解比例应用题

合集下载

解比例应用题专项练习

解比例应用题专项练习

解比例应用题专项练习班级:姓名:家长签名:1、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?2、甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?3、在一幅地图上,用3厘米的线段表示实际距离600千米。

量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?4、运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?5、在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?7、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?8、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?9、一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修 360米,30天可以修完。

如果要提前5天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)15、小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)16、工厂有一批煤,计划每天烧2.4吨,42天可以烧完。

实际每天节约12.5%,实际可以烧多少天?(比例解)17、解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)18、一对互相啮合的齿轮,主动轮有60个齿,每分转80转。

解比例应用题

解比例应用题

1、某工厂生产A、B两种产品,已知生产1吨A产品需要2小时,生产1吨B产品需要3小时。

若该工厂有60小时的生产时间,且要求生产A、B产品的数量比为2:1,则应生产A产品多少吨?A. 20吨B. 24吨C. 30吨D. 36吨(答案)B2、甲、乙两人同时从两地出发,相向而行。

甲每分钟走60米,乙每分钟走40米。

经过15分钟后两人相遇,那么两地相距多少米?A. 1200米B. 1500米C. 1800米D. 2100米(答案)B3、学校图书馆有科技书和文艺书两种,科技书的数量是文艺书的2倍。

如果每位学生借3本科技书,则余8本;如果每位学生借2本文艺书,则缺12本。

那么学生人数是多少?A. 20人B. 24人C. 28人D. 32人(答案)A4、某班学生分两组参加植树活动,甲组人数是乙组的2倍,且甲组每人植树4棵,乙组每人植树5棵。

两组共植树150棵,那么乙组有多少人?A. 10人B. 15人C. 20人D. 25人(答案)C5、甲、乙两车从A、B两地同时出发,相向而行。

甲车每小时行驶60千米,乙车每小时行驶40千米。

两车相遇后,甲车再行驶4小时到达B地。

那么A、B两地相距多少千米?A. 400千米B. 480千米C. 560千米D. 640千米(答案)B6、某商场购进甲、乙两种商品,甲种商品每件进价20元,售价25元;乙种商品每件进价35元,售价40元。

若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,那么能购进甲种商品多少件?A. 30件B. 40件C. 50件D. 60件(答案)B7、某学校学生参加植树活动,四年级有3个班,共植树156棵;五年级有4个班,平均每个班植树42棵。

四、五年级平均每个班植树多少棵?A. 39棵B. 40棵C. 41棵D. 42棵(答案)A8、甲、乙两人分别同时从两地出发,相向而行,距离是50千米。

甲每小时走3千米,乙每小时走2千米,与甲同时同地出发的还有一条狗,每小时走5千米。

精选解比例应用题(50道)

精选解比例应用题(50道)

1、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?2、幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?3、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?4、运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?5、在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?7、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?8、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?9、一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修360米,30天可以修完。

如果要提前5天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)15、小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)16、工厂有一批煤,计划每天烧2.4吨,42天可以烧完。

实际每天节约12.5%,实际可以烧多少天?(比例解)17、解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)18、一对互相啮合的齿轮,主动轮有60个齿,每分转80转。

六年级解比例应用题

六年级解比例应用题

六年级比例应用题练习
例1小明家养了一些兔子,白兔的只数与黑兔的只数比为7:6,卖出6只白兔后,白兔和黑兔的只数比为11:12,原来白兔黑兔共多少只?
练习1.一个运动队原来男女生人数比为5:7,后来又增加了4名男生,这时男女生的人数比为7:9,男女生现在各是多少人?
练习2.小明去县城参加比赛,他已走的路程和未走的路程比是1:2,他再走1千米,则他已走的路和未走的路程比是2:3,小明到县城有多少千米?
练习3.甲、乙两班人数之比为5:4 ,新学期乙班转走2名学生,甲班人数没有变,因此,甲、乙两班人数之比变为4:3 .则甲班有多少名学生?
例2.甲、乙两个盒子里的巧克力的数量之比是5:1 ,如果从甲盒中取出14块
放入乙盒后,甲、乙两盒巧克力的块数比变为3 : 2 .请问:这两盒巧克力共有多少块?
练习1.甲乙两人所有故事书的本数比为3:2,如果乙给甲3本,,两人本数比为3:1,两人共有多少本书?
练习2.某学校二年级和三年级的人数比为8:7,如果将二年级的8名同学放到三年级去,那么二年级和三年级的人数比为4:5,,原来两个年级各多少人?
练习3.甲乙两个课外小组的人数比为3:2,如果从甲组调入乙组4人,则甲乙两组人数比是2:3,求甲乙两组原来个多少人?。

解比例应用题专项练习

解比例应用题专项练习

解比例应用题专项练习班级:姓名:家长签名:1、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?2、甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?3、在一幅地图上,用3厘米的线段表示实际距离600千米。

量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?4、运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?5、在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?7、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?8、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?9、一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修360米,30天可以修完。

如果要提前5天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)15、小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)16、工厂有一批煤,计划每天烧2.4吨,42天可以烧完。

实际每天节约12.5%,实际可以烧多少天?(比例解)17、解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)18、一对互相啮合的齿轮,主动轮有60个齿,每分转80转。

六年级上册解比例练习题

六年级上册解比例练习题

六年级上册解比例练习题问题一
某校学生的男女比例为5:4,如果有32名男学生,那么学校一共有多少名学生?
解答:
设男学生人数为5x,女学生人数为4x。

根据题意可得:5x = 32
解得x = 32 / 5 = 6.4
所以总学生人数为:5x + 4x = 9x = 9 * 6.4 = 57.6
答:学校一共有57.6名学生。

问题二
小明的花园有红色、黄色、蓝色三种花,根据比例,红色花占总数的1/3,黄色花占总数的2/9,蓝色花占总数的1/6。

如果花园一共有72朵花,求每种颜色的花的数量。

解答:
设红色花数量为x,黄色花数量为y,蓝色花数量为z。

根据题意可得:x / 72 = 1/3,y / 72 = 2/9,z / 72 = 1/6
解得:x = 72 * 1/3 = 24,y = 72 * 2/9 = 16,z = 72 * 1/6 = 12
答:红色花的数量为24朵,黄色花的数量为16朵,蓝色花的数量为12朵。

问题三
某商场举办了一个促销活动,购买3件商品只需支付75元。

如果购买4件相同的商品,需要支付多少元?
解答:
设购买4件商品需要支付的金额为x。

根据题意可得:3件商品的金额为75元,所以1件商品的金额为75 / 3 = 25元。

那么4件商品的金额为4 * 25 = 100元。

答:购买4件相同的商品需要支付100元。

解比例应用题练习

解比例应用题练习

二、解比例应用题。

1、一台拖拉机2小时耕地1.25公顷。

照这样计算,8小时可以耕地多少公顷?2、工厂运来一批原料,原计划每天用15吨,可用60天。

实际每天少用3吨,这批原料能用多少天?3、食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?4、小明读一本书,每天读12页,8天可以读完,如果每天多读4页,几天可以读完?5、把3米长的竹竿直立在地上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高度是多少?6、农场收割275公顷小麦,前3天收割了165公顷。

照这样计算,其余的还需要多少天才能收割完?7.农场收割小麦,前3天收割了165公顷。

照这样计算,8天可以收割多少公顷?8.同学们做广播操,每行站20人,正好站18行。

如果每行站24人,可以站多少行?9.一种农药,用药液和水按1:1500配制而成,现有3千克药液,能配制这种农药多少千克?10、一间房子要用方砖铺地,用边长3分米的方砖,需要96块。

如果改用边长是2分米的方砖要多少块?11.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?12.一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是 3:8,这两种拖拉机各有多少台?13.用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。

这个三角形的三条边各是多少厘米?14.一种药水是用药物和水按3:400配制成的。

(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?15.商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?16.一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?17.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?。

六年级解比例应用题及答案

六年级解比例应用题及答案

六年级解比例应用题及答案1.一批零件平均分给甲、乙两人去做,经过6小时,甲完成了任务,乙还差96个没有做完。

已知乙的工效是甲的4/5,这批零件共有多少个?我们可以这样想:根据题目中“乙的工效是甲的4/5”,可以知道甲与乙工效的比是5:4。

因为当工作时间一定时,工效与工作总量成正比例,由此可知,甲与乙工作总量的比也是5︰4。

甲、乙工作总量的比是5︰4,那就可以把甲完成的工作量看成5份,乙完成的工作量看成4份,甲比乙多完成的工作量看成1份。

已知甲完成了任务,乙还差96个没有完成,那么96个就是1份。

因为这批零件是平均分给甲、乙两人去做的,所以甲的.任务是5份,乙的任务也是5份,求零件的总个数只要求出10份共有多少就可以了。

即:96×5×2=(个)2.甲、乙两人从两地相向而行,甲行完全程需2小时,乙行完全程需3小时。

两人相遇时,甲比乙多走了2.4千米。

求甲、乙之间的路程。

我们可以这样想要:根据题目中“甲行全然程需2小时,乙行全然程需3小时”可以晓得甲、乙行全然程所用的时间比是2:3。

因为当路程一定时,高速行驶的时间和速度成反比例。

由此可知,甲、乙高速行驶的速度比是3:2,甲、乙高速行驶的路程比也就是3:2。

这样就可以把甲行驶的路程看作3份,乙行驶的路程看作2份,甲、乙之间的路程一共是2+3=5(份),甲比乙多行驶的路程是3-2=l(份)。

因此这道题求甲、乙之间的路程,只要用1份的路程去乘以5就可以了。

即:2.4×(3+2)=12(千米)一、列方程解答应用题的步骤①弄清楚题意,确认未知数用x则表示;②找出题中的数量之间的相等关系;③列方程,解方程;④检查或验算,写出答案。

二、列方程求解应用题的方法综合法:先把应用题中已知数(量)和短果未知数(量)highcut有关的代数式,再找到它们之间的等量关系,进而列举方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

解比例应用题及答案

解比例应用题及答案

解比例应用题及答案1. 题目:小明和小华在同一个操场上跑步,小明的速度是小华的1.5倍,如果小明跑了300米,小华跑了多少米?答案:设小华跑的距离为x米,根据题意可得比例关系式:1.5x = 300。

解方程得:x = 300 ÷ 1.5 = 200。

所以小华跑了200米。

2. 题目:甲乙两地相距300公里,一辆汽车从甲地开往乙地,速度是每小时60公里,另一辆汽车从乙地开往甲地,速度是每小时40公里,两车同时出发,几小时后两车相遇?答案:设两车相遇的时间为t小时,根据题意可得比例关系式:60t + 40t = 300。

解方程得:100t = 300,所以t = 300 ÷ 100 = 3。

因此,两车3小时后相遇。

3. 题目:一个班级有男生和女生,男生人数是女生人数的2倍,如果男生人数是40人,那么女生有多少人?答案:设女生人数为x人,根据题意可得比例关系式:2x = 40。

解方程得:x = 40 ÷ 2 = 20。

所以女生有20人。

4. 题目:一个工厂生产两种型号的机器,A型号机器的产量是B型号机器的3倍,如果A型号机器生产了90台,那么B型号机器生产了多少台?答案:设B型号机器生产了x台,根据题意可得比例关系式:3x = 90。

解方程得:x = 90 ÷ 3 = 30。

所以B型号机器生产了30台。

5. 题目:一个果园里,苹果树和梨树的比例是3:2,如果果园里有苹果树120棵,那么梨树有多少棵?答案:设梨树有x棵,根据题意可得比例关系式:3/2 = 120/x。

解方程得:3x = 120 × 2,所以x = (120 × 2) ÷ 3 = 80。

因此,梨树有80棵。

解比例应用题一

解比例应用题一

1、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?2、甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?3、在一幅地图上,用3厘米的线段表示实际距离600千米。

量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?4、运来一批纸装订成练习本,每本36页,可订40本,假设每本30页,可订多少本?〔用比例解〕5、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?6、一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?〔用比例解〕7、一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?〔用比例解〕8、修一条公路,原方案每天修360米,30天可以修完。

如果要提前5天修完,每天要修多少米?〔用比例解〕9、修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?〔用比例方法解〕10、修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?〔用比例解答〕11、修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?〔用比例方法解〕12、小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本"(用比例解答)13、工厂有一批煤,方案每天烧2.4吨,42天可以烧完。

实际每天节约12.5%,实际可以烧多少天?〔比例解〕14、解放军*部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?〔用比例方法解〕15、6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?〔用比例方法解〕16、一*工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?〔用比例方法解〕17、*工地要运一堆土,每天运150车,需要24天运完,如果要提前4天完成,每天要多运多少车?〔用比例方法解〕例1、用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?〔用比例解〕例2、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?〔用比例解〕1、用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?〔用比例方法解〕2、一种农药,药液与水重量的比是1:1000。

六年级解比例应用题

六年级解比例应用题

六年级解比例应用题1.一幅地图上,4厘米表示实际距离200千米,求比例尺。

解:设比例尺为1:x,则1cm表示x千米,由题可得4cm表示200千米,即1:x=1:50,所以比例尺为1:50.2.甲、乙两地相距240千米,画在比例尺是1:xxxxxxx的地图上,长度是多少厘米?解:设长度为x厘米,则1cm表示xxxxxxx千米,由题可得x/1=240/xxxxxxx,解得x=0.02cm,即长度为0.02厘米。

3.在一幅地图上,用3厘米的线段表示实际距离600千米。

量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?解:设甲、乙两地的实际距离为x千米,则3cm表示600千米,由题可得4.5cm表示x千米,即3:600=4.5:x,解得x=900千米,即甲、乙两地的实际距离为900千米。

4.运来一批纸装订成练本,每本36页,可订40本,若每本30页,可订多少本?解:设可以订x本,则36*40=30*x,解得x=48,即每本30页可以订48本。

5.在一幅比例尺是1:的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?解:设东、西两村的实际距离为x米,则1cm表示米,由题可得12.3cm表示x米,即1:=12.3:x,解得x=米,即东、西两村的实际距离为米。

6.甲地到乙地的实际距离是120千米,在一幅比例尺是1:xxxxxxx的地图上,应画多少厘米?解:设应画x厘米,则1cm表示xxxxxxx千米,由题可得x/1=120/xxxxxxx,解得x=0.002厘米,即应画0.002厘米。

7.一幅地图上,4厘米表示实际距离200千米,求比例尺。

解:同问题1,比例尺为1:50.8.在一幅比例尺是1:4000的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?解:设菜地的实际面积为x公顷,则1cm表示4000平方米,由题可得底为12cm,高为8cm,即1:4000=12:和8:,所以菜地的实际面积为0.384公顷。

小学数学六年级总复习解比例应用题

小学数学六年级总复习解比例应用题

小学数学六年级总复习解比例应用题1、工程队修一条水渠,原计划每天修360米,30天修完。

修10天后,每天多修40米,再修多少天就能完成任务?2、农场挖一条水渠,头5天挖了180米,照这样速度,又用了16天挖完这条水渠。

这条水渠全长多少米?3、40千克小麦能磨面粉32千克,照这样计算,7吨小麦能磨面粉多少千克?3、机床厂4天能生产小机床32台,照这样计算,要生产120台小机床需几天?4、测量小组把一米长的竹竿直立在地面上,测得它的影子长度是1.6米,同时测得电线杆的影子长度是4米,求电线杆高多少米?5、要测量一棵树的高度,量得树的影子长度是8.4米,同时用一根2米长的标杆直立在地面上,量得影子长度是1.2米,这棵树高是多少米?6、一辆汽车从甲地开往乙地,甲乙两地相距405千米,头4小时行驶了180千米,剩下的路程还要行多少小时?7、某印刷厂计划三月份印刷课本本,结果上旬就印刷7000本,照如许速率,三月份可以多印刷多少本?8、用5辆同样汽车运食粮一次能运22.5吨,照如许计较,要把36吨食粮一次运完,需求增加多少辆如许的汽车?9、服装厂生产制服,前3个月生产0.48万套,照这样计算,今年可以生产制服多少万套?10、农场用3辆拖拉机耕地,每天共耕225公顷,如果用5辆同样的拖拉机,每天共耕在多少公顷?11、一艘轮船,从甲地开往乙地,每小时行20千米,12小时到达,从乙地返回甲地时,每小时航行4千米,几小时可以到达?12、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?13、一个房间,用边长3分米的方砖铺地,需要432块,如果改用边长4分米的方砖铺地,需要多少块?14.在一幅地图上,测得甲、乙两地的图上距离是12厘米,已知甲乙两地的实际距离是480千米。

(1)求这幅图的比例尺。

(2)在这幅地图上量得A、B两城的图上距离是4厘米,求A、B两城的实践距离。

15.在比例尺是1:的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。

(完整版)六年级数学解比例应用题练习题

(完整版)六年级数学解比例应用题练习题

200km=20000000cm=1:5000000答:这幅图的比例尺是1:5000000。

(2)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?240km=24000000cm答:长度是8厘米。

(3)在一幅地图上,用3厘米的线段表示实际距离600千米。

量得甲、乙两地的距离是4.5厘米,甲乙两地的实际距离是多少千米?解:设甲乙两地的距离是x千米。

3:600=4.5:x3x=2700x=900答:甲乙两地的实际距离是900千米。

(4)运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?(5)在一幅比例尺是1:30000的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?(6)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(7)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(9)一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?(11)修一条公路,原计划每天修360米,30天可以修完。

如果要提前5天修完,每天要修多少米?(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(13)修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?(14)修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(15)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。

实际每天节约,实际可以烧多少天?(17)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(18)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。

解比例应用题及答案

解比例应用题及答案

1.一批零件平均分给甲、乙两人去做,经过6小时,甲完成了任务,乙还差96个没有做完。

已知乙的工效是甲的4/5,这批零件共有多少个?我们可以这样想:根据题目中“乙的工效是甲的4/5”,可以知道甲与乙工效的比是5:4。

因为当工作时间一定时,工效与工作总量成正比例,由此可知,甲与乙工作总量的比也是5︰4。

甲、乙工作总量的比是5︰4,那就可以把甲完成的工作量看成5份,乙完成的工作量看成4份,甲比乙多完成的工作量看成1份。

已知甲完成了任务,乙还差96个没有完成,那么96个就是1份。

因为这批零件是平均分给甲、乙两人去做的,所以甲的任务是5份,乙的任务也是5份,求零件的总个数只要求出10份共有多少就可以了。

即:96×5×2=960(个)2.甲、乙两人从两地相向而行,甲行完全程需2小时,乙行完全程需3小时。

两人相遇时,甲比乙多走了2.4千米。

求甲、乙之间的路程。

我们可以这样想:根据题目中“甲行完全程需2小时,乙行完全程需3小时”可以知道甲、乙行完全程所用的时间比是2:3。

因为当路程一定时,行驶的时间和速度成反比例。

由此可知,甲、乙行驶的速度比是3:2,甲、乙行驶的路程比也是3:2。

这样就可以把甲行驶的路程看作3份,乙行驶的路程看作2份,甲、乙之间的路程一共是2+3=5(份),甲比乙多行驶的路程是3-2=l(份)。

因此这道题求甲、乙之间的路程,只要用1份的路程去乘以5就可以了。

即:2.4×(3+2)=12(千米)列方程解应用题一、列方程解答应用题的步骤①弄清题意,确定未知数并用x表示;②找出题中的数量之间的相等关系;③列方程,解方程;④检查或验算,写出答案。

(完整word版)六年级解比例应用题

(完整word版)六年级解比例应用题

解比例应用题(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(2)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?(3在一幅地图上,用3厘米的线段表示实际距离600千米。

量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?(4) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?(5)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?(6)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(7)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(8)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?(9)一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?(用比例解)(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?(用比例解)(11)修一条公路,原计划每天修360米,30天可以修完。

如果要提前5天修完,每天要修多少米?(用比例解)(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)(13)修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?(用比例解答)(14)修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)(15)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。

实际每天节约1/8,实际可以烧多少天?(比例解)用比例解1、解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?2、一对互相啮合的齿轮,主动轮有60个齿,每分转80转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《解比例应用题》教学设计
【教学目标】
1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

2.通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

3. 发展学生的应用意识和实践能力。

【教学重点】运用正反比例解决实际问题。

【教学难点】正确判断两种量成什么比例。

通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题.
【教学过程】
一、铺垫孕伏(课件演示:比例的应用)
判断下面每题中的两种量成什么比例关系?
1、速度一定,路程和时间.
2、路程一定,速度和时间.
3、单价一定,总价和数量.
4、每小时耕地的公顷数一定,耕地的总公顷数和时间.
5、全校学生做操,每行站的人数和站的行数.
二、探究新知
(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.(板书:解比例应用题)
(二)教学例5(课件演示:教材对话主题图)
例5、张大妈上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?
学生利用以前的方法独立解答:
先算出每吨水的价钱,再算10吨水的多少钱?
12.8÷8×10
=1.6×10
=16(元)
【设计意图:通过学生用原来学习的解答归一应用题的方法,能使学生进一步理解:单价一定的意义,为正确列出比例式打好基础了。


2、利用比例的知识解答.
思考:这道题中涉及哪三种量?(水的单价、数量和总价三种量)
哪种量是一定的?你是怎样知道的?(水的单价一定.)
用水的数量和水费总价成什么比例关系?(水的数量和总价成正比例关系.)
教师板书:单价一定,水的数量和总价成正比例
教师追问:两家水的总价和用水量的什么相等?(比值相等,也就是水的单
价相等)
怎么列出等式?
解:设李奶奶家上个月水费x元.
8x=12.8×10
x=16
答:李奶奶家上个月水费16元.
3、怎样检验这道题做得是否正确?(学生自主完成)
4、变式练习:张大妈上个月用了8吨水,水费是12.8元,王大爷上个月水
费是19.2元,他们家上个月用了多少吨水?
(三)教学例6(课件演示例6主题图)
例6:一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?
1、学生利用以前的算术方法独立解答.
20×18÷30
=360÷30
=12(包)
2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的
是一定的,__________和__________成__________比——————
例.所以两次捆书的__________和__________的__________是相等的.
3、如果设要捆x包,根据反比例的意义,谁能列出方程?
30x=20×18
x=360÷30
x=12
答:每捆12包.
4、变式练习
一批书如果每包20本,要捆18包,如果每捆15包,每包多少本?
三、全课小结
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它
们成哪种比例关系,然后根据正反比例的意义列出方程.
四、随堂练习
1、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?
(2)王师傅4小时生产了200个零件,照这样计算,__________?
2、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
3、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?
五、布置作业
1、一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?
2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?
3、P60---做一做
【板书设计】
解比例应用题

5:例6:单价一定,总价和数量成正比例。

总数量一定,每包本书和包数成反比例。

解:设李奶奶家上个月水费x元.解:设要捆x包
30x=20×18
8x=12.8×10 x=360÷30
x=16 x=12
答:(略)答:(略)。

相关文档
最新文档