[高等代数(下)课外习题-第六章-向量空间]

合集下载

高等数学第06章 向量代数与空间解析几何习题详解

高等数学第06章 向量代数与空间解析几何习题详解



ab AC 2 AM 即 (ab) 2 MA 于是 MA 1 (ab) 2 因为 MC MA 所以




MC 1 (ab) 又因ab BD 2 MD 所以 MD 1 (ba) 2 2
2 2
M1M 3 (4 5)2 (3 2)2 (1 3)2 6 ,即 M1M 3 M 2 M 3 , 因此结论成立.
11、 在 yoz 坐标面上,求与三个点 A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设 yoz 坐标面所求点为 M (0, y, z ) ,依题意有 | MA || MB || MC | ,从而
14 14 ,故所求点为 (0,0, ) . 9 9
13、 求 使向量 a { ,1,5} 与向量 b {2,10,50} 平行.
2
第六章 向量代数与空间解析几何习题详解
解:由 a // b 得

2

1 5 1 得 . 10 50 5
14、 求与 y 轴反向,模为 10 的向量 a 的坐标表达式. 解: a = 10 ( j ) 10 j = {0, 10,0} .
7、已知点 A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐
1
第六章 向量代数与空间解析几何习题详解
标). 解:分别为 (a, b,0), (0, b, c), (a,0, c), (a,0,0), (0, b,0), (0,0, c) .
8、过点 P(a, b, c) 分别作平行于 z 轴的直线和平行于 xOy 面的平面,问它们上面的点的 坐标各有什么特点? 解:平行于 z 轴的直线上面的点的坐标: x a, y b,z R ;平行于 xOy 面的平面上的 点的坐标为 z c, x, y R . 9、求点 P(2,-5,4)到原点、各坐标轴和各坐标面的距离 . 解:到原点的距离为 3 5 ,到 x 轴的距离为 41 ,到 y 轴的距离为 2 5 ,到 z 轴的距离 为 29 .

高数AII第6章答案

高数AII第6章答案
x1 c a b [abc ] 0 x2 x3 y1 y2 y3 z1 z2 0 . z3
(二)曲面与曲线
1.空间曲面方程 a.一般方程: F ( x, y, z ) 0 ;b.显式方程: z f ( x, y ) ;
x x (u , v ) c.参数方程 y y (u , v ) ,其中 (u , v) D , D 为 uv 平面上某一区域. z z (u , v )
3
直线的方向向量. 直线的上述 3 种方程可互相转化. 2.点、直线、平面之间的关系 (1)两条直线之间的关系: x x1 y y1 z z1 x x2 y y 2 z z 2 设直线 l1 : , l2 : ,且其方向向量分别为 m1 n1 p1 m2 n2 p2 s1 (m1 , n1 , p1 ) 和 s2 (m2 , n2 , p2 ) ,两直线的夹角是指两直线的方向向量 s1 、 s2 之间的夹 角(取锐角)记为 .则 |s s | | m1 m2 n1 n2 p1 p2 | π (0≤ ≤ ) . cos 1 2 2 2 2 2 2 2 | s1 | | s2 | 2 m1 n1 p1 m2 n2 p2 由此可知: a.两直线平行(含重合) : l1 // l2
第六章
向量代数与空间解析几何 一、内容提要
(一)向量
1.方向角与方向余弦 若 a = ( x, y, z ) , 则有 cos 2.向量的线性运算及其性质 (1)加减法运算: 向量加法运算遵循平行四边形法则或三角形法则. 设 a ( x1 , y1 , z1 ) , b ( x2 , y2 , z2 ) ,则 a b ( x1 x2 , y1 y2 , z1 z2 ) . (2)数乘运算: 向量 a 与实数 的乘积,记为 a .设 a ( x, y, z ) ,则 a ( x, y, z ) ,

(完整版)第六章线性空间练习题参考答案

(完整版)第六章线性空间练习题参考答案

第六章 线性空间练习题参考答案一、填空题1.已知0000,,00V a bc a b c R c b ⎧⎫⎛⎫⎪⎪ ⎪=+∈⎨⎬ ⎪⎪⎪ ⎪+⎝⎭⎩⎭是33R ⨯的一个子空间,则维(V ) = 3 , V 的一组基是000000000100,100,010*********⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.在P 4中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是3k ≠(以1234,,,αααα为行或者列构成的行列式不为零). 3.已知a 是数域P 中的一个固定的数,而1{(,,,),1,2,,}n i W a x x x P i n =∈=是P n+1的一个子空间,则a = 0 ,而维(W)=n 4.维数公式为12dim dim V V +=1212dim()dim()V V V V ++.5.设123,,εεε是线性空间V 的一组基,112233x x x αεεε=++,则由基123,,εεε到基231,,εεε的过渡矩阵T =001100010⎛⎫⎪⎪ ⎪⎝⎭,而α在基321,,εεε下的坐标是321(,,)x x x 由基123,,εεε到基233112,,εεεεεε+++的过渡矩阵为T =011101110⎛⎫⎪⎪ ⎪⎝⎭.6.数域P 上n 级对称矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级反对称矩阵全体构成数域P 上(1)2n n -维线性空间,数域P 上n 级上三角矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级对交矩阵全体构成数域P 上n 维线性空间,数域P 上n 级数量矩阵全体构成数域P 上 1 维线性空间.二、判断题1.设n n V P ⨯=,则{,0}n n W A A P A ⨯=∈=是V 的子空间.错.行列式为零的两个方阵的和的行列式未必为零,因此W 中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)2.已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间,且维(V )=2. 错.是子空间,但是是4维的,其基为(1,0),(,0),(0,1),(0,)i i .3.设,n n A B P ⨯∈,V 是0A X B ⎛⎫= ⎪⎝⎭的解空间,V 1是AX =0的解空间,V 2是(A +B)X =0的解空间,则12V V V =.正确. 12V V 中的向量既满足AX =0,又满足(A +B)X =0,因此也满足BX =0,即满足0A X B ⎛⎫= ⎪⎝⎭,即为V 中的向量.反之,V 中的向量既在1V 中,又在2V 中,即为12V V 中的向量.因此12V V V =.4.设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组12,,,s ααα线性表出,则维(W)=s.正确.根据定理1.5.设W 是线性空间V 的子空间,如果,,V αβ∈但,W W αβ∉∉且则必有.W αβ+∉错误.可能.W αβ+∈如取,αβ为一对互为负向量,则0.W αβ=+∈ 6. }0|),,{(33321=∈=x R x x x W 是3R 的子空间.正确. 基为(1,0,0),(0,1,0),维数为2. 7.}1|),,{(23321=∈=x R x x x W 是3R 的子空间. 错误.不包含零向量.8.}|),,{(3213321x x x R x x x W ==∈= 是3R 的子空间. 正确.基为(1,1,1),维数为1.9.}|),,{(3213321x x x R x x x W -=∈= 是3R 的子空间. 正确. 基为(1,1,0),(1,0,-1),维数为2. 三、计算题1.求所有与A 可交换的矩阵组成的nn P ⨯的子空间()C A 的维数与一组基,其中100020003A ⎛⎫⎪= ⎪ ⎪⎝⎭.解:设矩阵33()ij B b ⨯=与A 可交换,即有AB BA =.即111213111213212223212223313233313233100100020020003003b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪= ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.111213111213212223212223313233313233232222333323b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 所以有,()0,,1,2,3.ij ij ij ib b j i j b i j =-==当i j ≠时,0ij b =,因此11223300()0000b C A b b ⎧⎫⎛⎫⎪⎪⎪=⎨⎬ ⎪⎪⎪ ⎪⎝⎭⎩⎭ 维数为3,基为112233,,E E E .2.在线性空间P 4中,求由基1234,,,αααα到基1234,,,ββββ的过渡矩阵,并求(1,4,2,3)α=在基1234,,,αααα下的坐标,其中1234(1,0,0,0),(4,1,0,0),(3,2,1,0),(2,3,2,1)αααα===-=- 1234(1,1,8,3),(0,3,7,2),(1,1,6,2),(1,4,1,1).ββββ====--- 解:令过渡矩阵为T ,则有10111432131401238761001232210001T --⎛⎫⎛⎫⎪⎪- ⎪ ⎪=⎪ ⎪- ⎪⎪-⎝⎭⎝⎭因此1143210112379801231314633100128761232100132213221T ------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--⎪ ⎪ ⎪==⎪ ⎪ ⎪- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭. 令1234114324012320012301x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭112341432114113611010123401274210012200122400013000133x x x x -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪===⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (1,4,2,3)α=在基1234,,,αααα下的坐标为(-101,21,-4,3) 四、证明题1.V 为定义在实数域上的函数构成的线性空间,令12{()(),()()},{()(),()()}W f x f x V f x f x W f x f x V f x f x =∈=-=∈=--证明:W 1、W 2皆为V 的子空间,且12.V W W =⊕证明:W 1、W 2 分别为偶函数全体及奇函数全体构成的集合,显然W 1、W 2均为非空的.由奇偶函数的性质可得W 1、W 2皆为V 的子空间.()()()()(),()22f x f x f x f x f x V f x +---∀∈=+. 而12()()()(),22f x f x f x f x W W +---∈∈,因此12.V W W =+又12{0}.W W =所以12.V W W =⊕2.设W 是P n 的一个非零子空间,若对于W 的每一个向量12(,,,)n a a a 来说,或者120n a a a ====,或者每一个i α都不等于零,证明:维(W)=1.证明:由W 是P n 的一个非零子空间,可得W 中含有非零向量设1212(,,,),(,,,)n n a a a b b b αβ==是W 中的任二个非零向量,由题意可得每一个,i i a b 都不等于零.考虑向量11112112121211(,,,)(,,,)(0,,,)n n n n b a b a a a a b b b b a a b b a a b W αβ-=-=--∈.由题设条件有1212110n n b a a b b a a b -==-=,即有1212n na a ab b b ===.即W 中的任二个非零向量均成比例,因此维(W)=1.。

高等代数06向量空间

高等代数06向量空间

其系数 不全为零,故 1, 2, …, s 线性相关.
定理2 如果向量组 1, 2, …, s 中有一部分向量线性相 关,则这 s 个向量也线性相关. 证 不妨设前 r (r<s) 个向量 1, 2, …, r 线性相关,即存在不 全为零的数k1, k2, …, kr 使得 k1 1+k22+ … +kr r= 0 再取 kr+1= kr+2=…= ks= 0, 则有
即 (k1, k2, …, kn) = (0, 0, …, 0),
所以 k1= k2= …= kn=0, 即 e 1, e 2, …, e n 线性无关.
定义2 设 k1, k2,Байду номын сангаас…, ks R, 1, 2, …, s 是 n 维向 量,若 = k +k +…+k 则称 为向量 1, 2, …, s 的一个线性组合,

由矩阵判别法知 e1, e2, …, en 线性无关. 设 = (x1, x2, …, xr ) 为任一 n 维向量, 显然有 = x1 e1+ x2 e2+… + xnen . 所以 可由 e1, e2, …, en 线性表出,即 e1, e2, …, en 是 Rn 的基,从而 dim Rn = n.
命题 6.1.1 在一个向量空间V里,零向量是唯一的;对于V 中每一向量a,a的负向量是由a唯一确定的。
命题 6.1.2 对于任意向量A和数域F中任意数a,我们有
0 A 0, a0 0. a a (a)a aA. aA 0 a 0或A 0。
子空间
定义1 设 V 是一个向量空间,W V, W . 如果 W 关于向 量的加法与数乘也封闭,则称 W 是 V 的子空间.

【高等数学 东南大学】第六章《向量代数 空间解析几何》习题课

【高等数学 东南大学】第六章《向量代数 空间解析几何》习题课

6。
2.设一平面过原点及 A(6,3, 2) ,且与平面4x y 2z 8 垂直,则此平面方程为 2x 2y 3z 0 。
解: OA {6,3, 2} , 已知平面的法向量为n1 {4, 1, 2} , 取所求平面的法向量为 OA n1 {4,4, 6} 2 {2, 2, 3} , 故所求平面的方程为 2(x 0) 2( y 0) 3(z 0) 0 , 即 2x 2y 3z 0 。
点P 作垂直于直线 L 的平面。 该平面的方程为: 2(x 0) 0( y 1) (z 1) 0 ,
即2x z 1 0 。
解方程组
x
y2 0 2z 7 0

2x z 1 0
得平面与直线 L 的交点:Q(1, 2, 3) 。
(1)点 P 和点 Q 的距离为 d (1 0)2 (2 1)2 (3 1)2 6 。
第六章《向量代数 空间解析几何》习题课
一、选择题
1.已知
a
2
,b
2
,且a
b
2
,则
a
b

A

(A)2 ; (B)2 2 ; (C) 2 ; (1 D) 。
2
解:∵
a
b
a
b cos(a, b ) 2
2
cos(a,
b)
2


cos (a, b )
2
,(a,
b)


ab
a
2 b sin(a, b )
6.过点(1, 2, 3) ,垂直于直线 x y z 且平行于平面 456
x 1
7x 8y 9z 10 0 的直线方程为 1
y2 2
z 3

第六章向量空间

第六章向量空间

第六章 向量空间一 综述向量空间是高等代数最基本的概念之一,它用公理化方法首次引进了一个代数系,而这种公理化方法在高等代数以后各章以及在近世代数中将屡次遇到,它是近代数学研究的一个重要方法.本书以后各章如线性变换、欧几里德空间等概念都是直接建立在向量空间定义的基础上的.因此本章内容又是以后各章学习的基础. 二 教学目的使学生在集合、映射概念的基础上,理解并掌握向量空间的定义、性质和构造,并培养学生用公理化方法研究代数系的能力. 三 重点、难点教材重点:向量空间的定义、性质 教学难点:向量空间的定义6.1 定义和例子一 教学思考向量空间的定义是本章的重点和难点,是学生首次接触的一个用公理化方法引进的代数系.这一节的教学目的,不仅使学生正确理解和掌握向量空间的概念,而且应该使学生初步了解以集合论为基础运用公理化方法从具体的代数系抽象出一般的代数系的方法和意义,对此要心中有数,以便在教学中把传授知识与培养能力结合起来. 二 内容和要求1.内容:定义、例子及简单性质2.要求:掌握向量空间的概念及其简单性质,初步了解公理化的思想方法. 三 教学过程1. 引例 三维几何空间的实质及更多的类似结构的代数对象(略). 2. 定义及例子定义 1 令F 是一个数域,F 中的元素用小写拉丁字母 ,,b a 表示;令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα表示.我们把V 中的元素叫做向量,F 中的元素叫做纯量.若下列条件满足,就称V 是F 上的一个向量空间.1)在V 中定义了一个叫加法,对V 中任意两个向量βα,都有V 中唯一确定的向量与它们对应,这个向量叫做α与β的和,记为βα+.2)有一个纯量乘法,对于F 中的每一个数a 和V 中每一个向量α,有V 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,记为αa .3)向量的加法和纯量乘法满足下列算律:F b a V ∈∈∀,;,,γβα有 (1)αββα+=+; (2))()(γβαγβα++=++;(3)在V 中存在一个向量叫零向量,积作ο;它满足对V ∈∀α 有ααο=+; (4)对V ∈∀α,V ∈'∃α使得οαα=+';这样的α'叫做α的负向量;(负向量的定义) (5)βαβαa a a +=+)(; (6)αααb a b a +=+)(; (7))()(ααb a ab =; (8)αα=1. 3. 向量空间的简单性质1)由于向量的加法满足结合律,所以任意n 个向量相加有唯一确定的含义且可写为不加括号的和的形式;再者由于加法满足结合律和交换律,所以在求任意n 个向量的和时可以任意交换被加项的次序.2)命题6.1.1(零向量、负向量的唯一性)在一个向量空间V 中,零向量是唯一的;对V ∈∀α,α的负向量是由α唯一确定的.(同一法,略) 3)命题6.1.2 对V ∈∀α,F a ∈∀有οα=0,οο=a ; αααa a a -=-=-)()(; 0=⇒=a a οα或οα=.4. 介绍一种写法-——(向量矩阵的记法)设V n ∈ααα,,,21 ,把它们排成一行写成一个以向量为元素的n ⨯1矩阵(n ααα,,,21 ),设)()(F M a A m n m n ij ⨯⨯∈=;定义(n ααα,,,21 )),,,(21m A βββ =,其中)1(,1m j a ni i ij j ≤≤=∑=αβ.即按照数域F 上矩阵的乘法定义(n ααα,,,21 )右乘以A (这里约定对V ∈∀α,F a ∈∀有a a αα=).并且设)(F M A m n ⨯∈,)(F M B P m ⨯∈,由向量与纯量乘法所满足的算律有:(n ααα,,,21 )B A AB n )),,,(()(21ααα = ,即结合律成立.6.2 子空间一 教学思考1.向量空间一章主要讨论向量空间的运算、性质和结构,一般是通过向量空间自身(基、维数等)或其子结构(子空间)来讨论的,这正是代数学的基本方法.因而本节的概念(子空间)和结论在理论上与方法上是重要的.2.由于本章与以后内容的(抽象)特点,需重点培养学生逻辑论证能力,除了在教学中经常结合问题讲解分析解决问题的一般思想方法外,还需对以后教学有重要影响的几类具体问题的论证思路作出明确的交代.本章主要是“子空间的判定”.3.内容作如下调整,即先定义子空间,再介绍为何称为子空间,然后介绍子空间的判定和运算. 二 内容要求1.内容:子空间的定义、子空间的交与和.2.要求:理解和掌握向量空间的子空间的概念和判定方法、子空间的交与和的概念.三 教学过程1.子空间的概念及判定 (1)定义定义1 设V 是数域F 上的向量空间,W 是V 的非空子集,若对V ∈∀βα,都有W ∈+βα,则称W 对V 的加法封闭.若对F a V ∈∀∈∀,α都有W a ∈α,则称W 对纯量乘法封闭.定义2 令W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则称W 是V 的一个子空间.TH6.2.1设W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则W 本身也作成F 上一个向量空间.(2)子空间的判定TH6.2.2向量空间V 的一个非空子集W 是V 的一个子空间的充要条件是对W F b a ∈∀∈∀βα,,,都有W b a ∈+βα.2.子空间的交与和定义3 设21,W W 都是V 的子空间,则21W W 称为两个子空间的交. 命题 21W W 也是V 的子空间.定义 4 设21,W W 都是V 的子空间,由所有能表示为),(221121W W ∈∈+αααα的向量组成的集合成为1W 与2W 的和,记为21W W +;即21W W +={}221121,|W W ∈∈+αααα. 命题 21W W +也是V 的子空间.6.3 向量的线性相关性一 教学思考1.向量的线性相关性在研究向量空间的结构时极为重要,并且学生在学习时感到困难的多是由于逻辑思维混乱以及推理不严谨造成的.2.本节重要的在于讲清诸概念,理清它们之间的关系,介绍一般方法和特殊方法,补充一些容易混淆的问题及一些错误做法或判断. 二 内容要求内容:向量的线性相关性定义、性质;替换定理;极大无关组.要求:正确理解和掌握向量组的线性相关性的概念及性质,掌握判断向量组线性关系的一般方法和特殊方法. 三.教学过程1.线性相关与线性无关(1)线性组合、线性表示及其性质定义 1 设r ααα,,,21 是向量空间V 的r 个向量,r a a a ,,,21 是数域F 中任意r 个数,我们把和r r a a a ααα ++2211叫做向量r ααα,,,21 的一个线性组合.定义 2 若V 中向量α可以表示成r ααα,,,21 的线性组合,即∃F a a a r ∈,,,21 使得r r a a a αααα ++=2211,则称α可以由r ααα,,,21 线性表示.(例略)性质 命题6.3.1向量组r ααα,,,21 中每一向量都可以由这一组向量线性表示.命题6.3.2若向量γ可以由r βββ,,,21 线性表示,而每个i β可由s ααα,,,21 线性表示,则γ可以由s ααα,,,21 线性表示.(2)线性相关、线性无关及有关性质定义3 设r ααα,,,21 是向量空间V 的r 个向量,若存在数域F 中r 个不全为0的数ra a a ,,,21 使得οααα=++r r a a a 2211,则称r ααα,,,21 线性相关,否则称r ααα,,,21 线性无关. 例1 若r ααα,,,21 中有一个零向量,则r ααα,,,21 一定线性相关. 例2 判断3F 中向量)9,7,1(),0,1,2(),3,2,1(321-==-=ααα是否线性相关 例3 在][x F 中对任意非负整数n ,证明nx x x ,,,,12线性无关.(解略)性质命题 6.3.3 若向量组{r ααα,,,21 }线性无关,则它的任一部分向量组也线性无关;等价地:若{r ααα,,,21 }有一部分组线性相关,则整个向量组{r ααα,,,21 }也线性相关.(证略)命题 6.3.4 设{r ααα,,,21 }线性无关,而{βααα,,,,21r }线性相关,则β一定可以由r ααα,,,21 线性表示,且表示法唯一.命题6.3.5 向量r ααα,,,21 (2≥r )线性相关的充要条件是其中某个向量是其余向量的线性组合.(证略)2.向量组的等价、替换定理定义 4 设{}r ααα,,,21 和{}s βββ,,,21 是V 中的两个向量组,若每个),2,1(r i i =α都可以由s βββ,,,21 线性表示,而每个),2,1(s j j =β也可以由r ααα,,,21 线性表示,则称这两个向量组等价.定理6.3.6(替换定理)设向量组{}r ααα,,,21 (1)线性无关,且每个),2,1(r i i =α都可以由{}s βββ,,,21 (2)线性表示.则A )s r ≤;B )必要时对(2)中向量重新编号,使得用r ααα,,,21 替换r βββ,,,21 后得向量组{}s r r ββααα,,,,,,121 +(3)与(2)等价.推论6.3.7两个等价的线性无关向量组含有相同个数的向量. 3.极大无关组(讨论一个非零向量组的一种部分组)定义 5 向量组{r i i i ααα,,,21 }是向量组{}n ααα,,,21 的一个部分组(n r ≤),若满足:1)ri i i ααα,,,21线性无关;2)每个),,1(n j j =α都可由ri i i ααα,,,21线性表示.则称rii i ααα,,,21是向量组{}n ααα,,,21 的一个极大线性无关部分组(简称极大无关组). 极大无关组的求法:1)一般方法——设给定{}n ααα,,,21 ,求其一个极大无关组.先从1α考虑,若οα≠1,保留;考虑21,αα看其是否线性无关.无关,保留;相关舍去2α,考虑31,αα看其是否线性无关.依次类推直至n α,便得.(由于考虑次序不同可得不同的极大无关组)例4 求向量组{}32,2,,12+++x x x x 的一个极大无关组.(解略)2)特殊方法——对n F 中向量组{}n ααα,,,21 ,求极大无关组. 首先:可以证明“命题”:“设)(F M m n ⨯的矩阵A 经过行的初等变换得到)(F M m n ⨯的矩阵B ,则A 与B 的列向量有相同的线性关系.”(证略)这样可得:A )求nm F ∈ααα,,,21 的线性关系,可以以m ααα,,,21 列作矩阵A ,通过对A 作行初等变换化为标准形B ,由B 的列向量的线性关系可得A 的列向量的线性关系.进而B )用上述方法可求n F 中向量组{}n ααα,,,21 的极大无关组. 例5 求3R 中向量组)6,1,5(),4,0,3(),3,1,2(),1,2,1(4321====αααα的一个极大无关组. 解:以4321,,,αααα为列作矩阵B A =⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛=210010101001643110125321.设B 的列向量为4321,,,ββββ,这样4321,,,αααα与4321,,,ββββ有相同的线性关系.容易看出321,,βββ线性无关,且=4β3212βββ+-;因此321,,ααα线性无关且=4α3212ααα+-.于是321,,ααα是4321,,,αααα的一个极大无关组.6.4 基与维数一 教学思考1.向量空间的结构中基起着重要作用,那么基概念的引入及作用为重点.2.从内容上本节在于给出了基与维数的概念后,解决基的存在性、个数及求法,要注意方法的总结归纳,特别是生成子空间.3.从定义上维数依赖于基,即要求一个向量空间的维数须求一个基;但反过来从结果上看,若已知维数n 求基的话,即求一组n 个线性无关的向量.4.本节及以后主要讨论有限维向量空间,有所谓的维数公式,其反映有限维向量空间的两个子空间与它们的和与交空间的维数之间的关系.在证明中,从“最小”的子空间的基出发逐步扩充为所出现的子空间的基的方法是重要的.5.基的存在性、个数、求法(生成子空间的基的求法)、余子空间等方法,注意总结归纳. 二 内容要求内容:向量空间的基与维数,有限维向量空间的维数公式,余子空间要求:正确理解和掌握向量空间的基与维数的概念,余子空间的定义,了解基在向量空间的结构中的重要作用,掌握求基、余子空间的一般方法和特殊方法. 三 教学过程1.引言我们知道当{}ο≠V 时,V 有无穷多向量,那么它们之间的结构如何?具体地,我们能否用V 中有限个向量表示所有向量.下面讨论这个问题.2.一类特殊子空间——由一组向量生成的子空间定义1设V r ∈ααα,,,21 ,那么由r ααα,,,21 的线性组合组成的集合{}F a a a a W i r r ∈+++=|2211ααα 称为由这一组向量r ααα,,,21 生成的子空间.记为L (r ααα,,,21 ),其中r ααα,,,21 叫做生成元.例1 n F 中)1,,0,0(,),0,,,0,1(1 ==n εε,则nn F L =),,(1εε . 例2 ][x F 中n n x x ===+121,,,1ααα ,则][),,,1(x F x x L n n= .关于生成子空间有:定理 6.4.1设V n ∈ααα,,,21 ,且不全为零向量,r i i i ααα,,,21 为其一个极大无关组,则L (n ααα,,,21 )=L (r i i i ααα,,,21 ).3.基与维数1)定义2 设V n ∈ααα,,,21 ,若1)n ααα,,,21 线性无关;2)V ∈∀α都可由n ααα,,,21 线性表示.则称n ααα,,,21 为V 的一个基.定义 3 一个向量空间V 的一个基所含向量的个数叫做V 的维数;记为V dim .规定零空间的维数为0.2)定理定理6.4.2(基的作用)设n ααα,,,21 为V 的一个基,则V ∈∀α都可唯一地由n ααα,,,21 线性表示.定理6.4.3n 维向量空间V 任意多于n 个向量的向量组一定线性相关.定理 6.4.4设n V =dim ,V r ∈ααα,,,21 线性无关(易知n r ≤),则总可以添加r n -个向量n r r ααα,,,21 ++,使得n ααα,,,21 作为V 的一个基.特别V 的任意n 个线性无关向量都可以取作基.例3 将)1,2,3,1(),1,0,2,1(21-==αα扩充为4R 的一个基.解:(法一)思想方法:由定理的证明过程,取4R 的一个基(如标准基4321,,,εεεε),然后用21,αα代替其中某两个如21,εε,使得21,αα,43,εε线性无关;而代替哪两个,可用逐步添加法使添在21,αα上后线性无关.(法二)思想方法:可以从21,αα出发,利用21,αα为列再添上两个作成一个4阶方阵A ,使得0≠A ,如⎪⎪⎪⎪⎪⎭⎫⎝⎛-1011012000320011,取)1,0,0,0(),0,1,0,0(23==αα,则4321,,,αααα为4R 的一个基. 定理6.4.5设21,W W 是F 上向量空间V 的两个有限维子空间,则21W W +也是V 的一个有限维子空间,且:)dim (dim dim )dim (212121W W W W W W ⋂-+=+.推论 对n 维向量空间V 的子空间21,W W 有:}{dim dim dim 2121ο=⋂⇔=+W W V W W .4.余子空间(1) 定义:设W 是V 的子空间,若存在V 的子空间W '满足:1)V W W ='+,2)){ο='⋂W W ;则称W '是W 的一个余子空间,且称V 是W 与W '的直和,记为W W V '⊕=. (2)定理定理 6.4.6设W W V '⊕=,则对V ∈∀α有α可以唯一地表示成ββα'+=,其中W W '∈'∈ββ,.定理 6.4.7n 维向量空间V 的任一子空间W 都有余子空间.若W '是W 的一个余子空间,则V W W dim dim dim ='+.(3)上述概念及结论可扩充至有限设t W W W ,,,21 是V 的子空间,若1)t W W V ++= 1;2){}),,2,1(,)(111t i W W W W W t i i i ==+++++⋂+-ο,则称V 是t W W W ,,,21 的直和,记为t W W V ⊕⊕= 1.且有类似于定理6、7的结论.6.5 坐标一 教学思考1.对n 维向量空间V 取定基后,任意向量引入了坐标的概念后,可将抽象的对象用具体的形式(nF中的向量)表示出来,为我们研究抽象的向量空间提供了方便,如由此可建立n V 与nF 的同构,所以本节概念及结论在空间的讨论中有重要的作用.2.注意坐标的概念依赖于基的选择,坐标变换依赖于相应的基变换;注意过渡矩阵的概念与性质以及结论,其是下节建立n V 与nF 的同构的基础.3.具体方法有:1)坐标的求法(定义法、坐标变换法);2)过渡矩阵的求法;3)过渡矩阵的性质及由此反映的矩阵的运算的意义. 二 内容要求1. 内容:坐标、基变换、坐标变换、过渡矩阵;2. 要求:掌握坐标的概念及其意义,基变换与坐标变换公式,过渡矩阵的概念和性质. 三 教学过程(一) 坐标的概念1.定义 设{}n n V αα,,,dim 1 =是V 的一个基,对V ∈∀ξ有n n a a ααξ++= 11,则称n 元有序数组),,(1n a a 为向量ξ关于基{}n αα,,1 的坐标;其中i a 叫做向量ξ关于基{}n αα,,1 的第i 个坐标.2.定理6.5.1设{}n n V αα,,,dim 1 =是V 的一个基,V ∈ηξ,关于此基的坐标分别为),,(1n x x 和),,(1n y y ,则ξηξk ,+关于此基的坐标分别为: ),,(11n n y x y x ++ ,),,(1n ax ax .(二)坐标变换 1.基变换设,dim n V ={}n αα,,1 和{}n ββ,,1 是V 的两个基,则每个j β),,2,1(n j =可由{}n αα,,1 线性表示,设⎪⎪⎩⎪⎪⎨⎧++=++=++=nn n n nn nn a a a a a a ααβααβααβ1112112211111 (1),以j β关于基{}n αα,,1 的坐标为列构成的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a T212222111211称为由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵. (1)式可以写成矩阵等式),,(1n ββ =T n ),,(1αα (2);称(1)或(2)为(由基{}n αα,,1 到基{}n ββ,,1 的)基变换. 设V ∈ξ关于基{}n αα,,1 的坐标为),,(1n x x ,关于基{}n ββ,,1 的坐标为),,(1n y y ,则一方面=ξ⎪⎪⎪⎭⎫ ⎝⎛n n x x 11),,(αα (3);另一方面=ξ⎪⎪⎪⎭⎫⎝⎛n n y y 11),,(ββ (4);(2)代入(4)得=ξ⎪⎪⎪⎭⎫ ⎝⎛n n y y T 11)),,((αα=))(,,(11⎪⎪⎪⎭⎫⎝⎛n n y y T αα (5),比较(3)和(5)由坐标的唯一性得⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1 (6);于是得 定理 6.5.2设,dim n V =T 由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵,则V ∈ξ关于基{}n αα,,1 的坐标与关于基{}n ββ,,1 的坐标为),,(1n y y 由等式(6)⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1联系着.3.过渡矩阵的性质 (1)基变换的传递性设,dim n V ={}n αα,,1 、{}n ββ,,1 、{}n γγ,,1 都是V 的基,且由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,基{}n ββ,,1 到基{}n γγ,,1 的过渡矩阵为B ,即),,(1n ββ =A n ),,(1αα 、),,(1n γγ =),,(1n ββ B ,则),,(1n γγ =A n ),,(1αα B ,即由基{}n αα,,1 到基{}n γγ,,1 的过渡矩阵为AB .(2)定理6.5.3设,dim n V =由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,那么A 是一个可逆矩阵.反过来,任意一个n 阶可逆矩阵A 都可以作为n 维向量空间中由一个基到另一个基的过渡矩阵.且若由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,则由基{}n ββ,,1 到基{}n αα,,1 的过渡矩阵为1-A .6.6 向量空间的同构一 教学思考1.向量空间的本质是一个带有加法和数乘的代数系,我们研究向量空间着眼点主要在于运算,至于元素是什么无关紧要.把具有某种关系的向量空间作为本质上没有区别的加以研究,从而取出其代表加以研究讨论以达到目的,本节正是解决这样一个问题.2.“同构”是这种关系的体现,在此关系下,同构的向量空间可以不加区别,因而维数就成了数域F 上有限维向量空间的唯一本质特征.3.注意“同构”映射的概念,向量空间同构的概念及各自的性质,以及有限维向量空间同构的判定. 二 内容要求1、内容:同构映射、向量空间同构的概念及各自的性质,有限维向量空间同构的判定.2、要求:理解向量空间同构的概念及性质,有限维向量空间同构的判定. 三 教学过程1.同构的概念和性质 (1)概念1)同构映射 设V 和W 是数域F 上两个向量空间,V 到W 的一个映射f 叫做一个同构映射; 若A )f 是V 到W 的一个双射;B )对)()()(,ηξηξηξf f f V +=+⇒∈∀;C )对)()(,,ξξξaf a f V F a =∈∀∈∀.(2)定理6.6.1数域F 上任一n 维向量空间V 都与nF 同构. (3)性质 1)同构映射的性质定理6.6.2设V 和W 是数域F 上两个向量空间, f 是V 到W 的一个同构映射,则: A);)(οο=f B)对ααα-=-∈∀)(,f V ;C))()()(1111n n n n f a f a a a f αααα++=++ ,其中V F a i i ∈∈α,; D))(,,1V n ∈αα 线性相关))((,),(1W f f n ∈⇔αα 线性相关; E) f 的逆映射1-f是W 到V 的一个同构映射.2)同构关系的性质(等价关系)A ) 反身性:V V ≅;B ) B )对称性:若W V ≅,则V W ≅;C) 传递性:若W V ≅,U W ≅,则U V ≅.(由双射性质及定义易证) 2.有限维向量空间同构的充要条件定理6.6.3数域F 上两个有限维维向量空间V 和W 有:W V ≅W V dim dim =⇔.6.7 矩阵的秩,齐次线性方程组的解空间一 教学思考1.矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构.2.注意:齐次线性方程组(含n 个未知量)的解的集合构成nF 的子空间,而非齐次线性方程组的解的集合非也.3.注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系. 二 内容要求1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间.2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法. 三 教学过程1.矩阵的秩的几何意义几个术语:设)(F M A n m ⨯∈,⎪⎪⎪⎭⎫⎝⎛=mn m n a a a a A 1111,A 的每一行看作nF 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的nF 的子空间),,(1m L αα 叫做矩阵A 的行空间.类似地,A 的每一列看作mF 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的mF 的子空间叫做矩阵A 的列空间.引理6.7.1设)(F M A n m ⨯∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间.定理6.7.2矩阵)(F M A n m ⨯∈的行空间的维数等于列空间的维数,等于这个矩阵的秩.定义 矩阵A 的行(列)向量组的极大无关组所含(行(列)空间的维数)向量的个数,叫做矩阵A 的秩.2.线性方程组的解的结构1)再证线性方程组有解的判定定理:“数域F 上线性方程组有解的充要条件是它的系数矩阵与增广矩阵的秩相同.”2)齐次线性方程组的解空间设⎪⎩⎪⎨⎧=++=++00111111n mn m n n x a x a x a x a(3)是数域F 上一个齐次线性方程组,令A 为其系数矩阵,则(3)可写为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (4)或ο=AX ;(3)的每一个解都可以看作n F 的一个向量,叫做(3)的一个解向量.令S 表示(3)的全体解向量构成的集合;首先:因S ∈ο,所以Φ≠S ;其次:F b a S ∈∀∈∀,,,ηξ,有οηξηξ=+=+bA aA b a A )(,即S b a ∈+ηξ.因此S 作成nF 的一个子空间,这个子空间叫做齐次线性方程组(3)的解空间.重新回顾解线性方程组的过程:设(3)的系数矩阵A 的秩为)(n r <,则A 可经过一系列(行)初等变换化为⎪⎪⎭⎫ ⎝⎛----r n r m r r m r n r r C I ,,,οο,与此相应的齐次线性方程组为:(5)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+++=+++++++0000001111111 n rn r rr r n n r r y c y c y y c y c y ,这里n y y ,,1 是n x x ,,1 的重新编号.(5)有r n -个自由未知量n r y y ,,1 +,依次让它们取)1,,0,0(,),0,,1,0(),0,,0,1( ,可得(5)的r n -个解向量:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=++++++100,,010,001122121111 rn n n rr r r rr r r c c c c c c ηηη.下面证其是(5)的解空间的一个基. 首先:n r ηη,,1 +线性无关.事实上设οηη=++++n n r r k k 11,由下面r n -个分量易得01===+n r k k .其次:设),,,(21n k k k 是(5)的任一解,代入(5)得:n rn r rr r nn r r nn r r k c k c k k c k c k k c k c k ---=---=---=++++++112112211111又有恒等式:nn r r k k k k ==++ 11此n 个等式即为n n r r n k k k k ηη++=⎪⎪⎪⎭⎫ ⎝⎛++ 111,即(5)的每个解向量都可以由n r ηη,,1 +线性表示,故{n r ηη,,1 +}为(5)的解空间的一个基.注意到(5)与(4)在未知量重新编号后同解,所以重新编排n r ηη,,1 +的次序可得(4)的解空间的一个基,从而解决了齐次线性方程组的解的构造问题.并且上述讨论也给出了求解空间的具体方法:即通过解方程组的允许变换得到等价组,在等价组中自由未知量是清楚的,给其一组线性无关值,便得等价组的一组解向量,其构成等价组的解空间的一个基,再调整解向量的次序便得.上述讨论得:定理 6.7.3数域F 上一个n 元齐次线性方程组的一切解作成nF 的一个子空间,称之为这个线性方程组的解空间.若所给方程组的系数矩阵的秩为r ,则解空间的维数为r n -.定义 一个齐次线性方程组的解空间的一个基,叫做这个方程组的一个基础解系.3)非齐次线性方程组的解的结构 设))((,11F M A b b x x A n m m n ⨯∈⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛ (6)是数域F 上一个n 元线性方程组.问题当(6)有无穷解时,解的结构如何?为此先引入:把(6)的常数项都换成0,便得一个齐次线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (7),齐次线性方程组(7)叫做方程组(6)的导出齐次线性方程组.定理6.7.4若(6)有解,则(6)的任一解都可以表示为(6)的一个固定解与(7)的一个解的和.。

高等代数课件 第六章

高等代数课件 第六章

例3 在空间V2里,平行于一条固定直线的一切向 量空间作成V2的一个子空间。在间间V3里,平行于一 条固定直线或一张固定平面的一切向量分别作成V3的 子空间(6.1,例1)。
例4 F n中一切形如
(1,2 ,,n1,0),i F
的向量作成 F n的一个子空间。
例5 F [x]中次数不超过一个给定的整数n的多项 式全体连同零多项式一起作成F [x]的一个子空间。
第六章 向量空间
6.1 向量空间的定义和例子 6.2 子空间 6.3 向量的线性相关 6.4 基和维数 6.5 坐 标 6.6 向量空间的同构 6.7 矩阵的秩 齐次线性方程组的解空间
§6.1 向量空间的定义和例子
一、 引例——定义产生的背景
例1 设 F 是一个数域,F mn表示上m×n矩阵的集合, 回忆一下 F mn 上所能够施行的运算(教材P182):只有 加法和数乘两种,并且满足(教材P183):
空间 M n (F)的非空子集。又中M n (F) 的运算是矩阵的
加法及数与矩阵的乘法,而两个上三角形的和仍是一 个上三角形矩阵,一个数与一个上三角形矩阵的乘积 仍是上三角形矩阵,所以,由子空间的定义 ,U是
的 M n (F) 一个子空间。
W {A M n (F) | | A | 0}不是 M n (F) 的子空间, 因为n阶单位矩阵I及 – I ∈W,但 I (I ) O W
+AY =β+β≠β,故
V对A, 的F加n 法不封闭。
定理6.2.2 向量空间W的一个非空子集W是V 的一个子空间的充要条件是对于任意a,b∈F和任意 α,β∈W,都有aα+bβ∈W
二、子空间的交与和
命题1 设W1,W2是向量空间V的二个子空间, 那么它们的交W1∩W2也是V的一个子空间.

高等代数_李海龙_习题第6章向量空间

高等代数_李海龙_习题第6章向量空间

第六章 向量空间6.1 定义和例子1.令F 是一个数域,在3F 里计算 (ị)1132(2,0,1)(1,1,2)(0,1,1);-+--+-(ịị)15(0,1,1)3(1,,2)(1,3,1).--+-结果:(ị)117(,,)326--(ịị)(2,1,10)--2.证明:如果(2,1,3)(0,1,2)(1,1,4)(0,0,0),a b c ++-= 那么0.a b c ===证 :由题得203240a c a b c a b c +=⎧⎪++=⎨⎪++=⎩ 2011110324-≠0a b c ∴=== 3.找出不全为零的三个有理数,,a b c (即,,a b c 中至少有一个不是0),使得 (1,2,2)(3,0,4)(5,2,6)(0,0,0).a b c ++-=解:由已知得3502202460a b c ac a b c ++=⎧⎪-=⎨⎪++=⎩解之得2a c b c =⎧⎨=-⎩取1c =则1,2a b ==-.故1,2a b ==-,1c =为所求.4.令123(1,0,0),(0,1,0),(0,0,1).εεε===证明,3R 中每一向量α可以唯一地表示为112233a a a αεεε=++的形式.这里123,,.a a a R ∈证:提示,设123(,,)a a a α=,则112233a a a αεεε=++,若112233b b bαεεε=++,则可证得11a b =,22a b =,33a b =.5.证明,在数域F 上向量空间V 里,以下算律成立: (i )();a a a αβαβ-=- (ii )(),a b a b ααα-=-这里,;,.a b F V αβ∈∈ 证明:略6.证明:数域F 一个向量空间如果含有一个非零向量,那么它一定含有无限多个向量. 证明:若0a V ≠∈,取1,,,,n F ∈ ,则,,,,a na V ∈ ,故V 中有无限多个向量. 7.证明,对于任意正整数n 和任意向量α,都有.n n a αα=++ 个提示:用数学归纳法证明.8. 证明,向量空间定义中条件3,8)不能由其余条件推出.证:F 是数域, (){},,V a b a b F =∈,向量加法:11(,)a b +22(,)a b =1212(,)a a b b ++,纯量乘法:(,)k a b =(,0)ka k F ∈,不满足1(,)a b (,)a b =(因为1(,)a b =(,0)a ,当0b ≠时1(,)a b (,)a b ≠)其余条件均能满足,故3○ 、8)不能有其它条件推出.9.验证本节最后的等式:11(,,)()((,,)).n n AB A B αααα=证:把向量1,,,n a a 作为矩阵中的元素,则等式两边都是一行p 列矩阵,对左住端矩阵中的第j 个元素jc 有,11111()nnmnmj k kj k kl lj kl lj kk k l k l c a u a a b a b a ========∑∑∑∑∑其中kju 是AB 中第k 行第j 列元素.对于右端矩阵中的jc 有,11111()mmnnmj l lj kl k kl lj kl l k k l c v b a a a b a ========∑∑∑∑∑其中l v 是(1,,,n a a )A 中的第l 列元素.6.2 子空间1.判断nR 中下列子集哪些是子空间: (i){}11(,0,,0,)|,;n n a a a a R ∈(ii)121(,,,)|0;nn i i a a a a =⎧⎫=⎨⎬⎩⎭∑ (iii)121(,,,)|1;nn i i a a a a =⎧⎫=⎨⎬⎩⎭∑(iv){}12(,,,)|,1,,.n i a a a a Z i n ∈=解 (ị) 因为 当120a a ==时,则W θ∈,即W 非空,设1(,0,,0,)n a a α= ,1(,0,,0,)n b b β= ,即,W αβ∈,,a b R ∈,而a b αβ+11(,0,,0,)n n aa bb aa bb =++ ,因为11,,,n n a b a b R ∈,所以11aa bb R +∈,n n aa bb R +∈,即a b W αβ+∈,故W 是n R 的子空间.(ịị) 是n R 的子空间,验证方法同上.(ịịị) 不是n R 的子空间,3W =()121,,,1nn i i a a a a =⎧⎫=⎨⎬⎩⎭∑ ,为3(1,0,,0)W ∈ ,2R ∈,而2(1,0,,0)= 3(2,0,,0)W ∉ (121nii a==≠∑),故3W 不是3R 的子空间.(ịv) 不是n R 的子空间,因为4(1,0,,0)W ∈ ,1(1,0,,0)2 4W ∉,故4W 不是n R 的子空间.2.令()n M F 表示数域F 上一切n 阶矩阵所组成的向量空间(参看6.1,例2).令{}{}//()|,()|.n n S A M F A A T A M F A A =∈==∈=-证明,S 和T 都是()n M F 的子空间,并且 {}(),0.n M F S T S T =+=证:显然()n I M F ∈,因'I I =,所以I S ∈,即S 非空.,A B S ∀∈,,a b F ∈,有'''()aA bB aA bB aA bB +=+=+,即aA bB S +∈,故S 是()n M F 的子空间,又因为'00=,所以0T ∈,即T 非空,,A B S ∀∈,,a b F ∈,'''()()()()aA bB aA bB a A b B aA bB +=+=-+-=-+,,即aA bB T +∈,既然,S T 是()n M F 的子空间,所以S T +也是()n M F 的子空间.即S T +()n M F ⊆,由5.1第9题知S T +()n M F ⊇,故()n M F =S T +.设A S T ∈⋂,A S ∈,'A A =,A T ∈,'A A =-,所以A A =-,所以0A =,故{}0S T = .3.设12,W W 是向量空间V 的子空间.证明:如果V 的一个子空间既包含1W 又包含2W ,那么它一定包含12W W +.在这个意义下,12W W +是V 既含1W 又含2W 的最小子空间.证:W 是V 的子空间,既包含W1又包含W 2,即W W ⊇1,W W ⊇2,W W ⊇1W+2又W 1W +21W ⊇,W 1W +22W ⊇,W 1W +2⊇W 1W + 2 ,W 1W +2=W 1W +2即W 1W+2是既包含W 1又包含W 2的最小子空间.4.设V 是一个向量空间,且{}0.V ≠证明:V 不可能表成它的两个真子空间的并集. 证:设 W 1、W 2都是V 的真子集,且V ={}0,则至少有一个V 的非零向量W α∉1且至少有一个V 的非零向量W β∉2 , (1)若W α∉2 则 因为W α∉1 ⇒W α∉1 W 2 命题得证.(2)若1W β∉则 因为W β∉2 ,⇒W β∉1 W 2命题得证.(3)若W α∈2 ,而1W β∈,在这种情况下,我们考虑向量V αβ+∈.以下证明1W αβ+∉,且2W αβ+∉.(ị)若1W αβ+∈,则有1W γαβ=+∈,因为1W 是子空间⇒1W αγβ=-∈,这与W α∉1矛盾,所以1W αβ+∉,(ịị)若2W αβ+∈,则有2W δαβ=+∈,因为2W 是子空间⇒2W βδα=-∈,这与W β∉2矛盾.所以2W αβ+∉,于是有V αβ+∈,但W αβ+∉1 W 2综上表明12V W W ≠+.5.设12,,W W W 都是向量空间V 的子空间,其中12W W ⊆且1212,.W W W W W W W W =+=+ 证明:12W W =.证:22W α∀∈因为2W ⊆W W +2W =W +1 ,所以21ααα=+,(W α∈,11W α∈)那么21ααα=-,又因为12W W ⊆,故212W ααα=-∈,所以21W W W W α∈= ,因而1W α∈⇒11W αα+∈⇒21W α∈,即21W W ⊆,又12W W ⊆,故12W W =6.设12,W W 是数域F 上向量空间V 的两个子空间.,αβ是V 的两个向量,其中2,W α∈但1W α∉,又2.W β∉证明:(i)对于任意2,;k F k W βα∈+∉ (ii)至少有一个,k F =使得1k W βα+∈.证:(ị)用反证法.若存在k F ∈,使得2k W βα+∈,由W α∈2 ,所以k Wα∈2因而2()k k ββααβ=+-∈,这与2W β∉矛盾,故对于任意k F ∈,有2k W βα+∉(ịị)设1k W βα+∈,若还有l k≠,而1l W βα+∈,因而有1()()()k l k l W βαβαα+--=-∈,由l k ≠,有11()k l W k l αα=-∈-,这与1W α∉矛盾.7.设12,,,r W W W 是向量空间V 的子空间,且,1,,.i W V i r ≠= 证明:存在一个向量,V ξ∈使得,1,,.i W i r ξ∉=证:对r 应用数学归纳法.当1r =时,命题显然成立.假设对于1(1)r r ->时,命题成立,即存在V η∈,而(1,2,,1)i W i r η∉=- ,对于r 的情形:(1)若r W η∉,命题成立,(2)r W η∈,则存在V β∈,而r W β∉,根据第六题(ịị)知,,V ηβ∈,r W η∈,(1,2,,1)i W i r η∉=- ,r W β∉故对每一i W ,在F 中最多有一个i l ,使得(1,2,,i i l W i r βη+∈=- ,令i l l ≠,则i l W βη+∉,根据第六题(ị)得r l W βη+∉令l ξβη=+,则V ξ∈而i W ξ∉(1,2,,1)i r =- ,故命题对于一切自然数都成立.6.3 向量的线性相关性1.下列向量组是否线性相关: (i)(3,1,4),(2,5,-1),(4,-3,7); (ii) (2,0,1,),(0,1,-2),(1,-1,1);(iii)(2,-1,3,2),(-1,2,2,3),(3,-1,2,2),(2,-1,3,2).解:(i),(ii)线性无关;(iii)线性相关(利用定义或判定定理).2.证明,在一个向量组{}12,,,r ααα 里,如果有两个向量i α与j α成比例,即i j ka α=,,k F ∈那么{}12,,,r a a α 线性相关.提示:部分组线性相关,则整体线性相关.3.令12(,,,),1,2,,.ni i i in a a a F i n α=∈= 证明12,,,n a αα 线性相关必要且只要行列式1112121222120n nn n nna a a a a a a a a =证:1,,,n a a 线性相关⇔有不全为零的数1,,,n k k 使10ni i i k a ==⇔∑齐次11n nij ij i a k==∑∑有非零解⇔系数行列式0ij a =.4.设12(,,,),1,2,,,ni i i in a a a F i m α=∈= 线性无关.对每一个i α任意添上p 个数,得到n p F +的m 个向量.1212(,,,,,,,),1,2,,.i i i in i i ip a a a b b b i m β==证明:{}12,,,m βββ 也线性无关.证:令10ni i i k β==∑.得齐次线性方程组111100n mij i j i p mij i j i a k b k ====⎧=⎪⎪⎨⎪=⎪⎩∑∑∑∑ (1)要证1,,,n ββ 线性无关,只要证(1)只有零解.又齐次线性方程组11n mij ij i a k===∑∑(2)只有零解.(1)的解是(2)的解.所以(1)只有零解.5.设,,,αβγ线性无关.证明,,αββγγα+++也线性无关.证:令123()()()0k k k αβγβαγ+++++=得齐次线性方程组121332000k k k k k k +=⎧⎪+=⎨⎪+=⎩ 而它只有零解.6.设向量组{}12,,,(2)r r ααα≥ 线性无关.任取121,,,.r k k k F -∈ 证明,向量组111222111,,,,r r r r r r r k k k a βααβααβαα---=+=+=+线性无关.证:令1ri ii k β==∑把1,,,r ββ 的表示代入上式,用1,,,r k k 的线性相关证明1,0r k k === .7.下列论断哪些是对的,哪些是错的,如果是对的,证明;如果是错的,举出反例: (ị)如果当120r a a a ==== 时,11220,r r a a a ααα+++= 那么12,,,r ααα 线性无关. (ịị)如果12,,,r ααα 线性无关,而1r α+不能由1,2,,,r ααα 线性表示,那么121,,,,r r αααα+ 线性无关.(ịịị) 如果12,,,r ααα 线性无关,那么其中每一个向量都不是其余向量的线性组合. (ịv)如果12,,,r ααα 线性相关,那么其中每一个向量都是其余向量的线性组合.结果:(ị)是错的 (ịị) 是对的(可采用反证法证之),(ịịị) 是对的(可采用反证法证之).(ịv)是错的.8.设向量β可以由12,,,r ααα 线性表示,但不能由121,,,r ααα- 线性表示.证明,向量组{}121,,,,r r αααα- 与向量组{}121,,,,r αααβ- 等价.提示:由等价的定义,先要证明两个向量可以互相线性表示.在{}121,,,,r r αααα- 于{}121,,,,r αααβ- 中121,,r ααα- 是共同的向量,当然可以互相线性表示,且β可由121,,r ααα- 线性表示,关键证明r α可由121,,,r αααβ- 线性表示.9.设在向量组12,,,r ααα 中,10α≠并且每一i α都不能表成它的前1i -个向量121,,,i ααα- 的线性组合.证明12,,,r ααα 线性无关.证:用反证法,假设12,,r ααα 线性相关,则存在不全为零的数121,,r k k k - ,使得1122110r r k k k ααα--+++= ,设i k 是最后一个不全为零的数,即有1122110i i i i k k k k αααα--++++= , 因为,10α≠,所以1i ≠,即不可能110k α=,设1i S <<,且有上式可得i α=1111i i i ik k k k αα----- ,即i α可由它前面的1i -个向量线性表示,与假设矛盾.故12,,r ααα 线性无关.10.设向量12,,,r ααα 线性无关,而12,,,,,r αααβγ 线性相关.证明,或者β与γ中至少有一个可以由12,,,r ααα 线性表示,或者向量组{}12,,,,r αααβ 与{}12,,,,r αααγ 等价.证:12,,r ααα ,r β线性相关,有 1122120r r r r k k k k k r αααβ+++++++= ()*,1212(,,,,,)r r r k k k k k ++ 不全为零,以下证明:12,r r k k ++中至少有一个不为零.如果120r r k k ++==则由()*式,有11220r r k k k ααα+++= ,因而12,,,r k k k 有一个不为零,这与12,,r ααα 线性无关矛盾,所以10r k k === ,故12,r r k k ++中至少有一个不为零.(1)若120,0r r k k ++≠=,则由()*式得β可由12,,r ααα 线性表示.(2)若120,0r r k k ++==,则由()*式得r 可由12,,r ααα 线性表示.(3)若120,0r r k k ++≠≠,则由()*式有i β=121111r r r r r r k k k r k k k αα++++---- ,111222r r r r r r k k k r k k k ααβ++++=---- ,而12,,r ααα 是12{,,,}r αααβ 12{,,}r r ααα 的共同向量,故12{,,,}r αααβ 与12{,,}r r ααα 等价.综上所得 ,原名题成立.要点:由1,,,r ααβγ 线性相关,知存在不全为零的数1,,,r a ab c 使1ri ii a b c αβγ=++=∑显然b 与c 不全为零,则可能的情况有下面三种:(i )0,0b c ≠=这时1ri i i a b βα==-∑,β可由1,r αα 线性表示.(ii )0,0b c =≠这时1ri ii ac γα==-∑(iii )0,0b c ≠≠这时γ可由1,,r ααβ 线性表示,β可由1,,r ααγ 线性表示.所以1,,r ααβ 与1,,r ααγ 等价.6.4 基和维数1.令[]n F x 表示数域F 上一切次数n ≤的多项式连同零多项式所组成的向量空间.这个向量空间的维数是几?下列向量组是不是3[]F x 的基:(i){}32321,1,,22;xx x x x x x ++++++(ii){}2231,1,22,.x x x x x --+-结果: dim([])1n F x n =+,(ị) 不是,(ịị)是(提示:21,,,nx x x 是[]n F x 的一个基,据可判断(ị) (ịị)中的多项式是否为3[]F x 的基.)2.求下列子空间的维数:(i)3((2,3,1),(1,4,2),(5,2,4));L R --⊆ (ii)22(1,1,)();L x x x x F x ---⊆ (iii)23(,,)[,].x x xL e e e C a b ⊆提示:12(,,,)n L ααα 的维数为12,,,n ααα 的极大无关组所含向量的个数.(ị)维数为2,因为235342124--=,即它们线性相关,而其中任意两个都线性无关.(ịị)维数为2.(ịịị)维数为3.3.把向量组{}(2,1,1,3),(1,0,1,2)--扩充为4R 的一个基.提示:1(2,1,1,3)α=-2(1,0,1,2)α=-线性无关(不成比例)而1(1,0,0,0)ε=,2(0,1,0,0)ε=,3(0,0,1,0)ε=,4(0,0,0,1)ε=是4R 的一个基,所以1α,2α可由1ε,2ε,3ε,4ε表示,而1α,2α,1ε,2ε线性无关,故1α,2α,1ε,2ε是4R 的一个基.4.令S 是数域F 上一切数满足条件/A A =的n 阶矩阵A 所成的向量空间.求S 的维数.提示:因为S 是数域F 上一切满足'A A =的n 解矩阵A 所称的向量空间.令i j E 表示第i行第j 列交叉处是1 而其它元素全为零的n 解方阵,(i j E +')ji E =i j E +j iE , S 的一组基为:11E ,22E ,, nn E ;12E +21E ,, 1n E +1n E ;23E +32E ,, 2n E +2n E ; , 1n n E -+1nn E -,故(1)dim (1)212n n S n n -=+-+++=.5.证明,复数域C 作为实数域R 上向量空间,维数是2.如果C 看成它本身上的向量空间的话,维数是几?提示:1,i 在实数域R 上线性无关,且C 中任意复数均可由它们线性表示,故C 作为R 上的向量空间,维数为2.C 作为C 上的向量空间,维数为1.(任一非零复数均为它的基)6.证明定理6.4.2的逆定理:如果向量空间V 的每一个向量都可唯一地表成V 中向量1,,n a a 的线性组合,那么dim V n =.提示:由表示式唯一,可证12,,n ααα 线性无关,即得dim V n =.7.设W 是nR 的一个非零子空间,而对于W 的每一个向量(12,,,n a a a )来说,要么,要么120,n a a a ==== 要么每一个i a 都不等于零,证明dim 1.W =提示:证明W 中任意两个非零向量均线性相关.8.设W 是n 维向量空间V 的一个子空间,且0dim .W n <<.证明:W 在V 中有不只一个余子空间.提示:设dim W r =,12,,r ααα 为W 的基,扩充为V 的基121,,,,,r r n ααααα+ ,则'W =1(,,)r n L αα+ 是W =1(,,)r L αα 的一个余子空间,又令:"W =1(,,,r L αα 1,,)r n αα+ ,可证"W 也是'W 的一个余子空间,且"W ≠'W .9.证明本节最后的论断. 提示:对t 用数学归纳法.6.5坐标1.设{}12,,,n a a a 是V的一个基.求由这个基到{}21,,,n a a a 的过渡矩阵.结果: 0001100001000010⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ (提示:线性表示可得). 2.证明,{}332,,1,1x xx x x +++是3()F x (数域F上一切次数3≤的多项式及零)的一个基.求下列多项式关于这个基的坐标:(i) 223x x ++; (ii) 3;x (iii) 4; (iv) 2x x -.结果:(i) (0,0,1,2); (ii) (1,0,0,0); (iii) (4,-4,0,4); (iv) (0,0,1,1) (提示:利用246P 公式(6)(取3[]F x 的基{}231,,,x x x )即得由{}231,,,x x x 到{}332,,1,1x x x x x +++的过渡矩阵.)3.设1234(21,,1),(031,)(5,32,1)(61,3).a a a a =-===证明{}1234,,,a a a a 作成4R 的一个基,在4R 中求一个非零向量,使它关于这个基的坐标与关于标准基的坐标相同.证:先证1234,,,αααα线性无关,即得1234,,,αααα为4R 的一个基,再设1234(,,,)0x x x x ≠,()i x R ∈由题设得11223344x x x x εεεε+++=11223344x x x x αααα+++从而得到关于1234,,,x x x x 的齐次线性方程组,则基础解系或基础解系的非零线性组合基为所求.(,,,)k k k k ---4.设123123(1,2,1),(0,1,3),(1,1,0);(2,1,5),(2,3,1),(1,3,2).αααβββ=-=-=-==-=证明{}123,,ααα和{}1,23,βββ都是3R 的基,求前者到后者的过渡矩阵.结果:717422915424153424⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭提示:取3R 的标准基,且求出123(,,)(ααα=123,,)A εεε,123(,,)(βββ=123,,)B εεε,并,A B 都可逆,即证得123(,,)ααα,123(,,)βββ都是3R 的基,从而有123(,,)βββ=1123(,,)A B ααα-,即1A B -为由123{,,}ααα到123{,,}βββ的过渡矩阵.5.设}12,,,n a αα 是F 上n 维向量空间V 的一个基.A 是F 上一个n s ⨯矩阵.令.1211(,,,)(,,,)s n A βββααα= .证明:12dim (,,,)s L βββ= 秩A .证:设 秩A r =,则存在F 上n 阶可逆矩阵P 和Q ,使000rI A P Q ⎛⎫= ⎪⎝⎭(r I 为单位矩阵).1212(,,,)(,,,)n n P r r r ααα= ,即12,,,n r r r 线性无关.于是有12(,,,)s βββ= 12(,,,)n P ααα 000r I Q ⎛⎫ ⎪⎝⎭12(,,,)n r r r = 000r I Q ⎛⎫ ⎪⎝⎭12(,,,,0,,0)r r r r Q = ,从而12,,,s βββ 与12,,,,r r r r 等价,故有dim L 12(,,,)s βββ dim L =12(,,,)r r r r r ==秩A .6.6向量空间1.证明,复数域C 作为实数域R 上的向量空间与2V 同构.证1 提示:直接利用定理6.6.3证2 令2:f C V →;a bi + (,)a b ,显然是2C V 到的一个映射,只要证明f 为双射,且满足12()f z z +=1()f z 2()f z +,()f kz ()kf z =,则f 是2C V 到的一个同构映射,故2C V ≅2.设:f V W →是向量空间V 到W 的一个同构映射,1V 是V 的一个子空间.证明1()f V 是W 的一个子空间.证10V ∈ ,而1(0)0()f f V =∈,∴1()f V 是W 的一个非空子集.设,αβ∈1()f V ,所以存在11,αβ∈1V ,使得1()f αα=,1()f ββ=, ,a b F ∀∈, 有 a b αβ+=1()af α1()bf β+=()f a b αβ+, 111a b V αβ+∈,a b αβ+∈1()f V ,故1()f V 是W 的子空间.3.证明:向量空间[]F x 可以与它的一个真子空间同构.证 提示:设2{()|()[]}W f x f x F x =∈, W 是[]F x 的子空间,且为[]F x 的真子空间,(因为x ∈[]F x ,但x ∉W ),令:ϕ[]F x →2[]F x ;()f x 2()f x ,可证ϕ是[]F x 到2[]F x 的同构映射,故[]F x W ≅.6.7矩阵的秩 齐次线性方程组的解空间1.证明:行列式等于零的充分且必要条件是它的行(或列)线性相关.证:设()i j n n A a ⨯=,0A =⇔秩A n <⇔行(列)空间的维数n <⇔A 的行(列)线性相关.2.证明,秩()A B +≤秩A +秩B提示:1W ,2W 是V 的子空间,由维数公式知,dim(1W +2W )=秩1W +秩2W ,令1W =A 的行空间,2W =B 的行空间,比较维数,结论得证.3.设A 是一个m 行的矩阵,秩A r =,从A 中任取出s 行,作一个s 行的矩阵B .证明,秩B r s m ≥+-.证明:11S S m A αααα+⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ (i α为A 的第i 行),1S B αα⎛⎫ ⎪= ⎪ ⎪⎝⎭ , 100S A αα⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 100S m αα+⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 据第2题,得,秩A ≤秩100S αα⎛⎫ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 秩100S m αα+⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ,即r ≤秩B +秩100S m αα+⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ,因m ≥秩100S m αα+⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ +S ,所以秩B r ≥-秩100S m αα+⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ()r m s r s m ≥--=+-4.设A 是一个m n ⨯矩阵,秩A r =,从A 中任意划去m s -行与n t -列,其余元素按原来位置排成一个s t ⨯矩阵C . 证明,秩C r s t m n ≥++--.证明:由A 中划去m s -行做成矩阵B ,由第3题,有秩B ≥r s m +-,在B 中划去n t -列做成t 矩阵C B ,,由第3题,有秩C ≥秩B +t n -,所以秩C ≥r s t m n ++--.5.求齐次线性方程组12345123451234523450323054330220x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++-=⎪⎨+++-=⎪⎪+++=⎩的一个基础解系.解:对系数矩阵施行初等行变换后,得10110012200000100000--⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭1342345220x x x x x x x =+⎧⎪∴=--⎨⎪=⎩,基础解系为()'12100-, ()'12010-. 6.证明定理6.7.3的逆命题:n F 的任意一个子空间都是某一含n 个未知量的齐次线性方程组的解空间.证明:设W 是n F 的任一子空间,而且dim W r =,令1111(,)n a a α= , 1(,)r r rn a a α= 是W 的一个基,以12,,,r ααα 为行构成矩阵r n A ⨯,经初等行变换(必要时交换列)将化为1112121100010001r n r n r r rn c c c c c c +++⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ,因此111(1r r r c c ++ 00) ,()1001n r n c c 是100n x A x ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 的基础解系,而12,,,r ααα 正是1111100001r n r n r n c c c c ++⎛⎫ ⎪ ⎪ ⎪⎝⎭1n y y ⎛⎫ ⎪=⎪ ⎪⎝⎭ 00⎛⎫ ⎪ ⎪ ⎪⎝⎭ (*)的基础解系,所以(*)的解空间为W .7.证明,n F 的任意一个n F ≠的子空间都是若干1n -维子空间的交.证明:设W 是nF 的任一子真子空间,不妨设12,,,s ααα 为W 的基,则W =dim L (12,,,s ααα )0S n ≤<,且dim W S =.现在把W 的基扩充为n F 的基,11{,,,,,}S S n αααα+ ,1L L =12(,,,0,,,)S S n αααα+ ,2L L =11(,,,,0,S S ααα+ ,3,,)S n αα+ ,1n L L -=121(,,,,,0)S n ααα+- ,所以原命题成立.。

高等代数第六章 线性空间

高等代数第六章 线性空间

线性空间的维数
定义7 如果在线性空间V中有n个线性无关 的向量,但是没有更多数目的线性无关的向 量,那么V就称为n维的;如果在V中可以找 到任意多个线性无关的向量,那么V就称为 无限维的。
按照这个定义,几何空间中向量所成的 线性空间是三维的;n元数组所成的空间是n 维的;
由所有实系数多项式所成的线性空间是 无限维的,因为对于任意的N,都有N个线
线性空间的元素也称为向量. 当然,这里 所谓向量比几何中所谓向量的涵义要广泛得 多。线性空间有时也称为向量空间。以下我 们经常是用小写的希腊字母 , , ,代表线 性空间V中的元素,用小写的拉丁字母 k,l, p, 代表数域F中的数
线性空间的性质
1.零元素是唯一的。 假设01,02是线性空间V中的两个元素。
(1,0,,0),
显然
2 (0,1,,0),
n (0,0,,1)
是一组基。对每一个向量 (a1, a2,, an ) ,
都有 a11 a22 ann
所以
(a , 1
a 2
,,
a n
)
就是向量
在这组基下的坐
标。不难证明,
1 ' (1,1,,1), 2 '(0,1,,1), n ' (0,0,,1)
2.如果向量组
线性无关,而且
可以被
线1,性2 ,表出,,r 那么

, ,,
1
2
s
rs
由此推出,两个等价的线性无关的向量
组,必定含有相同个数的向量。
3.如果向量组
1
,
2
,,
r
线性无关,但向
量组
1
,
2
,,
r

高等代数空间向量习题答案

高等代数空间向量习题答案

高等代数空间向量习题答案高等代数空间向量习题答案在高等代数学习中,空间向量是一个重要的概念。

它是指在三维空间中的一个有方向和大小的量。

空间向量的运算和性质是我们学习的重点之一。

在学习过程中,我们经常会遇到一些习题,需要通过运算和推理来求解。

下面我将给出一些高等代数空间向量习题的答案,希望能对大家的学习有所帮助。

1. 求两个向量的和与差设向量a = (1, 2, 3)和向量b = (4, 5, 6),求a + b和a - b的结果。

解答:a +b = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)a -b = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)2. 求两个向量的数量积设向量a = (1, 2, 3)和向量b = (4, 5, 6),求a · b的结果。

解答:a ·b = 1 × 4 + 2 × 5 + 3 × 6 = 4 + 10 + 18 = 323. 求两个向量的向量积设向量a = (1, 2, 3)和向量b = (4, 5, 6),求a × b的结果。

解答:a ×b = (2 × 6 - 3 × 5, 3 × 4 - 1 × 6, 1 × 5 - 2 × 4) = (12 - 15, 12 - 6, 5 - 8) = (-3, 6, -3)4. 求两个向量之间的夹角设向量a = (1, 2, 3)和向量b = (4, 5, 6),求a和b之间的夹角。

解答:首先计算a · b和|a| × |b|的值:a ·b = 32|a| = √(1^2 + 2^2 + 3^2) = √14|b| = √(4^2 + 5^2 + 6^2) = √77然后利用向量的数量积公式计算夹角θ:cosθ = (a ·b) / (|a| × |b|)θ = arccos[(a · b) / (|a| × |b|)]= arccos(32 / (√14 × √77))通过计算,可以得到夹角θ的近似值。

高等代数第六章自测题

高等代数第六章自测题

高等代数第六章自测题第六章线性空间自测题一、填空题(20分)1、若n ααα,,,21Λ就是线性空间V 的一个基,则满足条件(1)n ααα,,,21Λ就是 ;(2)对V 中任意向量β, 、2、数域P 上的线性空间V 的非空子集W 就是V 的子空间的充要条件为、3、已知12,W W 为线性空间V 的子空间, 12W W +为直与的充要条件为、4、设V 与W 就是数域P 上两个线性空间,V 到W 的一个同构映射f 满足如下三个条件:(1)f 就是V 到W 的 ;(2)对V ∈?βα,,有 ;(3)对,V k P α?∈∈,有、5、向量空间V 的基12,n αααL ,,到基11,,,n n ααα-L ,的过渡矩阵为_______ 、6、复数域C 作为实数域R 上的向量空间,则dim =C _____,它的一个基为__ __、复数域C 作为复数域C 上的向量空间,则dim =C __ __,它的一个基为__ _ _、二、选择题(10分)1、若21,W W 均为线性空间V 的子空间,则下列等式成立的就是( )(A)21211)(W W W W W I I =+; (B)21211)(W W W W W +=+I ;(C)1211)(W W W W =+I ; (D)2211)(W W W W =+I2、按通常矩阵的加法与数乘运算,下列集合不构成P 上线性空间的就是:( ) (A){}1n n W A P A A ?'=∈=; (B){}2()0n nW A P tr A ?=∈=; (C){}30n n W A P A ?=∈=; (D){}4n n W A P A A ?'=∈=-、 3、数域P 上线性空间V 的维数为V r n ∈ααα,,,,21Λ,且任意V 中向量可由n ααα,,,21Λ线性表出,则下列结论成立的就是:( )(A)n r =; (B)n r ≤; (C)n r <; (D)n r >4、设1324[],[]W P x W P x ==则=+)dim(21W W ( ) (A)2; (B)3; (C)4; (D)55、设线性空间{}R a a a a W ∈=)3,2,(,则W 的基为:( )(A))3,2,1(; (B)),,(a a a ; (C))3,2,(a a a ;(D))3,0,0()0,2,0()0,0,1(三、(10分) 在线性空间4P 中求由线性方程组:=+-+=-+-=+-+0111353033304523432143214321x x x x x x x x x x x x 所确定的4P 的子空间W 的基与维数、四、(15分)设3R 中的两个基分别为()1101α=,()2010α=,()3122α=, ()()()123100,110,111βββ===、(1)求由基321321,,,,βββααα到基的过渡矩阵、(2)已知向量α在基321,,ααα下的坐标为()130,求α在基321,,βββ下的坐标、五、(15分) 设12(1,2,1,0),(1,1,1,1),αα==-1(2,1,0,1),β=- 2(1,1,3,7)β=,),(),,(212211ββααL W L W ==,求)dim (21W W +及)dim (21W W I 、六、(15分) 设n n A P ?∈:1)证明:全体与A 可交换的矩阵组成n n P ?的一子空间,记作()C A ;2)当A =E 时,求()C A ;3)当10000200000A n =L L L L L L L L 时,求()C A 的维数与一组基、七、(15分)已知n n P ?的两个子空间{}1n n V A P A A ?'=∈=,{}2n n V A P A A ?'=∈=-, 证明:12n n P V V ?=⊕.答案:一、1、线性无关,β可以由n ααα,,,21Λ线性表示2、对V 的加法与数乘封闭 3、 12{}W W o ?=或12dim()0W W ?= 4、线性映射,()()()f f f αβαβ+=+,()()f k kf αα= 5、 111N6、 dim =C 2,它的一个基为1,i ; dim =C 2,它的一个基为1、二.C C B C A三、解:由32543254325431330387018735131103870000---?--→--→---12534101920183701837300000000--??→-→-,W 的维数为2, 一组基为()()''1218310,29701ξξ=-=-、四、解:(1)由()()()123123123101=012=A 102αααεεεεεε??,()()()123123123111=011=001B βββεεεεεε??,()()1123123=A B βββααα-∴,过渡矩阵1110111*********1=012011212011231102001101001110A B ---??=-=---、(2) ()112312311=(,,)3=300B A ααααβββ-坐标为111101*********=0110123110320001102010201B A ------=-= ? ? ? ?五、解:由()12121121110321110117=1103022201170115ααββ--→-----101410000117010000412001000020001--→→,12dim 2,dim 2W W ==,12dim()=4W W +,12dim()=0W W I六、证明 1)设与A 可交换的矩阵的集合记为()C A 、显然()O C A ∈, ,()B D C A ?∈,()()A B D AB AD BA DA B D A +=+=+=+,故()B D C A +∈、若k 就是一数,()B C A ?∈,可得()()()()A kB k AB k BA kB A ===,故()kB C A ∈、所以()C A 构成n n P ?的子空间。

高等代数第6章(2)

高等代数第6章(2)
南昌大学理学院数学系
必要性 若映射σ :M→M′为可逆映射 则对任意的y∈M′,有y=σσ -1(y)=σ(σ -1(y)) 即存在x=σ -1(y)∈M,使得y=σ(x) 所以σ为满射 其次,对任意的x1,x2∈M,若σ(x1)=σ(x2) 则有 x1 = 1M ( x1 ) = σ σ ( x1 ) = σ (σ ( x1 )) = σ (σ ( x2 ))
sihuabin@ 南昌大学理学院数学系
所谓给出一个集合就是规定这个集合 是由哪些元素组成的。因此给出一个集合 的方式分为两种: 集 合 的 表 示 法 列举法:列举出它全部的元素 例如:集合 M={1,2,…,n,…} 描述法:给出此集合的元素所具有的特征性质 M={ a ⎪a具有的性质} 例如:集合 M={a∈C⎪存在正整数n,使得an=1}
sihuabin@ 南昌大学理学院数学系
加法满足下列四条规则: ∀α , β , γ ∈ V ① α+β=β+α ② (α+β)+γ =α+(β+γ) ③ 在V中有一个元素0,对∀α∈V,有α+0=α (具有这个性质的元素0称为V的零元素) ④ 对∀α∈V,都有V中的一个元素β,使得α+β=0 (β称为α的负元素) 数量乘法满足下列两条规则: ⑤ 1α =α ⑥ k(lα)=(kl)α 数量乘法与加法满足下列两条规则: ⑧ k(α+β)=kα+kβ ⑦ (k+l)α =kα+lα
sihuabin@ 南昌大学理学院数学系
映射注意事项
关于M到M ′的映射σ应注意: (1) M与M ′可以相同,也可以不同; (2) 对于M中的每个元素a,需要有M ′中一个 唯一确定的元素a ′与它对应; (3) 一般地,M′中元素不一定都是M中元素的像; (4) M中不同元素的像可能相同; (5) 两个集合之间可以建立多个映射。

高等代数课后习题答案(山东大学出版社第二版)第六章线性空间

高等代数课后习题答案(山东大学出版社第二版)第六章线性空间

第六章 线性空间第一节 映射∙代数运算1.(1)双射. (2)非单射也非满射. (3)非单射也非满射. (4)满射. 2.(1)由b a b gf a gf =⇒=)()(.(2)C c ∈∀,B b ∈∃使c b g =)((因为g 为满射),对于b ,又A a ∈∃使b a f =)((因为f 为满射),即c a gf=)(.3.由2知gf为双射,且C I g gff=--11,C I gf g f=--11,因此111)(---=g fgf .4.A b a ∈∀,,若)()(b f a f =,则)()(b gf a gf =,由b a I gf A =⇒=,故f为单射.B b a f A a ∈=∃∈∀)(,,使a a gf b g ==)()(.第二节 线性空间的定义1. (1),(2)不是线性空间;(3),(4),(5),(6)是线性空间.2. 否.因为R i i ∉=⋅1.4. 设α为非零向量,F l k ∈∀,,当l k ≠时, ααl k ≠,因此V中含有无限个向量.5. 因为φ≠∈V )0,0(,显然⊕是V 上的代数运算,"" 为V V R →⨯的代数运算.且容易验证(1)——(8)条运算律均成立.6. 若在nF 中,通常的加法及如下定义的数量乘法: 0=⋅αk .容易验证当0≠α时,αα≠=⋅01,但其余7条运算律均成立.第三节 基维数坐标1. 提示:反证法.2.(1)一个基为),,2,1(n i E ij =,)(j i E E ji ij ≠+,维数为2)1(+n n .(2)一个基为)(j i E E ji ij≠-,维数2)1(-n n .(3)一个基为2,维数为1. (4)一个基2,,A A E ,维数为3.3. 易证n n n l ααααααα,,,,,,2121 +↔,由l 的任意性及当l k ≠时n n k l αααα+≠+11,可得结论.4.易知C x x x a x a x a xn n ),,,,1())(,,)(,,1(1212--=--- ,其中⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=-------10)(100)(210)(133122112n n n n n n n a C a C a a a a C且01≠=C .其坐标为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1101n a a a C . 5. (1))3,4,1,4(--. (2) )0,1,0,1(-.6. 22n 维.一个基为),,2,1,(,n j k i E E kj kj =.第四节 基变换和坐标变换1.(1) 过渡矩阵为 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001100001000010 .(2) 过渡矩阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛100010000100001 k .3. 非零向量=ξ),,,(k k k k -,F k ∈且0≠k .4. 易知C n n ),,,(),,,(2113221ααααααααα =+++,其中C 的行列式为1)1(1+-=+n C N k k n k n ∈⎩⎨⎧-===12,22,0. 因此当n 为偶数时不为V 的基;当n 为奇数时为V的基.第五节 线性子空间1. (1),(2)是nF 的 子空间,(3)不是nF 的 子空间. 2. (1) 一个基为1,12--x x ,维数为2.(2)一个基为421,,ααα,维数为3.3. (1)φ≠)(A C ,且)(,21A C B B ∈∀,易证AB B B B A )()(2121+=+,因此)(21A C B B ∈+,又Fk ∈∀,有A kB kB A )()(11=,所以n F kB ∈1,从而)(AC 是n F 子空间.(2)n n F A C ⨯=)(.(3) 一个基为),,2,1(n i E ii =,维数为n .4. 只证3221,,αααα↔.5.若1dim >W ,必V ∈∃βα,,对F k ∈∀均有βαk ≠.令),,,(),,,,(2121n n b b b a a a ==βα且11kb a =,当2≥n 时至少有一个i使i ikb a ≠,于是βαk -的第一个分量为0,但是第i个分量不为0的向量,矛盾.6. 只证V ∈∃α,但1W ∉α且2W ∉α.由1W 为真子空间知,V ∈∃α但1W ∉α,若2W ∉α则结论成立.若2W ∈α,则由2W 为真子空间知V∈∃β但2W ∉β,若则结论成立.若1W ∈β则V ∈+βα但1W ∉+βα,且2W ∉+βα.第六节 子空间的和与直和2.取V 的基n εεε,,,21 ,易证)()()(21n L L L V εεε⊕⊕⊕= .3.显然21211W W W V ++=,设21211=++ααα,其中2211),2,1(,W i W i i ∈=∈αα,则)(21211=++ααα及21W W V ⊕=,可得0,021211==+ααα,再由12111W W W ⊕=知01211==αα,故21211W W W V ⊕⊕=.4.必要性∑-=⋂∈∀11i j ji i W W α,则∑-=∈11i j ji W α于是令121-+++=i i αααα 从而由000121=+++-+++- i i αααα及∑=ti iW 1为直和可知0=i α.充分性 假设21=+++t ααα 中最后一个不为的是iα,即)1(,01>===+i t i αα ,则{}011121≠⋂∈----=∑-=-i j j i i i W W αααα 矛盾.5. 首先21W W Fn+=,其次2121),,,(W W a a a n ⋂∈=∀ α,由n a a a === 21及021=+++n a a a ,可知0=i a 即0=α.6.nF ∈∀α,由αααA E A +--=)(,易证21,)(W A W E A ∈∈--αα,故21W W +∈α,即21W W F n +⊆且n F W W ⊆+21,于是21W W F n +=.21W W +∈∀β,可得0=β,从而21W W F n ⊕=.7. 充分性n F X ∈∀,由X AE X X E X 22-++=,易证21W W Fn+⊆.且21W W ⋂∈∀α由 ⎝⎛=+=-0)(0)(ααE A E A ,可得0=α,故21W W F n ⊕=.必要性 由21W W F n ⊕=可知,nF X ∈∀有21X X X +=,且由⎪⎩⎪⎨⎧-==+=-21210)(0)(XX X X E A X E A ,可得X A E X X A E X 2,221-=+=.故0)(212)(2=-=+-X E A X A E E A ,由X 的任意性可知E A =2. 8. 余子空间为),(43εεL ,其中)1,0,0,0(),0,1,0,0(43==εε.9. 取W 的基r ααα,,,21 ,将其扩充成V 的基n r r ααααα,,,,,,121 +,取F k k L W n r r k ∈+=++),,,,(211αααα ,则k W 为W 的余子空间,且当l k ≠时,l k W W ≠.10.)3()2(),2()1(⇒⇒,显然.)4()3(⇒利用维数公式对t 用数学归纳法; )5()4(⇒只证i W 的基的联合是线性无关的即可; )1()5(⇒∑=∈∀ti iW 1α,设t t βββαααα+++=+++= 2121,其中ti W i i i ,,2,1,, =∈βα,令iiirir i i i i i b b b αααα+++= 2211,iiirir i i i i i c c c αααβ+++= 2211,其中iiri i ααα,,,21为iW 的基.由0)()()(2211=+++-+-t t βαβαβα 得0)()()()(111111*********=-++-++-++-t t t tr tr tr t t t r r r c b c b c b c b αααα于是0,,01111=-=-t t tr tr c b c b ,即t i i i ,,2,1, ==βα.第七节 线性空间的同构2.R x ∈∀,令x x 2)(=σ即可.3. 二者维数相同.n m ij F a A ⨯∈∈∀)(,令),,,,,,,,()(2111211mn m m n a a a a a a A =σ4.112210)(--++++=∀n n x a x a x a a x f ,令),,,())((110-=n a a a x f σ.5. 基为4321,,,ββββ,维数为4.6. 基为D C B A ,,,,维数为4.7. 令b a V V →:σ, )()(()()(x h b x x h a x x f -→-=a V x h a x x f x h a x x f ∈-=-=∀)()()(),()()(2211,若)()()()(21x hb x x h b x -=-则)()(21x h x h =,从而)()(21x f x f =,即σ为单射.)()()(1x g b x x g -=∀,有)()()(1x g a x x f -=使)())((x g x f =σ,即σ为满射.a V x f x f ∈∀)(),(21及F l k ∈∀,,易证)()(),()()((22121x f l x f x f k x lf x kf σσσ+=+.补充题六1.),,,(21 ++n n n x x x L .2. 设F 作为K 上的线性空间的维数为n ,其一个基为n e e e ,,,21 ,设E 作为F 上的线性空间的维数为m ,其一个基为n εεε,,,21 ,则{}m j n i e j i ,,2,1;,,2,1| ==ε为E 作为K 上的线性空间的一个基.事实上,E ∈∀α,可设m i F b e b i ni i i ,,2,1,,1 =∈=∑=α.而F 是K 上的线性空间,可设n j m i K a a a a b ij n in i i i ,,2,1;,,2,1,,2211 ==∈+++=εεε.故∑∑===mi nj j i ij e a 11)(εα.令0)(11=∑∑==mi nj i j ije kε,n j m i K k ij ,,2,1;,,2,1, ==∈,则0))(11=∑∑==m i nj i j ij e k ε,故j nj ijkε∑=1,进而n j m i k ij ,,2,1;,,2,1,0 ===.故{}m j n i e j i ,,2,1;,,2,1| ==ε是其一个基.3. 设1V 的基为r εεε,,,21 ,将其扩充为V的基n r r εεεεε,,,,,,121 +,令),,(11n r L W εε +=,则11W V V⊕=,又令),,,(22112r n n r r L W -+++++=εεεεεε这里r r n ≤-,易证r εεε,,,21 ,r n n r r -+++++εεεεεε,,,2211 线性无关,从而21W V V ⊕=.设21W W ⋂∈α,则n n r r r n n n r r l l k k εεεεεεα++=++++=++-++ 11111)()(,得到01===+n r k k ,进而0=α,即{}021=⋂W W .若2n r<上述问题不成立,用反证法,设2111W V W V V ⊕=⊕=,而{}021=⋂W W ,令n r r εεε,,,21 ++是1W 的基,''1,,n r εε +是2W 的基,则n r r εεε,,,21 ++,''1,,n r εε +线性无关.事实上,考察n n r r k k εε++++ 110''11=+++++nn r r l l εε 所以n n r r k k εε++++ 11{}021''11=⋂∈---=++W W l l nn r r εε 因此011=++++n n r r k k εε进而0,011====+=++n r n r l l k k ,而''11,,,,,n r n r εεεε ++共有)2(r n n r n r n -+=-+-个向量,因为2nr <,所以02,2>->r n r n ,故n r n r n >-+-,矛盾.4. 解 设)(x m A 为A 的最小多项式,令)(x m A 的次数m ,则1,,,-m A A E线性无关,从而m W =dim .事实上,首先1,,,-m A A E线性无关,否则存在110,,-m k k k 不全为零,使01110=+++--m m A k A k E k ,而令0,011===≠-+m i ik k k ,即10,010-≤<=+++m i A k A k E k i i ,与)(x m A 为A 的最小多项式矛盾,从而它们线性无关. ][)(x P x f ∈∀,则存在)(),(x r x q ,使,)(deg 0)(),()()()(m x r or x r x r x q x m x f A <=+=故 )()(A r A f =即)(A f 可由 1,,,-m A A E 线性表示.故 1,,,-m A A E 为W 的基.5. 参考本章第五节练习题6.6. 证 对用数学归纳法.当2=s 时,由上题知,结论成立;假定对1-s 个非平凡的子空间结论成立,即在V中存在向量α,使1,,2,1,-=∉s i V i α对第s 个子空间s V ,若s V ∉α,结论已对;若s V ∈α,则由于s V 为非平凡子空间,故存在s V ∉β.对任意数k ,向量s V k ∉+βα,且当21k k ≠时向量βαβα++21,k k 不属于同一个)11(-≤≤s i V i .今取s 个互不相同的数s k k k ,,,21 ,则s 个向量βαβαβα+++s k k k ,,,21中至少有一个不属于任何121,,,-s V V V ,这样的向量即满足要求.7. 只证0=X AA T 与0=X A T 同解即可.8. 设012=X A 与012=X B 的解空间分别为1V 与2V .1V ∈∀α,则⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-ααααα2222222222121000A B A B A B A A ,故222V A ∈α.令αασ22:A →,易证σ是1V 到2V 的同构映射.9. 由维数公式)dim(dim )dim())dim((k j i k j i k j i W W W W W W W W W ++-++=⋂+得)dim ()dim (dim )dim (j i k j i k j i k W W W W W W W W d ⋂+++-++=)dim(dim dim dim k j i k j i W W W W W W ++-++=从而321d d d ==.10. 证 设齐次方程组0=AX 的解空间为1W ,齐次方程组0=BX 的解空间为2W .任取21W W ⋂∈α,则0,0==ααB A ,从而0=⎪⎪⎭⎫⎝⎛αB A ,由⎪⎪⎭⎫ ⎝⎛=B A C可逆,所以0=α,即{}021=+W W ,因此n F n W W dim )dim (21==+,且n F W W ⊆+21,因此21W W F n⊕=. 11. 证 任取)(AB N X ∈,由n I BD AC =+,则 BDX ACX X +=由0)()(==ABX C ACX B ,所以)(B N A C X ∈,由)()(==ABX D BDX A ,所以)(A N B D X ∈,从而)()()(B N A N AB N +=.任取)()(B N A N X ⋂∈,则)(A N X ∈,从而)(,0NB X AX ∈=,从而0=BX ,于是0)()(=+=+=BX D AX C BDX ACX X 即)()()(B N A N AB N ⊕=.12. 证法同上题. 13. (1)证 例如,取)1,,1,1( =α,则由α的一切倍数)(F k k ∈α作成的子空间W 中,每个非零向量0),,,,(≠=k k k k k α的分量都不是零.(2) 见习题6.5中的题5. 14. 证 必要性 显然; 充分性 设221121,,0V V ∈∈=+ββββ,则21ααα+=,由α的分解唯一可知021==ββ,故21V V +是直和. 15. 若n ααα,,,21 是V 作为C 上的线性空间的基,则n n i i ααααα,,,,,,121 是V作为R 上的线性空间的基.16. 若{}0=W ,则n n F A ⨯∈∀且0,0||=≠AX A 的解空间即为W ;若{}0≠W,且设r W =dim ,取其一个基r ααα,,,21 ,令r i in i i i ,,2,1),,,,(21 ==αααα则以n r ij a A ⨯=)(为系数矩阵的齐次方程组0=AX 的基础解系为r n -βββ,,,21 ,且令r n j b b b jn j j j -==,,2,1),,,,(21 β.则齐次方程组0=BY 的解空间为r 维,且r ααα,,,21 为其一个基础解系.即),,(21r L W ααα =,其中n r n ij b B ⨯-=)()(.17. 令121dim )dim(V t V V =+⋂,221dim )dim (V l V V =+⋂而1)dim ()dim (dim dim dim )dim (2121212121+⋂=+++=⋂-+=+V V t l V V V V V V V V于是1,01==⇒=+t l t l或者0,1==t l .当0=l时,221V V V =⋂,此时12V V ⊆.当0=t时,121V V V =⋂,此时21V V ⊆.18. 取基为n n αααα,,,21 ++.19. 设A 为半正定的,故存在秩为r 的矩阵B ,使B B A '=,由此'S S =.其中{}|'==xAx x S{}|'1==Ax x S 此时构成线性空间,维数为r n -.设A 为半负定的,则A -为半正定的.令 {}0|'==xAx x S {}0|'1==Ax x S若A 不定,则存在可逆矩阵Q 使 ⎪⎪⎪⎭⎫⎝⎛=0'qp E E QAQ 那么经过线性变换YQ X =,)(x f 化为221221'')(q p p p y y y y Y YQAQ x f ++---++==取1,111==+p y y ,其它0=i y ,得)0,,0,1,0,,0,1(1 =x ,从而0)(1=x f ,取1,111=-=+p y y ,其它0=i y ,得)0,,0,1,0,,0,1(2 -=x ,从而0)(2=x f ,但是)0,,0,2,0,,0,0(21 =+x x ,04)(21≠-=+x x f ,所以此时不能构成线性空间.20. (1) 用定义直接验证; (2) 维数为n ,基:1,,,-n A A E .。

高等数学 线性代数 习题答案第六章

高等数学 线性代数 习题答案第六章

第六章习题6-11. 利用定积分定义计算由抛物线y =x 2+1,直线x =a ,x =b 及x 轴所围成的图形的面积. 解 因y =x 2+1在[a,b ]上连续,所以x 2+1在[a,b ]上可积,从而可特殊地将[a,b ]n 等分,并取2,,()()1Δi i i b a b a b a a i x f a i n n nξξ---=+==++, 于是21122221222()[()1]1()[()2()1]111(1)1()[()(1)(21)2()]62Δ nni i i i ni b a b a f x a i n ni i b a a b a a b a n n n n n b a na b a n n n b a a n n n nξ===--=++=-+-+-++=-+-⋅⋅+++-⋅⋅+⋅∑∑∑ 故面积 22211(1)l i m ()()[()()1]3d Δnbi i a n i S x x f x b a a b a a b a ξ→∞==+==-+-+-+∑⎰ 331()()3b a b a =-+- 2. 利用定积分的几何意义求定积分: (1)12d x x ⎰;(2)x ⎰(a >0).解 (1)根据定然积分的几何意义知, 12d x x ⎰表示由直线y =2x ,x =0,x =1及x 轴所围的三角形的面积,而此三角形面积为1,所以12d x x ⎰=1.(2)根据定积分的几何意义知,0x ⎰表示由曲线0,y x x a ===及x轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014πx a =⎰.3. 根据定积分的性质,比较积分值的大小: (1)12d x x ⎰与13d x x ⎰; (2)1e d xx ⎰与1(1)d x x +⎰.解 (1)∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230d d x x x x >⎰⎰.(2)令()1,()1e e x xf x x f x '=--=-,因01x ≤≤,所以()0f x '>,从而()(0)0f x f ≥=,说明1e xx ≥+,又ex1+x .所以11(1)e d d xx x x >+⎰⎰.4. 估计下列各积分值的范围:(1)421(1)d x x +⎰;(2) arctan d x x ;(3)2e d ax ax --⎰(a >0); (4)22e d x x x -⎰.解 (1)在区间[1,4]上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰, 即 4216(1)51d x x ≤+≤⎰.(2)令()arctan f x x x =,则2()arctan 1x f x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值m f ==,所以2arctan 93ππd x x =≤≤=即2arctan 93ππd x x ≤≤. (3)令2()e x f x -=,则2()2e x f x x -'=-,令()0f x '=得驻点x =0,又(0)1f =,2()()e a f a f a -=-=,a >0时, 21e a -<,故()f x 在[-a,a ]上的最大值M =1,最小值 2e a m -=,所以2222e e d aa x aa x a ---≤≤⎰.(4)令2()ex xf x -=,则2()(21)e xxf x x -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2e ef f -==,从而()f x 在[0,2]上的最大值2e M =,最小值14e m -=,所以 212242ee d e x x x --≤≤⎰,而2222ed e d x xx x x x --=-⎰⎰,故 21024222e ed ex xx ---≤≤-⎰.习题6-21. 求下列导数:(1)20d d x t x ⎰; (2) 53ln 2d e d d x t t t x -⎰; (3) cos 2sin cos()d xxt t '⎡⎤π⎢⎥⎣⎦⎰; (4) 22dsin d d x t t x tπ⎰ (x >0). 解220(1)()d d x t x x'⋅=⎰5353ln 2(2)d e d e d x tx t t x x --=⎰cos cos sin 222sin 00cos sin 220022222(3)cos()cos()cos()cos()cos()cos(cos )(cos )cos(sin )(sin )cos(cos )sin cos(sin )cos cos(sin )sin πd πd πd πd πd πππππx x xx xx t t t t t t t t t tx x x x x x x x x x ''⎡⎤⎡⎤=-⎣⎦⎣⎦''⎡⎤⎡⎤=-⎣⎦⎣⎦''=⋅-⋅=--=-⎰⎰⎰⎰⎰22cos(sin )cos (sin cos )cos(sin )ππx x x x x =-2222sin sin sin (4)cos sin sin cos .ππd d d d d d d d d d xx t t x t t xt x x x t x x x x x x x x x⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭--=-=⎰⎰ 2. 求下列极限:(1) 02arctan d limxx t t x →⎰; (2) 2020sin 3d lim e d x xx tt t t t→-⎰⎰; (3)()22220e d lime d xt xx t t t t→⎰⎰.解 ()022000021a r c t a n a r c t a n a r c t a n11(1)l i m l i ml i m l i m 222d d x xx x xxt t t t x x x xx →→→→'⎡⎤--⎣⎦+====-'⎰⎰ 2220030003300222200sin 3sin 3sin 32(2)lim lim lim 2sin 3sin 3lim lim 663d d e e d e d e e x x x x x x x t x t x xx x t t t t x x x t t t t x x x x-→→→--→→'⎡⎤⋅⎢⎥⎣⎦=='⎡⎤⎣⎦=⋅=⋅⋅=⎰⎰⎰⎰()()[]222222222222222200002000022000200022(3)lim lim lim lim 222lim lim lim 2122e d e d e d e e d e e e d e d e d e e e e xxx x t t t x tx x x x x x x t x t x t x x x x x x x t t t t x x t tt t t x x x x →→→→→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦'⎡⎤⎣⎦====+'+⋅⎰⎰⎰⎰⎰⎰⎰ 3. 求由方程e d cos d 0yxtt t t +=⎰⎰所确定的隐函数y =y (x )的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-. 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 当x 为何值时,I (x )=2e d xt t t -⎰有极值?解 2()e x I x x -'=,令()0I x '=得驻点0x =,又22()(12),(0)10e x I x x I -''''=-=>, 所以当x =0时,I (x )有极小值,且极小值为I (0)=0.5. 计算下列定积分:(1)3x ⎰; (2)221d x x x --⎰;(3)()d f x x π⎰,其中,0,2()sin ,2x x f x x x π⎧≤≤⎪⎪=⎨π⎪≤≤π;⎪⎩ (4) {}222max 1,d x x -⎰.解433322233222(1)(43)(8333x x ⎛⎫==-=- ⎪⎝⎭⎰201222221101(2)()()()d d d d x x x x x x x x x x x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22220022(3)()sin 1cos 82ππππππππd d d xf x x x x x x x =+=+=+-⎰⎰⎰(4)由于22221()max{1,}11112x x f x x x x x ⎧-≤<-⎪==-≤<⎨⎪≤≤⎩,于是 21121212223312122111120max{1,}333d d 1d d x x x x x x x x x x -------=++=++=⎰⎰⎰⎰ 6. 已知f (x )连续,且f (2)=3,求2222()d d lim(2)xt x f u u tx →⎡⎤⎢⎥⎣⎦-⎰⎰.解 []222222222222()()()()limlim lim lim (2)2(2)2(2)(2)d d d d d d x xx x t t x x x x t f u u t f u u f u u f u u x x x x →→→→''⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦===--''-⎡⎤-⎣⎦⎰⎰⎰⎰⎰⎰ 22()113lim lim ()(2)2222x x f x f x f →→-==-=-=-.习题6-31. 计算下列积分: (1)3sin()d x x πππ+3⎰; (2) 32d (115)xx 1-+⎰;(3)1x -⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos d u u ππ6⎰;(6)2e 1⎰;(7)1;(8)x ;(9)ln 3ln 2d e ex xx--⎰; (10) 322d 2xx x +-⎰;(11)21x ⎰;(12) 22x ππ-⎰.解 333(1)sin()d sin()d()[cos()]x x x x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+= 12332221d 1d(511)151(2)(511)(115)5(511)10512x x x x x 11---+==-=+++⎰⎰1111(3)4)14x x--=-==⎰⎰2334220011(4)sin cos d cos dcos cos44ϕϕϕϕϕϕπππ=-==-⎰⎰22222π2π61cos211(5)cos d d d cos2d22241πππ1sin226264uu u u u u uuππππππππ6666+==+⎛⎫=+=-⎪⎝⎭⎰⎰⎰⎰222e e11(6)1)===⎰⎰(7)令x=tan t,则d x=sec2t d t,当x=1时,π4t=;当x=,π3t=,于是ππ33π21π44cos1dsin sinttt t==-=⎰(8)令x t,则d dx t t=,当x=0时,t=0;当x=,π2t=,于是πππ222200π12cos d(1cos2)d(sin2)22x t t t t t t==+==+⎰⎰.(9)令e x t=,则1ln,d dx t x tt==,当ln2x=时,2t=;当ln3x=时,3t=,于是3ln3332ln2222d d1113111d ln lne e12222111x xx t ttt t t t--⎛⎫====-⎪---++⎝⎭⎰⎰⎰.3 333222222d d11111(10)()d ln19231232()241211(ln ln)ln2ln53543x x xxx x x x xx-==-=+--+++-=-=-⎰⎰⎰(11)t=,则65,d6dx t x t t==,当x=1时,t=1;当x=2,t于是2111611d6()d1x t tt t t t==-++⎰6(ln ln(7ln26ln(1t t=-+=-220202(12)d sin )d sin d x x x x x x x x xπ-π-π-==-+=-⎰⎰⎰33022202224cos cos 333x x ππ-=-= 2. 利用被积函数的奇偶性计算下列积分值:(1)ln(aa x x -+⎰(a 为正常数);(2) 325425sin d 21x xx x x -++⎰; (3) 4224cos d θθππ-⎰.解((1)()l n f x x =+是奇函数.(ln 0d aax x -∴=+⎰.3242sin (2)()21x xf x x x =++ 是奇函数.325425sin 021d x x x x x -∴=++⎰4(3)()cos f θθ= 是偶函数.4422222022202020222004cos 24cos 2(1cos )2(12cos 2cos 2)312(2cos 2cos 4)22(34cos 2cos 4)1332sin 2sin 442ππππππππππd d d d d d θθθθθθθθθθθθθθθθθθ-∴==+=++=++=++=++=⎰⎰⎰⎰⎰⎰π3. 证明下列等式: (1)23211()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正整数);(2)证明:11221d d 11xx x x x x =++⎰⎰ (x >0);(3) 设f (x )是定义在(-∞,+∞)上的周期为T 的连续函数,则对任意a ∈[-∞,+∞),有()d ()d a TTaf x x f x x +=⎰⎰.证 (1)令x 2=t ,则d x x t ==,当x =0时,t =0;当x =a 时,t =a 2, 于是2223200011()()()()22d d d aa a a x f x x t t tf t t xf x x ===⎰⎰⎰⎰即2321()()2d d aa x f x x xf x x =⎰⎰.(2)令1x t=则21d d x t t -=,1111111222231111111111111d d d d d t xx t tx t t t x x t t x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰ 即 1122111d d xx x x x x =++⎰⎰. (3)由于()d ()d ()d a TT a Taaf x x f x x f x x ++=+⎰⎰⎰,而()d ()d ()d ()d ()d ()d ,令 a TaaaaTTaf x x x t T f t T t f t tf x x f x x f x x +=++===-⎰⎰⎰⎰⎰⎰故有()d ()d a TTaf x x f x x +=⎰⎰.4. 若f (t )是连续函数且为奇函数,证明0()d xf t t ⎰是偶函数;若f (t )是连续函数且为偶函数,证明()d xf t t ⎰是奇函数.证 令0()()d xF x f t t =⎰.若f (t )为奇函数,则f (-t )=- f (t ),从而()()()()()d d d xxxF x f t tt u f u u f u u F x -==---==⎰⎰⎰,所以0()()d xF x f t t =⎰是偶函数.若f (t )为偶函数,则f (-t )=f (t ),从而()()()()()d d d xxxF x f t tt u f u u f u u F x --==---=-=-⎰⎰⎰,所以0()()d xF x f t t =⎰是奇函数.5. 设f (x )在(-∞,+∞)内连续,且F (x )= 0(2)()d xx -t f t t ⎰,试证:若f (x )单调不减,则F (x )单调不增.证 000()()()2()()2()d d d x x xF x f t t xf x xf x x f t t tf t x '⎡⎤'==+--⎣⎦⎰⎰⎰()()()()[()()]d xf t t xf x f x xf x x f f x ξξ=-=-=-⎰,其中ξ在x 与0之间.当x >0时,x >ξ,由f (x )单调不减有()()0f f x ξ-≤,即()0F x '≤;当x <0时,ξ> x ,由f (x )单调不减有()()0f f x ξ-≥,即()0F x '≤;综上所述知F (x )单调不增.习题6-41. 利用分部积分公式证明:()()()d ()d d xxuf u x u u f x x u -=⎰⎰⎰.证 令0()()d uF u f x x =⎰则()()F u F u '=,则(())()()()d d d d xu x xx f x x u f u u uF u uF u u '==-⎰⎰⎰⎰()()()()()()()()()()d d d d d d d d x x xx x x xxxF x uf u u x f x x uf u ux f u u uf u u xf u u uf u u x u f u u=-=-=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰即等式成立.2. 计算下列定积分: (1)10e d x x x -⎰; (2)e1ln d x x x ⎰;(3)41x ⎰; (4) 324d sin xx x ππ⎰; (5) 220e cos d x x x π⎰; (6)221log d x x x ⎰;(7)π20(sin )d x x x ⎰; (8)e1sin(ln )d x x ⎰;(9)230e d x x ; (10)1201lnd 1xx x x+-⎰.解 (1)1111ed de ee d xxx x x x x x x ----=-=-+⎰⎰⎰111012e e e e e 1ex----=--=--+=-.e e e 22222ee 11111111111(2)ln d ln d ln d e (e 1)222244x x x x x x x x x x ==-=-=+⎰⎰⎰444441111(3)2ln 28ln 28ln 24x x x x ==-=-=-⎰⎰⎰33332444434(4)d dcot cot cot d sin π131πln πlnsin 4224xx x x x x x xx x ππππππππππ=-=-+⎛=+=+- ⎝⎰⎰⎰22222222000π2π222220π220(5)e cos d e dsin e sin 2e sin d e 2e dcos e 2e cos 4e cos d e 24e cos d xxxx xxx x x x x xx xx x x x x xππππππππ==-=+=+-=--⎰⎰⎰⎰⎰⎰故2π201e cos d (e 2)5x x x π=-⎰.()2222222111111(6)log d ln d ln d 2ln 22ln 2133(4ln 2)22ln 224ln 2x x x x x x x x x ==-=-=-⎰⎰⎰πππ2232π000033ππ2π0003ππ0033π01111(7)(sin )d (1cos 2)d (dsin2)2232π1π1(sin 22sin2d )dcos26464π1(cos 2cos d )64ππ1ππsin 264864x x x x x x x x x x x x x x x xx x x x x =-=-=--=-=--=-+=-⎰⎰⎰⎰⎰⎰ e ee111ee 11e1(8)sin(ln )d sin(ln )cos(ln )d esin1cos(ln )sin(ln )d esin1ecos11sin(ln )d x x x x x xx x x x x x=-=--=-+-⎰⎰⎰⎰故e11sin(ln )d (esin1ecos11)2x x =-+⎰. 222222322000011(9)e d de e e d 22111ln 2ln 2e ln 2222x x x x x x x x x x ==-=-=-=-1112122222220000111222200012011111(10)ln d ln d ln d 121211111111ln 3(1)d ln 3()d 818211111131ln 3ln ln 3822281x x x x x x x x x x x x x x x x x x x x x +++==+----=++=++---+-=++=-+⎰⎰⎰⎰⎰3. 已知f (2)= 12,f ′(2)=0,2()d 1f x x =⎰,求220()d x f x x ''⎰.解222222200()d d ()()2()d x f x x x f x x f x xf x x '''''==-⎰⎰⎰222004(2)2d ()2()2()d 14(2)21420.2f x f x xf x f x xf '=-=-+=-+⨯=-⨯+=⎰⎰习题6-51. 求由下列曲线所围成的平面图形的面积:(1) y =e x 与直线x =0及y =e; (2) y =x 3与y =2x ;(3) y =x 2,4y =x 3; (4) y =x 2与直线y =x 及y =2x ; (5) y =1x,x 轴与直线y =x 及x =2; (6) y =(x -1)(x -2)与x 轴; (7) y =e x ,y =e -x 与直线x =1; (8) y =ln x ,y 轴与直线y =ln a ,y =ln b , (0)a b <<. 解 (1)可求得y =e x 与y =e 的交点坐标(1,e), y =e x 与x =0的交点为(0,1),它们所围成的图形如图6-1中阴影部分,其面积eee111d ln d (ln )1S x y y y y y y ===-=⎰⎰图6-1 图6-2(2)解方程组32y x y x ⎧=⎨=⎩得0,0x x x y y y ⎧⎧===⎧⎪⎪⎨⎨⎨==-=⎩⎪⎪⎩⎩即三次抛物线3y x =和直线2y x =的交点坐标分别为(0,0),(-,它们所围成的图形的面积3342240112)d )d ()(244S x x x x x x x x x x =-+-=-+-=⎰.(3)解方程234y xy x⎧=⎪⎨=⎪⎩得两曲线的交点为(0,0),(4,16),所求面积为 4233440011116()d ()43163S x x x x x =-=-=⎰.图6-3 图6-4(4)可求得2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); y =x 与y =2x 的交点为(0,0),它们所围图形如图6-4中阴影所示,其面积为:121122012231201(2)d (2)d d (2)d 117()236S x x x x x x x x x x xx x x =-+-=+-=+-=⎰⎰⎰⎰(5) 1y x =与y x =的交点为(1,1),1y x=,x 轴与直线x =1,及x =2所围成的图形如图6-5阴影所示,其面积:2121201111d d ln ln 222x S x x x xx =+=+=+⎰⎰.图6-5 图6-6(6) 231(1)(2)()24y x x x =--=--,顶点坐标为31(,)24-,与x 轴所围成的图形如图6-6中阴影所示,由231()24y x =--得32x =所求面积143021433d 2222112364S y y y --⎡⎤⎛⎛=-=⎢⎥ ⎝⎝⎣⎦⎛⎫=⋅=+ ⎪⎝⎭⎰⎰(7)可求得曲线e x y =与e x y -=的交点(0,1),曲线e x y =,e x y -=与x =1所围成的图形如图6-7阴影所示,其面积:10)() 2.101(e e d e e e ex x x x S x --=-=+=+-⎰图6-7 图6-8(8)曲线ln ,y x y =轴与直线ln ,ln y a y b ==所围成的图形如图6-8阴影所示,其面积:ln ln ln ln ln ln .d e d e bby yb aaaS x y y b a ====-⎰⎰2. 求由下列曲线围成的平面图形绕指定轴旋转而成的旋转体的体积:(1) y =e x ,x =0,y =0,x =1,绕y 轴; (2) y =x 3,x =2,x 轴,分别绕x 轴与y 轴; (3) y =x 2,x =y 2,绕y 轴; (4) y 2=2px ,y =0,x =a (p >0,a >0),绕x 轴; (5) (x -2)2+y 2≤1,绕y 轴.解 (1)如图6-9所求旋转体的体积为矩形OABD ,与曲边梯形CBD 绕y 轴旋转所成的几何体体积之差,可求得y =e x 与x =1的交点为(1,e), y =e x 与y 轴的交点为(0,1),所以,所求旋转体的体积.222111(ln )(ln )2(ln )22(1)2(ln )e ee 11ee1πe πd πe πd πe πe ππe e π.d y V y y y y y y y y y ⎡⎤=⋅⋅-=--⎣⎦⎡⎤=-+=-+=-⎣⎦⎰⎰⎰7222620128(2)7ππd πd π7x x V y x x x ===⋅=⎰⎰25882283336428323255πππd ππd ππy V x y y y y =⨯⨯-=-=-⋅⋅=⎰⎰.图6-9 图6-10(3)解方程组22y xx y ⎧=⎪⎨=⎪⎩得交点(0,0),(1,1),所求旋转体的体积 25114100031025πd πd ππx x x V x x x x ⎛⎫=-=⋅=- ⎪⎝⎭⎰⎰.图6-11 图6-122230(4)2πd πd ππa aa x V y x px x p x pa ===⋅=⎰⎰.(5)所求旋转体的体积是由右半圆2x =2x =x 轴旋转生成的旋转体的体积之差,即((122122281641d πππy V y y y π-⎡⎤=-+-⎢⎥⎣⎦===⎰⎰⎰图6-133. 已知曲线y =(a >0)与y(x 0,y 0)处有公共切线,求:(1) 常数a 及切点(x 0,y 0);(2) 两曲线与x 轴围成的平面图形的面积S .解 (1)由题意有点00(,)x y 在已知曲线上,且在点00(,)x y 处两函数的导数相等.即有0000x x y y ==⎧=⎪⎪==即00012y y x ⎧=⎪⎪=⎨= 解得20011e ex y a ⎧=⎪⎪=⎨⎪=⎪⎩. (2)由(1)知两曲线的交点为2(,1)e ,又在区间(0,1)上,曲线y =y =方,它们与x 轴所围成的平面图形的面积12223122001111()6223d e e e e e y y S y y y ⎛⎫===-⎡⎤-- ⎪⎣⎦⎝⎭⎰. (由y ==得2()x ey =,由y =得2e yx =). 4. 设2()lim1e nx n x f x x →∞=+-,试求曲线y =f (x ),直线y =12x 及x =1所围图形的面积.解 220()lim 101nxn x x f x x x e x x →∞≥⎧⎪==⎨+-<⎪+⎩解方程2121y x xy x ⎧=⎪⎪⎨⎪=⎪+⎩得交点为11,2⎛⎫-- ⎪⎝⎭,且易知当(1,0)x ∈-时,12y x =位于21xy x=+的上方.所围图形如阴影部分所示,其面积 02221111111111ln 2ln(1)22422142d x S x x x x x --⎛⎫⎡⎤=+⨯⨯=+=--+ ⎪⎢⎥+⎣⎦⎝⎭⎰. 5. 一抛物线y =ax 2+bx +c 通过点(0,0)、(1,2)两点,且a <0,试确定a ,b ,c 的值,使抛物线与x 轴所围图形的面积最小.解 由抛物线过(0,0),(1,2)点,有c =0,a+b =2,又由抛物线方程2y ax bx =+得与x轴的两交点为(0,0), ,0b a ⎛⎫-⎪⎝⎭,抛物线与x 轴所围图形的面积.2220()6d b ab S ax bx x a-=+=⎰,由2a b +=得2b a =-,代入上式有32(2)6a S a -=, 23(2)(4)6a a S a--+'=,令0S '=得2a =或4a =-, 由已知0a <得4a =-,从而26b a =-=, 所以4,6,0a b c =-==.6. 已知某产品产量的变化率是时间t (单位:月)的函数f (t )=2t +5,t ≥0,问:第一个5月和第二个5月的总产量各是多少?解 设产品产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50.d d Q f t t t t t t ==+=+=⎰⎰ 第2个5月的总产量为10252055()(25)(5)100.d d tQ f t t t t t t ==+=+=⎰⎰ 7. 某厂生产某产品Q (百台)的总成本C (万元)的变化率为C ′(Q )=2(设固定成本为零),总收入R (万元)的变化率为产量Q (百台)的函数R ′(Q )=7-2Q .问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=, Q =2.5百台时,总利润最大,此时的总成本2.5 2.52.50()225d d C C Q Q Q Q'====⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5百台时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26d d C C Q Q Q '===⎰⎰,总收入3323000()(72)(7)12d d R R Q Q Q Q Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.25-6=0.25万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.8. 某项目的投资成本为100万元,在10年中每年可获收益25万元,年利率为5%,试求这10年中该投资的纯收入的现值. 解 投资后T 年中总收入的现值(1)e rt ay r-=-,由题意知 25,5%0.05,10.a r T ====所以0.051025(1)196.730.05e y -⨯=-= 纯收入的现值为196.73-100=96.73.即这10年中该投资的纯收入的现值为96.73万元.习题6-61. 判断下列广义积分的敛散性,若收敛,则求其值: (1)41d xx +∞⎰; (2)1+∞⎰; (3)0e d ax x +∞-⎰ (a >0); (4)0cos d x x +∞⎰;(5)0e sin d xx x +∞⎰; (6)2d 22xx x +∞-∞++⎰;(7)21⎰; (8)10ln d x x ⎰;(9)e1⎰(10)22d (1)xx -⎰; (11)1⎰解 (1)1431d 1133x x x +∞+∞=-=⎰,此广义积分收敛.(2)1+∞==+∞⎰,此广义积分发散. (3)111e d e ax axx aa+∞--+∞=-=⎰,此广义积分收敛. (4)1cos d sin lim sin sin 0lim sin x x x x xx x +∞+∞→+∞→+∞==-=⎰不存在,所以,此广义积分发散.00(5)e sin d e d cos e cos e cos d e cos e dsin e cos e sin e sin d 11e sin d (e sin e cos )e (sin cos )22e sin d lim e sin d lim x x x x x x x x x x x x x b x x b b x x x x x x x x x x x xx x x x x x x x x x +∞→+∞→=-=-+=-+=-+-∴=-=-∴==⎰⎰⎰⎰⎰⎰⎰⎰ 01e (sin cos )211 lim e (sin cos )22x b b b x x b b +∞→+∞⎧⎫⎡⎤-⎨⎬⎢⎥⎣⎦⎩⎭⎡⎤=-+⎢⎥⎣⎦不存在,此广义积分发散.22d d(1)(6)arctan(1)π22(1)1xx x x x x +∞+∞+∞-∞-∞-∞+==+=++++⎰⎰,收敛.23222110013202(7)lim lim (1)3222lim 2,.2333收敛x x εεεεεε++++→→+→⎡==-+⎢⎣⎛==-- ⎝⎰⎰111011eee1111222220100(8)ln d ln d ln 1 ln d lim ln d lim (ln 1)1,.π(9)arcsin(ln ),.211d d d (10)lim (1)(1)(1)收敛收敛x x x x x x x x x x x x x x x x εεσεεεεεεεεεεεε+++→→-+→=-=--∴==--=-===⎛⎫+= ⎪---⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰120100112 lim lim ,211xxεεεεε++-+→→⎛⎫⎛⎫===+∞+- ⎪ ⎪--⎝⎭⎝⎭此广义积分发散.)211-00001(11)lim lim 2lim 1,1εεεεε+++-→→→==-=-=⎰⎰此广义积分收敛. 2. 当k 为何值时,广义积分+2d (ln )kxx x ∞⎰收敛?当k 为何值时,这广义积分发散?又当k 为何值时,这广义积分取得最小值? 解 当k =1时,++222d dln ln(ln )ln ln x x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211d (ln )(1)(ln 2)(ln )dln (ln)11kk kk k x x k x x x kk -∞∞--+∞⎧>⎪-==⎨-⎪+∞<⎩⎰⎰所以,当k >1时,此广义积分收敛,当k ≤1时,此广义积分发散.记1()(1)(ln 2),k f k k -=-11()(ln 2)(1)(ln 2)lnln 2k k f k k --'=+-.令()0f k '=得11ln ln 2k =-. 又 1()(ln 2)lnln 2[2(1)lnln 2]k f k k -''=+-,且 1ln ln 21(1)(ln 2)ln ln 20ln ln 2f -''-=<, 故()f k 在11ln ln 2k =-有极大值,而()f k 只有一个驻点,所以当11ln ln 2k =-时()f k 取得最大值,因而11ln ln 2k =-时,这个广义积分取得最小值.3. 利用递推公式计算反常积分+0e d n x n I x x ∞-=⎰.解 ++110de e e d n x n xn x n n I x x n x x nI ∞∞----+∞-=-=-+=⎰⎰又 +10de e e 1x x xI x x ∞---+∞+∞=-=--=⎰故 121(1)(1)2!n n n I nI n n I n n I n --==-=-= 4. 已知+0sin d =2x x x ∞π⎰,求 (1)+0sin cos d x xx x∞⎰; (2) 2+2sin d xx x ∞⎰. 解 (1)+++000sin cos sin 21sin πd d 2d .224令x x x t x x x t t x x t ∞∞∞===⎰⎰⎰2+++220+20sin 1sin 2sin cos (2)d sin d()d sin cos π2d 2x x x xx x x x x xx x x x x ∞∞∞+∞∞=-=-+==⎰⎰⎰⎰5. 求120(1)d n n I x x =-⎰(n 0,1,2,…).解 设x =sin t ,则d x =cosd t ,π2120cos d n n I t t +=⎰而 ππ2200(21)!!π2(2)!!2sin d cos d (2)!!21(21)!!n n k n kk x x x x k n k k -⎧⋅=⎪⎪==⎨⎪=+⎪+⎩⎰⎰所以 π221220(2)!!(!)cosd 2 (0,1,2,)(21)!!(21)!n nn n n I t t n n n +====++⎰.6. 用Γ函数表示下列积分:(1)e d nx x +∞-⎰ (n >0); (2)101(ln )d x x α⎰ (α>-1); (3) 0e d nm x x x +∞-⎰1(>0)m n +; (4)220e d n x x x +∞-⎰ (12n >-). 解 (1)令nx t =,则1111,d d nn x t x t t n-==,于是1111+++001111ed e d e d ()nx tt n nx t t t t n n n n --∞∞∞---=⋅==Γ⎰⎰⎰.(2)令1lnt x =,则e ,d e d .t t x x t --==- 于是 10+(1)1001(ln )d e d e d (1).a a t a t x t t t t a x∞-+--+∞=-==Γ+⎰⎰⎰ (3)令nx t =,则1111,d d nnx t x t t n-==, 于是1111+++001111ed ()e d e d ()nm m x m tt n n n m x x t t t t t n n n n+-∞∞∞---+=⋅⋅=⋅=Γ⎰⎰⎰.(4)令2x t =,则x x t ==,于是21+++2220011+201ed e e d 2111e d ()222n n x ntt n t x x t t tt t n ∞∞∞----⎛⎫-+∞ ⎪-⎝⎭=⋅===Γ+⎰⎰⎰⎰。

高等代数向量空间

高等代数向量空间
宁波工程学院理学院《高等代数》课程组制作
定理6.2.1
设W是数域F上向量空间V的一个非空子集.如果W 对 于V 的加法以及标量与向量乘法是封闭的,那么本 身也作成上一个向量空间.
定义1
令W是数域F上向量空间V的一个非空子集.如果W 对 于V 的加法以及标量与向量的乘法来说是封闭的, 那么就称W是V 的一个子空间.
例2
U {A (aij ) M n (F) | aij 0,i j时}是不是 M n (F ) 的 子空间? W {A M宁波n (工F程)学| 院A理|学0院}是《高不等代是数》M课n程(F组)制的作 子空间?
解 U中的矩阵是上三角形矩阵,显然U为向量空间
M n (F) 的非空子集。又中 M n (F)的运算是矩阵的加
空间,R是否为C上的向量空间?
注2:这个例子说明向量空间与F有关.
宁波工程学院理学院《高等代数》课程组制作
例7 设数域取R, 集合为R+(实数),加法和数乘定义为:
a b ab, k a ak , a,b R , k R 证明 R 关于给定的运算构成R上的向量空间. 证明:……
注3:运算可以是通常的,可以重新定义的. 如何理解 运算?…… 注4:取数乘为通常的乘法如何?……,向量空间与运算 有关. 注5:证明向量空间需要10条性质,其中:8条是验证,2 条需要解方程求出零向量与负向量.
1. A+B=B+A 2. (A+B)+C= A+( B+C) 3. O+A=A 4. A+(-A)=O
5. a(A+B)= aA+Ab 6. (a+b)B=a B +Bb 7. (ab)A=a(b)A 还有一个显而易见的: 8. 1A=A

高等代数习题【可编辑范本】

高等代数习题【可编辑范本】

高等代数习题第一章基本概念§1.1 集合1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集?2、设a是集A的一个元素。

记号{a}表示什么? {a} A是否正确?3、设写出和。

4、写出含有四个元素的集合{}的一切子集.5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个?6、下列论断那些是对的,那些是错的?错的举出反例,并且进行改正.(i)(ii)(iii)(iv)7.证明下列等式:(i)(ii)(iii)§1。

2映射1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射.2、找一个全体实数集到全体正实数集的双射.3、是不是全体实数集到自身的映射?4.设f定义如下:f是不是R到R的映射?是不是单射?是不是满射?5、令A={1,2,3}。

写出A到自身的一切映射。

在这些映射中那些是双射?6、设a ,b是任意两个实数且a<b。

试找出一个[0,1]到[a ,b]的双射。

7、举例说明,对于一个集合A到自身的两个映射f和g来说,fg与gf一般不相等.8、设A是全体正实数所成的集合。

令(i)g是不是A到A的双射?(ii)g是不是f的逆映射?(iii)如果g有逆映射,g的逆映射是什么?9、设是映射,又令,证明(i)如果是单射,那么也是单射;(ii )如果是满射,那么也是满射;(iii )如果都是双射,那么也是双射,并且10.判断下列规则是不是所给的集合A的代数运算:集合 A 规则1234 全体整数全体整数全体有理数全体实数baba+→|),(§1。

3数学归纳法1、证明:2、设是一个正整数.证明,是任意自然数.3、证明二项式定理:这里,是个元素中取个的组合数.4、证明第二数学归纳法原理。

5、证明,含有个元素的集合的一切子集的个数等于。

§1.4整数的一些整除性质1、对于下列的整数,分别求出以除所得的商和余数:;;; .2、设是整数且不全为0,而,,。

《高等代数》向量空间

《高等代数》向量空间

例7
设 Amn (aij ), aij F
x1 x2 (1)把满足AX = 0的解X表示为 X , x n 显然 X F n。并记AX = 0的解集为 VA,0 {X F n | AX 0}
证明 VA,0 是向量空间 F n 的一个子空间。 (2)记AX = β的解集为VA, {X F n | AX }, VA, 是 否也是 F n的一个字空间?这里 F n , 0
注1:刚开始,步骤要完整.
例5
C[a,b]表示区间[a,b]上连续实函数按照通常的加法与数 乘构成实数域R的向量空间,称为函数空间. 证明: 比照例3,给出完整步骤.
例6
(1)数域F是F上的向量空间.
(2)R是Q上的向量空间,R是否为C上的向量空间?
注2:这个例子说明向量空间与F有关.
例7 设数域取R, 集合为R+(实数),加法和数乘定义为:
不懂向量空间者无法进入数学圣殿的大门 ---匿名者
向量空间(Vector Spaces)又称线性空间(Linear Spaces).本章的特点及要求: 向量空间是线性代数的最基本的、最重要的概念之一, 是进一步学习数学必备的内容. 向量空间产生有着丰富的数学背景,又在许多领域(包 括数学本身)中有着广泛的应用,例如:线性非常组解 的结构.
6. (a+b)B=a B +Bb
7. (ab)A=a(b)A
还有一个显而易见的:
8. 1A=A
例2
设R是实数域,V3表示空间向量的集合.两个向量可 按照解析几何的
以作加法(平行四边形法则),可以用R中的一个数乘一个
向量,加法和数乘满足同样的8条性质. 方法,向量可以用的坐标(x,y,z)来表达,加法和数乘都

[高等代数(下)课外习题-第六章-向量空间]

[高等代数(下)课外习题-第六章-向量空间]

[高等代数(下)课外习题-第六章-向量空间]第六章 向量空间一、判断题 1.121{(,,,)|1,}nn i i i x x x x x R ==∈∑L 为nR 的子空间.( ).2、所有n 阶实反对称矩阵的集合为全矩阵空间()n M R 的子空间. ( ).3、n 维向量空间V 的任意n 个线性无关的向量都可构成V 的一个基. ( ).4、设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组12,,,sαααL 线性表出,则维(W )=s .5、 子空间12(,,,)rL αααL 的维数等于向量组12,,,rαααL 的秩 ( ) 6、sααα,,,21Λ为V 的基,sβββ,,,21Λ为V 中向量,且 As s ),,,(),,,(2121αααβββΛΛ=,则sβββ,,,21Λ为V 的基当且仅当A可逆。

( )7、有限维线性空间同构的充要条件是维数相同. ( )8. 设12,,,nαααL 是向量空间V 的一个基, f 是V 到W 的一个同构映射, 则W 的一个基是12(),(),,()nf f f αααL .9、.如果向量空间V 是3维的,那么V 中任意4个向量必是线性相关的( )。

10.、非齐次线性方程组的解集不构成一个向量空间( )。

11、线性空间的一组基所含向量的个数是该空间的维数.12、设1V ,2V 均为线性空间V 的子空间,满足12{0}V V =I ,则12V V V =⊕。

( ).14.若21V V V ⊕=,rααα,,,21Λ是1V 的基,sr r ααα,,,21Λ++是2V 的基,则sααα,,,21Λ是V 的基.二、填空题1、 复数域C 作为实数域R 上的向量空间, 维数等于______, 它的一个基为_______.2、在4P 中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是____________. 3、若12V V V =⊕,则12V V ⋂= ;4、若1212dim()dim dim V V V V +=+,则12V V ⋂=;5、3][x P 中由基2,,1x x 到基2321,21,1x x x x ++++的过渡矩阵是 , 21x x ++在这两组基下的坐标分别是 , . 6、子空间33{|000a bc W A P A de f ⨯⎛⎫⎪=∈= ⎪ ⎪⎝⎭的维数= ;7、设基11232123323,,βαααβααβα=-+=+=,则由基123123,,,,αααβββ到基的过渡矩阵T= ;8、在22⨯P 中,已知⎪⎪⎭⎫⎝⎛=11111A,⎪⎪⎭⎫⎝⎛=01112A,⎪⎪⎭⎫⎝⎛=00113A,⎪⎪⎭⎫⎝⎛=00014A是22⨯P 的基,那么,⎪⎪⎭⎫⎝⎛=4321A 在该基下的坐标为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 向量空间
一、判断题
1. 121{(,,,)|1,}n n i i i x x x x
x R ==∈∑L 为n R 的子空间. ( ).
2、所有n 阶实反对称矩阵的集合为全矩阵空间()n M R 的子空间. ( ).
3、n 维向量空间V 的任意n 个线性无关的向量都可构成V 的一个基. ( ).
4、设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组12,,,s αααL 线性表出,则维(W )=s .
5、 子空间12(,,,)r L αααL 的维数等于向量组12,,,r αααL 的秩 ( )
6、s ααα,,,21Λ为V 的基,s βββ,,,21Λ为V 中向量,且
A s s ),,,(),,,(2121αααβββΛΛ=,则s βββ,,,21Λ为V 的基当且仅当A 可逆。

( )
7、有限维线性空间同构的充要条件是维数相同. ( )
8. 设12,,,n αααL 是向量空间V 的一个基, f 是V 到W 的一个同构映射, 则W 的一个基是12(),(),,()n f f f αααL .
9、.如果向量空间V 是3维的,那么V 中任意4个向量必是线性相关的( )。

10.、非齐次线性方程组的解集不构成一个向量空间( )。

11、线性空间的一组基所含向量的个数是该空间的维数.
12、设1V ,2V 均为线性空间V 的子空间,满足 12{0}V V =I ,则12V V V =⊕。

( ).
14.若21V V V ⊕=,r ααα,,,21Λ是1
V 的基,s r r ααα,,,21Λ++是2V 的基,则s ααα,,,21Λ是V 的基.
二、填空题
1、 复数域C 作为实数域R 上的向量空间, 维数等于______, 它的一个基为_______.
2、在4P 中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的
取值范围是____________.
3、若12V V V =⊕,则12V V ⋂= ;
4、若1212dim()dim dim V V V V +=+,则12V V ⋂= ;
5、3][x P 中由基2,,1x x 到基2321,21,1x x x x ++++的过渡矩阵是 , 21x
x ++在这两组基下的坐标分别是 , .
6、子空间33{|000a b c W A P A d e f ⨯⎛⎫ ⎪=∈= ⎪ ⎪⎝⎭
的维数= ; 7、设基11232123323,,βαααβααβα=-+=+=,则由基123123,,,,αααβββ到基的过渡矩阵T= ;
8、在22⨯P 中,已知⎪⎪⎭⎫ ⎝⎛=11111A ,⎪⎪⎭⎫ ⎝⎛=01112A ,⎪⎪⎭⎫ ⎝
⎛=00113A ,⎪⎪⎭⎫ ⎝⎛=00014A 是22⨯P 的基,那么,⎪⎪⎭
⎫ ⎝⎛=4321A 在该基下的坐标为 。

9、设1W 是方程组04321=+++x x x x 解空间,2W 是方程组⎩⎨
⎧=+-+=-++004
3214321x x x x x x x x 那么1W ∩2W 是方程组 的解空间。

10、设()()()()()()3,2,1,1,1,0,1,0,1,0,1,121L W L W == ()=+21dim W W 。

三、选择题
1、R 3中下列子集( )不是R 3的子空间.
(A).
}1|),,{(233211=∈=x R x x x w (B).}0|),,{(333212=∈=x R x x x w (C).}|),,{(32133213x x x R x x x w ==∈= (D).}|),,{(32133214x x x R x x x w -=∈=
2、设向量组M 为四维向量空间R4的一个基,则( )必成立。

(A). M 由四个向量组成 (B). M 由四维向量组成
(C). M 由四个线性无关的四维向量组成 (D). M 由四个线性相关的四维向量组成
3、若W 1,W 2都是n 维线性空间V 的子空间,那么( )
(A)维W 1+维(W 1⋂W 2)=维W 1+维(W 1+W 2); (B) 维(W 1+W 2)=维W 1+维W 2;
(C)维W 1+维(W 1+W 2)=维W 1+维(W 1⋂W 2); (D) 维W 1+维(W 1⋂W 2) =维(W 1+W 2)-维W 2。

相关文档
最新文档