,强调数学知识与现实生活的紧密联系。
本节课将引导学生通过实际案例,掌握相似三角形在实际问题中的应用,培养学生的动手操作能力和解决问题的能力。
二、核心素养目标
五、教学反思
在今天的教学中,我发现同学们对相似三角形的应用举例产生了浓厚的兴趣。通过引入日常生活中的实际问题,他们能够更好地理解数学知识在实际中的应用。让我感到高兴的是,大多数同学能够积极参与讨论,提出自己的观点,这充分说明了他们对这一知识点的投入。
然而,我也注意到在讲解相似三角形性质时,部分同学对识别相似三角形和确定对应关系存在一定的困难。这说明在这个环节,我需要更加耐心地引导和解释,或许可以通过更多的例子和直观的图示来帮助他们理解。
-应用相似三角形测量:掌握如何利用相似三角形进行高度和距离的测量,包括在实际问题中如何确定相似三角形和对应关系。
-生活实例的解析:通过具体实例,如测量建筑物高度、桥梁长度等,让学生掌握相似三角形在实际生活中的应用。
-数据处理与分析:学会在测量过程中处理数据,分析误差,提高测量的准确性。
举例:在测量建筑物高度时,重点讲解如何利用地面上的影子长度和已知的太阳高度角来确定建筑物的高度,强调相似三角形的实际应用。
生活中的数学(十六) 相似三角形在生活中的应用
相似三角形的应用——走进生活,探索自然源于生活,用于生活,是学习数学的主旨,通过经历“问题情境——建立模型——解释、应用与拓展”的过程,感受数学与现实生活的密切关系。
今天让我们先一起来走进世界文明古迹:神秘的埃及金字塔建于4500年前,是古埃及国王与王后的陵墓,迄今已发现大大小小的金字塔110座,大多建于埃及古王朝时期。
现在画面所定格的是埃及现存规模最大的胡夫金字塔。
据考证,建成这座大金字塔共动用了10万人花了20年时间。
在一个烈日高照的下午,埃及著名的考古专家穆罕穆德拉着儿子小穆罕穆德来到了胡夫金字塔脚下,他想借机考一考年仅14岁的小穆罕穆德:给你一根2米高的木杆,一把皮尺,你能利用所学知识来测出塔高吗?没一会儿,小穆罕穆德就顺利解决了这个问题,你知道聪明的小穆罕穆德是如何来测量的吗?为了解决这个问题,我们先从简单问题入手。
问题1:在同一时刻,物体的高度与它的影长之间有何关系?说说你的理由。
如图:BC 、EF 分别是竖立在地面上的旗杆AC 和木棒DF 的影子。
(1)在△ABC 和△DEF 中,∠C 与∠F有何关系?为什么?(2)△ABC 和△DEF 相似吗?为什么?(3)根据△ABC ∽△DEF ,你能确定AC 、BC 分别与DF 、EF 之间的关系吗?(4)假如测得DF=2米,EF=1.2米,BC=6米,那么,旗杆AC 的高度是多少? 利用阳光下的影子测量数据:木杆影长BC ,金字塔影长EF找相似:△ABC ∽△DEF 找比例:EF BC DF AC = 老穆罕穆德见刚才那个问题没难倒儿子,就又生一计,他把木杆换成了一面平面镜,继续考小穆罕穆德。
这下还真难住了小穆罕穆德,那么老穆罕穆德的问题难住你了吗?我们可以利用镜子的反射,通过测量数据:身高BC ,人与镜子间的距离AC ,金字塔与镜子间距离AE找相似:△ADE ∽△ABC 找比例:AC AE BC DE =作为考古专家的老穆罕穆德很喜欢游览世界各国的名胜古迹,对于我们中国文化古迹也是仰慕已久,这天他带着儿子来到了我们浙江杭州,参观了杭州的六和塔、西湖等各个旅游景点,在游览之余,他还时刻不忘出问题考小穆罕穆德,这不他们来到了六和塔脚下,老穆罕穆德看到不远处有一小块积水,在积水处可以看到塔顶,于是他又考小穆罕穆德了,仅用一把皮尺如何测六和塔的塔高。
相似三角形的判定与运用
相似三角形的判定与运用相似三角形是初中数学中的一个重要概念,它在几何学和实际生活中都有广泛的应用。
本文将介绍相似三角形的判定方法以及一些常见的运用场景。
一、相似三角形的判定方法相似三角形的判定有两种常见的方法:AAA相似判定法和AA相似判定法。
1. AAA相似判定法如果两个三角形的对应角度相等,则可以判定它们是相似三角形。
具体来说,如果三角形ABC与三角形DEF满足∠A=∠D,∠B=∠E,∠C=∠F,则可以得出它们相似。
2. AA相似判定法如果两个三角形的对应两个角度相等且对应两边成比例,则可以判定它们是相似三角形。
具体来说,如果三角形ABC与三角形DEF满足∠A=∠D,∠B=∠E,且AB/DE=BC/EF=AC/DF,则可以得出它们相似。
二、相似三角形的运用相似三角形在几何学和实际生活中都有许多应用,下面将介绍其中的几个常见场景。
1. 测量高度或距离利用相似三角形的性质,可以通过测量已知物体的高度或距离,计算未知物体的高度或距离。
假设有一棵树和一根竖直杆子,若树的阴影长度和竖直杆子的阴影长度相等,且树的高度未知,可以通过测量竖直杆子的高度和阴影长度,利用相似三角形的比例关系计算出树的高度。
2. 观察远处物体的大小利用相似三角形,可以观察远处物体的大小。
例如,当我们看到远处的山脉或塔楼时,由于距离较远,无法直接测量其实际高度,但可以测量其与身边物体(如人、建筑等)的相对高度关系。
通过相似三角形的比例关系,可以推算出远处物体的实际高度。
3. 制作地图在制作地图或建筑图纸时,常常用到相似三角形的原理。
由于实际空间较大,无法完整地呈现在纸上,必须将其缩小比例绘制。
通过相似三角形的比例关系,将实际长度与图纸上的长度进行对应,可以保持地图的几何形状和尺寸的相似性。
4. 相机拍摄在摄影领域,相似三角形也有广泛的应用。
例如,远摄模式下,通过调整焦距和光圈,可以使远处景物保持相对清晰,从而利用相似三角形的性质,捕捉到远离镜头的物体。
相似三角形在现实生活中的应用场景
相似三角形在现实生活中的应用场景
相似三角形的判定在现实生活中有广泛的应用,以下是一些常见的应用场景:
1.建筑和工程领域:在建筑设计和工程计算中,相似三角形的判定被用于解
决各种实际问题。
例如,工程师会利用相似三角形原理来计算建筑物的缩放比例,以确定建筑物的外观和尺寸是否符合设计要求。
此外,在桥梁、道路和水利工程的设计和建设中,工程师也需要用到相似三角形的概念来测量斜坡的斜率和角度等参数。
2.地图和导航领域:在地图和导航中,利用相似三角形的原理可以精确地测
量距离和角度。
例如,在地图上测量两点之间的距离时,可以利用相似三角形来计算实际距离。
此外,在导航中,飞行员和船员也需要用到相似三角形的概念来测量飞行或航行的角度和距离,以确保安全飞行或航行。
3.科学实验和观测:在科学实验和观测中,相似三角形的判定也被广泛用于
各种测量和计算。
例如,物理实验中常常需要测量物体的速度、加速度等物理量,这时可以利用相似三角形来测量或计算所需参数。
此外,在天文观测中,天文学家也会用到相似三角形的原理来测量天体的位置和距离。
4.日常生活中的应用:在日常生活中,我们也会遇到一些与相似三角形相关
的应用场景。
例如,摄影时需要调整相机的角度和高度,这时可以利用相似三角形的原理来计算所需的参数。
另外,在测量物体的尺寸或角度时,我们也可以利用相似三角形的概念来进行粗略的估算。
总之,相似三角形的判定在现实生活中有广泛的应用,涉及到建筑、工程、科学实验、导航、摄影等领域。
通过掌握相似三角形的原理和应用技巧,我们可以更好地解决各种实际问题,提高生活和工作的效率和质量。
相似三角形在实际生活中的应用
标准对数视力表 0.14.00.12 4.1 0.15 4.2相似三角形在实际生活中的应用【知识点击】1、如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过,那么这样的两个图形就称为位似图形。
此时的这个点叫做,相似比又称为.注:位似图形作为一种特殊的相似图形,是最重要的图形之一.但相似图形未必都能够成位似关系.所谓位似图形,是指两个图形不仅是相似图形,而且___________________,此时的这个点叫做位似中心,相似比又称为_____________.位似图形具有相似图形的所有性质,利用位似的方法可以将一个多边形放大或缩小.2、相似多边形的性质_____________________________________________________【重点演练】知识点一、位似图形例1、如图,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均在小正方形的顶点. (1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为1︰2; (2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)ABC例2、如图3,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A ′B ′C ′D ′E ′,已知OA =10cm ,OA ′=20cm ,则五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长的比值是.变式训练:1.视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E ”之间的变换是( )A .平移B .旋转C .对称D .位似2. 如图,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是. 图3A BC D EB ′′E ′y C DA图2 B′A′-1 x1 O-11y BA C3、如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是()A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+4.如图,已知△OAB 与△''B OA 是相似比为1:2的位似图形,点O 为位似中心,若△OAB 一点p (x ,y )与△''B OA 一点'p 是一对对应点,则点'p 的坐标是.知识点二、测量物体高度方法一、利用光的反射定律求物体的高度 例3、(市)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图1所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.4米,观察者目高CD =1.6米,则树(AB )的高度约为________米(精确到0.1米).方法二、利用影子计算建筑物的高度例4(市)如图2,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和1.5米.已知小华的身高为1.6米,那么他所住楼房的高度为米.例5(市)如图4,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )图1 B E DA.4.5米B.6米C.7.2米D.8米跟踪练习1、如图6,小明在一次晚自修放学回家的路上,他从一盏路灯A走向相邻的路灯B.当他走到点P时,发现自己身后的影子的顶部恰好接触到路灯A的底部,再走16米到达点Q时,发现身前的影子的顶部恰好接触到路灯B的底部.已知路灯的高是9米,小明的身高为1.5米.(1)求相邻两盏路灯之间的距离; (2)如果学校大门口恰好有一盏路灯,小明家门口也恰好有一盏路灯,小明回家共经过了26盏路灯,问:小明家距离学校多少米?(3)求小明走到两盏路灯A、B的中点时,在A、B两盏路灯下的影长及走到路灯B下时在路灯A下的影长.方法三、利用相似三角形的性质测量物体的高度或宽度例6、如图1,学校的围墙外有一旗杆AB ,甲在操场上的C 处直立3cm 高的竹竿CD ,乙从C 处退到E 处,恰好看到竹竿顶端D 与旗杆顶端B 重合,量得3CE =m ,乙的眼睛到地面的距离1.5FE =m ,丙在1C 处也直立3m 高的竹竿11C D ,乙从E 处后退6m 到1E 处,恰好看到竹竿顶端1D 与旗杆顶端B 也重合,量得114C E m =,求旗杆AB 的高.跟踪练习如图2,为了测量一条河的宽度,测量人员在对岸岸边点P 处观察到一根柱子,再在他们所在的这一侧岸上选点A 和B ,使得B ,A ,P 在一条直线上,且与河岸垂直,随后确定点C ,D ,使CA ⊥BP ,BD ⊥BP.由观测可以确定CP 与BD 的交点为D ,他们测得AB=45m ,BD=90m ,AC=60m ,从而确定河宽PA=90m ,你认为他们的结图6论对吗?图2例7、如图5是学校的旗杆,小明带着一条卷尺和一面镜子,他想借助这两样工具测量旗杆的高,请你为他设计测量的方法.练习:给你一条可以用来测量长度的皮尺和一根高2米的标杆,在没有太的时候你能测量出操场上旗杆的高度吗?说说你的做法.知识点三、相似多边形性质的应用 例8、 一块直角三角形余料,直角边BC=80cm,AC=60cm,现要最大限度地利用这个余料把它加工为一个正方形,求这个正方形的边长.跟踪练习1、已知△ABC的三边BC=6,CA=7,AB=8,其三个接正方形(四个顶点都在三角形三边上)中,记两个顶点在BC上的正方形面积为a,两个顶点在CA上的正方形的面积记为b,两个顶点在AB上的正方形的面积记为c,试探索a、b、c的大小关系.A 图5 E D C B BE D 图(1)2、有一块直角三角形木板,已知∠C=90°,AB=5cm,BC=3cm,AC=4cm,根据需要,要把它加工成一个面积最大的正方形木板,设计一个方案,应怎样裁,才能使正方形木板面积最大?并求出这个正方形木板的边长.例9、如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么,(1)当t为何值时,△QAP为等腰直角三角形;(2)求四边形QAPC面积,并提出一个与计算结果.有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?课外作业(满分50分)1、(15分)(1)选择:如图1,点O 是等边三角形PQR 的中心,P ′、Q ′、R ′分别是OP 、OQ 、OR 的中点,则△P ′Q ′R ′是位似三角形,此时△P ′Q ′R ′与△PQR 的位似比和位似中心分别是( ).A 、2,点P,B 、21,点P C 、2,点O D 、21,点O (2)、如图2, 用下面的方法可以画△AOB 的接等腰三角形,阅读后证明相应的问题.画法:①在△AOB 画等边三角形CDE ,使点C 在OA 上,点D 在OB 上;②连结OE 并延长,交AB 于点E ′,过点E ′作E ′C ′∥EC ,交OA 于点C ′,作E ′D ′∥ED ,交OB 于点 D ′;③连结C ′D ′,则△C ′D ′E ′是△AOB 的接三角形 求证:△C ′D ′E ′是等边三角形.2、(15分)请在如图所示的方格纸中,将ΔABC 向上平移3格,再向右平移6个,得ΔA 1B 1C 1,再将ΔA 1B 1C 1绕点B 1按顺时针方向旋转90°,得ΔA 2B 1C 2,最后将ΔA 2B 1C 2以点C 2为位似中心放大到2倍,得ΔA 3B 3C 2;(1) 请在方格纸的适当位置画上坐标轴(一个小正方形的边长为一个单位长度),在你所建立的直角坐标系中,点的坐标分别为:点C ()、点C 1()点C 2().3.(20分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2).(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);(3)问:当x为何值时,△AGH是等腰三角形?。
用相似三角形解决实际问题的步骤和技巧
用相似三角形解决实际问题的步骤和技巧相似三角形是几何学中的一个重要概念,它们在解决实际问题中有着广泛的应用。
本文将介绍用相似三角形解决实际问题的步骤和技巧。
一、了解相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边的比值相等。
这意味着如果已知一个三角形的一组对应角相等,则可以通过确定比值来确定另一个三角形的对应边长。
二、确定相似三角形的条件在解决实际问题时,我们需要根据已知条件确定相似三角形的条件。
一般来说,常见的相似三角形条件有以下几种:1. AA相似条件:两个三角形的两个角分别相等,则这两个三角形相似。
2. SSS相似条件:两个三角形的三边分别成比例,则这两个三角形相似。
3. SAS相似条件:两个三角形的一对对应边成比例,且夹角相等,则这两个三角形相似。
三、应用相似三角形解决实际问题的步骤解决实际问题时,我们可以按照以下步骤使用相似三角形:1. 了解问题:仔细阅读问题,理解给出的条件和要求。
2. 绘制图形:根据问题中给出的信息,绘制出问题所描述的图形。
确保图形准确无误。
3. 确定相似三角形:根据给出的条件和已知信息,确定哪些三角形是相似的。
4. 建立比例关系:根据相似三角形的性质,建立相应的比例关系。
可以利用两个三角形中对应边的长度比值来建立等式。
5. 求解未知量:利用已知条件和建立的比例关系,求解问题中的未知量。
可以通过代入已知量和已知比例求解。
四、注意事项和技巧在应用相似三角形解决实际问题时,需要注意以下几点:1. 注意单位:在求解时,要根据问题中给出的单位进行计算,并给出相应的单位答案。
2. 注意精度:在计算中,要注意四舍五入和保留有效数字的规则,确保结果的精度符合要求。
3. 检查答案:在求解完毕后,要对结果进行检查,确保符合问题的要求和已知条件。
4. 灵活运用:在实际问题中,可以灵活运用相似三角形解决问题。
有时候需要通过构造相似三角形来求解难题。
综上所述,相似三角形是解决实际问题的有力工具。
相似三角形的比例关系及应用
相似三角形的比例关系及应用相似三角形是几何学中一个重要的概念,它涉及到三角形的形状和大小之间的关系。
在本文中,我们将探讨相似三角形的比例关系以及它们在实际应用中的重要性。
一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。
它们的对应角度相等,对应边的比例相等。
具体来说,如果两个三角形的对应角度相等,那么它们一定是相似的。
根据相似三角形的性质,我们可以得到以下重要结论:1. 对应角相等:如果两个三角形的角度相对应相等,那么它们相似。
2. 对应边比例相等:两个相似三角形的对应边的比例等于它们对应边上对应边的比例。
换句话说,如果三角形ABC与三角形DEF相似,那么AB/DE = BC/EF = AC/DF。
3. 相似三角形的比例关系是传递的:如果三角形ABC与三角形DEF相似,而三角形DEF与三角形GHI相似,那么三角形ABC与三角形GHI也相似。
二、相似三角形的比例关系的应用相似三角形的比例关系在实际应用中起着重要的作用。
下面列举几个常见的应用场景:1. 测量高度和距离:在无法直接测量物体高度或远离的情况下,可以利用相似三角形的比例关系来计算。
例如,通过测量树影和人影的长度,可以利用相似三角形的比例关系计算出树的高度。
2. 模型制作:在模型制作过程中,常常需要将真实物体缩小或放大。
使用相似三角形的比例关系,可以确定每个部分的大小和位置。
3. 建筑设计和工程:在建筑设计和工程领域,相似三角形的比例关系常用于计算建筑物的缩放比例、测量建筑物的高度、设计地图等。
利用相似三角形的比例关系,可以在不实际测量的情况下进行设计和规划。
4. 光学:在光学中,利用相似三角形的比例关系可以计算物体的实际大小和位置。
例如,可以通过测量物体的投影和相似三角形的比例关系来计算物体的实际高度。
5. 航空导航:在航空导航中,飞行员可以利用相似三角形的比例关系来计算自己的位置和航向。
通过测量目标物体和机身的角度,利用相似三角形的比例关系计算出目标物体的距离和高度。
相似三角形及其应用
相似三角形及其应用相似三角形是指两个或多个三角形的对应角度相等,并且对应的边长成比例。
在几何学中,相似三角形是一个重要的概念,具有广泛的应用。
本文将介绍相似三角形的性质以及它在实际问题中的应用。
一、相似三角形的性质1. AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。
2. SSS相似定理:如果两个三角形的三条边对应成比例,则这两个三角形相似。
3. SAS相似定理:如果两个三角形的两边成比例,且包含这两边的夹角相等,则这两个三角形相似。
4. 相似三角形中对应边的比例关系:如果三角形ABC与三角形DEF相似,那么AB与DE的比例等于AC与DF的比例,BC与EF的比例等于AC与DF的比例,AB与DE的比例等于BC与EF的比例。
二、相似三角形的应用1. 测量难以直接获取的距离:通过相似三角形的比例关系,可以利用已知的距离和长度来计算无法直接测量的距离和长度。
例如,在实际测绘中,可以通过测量一棵树的阴影以及测量人的身高和阴影长度,来计算树的高度。
2. 解决高空物体的测量问题:在很多时候,无法直接测量高空物体的高度,但可以通过相似三角形的比例关系来间接计算。
比如,在测量高楼的高度时,可以通过测量建筑物的阴影长度以及测量阴影与高楼的投影角度,来计算出高楼的实际高度。
3. 三角测量法的应用:在导航、航海和地理测量等领域,三角测量法是一种常用的测量技术。
这种方法利用相似三角形的性质,通过测量三角形的边长和角度来计算未知的长度和距离。
4. 建筑工程中的应用:在建筑工程中,相似三角形的概念经常被应用于设计、施工和测量。
通过相似三角形的比例关系,可以确定建筑物的尺寸、高度和角度,保证工程的准确性和稳定性。
5. 几何模型的相似:在计算机图形学和动画制作中,相似三角形的概念被广泛应用。
通过构建相似的几何模型,可以实现图形的放大、缩小和形变,从而实现各种特效和动画效果。
总结:相似三角形是几何学中一个重要的概念,用于描述两个或多个三角形的形状和尺寸关系。
生活中的相似三角形例子
生活中的相似三角形例子
1. 荧幕比例:在生活中,我们常见到的电视、电脑屏幕、手机屏幕等都是长方形形状的。
而这些屏幕的宽高比就是一个相似三角形的例子。
无论屏幕大小如何,其长、宽之比保持不变。
2. 缩影效应:当我们在夏天看到大树在地上的倒影时,就可以看到一个相似三角形的例子。
树的倒影与树本身形状相似,但比实际树小。
这是因为光线从空气到水中传播时会发生折射,使得倒影与实际物体之间的关系呈现出比例关系。
3. 树木生长:树木的生长过程中,树枝的形状也呈现出相似三角形的特点。
例如,一个树枝上的小枝与整个树枝的形状相似,但比整个树枝小。
这是因为树枝上的小枝也在进行生长,但其生长速度比整个树枝慢,从而形成了相似的形状。
《相似三角形的应用》 讲义
《相似三角形的应用》讲义一、相似三角形的定义与性质相似三角形是指对应角相等,对应边成比例的两个三角形。
相似三角形具有以下重要性质:1、对应角相等:如果两个三角形相似,那么它们的对应角大小相等。
2、对应边成比例:相似三角形的对应边长度之比相等。
3、周长比等于相似比:两个相似三角形的周长之比等于它们的相似比。
4、面积比等于相似比的平方:相似三角形的面积之比等于相似比的平方。
二、相似三角形的判定方法1、两角对应相等的两个三角形相似。
2、两边对应成比例且夹角相等的两个三角形相似。
3、三边对应成比例的两个三角形相似。
三、相似三角形在实际生活中的应用1、测量高度在测量一些无法直接测量高度的物体时,如大树、高楼等,可以利用相似三角形的原理。
例如,要测量一棵大树的高度,可以在与大树底部水平的位置,立一根已知长度的标杆,然后测量标杆的影子长度和大树的影子长度。
由于太阳光线是平行的,所以标杆和大树与各自影子构成的三角形相似。
设标杆长度为 a,标杆影子长度为 b,大树影子长度为 c,大树高度为 h,则根据相似三角形的性质可得:a/b = h/c,从而可以计算出大树的高度 h = ac/b。
2、测量距离在测量一些无法直接到达的距离时,也可以运用相似三角形。
比如,要测量一条河流的宽度,在河的一侧选择一个点 A,然后在对岸选择一个能够直接到达 A 点的点 B,接着在河的这一侧再选一点 C,使得AC 垂直于河岸。
测量 AC 和 BC 的长度,以及角 BAC 的大小。
因为三角形 ABC 和三角形 ABD(D 为过点 C 作与 AB 平行的线与对岸的交点)相似,所以可以通过相似三角形的性质计算出河流的宽度 BD。
3、计算角度在一些几何问题中,通过相似三角形可以计算出某些角度的大小。
例如,在一个复杂的图形中,如果能够找出相似三角形,根据已知角的大小和相似三角形对应角相等的性质,就可以求出其他角的度数。
4、地图比例尺地图上的比例尺也是基于相似三角形的原理。
相似三角形在现实生活中的应用
应用比例解题
边长比例+对应角相等
1.使用相似三角形解决实际问题,需要掌握边长比例和对应角相等的概念,并且需要注意确定哪些角度以及哪些边是对应的。
2.当两个三角形相似时,我们可以利用边长比例+对应角相等,通过知道一个确定的边长或角度,来求出其他未知的边长或角度。这种方法常用于建筑工程计算、地图比例尺计算等实际生活中的问题解决。
直角三角形与比例
直角三角形的一条直角边上的中线等于斜边的一半,这可以用于构建相似三角形。
在相似三角形中,两个三角形的对应边的比例相等,可以利用这个性质求解一些实际问题。例如,可以用直角三角形的勾股定理和相似三角形的比例关系求出高度、边长等参数。
相似三角形可以用于估计远处物体的高度、距离等,例如在测量电线塔高度、建筑物高度等方面有广泛应用。
2023/6/1
目录
CONTENTS
相似三角形面积比例为边比例平方
根据公式,可以在实际应用中解决许多与比例相关的问题,例如测量高楼建筑物的高度或深度、估算远离我们的大型物体的大小或形状,以及计算三角形的面积等。此外,通过掌握相似三角形的解题技巧,我们还可以更好地理解几何学中的概念,提高我们的数学素养和应用能力。
1. 通过对应角相等,可以推导出平行线之间的性质。当两条平行线被一条横线所切分时,所形成的对应角相等的三角形也是相似的。这可以帮助我们推导出平行线的基本性质,如平行线上的相邻角互补,平行线之间的距离相等等。
2. 对应角相等还可以用于解决三角形的问题。当两个三角形中对应角相等时,这两个三角形是相似的。利用相似三角形的性质,我们可以解决一些涉及到三角形的问题,如求解三角形的面积、周长等。同时,相似三角形的性质也可以帮助我们推导出勾股定理、正弦定理、余弦定理等三角函数公式。
了解相似三角形的性质和应用
了解相似三角形的性质和应用相似三角形是几何学中重要的概念之一,它们具有一些独特的性质和应用。
通过了解相似三角形的性质,我们可以在实际问题中应用相似三角形的概念解决一系列的数学和几何问题。
本文将介绍相似三角形的性质和应用,并通过实例来加深理解。
一、相似三角形的性质相似三角形是指具有相同形状但可能不同大小的三角形。
相似三角形的性质有以下几个方面:1. 边比例:相似三角形的对应边之间有相等的比例关系。
设有两个相似三角形ABC和DEF,其中AB/DE = AC/DF = BC/EF。
这意味着相似三角形的对应边长之比是相等的。
2. 角度相等:相似三角形的对应角是相等的。
即角A等于角D,角B等于角E,角C等于角F。
这是相似三角形的一个重要性质,可以通过边对边的比例关系推导出来。
3. 高度比例:相似三角形的高度之比等于对应边之比。
如果相似三角形ABC和DEF,高度分别为h1和h2,对应边长为AB和DE,那么h1/h2 =AB/DE。
这个性质在计算相似三角形的高度时很有用。
4. 面积比例:相似三角形的面积比等于对应边长平方的比。
设有两个相似三角形ABC和DEF,面积分别为S1和S2,对应边长之比为k,那么S1/S2 = k²。
这个性质在计算相似三角形面积的问题中应用广泛。
二、相似三角形的应用相似三角形的性质在实际问题中应用广泛,特别是在测量和建模方面。
以下是一些常见的应用场景:1. 高度测量:通过相似三角形的高度比例性质,可以利用影子定理或者利用物体和它的影子的尺寸比来计算物体的高度。
例如,一个人的影子长度和身高的比例可以用来计算他所在位置的物体的高度。
2. 远离地面的测量:在无法直接测量物体的高度时,可以利用相似三角形的原理进行测量。
例如,通过测量一个建筑物的阴影与一个水平杆的阴影之间的长度比例,可以计算出建筑物的高度。
3. 建模与比例放大:在建筑设计和工程模型中,可以利用相似三角形的边比例性质进行模型的设计和比例放大。
相似三角形应用举例
相似三角形应用举例利用三角形的相似,可以解决一些不能直接测量的物体的长度,宽度以及视线遮挡问题。
例1:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。
如图27.2-8,如果木杆EF长2m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO练习:1、在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?2.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高多少m。
3、小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为几米.OBDC A ┏┛OBA(F)ED例2、为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S 共线且直线PS与河垂直,接着在过点S且与PS 垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.练习、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为多少米.例3.已知左右并排的两棵大树高分别是AB=8cm,CD=12cm,两树的根部的距离BD=5m,一个身高1.6m的人沿着正对这两棵数的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C.S TPQ R ba练习、1、如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度。
相似三角形在生活中的应用
相似三角形在生活中的应用
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
1、阳光通过窗口照到室内,在地面上留下1.6m宽的亮区DE,已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,那么窗口底边离地面的高度BC= m .
2、在△ABC中,AB=6cm,BC=12cm,点P从点A开始沿AB边向B点以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,经几秒钟△PBQ与△ABC相似?
3、如图,某学习小组选一名身高为的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测量该同学的影长为,另一部分同学测量同一时刻旗杆影长为,那么旗杆的高度是_______ .
4、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面米,标杆为米,且BC=1米,CD=5米,求电视塔的高ED。
5、小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为米和2米,求旗杆AB的高度.
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
《相似三角形应用举例》 知识清单
《相似三角形应用举例》知识清单一、相似三角形的定义及性质相似三角形是指对应角相等,对应边成比例的三角形。
其性质包括:1、相似三角形对应边的比称为相似比。
2、相似三角形的对应角相等。
3、相似三角形对应边成比例。
4、相似三角形的周长比等于相似比。
5、相似三角形的面积比等于相似比的平方。
二、相似三角形的判定方法1、两角分别相等的两个三角形相似。
如果两个三角形的两个角对应相等,那么这两个三角形相似。
例如,在三角形 ABC 和三角形 A'B'C' 中,如果∠A =∠A',∠B=∠B',则三角形 ABC 相似于三角形 A'B'C'。
2、两边成比例且夹角相等的两个三角形相似。
当两个三角形的两组对应边的比相等,并且它们的夹角相等时,这两个三角形相似。
3、三边成比例的两个三角形相似。
如果两个三角形的三条边对应成比例,那么这两个三角形相似。
三、相似三角形在实际生活中的应用1、测量高度例如,要测量一棵大树的高度,但我们无法直接测量。
此时,可以在同一时刻,在大树旁边立一根已知长度的杆子,测量杆子的影子长度和大树的影子长度。
因为太阳光线是平行的,所以杆子和大树分别与它们的影子构成的两个三角形相似。
根据相似三角形的对应边成比例,就可以计算出大树的高度。
假设杆子的高度为 h1,影子长度为 l1,大树的高度为 h2,影子长度为 l2。
因为两个三角形相似,所以有:h1 / h2 = l1 / l2 ,则 h2 =h1 × l2 / l1 。
2、测量距离在不能直接测量两点之间的距离时,可以利用相似三角形来解决。
比如,要测量一条河的宽度。
可以在河的一侧选择一个点 A,然后在河的另一侧选择一个点 B,使得 AB 垂直于河岸。
接着,在河岸上选择一个点 C,再沿着与河岸垂直的方向走到点 D,使得点 D、C、B 三点共线。
测量 AC 和 CD 的长度。
因为三角形 ABC 和三角形 ADC 相似,所以有:AB / AC = CD / AD ,从而可以计算出 AB 的长度,即河的宽度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准对数视力表 0.1
4.0
0.12 4.1 0.15 4.2 相似三角形在实际生活中的应用
【知识点击】
1、如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过 ,那么这样的两个图形就称为位似图形。
此时的这个点叫做 ,相似比又称为 .
注:位似图形作为一种特殊的相似图形,是最重要的图形之一.但相似图形未必都能够成位似关系.所谓位似图形,是指两个图形不仅是相似图形,而且___________________,此时的这个点叫做位似中心,相似比又称为_____________.位似图形具有相似图形的所有性质,利用位似的方法可以将一个多边形放大或缩小.
2、相似多边形的性质_____________________________________________________
【重点演练】
知识点一、位似图形
例1、如图,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均在小正方形的顶点. (1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为1︰2; (2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)
A
B
C
例2、如图3,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA ′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .
变式训练:
1.视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两
个“E ”之间的变换是( )
A .平移
B .旋转
C .对称
D .位似
2. 如图,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是 .
图3
A B
C D E
B ′
′
E ′
y x A
B C D F
E G
O
图 4
A
B
C D E
F
M N
图2 B′
A′
-1 x
1
O
-1
1
y B
A C 3、如图,△ABC 中,A ,
B 两个顶点在x 轴的上方,点
C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( ) A .12
a -
B .1
(1)2
a -+
C .1
(1)2a --
D .1
(3)2
a -+
4.如图,已知△OAB 与△''B OA 是相似比为1:2的位似图形,点O 为位似中心,若△OAB 内一点p (x ,y )与△''B OA 内一点'p 是一对对应点,则点'p 的
坐标是 .
知识点二、测量物体高度
方法一、利用光的反射定律求物体的高度 例3、(湖州市)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图1所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.4米,观察者目高CD =1.6米,则树(AB )的高度约为________米(精确到0.1米).
方法二、利用影子计算建筑物的高度
例4(成都市)如图2,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和1.5米.已知小华的身高为1.6米,那么他所住楼房的高度为 米.
例5(深圳市)如图4,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )
A.4.5米
B.6米
C.7.2米
D.8米
图1 B E D
跟踪练习
1、如图6,小明在一次晚自修放学回家的路上,他从一盏路灯A走向相邻的路灯B.当他走到点P时,发现自己身后的影子的顶部恰好接触到路灯A的底部,再走16米到达点Q时,发现身前的影子的顶部恰好接触到路灯B的底部.已知路灯的高是9米,小明的身高为1.5米.
(1)求相邻两盏路灯之间的距离; (2)如果学校大门口恰好有一盏路灯,小明家门口也恰好
有一盏路灯,小明回家共经过了26盏路灯,问:小明家距离学校多少米?
(3)求小明走到两盏路灯A、B的中点时,在A、B两盏路灯下的影长及走到路灯B下时在路灯A下的影长.
方法三、利用相似三角形的性质测量物体的高度或宽度
例6、如图1,学校的围墙外有一旗杆AB ,甲在操场上的C 处直立3cm 高的竹竿CD ,
乙从C 处退到E 处,恰好看到竹竿顶端D 与旗杆顶端B 重合,量得3CE =m ,乙的眼睛到地面的距离
1.5FE =m ,丙在1C 处也直立3m 高的竹竿11C D ,乙从E 处后退6m 到1E 处,恰好看到竹竿顶端1D 与
旗杆顶端B 也重合,量得114C E m =,求旗杆AB 的高.
跟踪练习
如图2,为了测量一条河的宽度,测量人员在对岸岸边点P 处观察到一根柱子,再在他们所在的这一侧岸上选点A 和B ,使得B ,A ,P 在一条直线上,且与河岸垂直,随后确定点C ,D ,使CA ⊥BP ,BD ⊥BP.由观测可以确定CP 与BD 的交点为
D ,他们测得AB=45m ,BD=90m ,AC=60m ,从而确定河宽PA=90m ,你认为他们的结论对吗?
A 图6
图2
例7、如图5是学校的旗杆,小明带着一条卷尺和一面镜子,他想借助这两样工具测量旗杆的高,请你为他设计测量的方法.
练习:给你一条可以用来测量长度的皮尺和一根高2米的标杆,在没有太阳光的时候你能测量出操场上旗杆的高度吗?说说你的做法.
知识点三、相似多边形性质的应用 例8、 一块直角三角形余料,直角边BC=80cm,AC=60cm,现要最大限度地利用这个余料把它加工为一个正方形,求这个正方形的
边长.
跟踪练习
1、已知△ABC的三边BC=6,CA=7,AB=8,其三个内接正方形(四个顶点都在三角形三边上)中,记两个顶点在BC上的正方形面积为a,两个顶点在CA上的正方形的面积记为b,两个顶点在AB上的正方形的面积记为c,试探索a、b、c的大小关系.
A 图5 E D C B A B
E
D 图(1)
2、有一块直角三角形木板,已知∠C=90°,AB=5cm,BC=3cm,AC=4cm,根据需要,要把它加工成一个面积最大的正方形木板,设计一个方案,应怎样裁,才能使正方形木板面积最大?并求出这个正方形木板的边长.
例9、如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿
AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D
开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(s)
表示移动的时间(0≤t≤6),那么,(1)当t为何值时,△QAP为等
腰直角三角形;(2)求四边形QAPC面积,并提出一个与计算结果.
有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
课外作业(满分50分)
1、(15分)(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′是位似三角形,此时△P′Q′R′与△PQR的位似比和位似中心分别是().
A 、2,点P,
B 、
21,点P C 、2,点O D 、2
1
,点O (2)、如图2, 用下面的方法可以画△AOB 的内接等腰三角形,阅读后证明相应的问题.
画法:①在△AOB 内画等边三角形CDE ,使点C 在OA 上,点D 在OB 上;
②连结OE 并延长,交AB 于点E ′,过点E ′作E ′C ′∥EC ,交OA 于点C ′,作E ′D ′∥ED ,交OB 于点 D ′;
③连结C ′D ′,则△C ′D ′E ′是△AOB 的内接三角形 求证:△C ′D ′E ′是等边三角形.
2、(15分)请在如图所示的方格纸中,将ΔABC 向上平移3格,再向右平移6个,得ΔA 1B 1C 1,再将ΔA 1B 1C 1绕点B 1按顺时针方向旋转90°,得ΔA 2B 1C 2,最后将ΔA 2B 1C 2以点C 2为位似中心放大到2倍,得ΔA 3B 3C 2;
(1) 请在方格纸的适当位置画上坐标轴(一个小正方形的边长为一个单位长度),在你所建立的直角坐标系中,点的坐标分别为:点C ( )、点C 1( )点C 2( ).
3.(20分)如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =EF =9,∠BAC =∠DEF =90°,固定△ABC ,将△EFD 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE 、DF (或它们的延长线)分别交BC (或它的延长线)于G 、H 点,如图(2).
(1)问:始终与△AGC相似的三角形有及;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);(3)问:当x为何值时,△AGH是等腰三角形?。