相似三角形在实际生活中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准对数视力表 0.1

4.0

0.12 4.1 0.15 4.2 相似三角形在实际生活中的应用

【知识点击】

1、如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过 ,那么这样的两个图形就称为位似图形。此时的这个点叫做 ,相似比又称为 .

注:位似图形作为一种特殊的相似图形,是最重要的图形之一.但相似图形未必都能够成位似关系.所谓位似图形,是指两个图形不仅是相似图形,而且___________________,此时的这个点叫做位似中心,相似比又称为_____________.位似图形具有相似图形的所有性质,利用位似的方法可以将一个多边形放大或缩小.

2、相似多边形的性质_____________________________________________________

【重点演练】

知识点一、位似图形

例1、如图,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均在小正方形的顶点. (1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为1︰2; (2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)

A

B

C

例2、如图3,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA ′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .

变式训练:

1.视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两

个“E ”之间的变换是( )

A .平移

B .旋转

C .对称

D .位似

2. 如图,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是 .

图3

A B

C D E

B ′

E ′

y x A

B C D F

E G

O

图 4

A

B

C D E

F

M N

图2 B′

A′

-1 x

1

O

-1

1

y B

A C 3、如图,△ABC 中,A ,

B 两个顶点在x 轴的上方,点

C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( ) A .12

a -

B .1

(1)2

a -+

C .1

(1)2a --

D .1

(3)2

a -+

4.如图,已知△OAB 与△''B OA 是相似比为1:2的位似图形,点O 为位似中心,若△OAB 内一点p (x ,y )与△''B OA 内一点'p 是一对对应点,则点'p 的

坐标是 .

知识点二、测量物体高度

方法一、利用光的反射定律求物体的高度 例3、(湖州市)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图1所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.4米,观察者目高CD =1.6米,则树(AB )的高度约为________米(精确到0.1米).

方法二、利用影子计算建筑物的高度

例4(成都市)如图2,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和1.5米.已知小华的身高为1.6米,那么他所住楼房的高度为 米.

例5(深圳市)如图4,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )

A.4.5米

B.6米

C.7.2米

D.8米

图1 B E D

跟踪练习

1、如图6,小明在一次晚自修放学回家的路上,他从一盏路灯A走向相邻的路灯B.当他走到点P时,发现自己身后的影子的顶部恰好接触到路灯A的底部,再走16米到达点Q时,发现身前的影子的顶部恰好接触到路灯B的底部.已知路灯的高是9米,小明的身高为1.5米.

(1)求相邻两盏路灯之间的距离; (2)如果学校大门口恰好有一盏路灯,小明家门口也恰好

有一盏路灯,小明回家共经过了26盏路灯,问:小明家距离学校多少米?

(3)求小明走到两盏路灯A、B的中点时,在A、B两盏路灯下的影长及走到路灯B下时在路灯A下的影长.

方法三、利用相似三角形的性质测量物体的高度或宽度

例6、如图1,学校的围墙外有一旗杆AB ,甲在操场上的C 处直立3cm 高的竹竿CD ,

乙从C 处退到E 处,恰好看到竹竿顶端D 与旗杆顶端B 重合,量得3CE =m ,乙的眼睛到地面的距离

1.5FE =m ,丙在1C 处也直立3m 高的竹竿11C D ,乙从E 处后退6m 到1E 处,恰好看到竹竿顶端1D 与

旗杆顶端B 也重合,量得114C E m =,求旗杆AB 的高.

跟踪练习

如图2,为了测量一条河的宽度,测量人员在对岸岸边点P 处观察到一根柱子,再在他们所在的这一侧岸上选点A 和B ,使得B ,A ,P 在一条直线上,且与河岸垂直,随后确定点C ,D ,使CA ⊥BP ,BD ⊥BP.由观测可以确定CP 与BD 的交点为

D ,他们测得AB=45m ,BD=90m ,AC=60m ,从而确定河宽PA=90m ,你认为他们的结论对吗?

A 图6

相关文档
最新文档