2019年中考数学压轴题分类汇编:与圆有关【含答案】
2019全国中考数学真题分类汇编:与圆的有关计算及参考答案
一、选择题1.(2019·德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°【答案】B.【解析】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选B.2.(2019·滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵A B为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.【解析】由题意可知∠BOC=2∠A=45°⨯2=90°,S阴=S扇△-SOBC,S扇=144π42=4π,△S O BC=1.3、(2019·遂宁)如图,△ABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为()A.4π-8B.2πC.4πD.8π-8【答案】A1S圆=2⨯42=8,所以阴影部分的面积为4π-8,故选A.4(2019·广元)如图,AB,AC分别是O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.25B.4C.213D.4.8第6题图【答案】C【解析】∵AB是直径,∴∠C=90°,∴BC=AB2-AC2=6,又∵OD⊥AC,∴OD∥BC,∴△OAD∽△BAC,∴CD=AD =12AC=4,∴BD=BC2+C D2=213,故选C.A.5342B.42C.23-π5.(2019·温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.32πB.2πC.3πD.6π【答案】D【解析】扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=nπr180,得6π.故选D. 6.(2019·绍兴)如图,ABC内接于圆O,∠B=65°,∠C=70°,若BC=22,则弧BC的长为() A.π B.2π C.2π D.22π【答案】A【解析】在△ABC中,得∠A=180°-∠B-∠C=45°,连接OB,OC,则∠BOC=2∠A=90°,设圆的半径为r,由勾股定理,得r2+r2=(22)2,解得r=2,所以弧BC的长为90π⨯2180=π.7.(2019·山西)如图,在△R t ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()-π53π+ D.43-π2第10题图【答案】A-=-,故选【解析】根据扇形的面积公式,S==12π,故本题选:C.2C.2D.【解题过程】在△R t ABC中,连接OD,∠ABC=90°,AB=23,BC=2,∴∠A=30°,∠DOB=60°,过点D作DE⊥AB于点E,∵AB=23,∴AO=OD=3,∴DE=32,∴S阴影=S△ABC-S△AOD-S扇形BOD=23-334π53π242A.8.(2019·长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是【】A.2πB.4πC.12πD.24π【答案】C120×π×623609.(2019·武汉)如图,AB是⊙O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.2B.π352C【答案】A【解题过程】由题得∠1=∠2=12∠C=45°,∠3=∠4,∠5=∠6MAP3412E4tO56QNB设∠3=∠4=m,∠5=∠6=n,得m+n=45°,∴∠AEB=∠C+m+n=90°+45°=135°∴E在以AD为半径的⊙D上(定角定圆)2tDt⨯2π⨯1∴=360=22t⨯2π⨯22 B.π【解析】连接OA,OB,过点O作OD⊥AB交AB于点E,由题可知OD=DE=1D.8-如图,C的路径为MN,E的路径为PQ设⊙O的半径为1,则⊙D的半径为2,4tMNPQ36010.(2019·泰安)如图,将O沿弦AB折叠,AB恰好经过圆心O,若O的半径为3,则AB的长为1A.π C.2π D.3π【答案】C1ODOE=OA,在△R t AOD中,sinA==22OA 1nπr,∴∠A=30°,∴∠AOD=60°,∠AOB=120°,AB==2π,故选C.218011.(2019·枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD与点E,则图中阴影部分的面积是(结果保留π)A.8-πB.16-2πC.8-2π1π2【解析】在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=⋅AD⋅AB 45⋅π⋅42周长为12π,即为侧面扇形的弧长,所以圆锥的侧面积=×10×12π=60π,故选D.2B.2π8D.【答案】C12=8,S扇形ABE==8-2π,故选C.36012.(2019·巴中)如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的高,母线和底面半径构成直角三角形,其中r=6,h=8,所以母线为10,即为侧面扇形的半径,底面1213.(2019·凉山)如图,在△AOC中,OA=3cm,OC=lcm,将△AOC绕点D顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为(▲)cm2A.πC.17π19π8【答案】B【解析】AC边在旋转过程中所扫过的图形的面积=△SOCA+S扇形OAB-S扇形OCD-△SODB①△由旋转知:OCA≌△ODB,∴△SOCA=S△ODB,∴①式=S扇形OAB-S扇形OCD=90π⨯3290π⨯12-=2π,故选B.360360∴S正方形ABCD BC2=4k2,⊙O的面积为πr2=π×(k)2=2πk2.14.(2019·自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A. B. C. D.【答案】C.【解析】由题意可知,⊙O是正方形ABCD的外接圆,过圆心O点作OE⊥BC于E,在△R t OEC中,∠COE=45°,∴sin∠COE=,设CE=k,则OC=CE=k,∵OE⊥BC,∴CE=BE=k,即BC=2k.=∴正方形==≈.lR ,∴l = ·∴下面圆锥的侧面积 lR = · · 2 R = 2 .故选 D . 15.(2019·湖州)已知圆锥的底面半径为 5cm ,母线长为 13cm ,则这个圆锥的侧面积是()A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2【答案】B .【解析】∵r =5,l =13,∴S 锥侧=πrl =π×5×13=65π(cm 2).故选 B .16. (2019·金华)如图,物体由两个圆锥组成,其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积 为 1,则下面圆锥的侧面积为()A.2B.3C.ABD3 2D. 2C【答案】D .【解析】∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设 AB 长为 R ,则 BD 长为 2 R .∵上面圆锥的侧面积为 1,即 1=1 22 R为1 12 2 2 R17.(2019·宁波)如图所示,矩形纸片 ABCD 中,AD =6cm,把它分割成正方形纸片 ABFE 和矩形纸片 EFCD 后,分别裁出扇形 ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则 AB 的长为A.3.5cmB.4cmC.4.5cmD.5cm【答案】B【解析】AE=1∴AC1⋅2π⋅AB,右侧圆的周长为π⋅DE,∵恰好能作为一个圆锥的底面和侧面,∴,⋅2π⋅AB=44π⋅DE,AB=2DE,即AE=2ED,∵AE+ED=AD=6,∴AB=4,故选B.18.(2019·衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。
中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.23【答案】(1)证明见解析;(2)AB=DI,理由见解析(3【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.4.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA=∠BAF,∴BF=AF.∵BF=FG,∴AF=FG,∴△AFG是等腰三角形.∵FH⊥AD,∴AH=GH,∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG ,∴12FH HG CD DG ==, 即12BD CD =, ∴23 2.153≈, ∵O 的半径长为32,∴BC =62,∴BD =13BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.5.如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PB <PC ,PA 交BC 于E ,点F 是PC 延长线上的点,CF=PB ,AB=13,PA=4.(1)求证:△ABP ≌△ACF ;(2)求证:AC 2=PA•AE ;(3)求PB 和PC 的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC ,再利用圆的内接四边形的性质得∠ACF=∠ABP ,于是可根据“SAS”判断△ABP ≌△ACF ;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC ,于是可判断△ACE ∽△APC ,然后利用相似比即可得到结论;(3)先利用AC 2=PA •AE 计算出AE=134 ,则PE=AP-AE=34,再证△APF 为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。
2019全国中考数学真题分类汇编:与圆有关的位置关系及参考答案
(【解析】∵PA是⊙O的切线,切点为A,∴OA⊥AP,∴∠OAP=90°,∵∠APB=40°,∴∠AOP=50°,∵OA=O B,B C一、选择题1.2019·苏州)如图,AB为⊙O的切线.切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°(第5题)【答案】D【解析】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质.∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=O D,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2.(2019·无锡)如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°AOP A BOBA【答案】B yF E-6O xO∴∠B=∠OAB=∠AOP=25°.故选B.3.(2019·自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE的面积取得最小值时,tan∠BAD的值是()A. B. C. D.【答案】B.【解析】∵A(8,0),B(0,8),∠AOB=900,∴△AOB是等腰直角三角形,∴AB=,∠OBA=450,取D(-5,0),当C、F分别在直线x=-5和x轴上运动时,∵线段DH是△R t CFD斜边上中线,∴DH=CF=10,故D在以H为圆心,半径为5的圆上运动,当AD与圆H相切时,△ABE的面积最小.在△R t ADH中,AH=OH+OA=13,∴AD=.∵∠AOE=∠ADH=900,∠EAO=∠HAD,∴△AOE∽△ADH,∴,即,∴OE=,∴BE=OB-OE=.∵△S ABE BE·OA=AB·EG,=∴EG=.R t BGE中,∠EBG=450,在△∴BG=EG=,∴AG=AB-BG=.R t AEG中,在△tan∠BAD=.故选B.4.(2019·台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则 O的半径为()A.23B.3C.4D.4-3【答案】A【解析】∵ O与AB,AC相切,∴OD⊥AB,OE⊥AC,又∵OD=OE,∴∠DAO=∠EAO,又∵AB=AC,∴BO=CO,∴∠DAO=30°,BO=4,∴OD=OAtan∠DAO=3OA,又∵在△R t AOB中,AO=AB2-OB2=43,∴OD=23,故选A.5.(2019·重庆B卷)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°则∠B的度数为()A.60°B.50°C.40°D.30°【答案】B【解析】圆的切线垂直于经过切点的半径,因为AC是⊙O的切线,A为切点,所以∠BAC=90°,根据三角形内角和定理,若∠C=40°则∠B的度数为50°.故选B.6.(2019·重庆A卷)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【答案】C【解析】∵AC是⊙O的切线,∴AC⊥AB.∵∠C=50°,∴∠B=90°-∠C=40°.∵OB=OD,∴∠B=∠ODB=40°.∴∠AOD=∠B+∠ODB=80°.故选C.二、填空题1.(2019·岳阳)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是_____.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC·AB;③若AB=4,∠APE=30°,则BM的长为④若AC=3,BD=1,则有CM=DM=3.3;【答案】①②④【解析】连接OM,BM∵PE是⊙O的切线,∴OM⊥PE.∵AC⊥PE,∴AC∥OM.∴∠CAM=∠AMO.∵OA=OM,∴∠AMO=∠MAO.∴∠CAM=∠MAO.∴AM平分∠CAB.选项①正确;∴ACBM =60π⨯2∴AC∵AB为直径,∴∠AMB=90=∠ACM.∵∠CAM=∠MAO,∴△AMC∽△ABM.AM=AM AB.∴AM2=AC·AB.选项②正确;∵∠P=30°,∴∠MOP=60°.∵AB=4,∴半径r=2.∴l2=π.选项③错误;1803∵BD∥OM∥AC,OA=OB,∴CM=MD.∵∠CAM+∠AMC=90°,∠AMC+∠BMD=90°,∴∠CAM=∠BMD.∵∠ACM=∠BDM=90°,∴△ACM∽△MDB.CM=DM BD.∴CM·DM=3×1=3.∴CM=DM=3.选项④正确;综上所述,结论正确的有①②④.2.(2019·无锡)如图,在△ABC中,AC∶BC∶AB=5∶12∶13,O在△ABC内自由移动,若O的半径为1,且圆心O在△ABC内所能到达的区域的面积为103,则△ABC的周长为__________.之比也是5∶12∶13,∵△O1O2O3的面积=10,∴O1O2=,O2O3=4,O1O3=,连接AO1与CO2,并延长相交共内心,四边形IEO2F四边形IDCG都是正方形,∴IE=IF==,ED=1,∴ID=IE+ED=,333设△ACB的三边分别为5m、12m、13m,则有ID=AC⨯BC=2m=,解得m=,△ABC的周长=30m=25.【答案】25【解析】如图,圆心O在△ABC内所能到达的区域是△O1O2O△3,∵O1O2O3三边向外扩大1得到△ACB,∴它的三边513333于I,过I作ID⊥AC于D,交O1O2于E,过I作IG⊥BC于G交O3O2于F,则I是△Rt ABC与△Rt O1O2O3的公O O⨯O O251223O O+O O+O O1223155AC+BC+AB363.(2019·济宁)如图,O为△R t ABC直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E,已知BC=3,AC=3.则图中阴影部分的面积是.BDC O E A∴阴影的面积是S=×π×()2=π.211OA•OB【答案】6-334π【解析】在△R t ABC中,∵tan A=BC3=,∴∠A=30°.AC3∵⊙O与斜边AB相切于点D,∴OD⊥AB.设⊙O的半径为r,在△R t ADO中,tan A=OD r=OA3-r33-3,解得r=,26033-36-3336044.(2019·眉山)如图,在Rt△AOB中,OA=OB=42,⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为.【答案】23【解析】连接OQ,如图所示,∵PQ是⊙O的切线,∴OQ⊥PQ,根据勾股定理知:PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在△Rt AOB中,OA=OB=42,∴AB=2OA=8,∴S△AOB=∴PQ=OP2-OQ2=42-22=23.故答案为:23.OA•OB=AB•OP,即OP==4,22AB5.(2019·宁波)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的P与△ABC的一边相切时,AP的长为________.AD=;=,其中,PF=6,AC=12,AB=AC2+BC2=613,∴AP=313;综上所述,AP的长为或313.【答案】132或313【解析】半径为6的P与△ABC的一边相切,可能与AC,BC,AB相切,故分类讨论:①当P与AC相切时,点P到AC的距离为6,但点P在线段AD上运动,距离最大在点D处取到,为5,故这种情况不存在;②当P与AC相切时,点P到BC的距离为6,如图PE=6,PE⊥AC,∴PE为△ACD的中位线,点P为AD中点,∴AP =11322③当P与AB相切时,点P到AB的距离为6,即PF=6,PF⊥AB,过点D作DG⊥AB于点△G∴APF∽△ADG∽△ABC,∴PF ACAP AB132三、解答题1.(2019·衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D,连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.B D B DC A CE AO O解:(1)证明:连接OB交AC于E,由∠BCA=30°,∴∠AOB=60°.在∆AOE中,∵∠OAC=30°,∴∠OEA=90°,所以OB⊥AC.∵BD∥AC,∴OB⊥BD.又B在圆上,∴BD为⊙O的切线;(2)由半径为8,所以OA=OB=8.在∆AOC中,∠OAC=∠OCA=30°,∠COA=120°,∴AC=83.由∠BCA=∠OAC=30°,∴OA∥BC,而BD∥AC,∴四边形ABCD是平行四边形.∴BD=83.∴∆OBD的面积为1132π×8×83=323,扇形OAB的面积为×π×82=,263∴阴影部分的面积为323-32π3.2.(2019·常德,22题,7分)如图6,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,CE=6,求AC的长.ADB EO C图6【解题过程】证明:(1)连接OD,∵DE∥OA,∴∠AOC=∠OED,∠AOD=∠ODE,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA,OD=△O C,∴AOC≌△AOD(SAS),∴∠ADO=∠ACO.∵CE是⊙O的直径,AC为⊙O的切线,∴OC⊥AC,∴∠OCA=90°,∴∠ADO==90°,∴OD⊥AB,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠,∴△B BDO∽△BCA,∴BD,∴=,∴AC=6.2∴OA⊥AD,OB⊥BC,OE⊥CD,AD=ED,BC=EC,∠ODE=1∠ADC,∠OCE=∠BCD∵OD为⊙O的半径,∴AB是⊙O的切线.ADB EO C(2)∵CE=6,∴OD=OC=3,∵∠BDO=90°,∴BO2=BD2+OD2,∵BD=4,∴OB=42+32=5,OD43=BC AC8AC3.(2019·武汉)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C 两点(1)如图1,求证:AB=4AD·BC(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积A D M A D F ME EO OB C N B C N图1图2【解题过程】证明:(1)如图1,连接OD,OC,OE.∵AD,BC,CD是⊙O的切线,122∴AD//BC,∴∠ODE+∠OCE=1(∠ADC+∠BCD)=90°,2∵∠ODE+∠DOE=90°,∴∠DOE=∠OCE.又∵∠OED=∠CEO=90°,∴△ODE∽△COE.∴ OE∴S 阴影 2△S OBC -S 扇形 OBE =3 3 -π.EC ,OE 2=ED ·EC=ED OE∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC(2)解:如图 2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF , ∴∠COF =∠OFC ,∴△COF 等腰三角形。
中考数学《圆》真题压轴题总汇【附解析】
中考数学《圆》真题压轴题总汇【附解析】1.(2019•阿坝州)如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.2.(2019•德阳)如图,AB是⊙O的直径,点C为⊙O上一点,OE⊥BC于点H,交⊙O于点E,点D为OE的延长线上一点,DC的延长线与BA的延长线交于点F,且∠BOD=∠BCD,连结BD、AC、CE.(1)求证:DF为⊙O的切线;(2)过E作EG⊥FD于点G,求证:△CHE≌△CGE;(3)如果AF=1,sin∠FCA=,求EG的长.3.(2019•雅安)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.4.(2019•内江)AB与⊙O相切于点A,直线l与⊙O相离,OB⊥l于点B,且OB=5,OB 与⊙O交于点P,AP的延长线交直线l于点C.(1)求证:AB=BC;(2)若⊙O的半径为3,求线段AP的长;(3)若在⊙O上存在点G,使△GBC是以BC为底边的等腰三角形,求⊙O的半径r的取值范围.5.(2019•广元)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求PA的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.6.(2019•成都)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.7.(2019•资阳)如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.8.(2019•绵阳)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.9.(2019•乐山)如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C 是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.10.(2019•泰州)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.11.(2019•乐山)已知关于x的一元二次方程x2﹣(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC的内切圆半径.12.(2019•株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.13.(2019•巴中)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.14.(2019•广安)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD 交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.15.(2019•达州)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.16.(2019•凉山州)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.17.(2019•遂宁)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF =2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.18.(2019•宜宾)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O 的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.19.(2019•南充)如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.20.(2019•自贡)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.参考答案1.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCH,∴∠BCH+∠BCO=90°,∴∠HCO=90°,∴CH是⊙O的切线;(2)解:∵B为DH的中点,∴设BD=BH=x,∴DH=2x,∵∠A=∠D,∠A=∠BCH,∴∠D=∠BCH,∵∠H=∠H,∴△DCH∽△CBH,∴=,∴CH==,∵∠H=90°,∴tan D===.2.(1)证明:如图,连结OC,∵OE⊥BC,∴∠OHB=90°,∴∠OBH+∠BOD=90°,∵OB=OC,∴∠OBH=∠OCB,∵∠BOD=∠BCD,∴∠BCD+∠OCB=90°,∴OC⊥CD,∵点C为⊙O上一点,∴DF为⊙O的切线;(2)解:∵∠OCD=90°,∴∠ECG+∠OCE=90°,∵OC=OE,∴∠OCE=∠OEC,∴∠ECG+∠OEC=90°,∵∠OEC+∠HCE=90°,∴∠ECG=∠HCE,在△CHE和△CGE中,,∴△CHE≌△CGE(AAS);(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵DF为⊙O的切线,∴∠OCA+∠FCA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠FCA=∠ABC,∴sin∠ABC=sin∠FCA=,设AC=a,则AB=3a,∴BC===a,∵∠FCA=∠ABC,∠AFC=∠CFB,∴△ACF∽△CFB,∴===,∵AF=1,∴CF=,∴BF==2,∴BF﹣AF=AB=1,∴OC=,BC=,∵OE⊥BC,∴CH=BC=,∴OH===,∴HE=OE﹣OH=﹣,∵△CHE≌△CGE,∴EG=HE=﹣.3.(1)证明:连接OC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.4.(1)证明:如图1,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l,∴∠BCA+∠BPC=90°,∵OA=OP,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC;(2)解:如图1,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴=,即=,解得,AP=;(3)解:如图2,作BC的垂直平分线MN,作OE⊥MN于E,则OE=BC=AB=×,由题意得,⊙O于MN有交点,∴OE≤r,即×≤r,解得,r≥,∵直线l与⊙O相离,∴r<5,则使△GBC是以BC为底边的等腰三角形,⊙O的半径r的取值范围为:≤r<5.。
中考数学压轴题-圆的压轴题 含解析
圆的压轴题(1)1、如图,BF 为⊙O 的直径,直线AC 交⊙O 于A ,B 两点,点D 在⊙O 上,BD 平分∠OBC ,DE ⊥AC 于点E 。
(1)求证:直线DE 是⊙O 的切线;(2)若 BF=10,sin ∠BDE=,求DE 的长。
2、如图,AN 是M ⊙的直径,NB x ∥轴,AB 交M ⊙于点C .(1)若点()0,6A ,()0,2N ,30ABN =∠°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M ⊙的切线.x y C D M O B NA3、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.4、已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.5、如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.6、如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.7、如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.8、如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.9、如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.10、如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).11、如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.12、如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.13、如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.14、如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.15、如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.16、已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.参考答案1、【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4。
2019年中考数学全国部分地区有关圆的综合题真题汇编(含答案解析)
有关圆的综合题1.(2019浙江温州22题)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=38AB时,求⊙O的直径长.2.(2019浙江绍兴21题)在屏幕上有如下内容:如图,△ABC内接于圆O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答0(1)在屏幕内容中添加条件∠D=30°,求AD的长,请你解答.(2)以下是小明,小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长.小聪:你这样太简单了,我加的条件是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.3.(2019浙江宁波26题)如图1, O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F.(1)求证:BD=BE. (2)当AF :EF=3:2,AC=6时,求AE 的长。
(3)设 EFAF =x,tan ∠DAE=y. ①求y 关于x 的函数表达式;②如图2,连结OF,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值4.(2019浙江金华21题)如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求的度数。
(2)如图,点E在⊙O上,连结CE与⊙O交于点F。
若EF=AB,求∠OCE的度数.5. (2019浙江湖州23题)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2: y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的2为半径画圆.一个动点,以Q为圆心,2①当点Q与点C重合时,求证: 直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN. 问:是否存在这样的点Q,使得△QMN 是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.图1 图26.(2019浙江杭州23题)如图,已知锐角三角形ABC 内接于☉O,OD ⊥BC 于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA; ②当OA=1时,求△ABC 面积的最大值;(2)点E 在线段OA 上,OE=OD.连接DE,设∠ABC=m ∠OED,∠ACB=n ∠OED(m,n 是正数).若∠ABC<∠ACB,求证:m-n+2=0.7.(2019四川宜宾23题)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE 交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.8.(2019四川雅安23题)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC 于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.9.(2019四川遂宁24题)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.10.(2019四川内江27题)AB与⊙O相切于点A,直线l与⊙O相离,OB⊥l于点B,且OB =5,OB与⊙O交于点P,AP的延长线交直线l于点C.(1)求证:AB=BC;(2)若⊙O的半径为3,求线段AP的长;(3)若在⊙O上存在点G,使△GBC是以BC为底边的等腰三角形,求⊙O的半径r的取值范围.11.(2019四川泸州24题)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O 上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.12.(2019四川广元23题)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P 作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求P A的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.13.(2019四川达州22题)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.14.(2019四川巴中25题)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.参考答案第1题答案.第2题答案.第3题答案. (1)证明:∵△ABC 为等边三角形,∴∠BAC=∠C=60 .∵∠DEB=∠BAC=60 ,∠D=∠C=60∴∠DEB=∠D.∴BD=BE(2)解:如图,过点A 作AG ⊥EC 于点G.∵△ABC 为等边三角形,AC=6,∴BG=21 BC= 21AC=3. ∴在Rt △ABG 中,AG=BG=3 . ∵BF ⊥EC ,∴BF ∥AG.∵AF:EF=3:2,∴BE= BG=2.∴EG=BE+BG=3+2=5.∴在Rt △AEG 中,AE=.(3)解:①如图,过点E 作EH ⊥AD 于点H.∵∠EBD=∠ABC=60°,∴在Rt △BEH 中, BE EH =sin60 = 23. ∴∴∵BG=xBE.∴AB=BC=2BG-2xBE.∴AH-AB+BH=2xBE+ 21BE=(2x+ 21)BE. ∴在Rt △AHE 中,tan EAH =143+=x y ②如图,过点O 作OM ⊥EC 于点M.设BE=a.∵∴CG=BG=xBE=x.∴EC=CG+BG+BE=a+2ax.∴AM=21EC= 21a+ax. ∴BM=EM-BE=ax- 21a ∵BF ∥AG , ∴△EBF ∽△EGA.∴∵AG= 3BG= 3ax ∴BF=x+11 AG= x ax +13 ∴△OFB 的面积=∴△AEC 的面积=∵△AEC 的面积是△OFB 的面积10倍 ∴∴ 解得∴ 93=y 或73 第4题答案. (1)如图,连结OB ,设⊙O 半径为r ,∵BC 与⊙O 相切于点B ,∴OB ⊥BC ,又∵四边形OABC 为平行四边形,∴OA ∥BC ,AB=OC ,∴∠AOB=90°,又∵OA=OB=r ,∴AB= 2r ,∴△AOB ,△OBC 均为等腰直角三角形,∴∠BOC=45°,∴弧CD 度数为45°.(2)作OH ⊥EF ,连结OE ,由(1)知EF=AB= 2r ,∴△OEF 为等腰直角三角形,∴OH=21 EF= 22r , 在Rt △OHC 中,∴sin ∠OCE=21222==r r OC OH , ∴∠OCE=30°.第5题答案.【解答】(1)如图1,连结BP ,过点P 作PH ⊥OB 于点H ,图3则BH =OH .∵AO =BO =3, ∴∠ABO =45°,BH =12OB =2,∵⊙P 与直线l 1相切于点B ,∴BP ⊥AB ,∴∠PBH =90°-∠ABO =45°.∴PB =2BH =322, 从而⊙P 的直径长为3 2. (2)证明:如图4过点C 作CE ⊥AB 于点E ,图4将y =0代入y =3x -3,得x =1,∴点C 的坐标为(1,0).∴AC =4,∵∠CAE =45°,∴CE =22AC =2 2. ∵点Q 与点C 重合,又⊙Q 的半径为22,∴直线l 1与⊙Q 相切.②解:假设存在这样的点Q ,使得△QMN 是等腰直角三角形,∵直线l 1经过点A (-3,0),B (0,3),∴l 的函数解析式为y =x +3.记直线l 2与l 1的交点为F ,情况一:如图5,当点Q在线段CF上时,由题意,得∠MNQ=45°.如图,延长NQ交x轴于点G,图5∵∠BAO=45°,∴∠NGA=180°-45°-45°=90°,即NG⊥x轴,∴点Q与N有相同的横坐标,设Q(m,3m-3),则N(m,m+3),∴QN=m+3-(3m-3).∵⊙Q的半径为22,∴m+3-(3m-3)=22,解得m=3-2,∴3m-3=6-22,∴Q的坐标为(3-2,6-22).情况二:当点Q在线段CF的延长线上时,同理可得m=3+2,Q的坐标为(3+2,6+32).∴存在这样的点Q1(3-2,6-32)和Q2(3+2,6+32),使得△QMN是等腰直角三角形.第6题答案. 解析(1)①证明:连接OB,OC.因为OB=OC,OD⊥BC,所以∠BOD=∠BOC=×2∠BAC=60°,所以∠OBD=30°,所以OD=OB=OA.②作AF⊥BC,垂足为点F,所以AF≤AD≤AO+OD=,等号当点A,O,D在同一直线上时取到.由①知,BC=2BD=,所以△ABC的面积=BC·AF≤××=,即△ABC面积的最大值是.(2)证明:设∠OED=∠ODE=α,∠COD=∠BOD=β.因为△ABC是锐角三角形,所以∠ABC+∠ACB+∠BAC=180°,即(m+n)α+β=180°.(*)又因为∠ABC<∠ACB,所以∠EOD=∠AOC+∠DOC=2mα+β.因为∠OED+∠ODE+∠EOD=180°,所以2(m+1)α+β=180°.(**)由(*) (**),得m+n=2(m+1),即m-n+2=0.第7题答案.【解答】(1)证明:∵OA=OD,∠A=∠B=30°,∴∠A=∠ADO=30°,∴∠DOB=∠A+∠ADO=60°,∴∠ODB=180°﹣∠DOB﹣∠B=90°,∵OD是半径,∴BD是⊙O的切线;(2)∵∠ODB=90°,∠DBC=30°,∴OD=OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1;(3)∵OD=1,∴DE=2,BD=,∴BE==,∵BD是⊙O的切线,BE是⊙O的割线,∴BD2=BM•BE,∴BM===.第8题答案.【解答】(1)证明:连接OC,AC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.第9题答案. 解:(1)∵AG是⊙O的切线,AD是⊙O的直径,∴∠GAF=90°,∵AG∥BC,∴AE⊥BC,∴CE=BE,∴∠BAC=2∠EAC,∵∠COE=2∠CAE,∴∠COD=∠BAC;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE==,∴设OE=x,OC=3x,∵BC=6,∴CE=3,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+32=9x2,∴x=(负值舍去),∴OC=3x=,∴⊙O的半径OC为;(3)∵DF=2OD,∴OF=3OD=3OC,∴,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线.第10题答案.(1)证明:如图1,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l ,∴∠BCA+∠BPC=90°,∵OA=OP ,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC;(2)解:如图1,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3 ,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴=,即=,解得,AP=;(3)解:如图2,作BC的垂直平分线MN,作OE⊥MN于E,则OE=BC=AB=×,由题意得,⊙O于MN有交点,∴OE≤r,即×≤r ,解得,r≥,∵直线l与⊙O相离,∴r<5,则使△GBC是以BC为底边的等腰三角形,⊙O的半径r的取值范围为:≤r<5.第11题答案.第12题答案.(1)证明:连接OD,∵PC是⊙O的切线,∴∠PCO=90°,即∠PCD+∠OCD=90°,∵OA⊥CD ,∴CE=DE∴PC=PD∴∠PDC=∠PCD∵OC=OD∴∠ODC=∠OCD,∴∠PDC+∠ODC=∠PCD+∠OCD=90°,∴PD是⊙O的切线.(2)如图2,连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴tan B==设AC=m,BC=2m,则由勾股定理得:m2+(2m)2=102,解得:m=,AC=2,BC=4,∵CE×AB=AC×BC,即10CE=2×4,∴CE=4,BE=8,AE=2在Rt△OCE中,OE=OA﹣AE=3,OC=5,∴CE===4,∵∴OP×OE=OC×OC,即3OP=5×5,∴OP=,P A=OP﹣OA=﹣5=.(3)AB2=4OE•OP如图2,∵PC切⊙O于C,∴∠OCP=∠OEC=90°,∴△OCE∽△OPC∴,即OC2=OE•OP∵OC=AB∴,即AB2=4OE•OP.第13题答案. (1)DF与⊙O相切,理由:连接OD,∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD ,∴=,∴OD⊥BC,∵DF∥BC ,∴OD⊥DF,∴DF与⊙O相切;(2)∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC,∴,∴=,∴BD=.第14题答案. ①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,在直角三角形OHC中,HO=CO,∴∠OCH=30°,∠COH=60°,∴HC=,S阴影=S△OCH﹣S扇形OHM=CH•OH﹣OH2=2﹣;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2,即:PH+PM的最小值为2,在Rt△NPO中,OP=ON tan30°=,在Rt△COD中,OD=OC tan30°=,则PD=OP+OD=2.。
人教中考数学压轴题专题复习——圆的综合的综合及详细答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)1010. 【解析】 分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O 、D 与B 、D 两点,∵△BDC 是Rt △,且E 为BC 中点,∴∠EDB=∠EBD .(2分)又∵OD=OB 且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE 是⊙O 的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=22k ,AE=5k , ∴sin ∠CAE=1010EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.3.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
2019中考数学试题及答案分类汇编:圆
2019中考数学试题及答案分类汇编:圆、选择题1. (天津3分)已知O O i 与O 。
2的半径分别为3 cm 和4 cm ,若OQ 2=7 cm ,则O O 1与O O 2的位置关系是(A ) 相交 (B ) 相离 (C ) 内切 (D ) 外切 【答案】Db【考点】圆与圆位置关系的判定。
【分析】两圆半径之和 3+4=7,等于两圆圆心距 OQ 2= 7,根据圆与圆位置关系的判定可知两圆外切。
2.(内蒙古包头3分)已知两圆的直径分别是 2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A 、相交B 、外切C 、外离D 、内含【答案】B 。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两 圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半 径之差),内含(两圆圆心距离小于两圆半径之差)。
•••两圆的直径分别是 2厘米与4厘米,•••两圆的半径分别是 •••圆心距是1+2=3厘米,•这两个圆的位置关系是外切。
故选3, (内蒙古包头3分)已知AB 是OO 的直径,点P 是AB 延长线上的 动点,过P 作OO 的切线,切点为 C,Z APC 的平分线交AC 于点D, / CDP 等于A 、30°B 、60°C 、45°D 50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。
【分析】连接OC•/ OC=O , , PD 平分/ APC •••/ CPD M DPA / CAP d ACO •/ PC 为OO 的切线,• OCLPG•••/ CPD # DPA f CAP +/ ACO=90,•/ DPA f CAP =45,即/ CDP=45。
故选 G1厘米与2厘米。
B 。
4. (内蒙古呼和浩特3分)如图所示,四边形ABCD中, DC/ ABBC=1, AB=AC=AD=2 贝U BD 的长为A. 14B. .15C. 3 2D. 2.3【答案】Bo【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。
2019年全国中考数学真题精选分类汇编:圆(填空题)含答案解析
2019年全国中考数学真题精选分类汇编:圆(填空题)含答案解析一.填空题(共40小题)1.(2019•铁岭)如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为.2.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.3.(2019•青海)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.4.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是cm.5.(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB =30°,则的长为.6.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为.7.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.8.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.9.(2019•鄂尔多斯)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.10.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.11.(2019•娄底)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD =.12.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为.13.(2019•陕西)若正六边形的边长为3,则其较长的一条对角线长为.14.(2019•宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为.15.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD 为直径的⊙O交AD于点E,则图中阴影部分的面积为.16.(2019•铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;17.(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).18.(2019•包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为.19.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.20.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.21.(2019•贵阳)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.22.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.23.(2019•齐齐哈尔)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.24.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.25.(2019•鸡西)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.26.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.27.(2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.28.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.29.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.30.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.31.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.32.(2019•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=.33.(2019•十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为.34.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.35.(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.36.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)37.(2019•咸宁)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).38.(2019•荆门)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.39.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是.40.(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC ⊥OA.若OA=2,则阴影部分的面积为.2019年去全国中考数学真题精选分类汇编:圆(填空题)含答案解析参考答案与试题解析一.填空题(共40小题)1.(2019•铁岭)如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为8π.【分析】连接OA,根据等腰三角形的性质求出∠OAC,根据题意和三角形内角和定理求出∠AOB,代入弧长公式计算,得到答案.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=70°,∴∠OAB=∠OAC﹣∠BAC=70°﹣60°=10°,∵OA=OB,∴∠OBA=∠OAB=10°,∴∠AOB=180°﹣10°﹣10°=160°,则的长==8π,故答案为:8π.【点评】本题考查的是弧长的计算、圆周角定理,掌握弧长公式是解题的关键.2.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=4.【分析】根据垂径定理得到AD=DC,由等腰三角形的性质得到AB=2OD=2×2=4,得到∠BAE=∠CAE=∠BAC=90°=45°,求得∠ABD=∠ADB=45°,求得AD=AB=4,于是得到DC=AD=4,根据勾股定理即可得到结论.【解答】解:∵OD⊥AC,∴AD=DC,∵BO=CO,∴AB=2OD=2×2=4,∵BC是⊙O的直径,∴∠BAC=90°,∵OE⊥BC,∴∠BOE=∠COE=90°,∴=,∴∠BAE=∠CAE=∠BAC=90°=45°,∵EA⊥BD,∴∠ABD=∠ADB=45°,∴AD=AB=4,∴DC=AD=4,∴AC=8,∴BC===4.故答案为:4.【点评】本题考查了三角形的外接圆与外心,圆周角定理,垂径定理,勾股定理,正确的识别图形是解题的关键.3.(2019•青海)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为1.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S△CEB=S△ABC=S正方形ABCD=×2×2=1故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.4.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是10cm.【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10【点评】考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.5.(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB =30°,则的长为2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【解答】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长==2π,故答案为:2π.【点评】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.6.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为3.【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设该圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.【分析】根据已知条件得到∠AOB=60°,推出△AOB是等边三角形,得到OA=OB=AB=2,根据扇形的面积公式即可得到结论.【解答】解:∵正六边形ABCDEF内接于⊙O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∴扇形AOB的面积==,故答案为:.【点评】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是熟练掌握扇形的面积公式.8.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为10平方米.【分析】根据垂径定理得到AD=4,由勾股定理得到OD==3,求得OA﹣OD=2,根据弧田面积=(弦×矢+矢2)即可得到结论.【解答】解:∵弦AB=8米,半径OC⊥弦AB,∴AD=4,∴OD==3,∴OA﹣OD=2,∴弧田面积=(弦×矢+矢2)=×(8×2+22)=10,故答案为:10.【点评】此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.9.(2019•鄂尔多斯)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是3π﹣.【分析】根据S阴影部分=S扇形OAE﹣S△OAE即可求解.【解答】解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.【点评】本题考查扇形的面积公式,等腰三角形的性质,三角形的面积等知识,解题的关键是学会用分割法求阴影部分的面积.10.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=60°.【分析】连接OB,求出∠D,利用三角形的外角的性质解决问题即可.【解答】解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.11.(2019•娄底)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD =1.【分析】利用圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后根据含30度的直角三角形三边的关系求求AD的长.【解答】解:∵AB为直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴AD=AB=×2=1.故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为69°.【分析】直接利用圆周角定理得出∠BCD=90°,进而得出答案.【解答】解:∵△ABC内接于⊙O,BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=21°,∴∠A=∠D=90°﹣21°=69°.故答案为:69°【点评】此题主要考查了三角形的外接圆与外心,正确掌握圆周角定理是解题关键.13.(2019•陕西)若正六边形的边长为3,则其较长的一条对角线长为6.【分析】根据正六边形的性质即可得到结论.【解答】解:如图所示为正六边形最长的三条对角线,由正六边形性质可知,△AOB,△COD为两个边长相等的等边三角形,∴AD=2AB=6,故答案为6.【点评】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、解答.14.(2019•宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为3.【分析】连接OA,设半径为x,用x表示OC,根据勾股定理建立x的方程,便可求得结果.【解答】解:连接OA,设半径为x,∵将劣弧沿弦AB折叠交于OC的中点D,∴OC=,OC⊥AB,∴AC==,∵OA2﹣OC2=AC2,∴,解得,x=3.故答案为:3.【点评】本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是根据勾股定理列出半径的方程.15.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD 为直径的⊙O交AD于点E,则图中阴影部分的面积为.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos ∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,∴∠D=30°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.16.(2019•铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为100°;【分析】直接利用圆内接四边形的性质:外角等于它的内对角得出答案.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°【点评】考查圆内接四边形的外角等于它的内对角.17.(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是25π﹣48(结果保留π).【分析】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=﹣8×6=25π﹣48.故答案为:25π﹣48.【点评】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.18.(2019•包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为2.【分析】连接CD,由圆周角定理得出∠BCD=90°=∠CAB,证明△ABC∽△CBD,得出=,即可得出结果.【解答】解:连接CD,如图:∵BD是⊙O的直径,∴∠BCD=90°=∠CAB,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,∴BC2=AB×BD=4×6=24,∴BC==2;故答案为:2.【点评】本题考查了圆周角定理、相似三角形的判定与性质;熟练掌握圆周角定理,证明三角形相似是解题的关键.19.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.【分析】根据三角形外角的性质得到∠C=∠ADO﹣∠CAB=65°,根据等腰三角形的性质得到∠AOC=50°,由扇形的面积公式即可得到结论.【解答】解:∵∠ADO=85°,∠CAB=20°,∴∠C=∠ADO﹣∠CAB=65°,∵OA=OC,∴∠OAC=∠C=65°,∴∠AOC=50°,∴阴影部分的扇形OAC面积==,故答案为:.【点评】本题考查了扇形面积的计算,由等腰三角形的性质和三角形的内角和求出∠AOC 是解题的关键.20.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为5.【分析】先根据题意画出图形,再连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,由垂径定理及正方形的性质得出OE=BE=,再由勾股定理即可求解.【解答】解:如图所示,连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,∵OE⊥BC,∴OE=BE=,即a=5.故答案为:5.【点评】本题考查的是正多边形和圆,解答此类问题的关键是根据题意画出图形,利用数形结合求解.21.(2019•贵阳)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是4π.【分析】由题意得出:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,求出圆的半径,由圆的周长公式即可得出结果.【解答】解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB、BC、CD、AD,则四边形ABCD是正方形,连接OB,如图所示:则正方形ABCD的对角线=2OA=4,OA⊥OB,OA=OB=2,∴AB=2,过点O作ON⊥AB于N,则NA=AB=,∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.【点评】本题考查了正多边形和圆、正方形的性质以及圆周长公式;由题意得出四叶幸运草的周长=2个圆的周长是解题的关键.22.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是150°.【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.【解答】解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.【点评】本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长来求出弧长.23.(2019•齐齐哈尔)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为4cm.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.24.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为12.【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.25.(2019•鸡西)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为60°.【分析】利用圆周角与圆心角的关系即可求解.【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.【点评】此题考查了圆周角与圆心角定理,熟练掌握圆周角与圆心角的关系是解题关键.26.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为5或5.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC =AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC =OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.27.(2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是90度.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n°,根据题意得2π•1=,解得n=90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.28.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.【分析】利用弧长=圆锥的底面周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:【点评】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.29.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为π﹣2.【分析】连接OB,作OH⊥BC于H,如图,利用等边三角形的性质得AB=BC=AC=2,∠ABC=60°,再根据三角形内切圆的性质得OH为⊙O的半径,∠OBH=30°,再计算出BH=CH=1,OH=BH=,然后根据扇形的面积公式,利用阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O进行计算.【解答】解:连接OB,作OH⊥BC于H,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB ﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质和扇形面积公式.30.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=76°.【分析】由切线的性质得出P A=PB,P A⊥OA,得出∠P AB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠P AB=90°﹣∠OAB=52°,再由三角形内角和定理即可得出结果.【解答】解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.【点评】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.31.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.32.(2019•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=π﹣3.【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=π,∴圆的内接正十二边形的中心角为=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S1=12××1×=3,∴则S﹣S1=π﹣3,故答案为:π﹣3.【点评】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.33.(2019•十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为6π.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.34.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为4和2.56.【分析】根据切线的性质得出△ABD是直角三角形,DB2=CD•AD,根据勾股定理求得AB,即可求得AE,然后分两种情况求得AP的长即可.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.【点评】本题考查了切线的性质,勾股定理的应用,垂径定理的应用,平行线的判定和性质,分类讨论是解题的关键.35.(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为144度.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.36.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是π﹣1.(结果保留π)【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,。
备战中考数学压轴题之圆的综合(备战中考题型整理,突破提升)含答案解析
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.(1)求证:AE⊥DE;(2)若∠BAF=60°,AF=4,求CE的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.试题解析:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.考点:切线的性质.2.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为AB,P是半径OB上一动点,Q是AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.【答案】发现: 90°,2;思考:(1)103π=;(2)2+100;(3)点O到折痕PQ30【解析】分析:发现:先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(2)先在Rt△B'OP中,OP22−10)2=(10-OP)2,解得2−10,最后用面积的和差即可得出结论.探究:先找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,证明四边形OCO′B 是矩形,由勾股定理求O′B ,从而求出OO′的长,则OM=12OO′=30. 详解:发现:∵P 是半径OB 上一动点,Q 是AB 上的一动点,∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,此时,∠POQ=90°,PQ=22OA OB +=102;思考:(1)如图,连接OQ ,∵点P 是OB 的中点,∴OP=12OB=12OQ . ∵QP ⊥OB ,∴∠OPQ=90° 在Rt △OPQ 中,cos ∠QOP=12OP OQ =, ∴∠QOP=60°,∴l BQ =6010101803ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102,在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2解得OP=102−10,S 阴影=S 扇形AOB -2S △AOP =290101210(10210)3602π⨯-⨯⨯⨯- =25π−1002+100;探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是B Q '所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA 相切于C 点,∴O′C ⊥AO ,∴O′C ∥OB ,∴四边形OCO′B 是矩形,在Rt △O′BP 中,O′B=226425-=, 在Rt △OBO′K ,OO′=2210(25)=230-,∴OM=12OO′=12×230=30, 即O 到折痕PQ 的距离为30.点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n R π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.3.如图,△ABC 的内接三角形,P 为BC 延长线上一点,∠PAC=∠B ,AD 为⊙O 的直径,过C 作CG ⊥AD 于E ,交AB 于F ,交⊙O 于G .(1)判断直线PA 与⊙O 的位置关系,并说明理由;(2)求证:AG 2=AF·AB ; (3)若⊙O 的直径为10,AC=25,AB=45,求△AFG 的面积.【答案】(1)PA 与⊙O 相切,理由见解析;(2)证明见解析;(3)3.【解析】试题分析:(1)连接CD ,由AD 为⊙O 的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D ,由已知∠PAC=∠B ,可证得DA ⊥PA ,继而可证得PA 与⊙O 相切.(2)连接BG ,易证得△AFG ∽△AGB ,由相似三角形的对应边成比例,证得结论.(3)连接BD ,由AG 2=AF•AB ,可求得AF 的长,易证得△AEF ∽△ABD ,即可求得AE 的长,继而可求得EF 与EG 的长,则可求得答案.试题解析:解:(1)PA 与⊙O 相切.理由如下:如答图1,连接CD ,∵AD 为⊙O 的直径,∴∠ACD=90°.∴∠D+∠CAD=90°.∵∠B=∠D ,∠PAC=∠B ,∴∠PAC=∠D.∴∠PAC+∠CAD=90°,即DA ⊥PA.∵点A 在圆上,∴PA 与⊙O 相切.(2)证明:如答图2,连接BG ,∵AD 为⊙O 的直径,CG ⊥AD ,∴AC AD =.∴∠AGF=∠ABG.∵∠GAF=∠BAG ,∴△AGF ∽△ABG.∴AG :AB=AF :AG. ∴AG 2=AF•AB.(3)如答图3,连接BD ,∵AD 是直径,∴∠ABD=90°.∵AG 2=AF•AB ,55∴5∵CG ⊥AD ,∴∠AEF=∠ABD=90°.∵∠EAF=∠BAD ,∴△AEF ∽△ABD. ∴AE AF AB AD =545=,解得:AE=2. ∴221EF AF AE =-=. ∵224EG AG AE =-=,∴413FG EG EF =-=-=.∴1132322AFG S FG AE ∆=⋅⋅=⨯⨯=.考点:1. 圆周角定理;2.直角三角形两锐角的关系;3. 相切的判定;4.垂径定理;5.相似三角形的判定和性质;6.勾股定理;7.三角形的面积.4.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线;(2)若AE =4,tan ∠ACD =33,求FC 的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案; (2)根据正切的性质求出EC 的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OCB +∠ACO =90°.∵OB =OC ,∴∠B =∠OCB.又∵∠FCA =∠B ,∴∠FCA =∠OCB ,∴∠FCA +∠ACO =90°,即∠FCO =90°,∴FC ⊥OC ,∴FC 是⊙O 切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE33∠==,设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+(43)2,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC=22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.5.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
中考数学圆-经典压轴题(含答案)
初三中考数学与圆有关的压轴题1.如图,△ABC内接于⊙O,AB为⊙O的直径,D为的中点,过D作DF⊥AB于点E,交⊙O于点F,交弦BC于点G,连接CD,BF.(1)求证:△BFG≌△DCG;(2)若AC=10,BE=8,求BF的长;(3)在(2)的条件下,P为⊙O上一点,连接BP,CP,弦CP交直径AB于点H,若△BPH与△CPB相似,求CP的长.2.如图,AB为⊙O的直径,D是的中点,BC与AD,OD分别交于点E,F.(1)求证:OD∥AC;(2)求证:DC2=DE•DA;(3)若⊙O的直径AB=10,AC=6,求BF的长.3.如图1,以△ABC的边AB为直径作⊙O,交AC于点E,BD平分∠ABE交AC于F,交⊙O于点D,且∠BDE=∠CBE.(1)求证:BC是⊙O的切线;(2)如图2,延长ED交直线AB于点P,若P A=AO,DE=2,求的值及AO的长.4.如图,已知直角△ABC中,∠ABC=90°,BC为⊙O的直径,D为⊙O与斜边AC的交点,作∠ECB使得CA平分∠ECB,且CE⊥DE;DE与AB交与点F.(1)猜想并证明直线DE与⊙O的位置关系;(2)若DE=3,CE=4,求⊙O的半径;(3)记△BCD的面积为S1,△CDE的面积为S2,若S1:S2=3:2.求sin∠AFD的值.5.如图,AB是⊙O的直径,点C是⊙O上一点,过点C作⊙O的切线与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)利用尺规作图,过点A作AD⊥CP于点D(保留作图痕迹,不写作法);(2)求证:△PCF是等腰三角形;(3)若tan∠ABC=,BE=7,求线段PC的长.6.如图,四边形ABCD内接于⊙O,对角线AC是⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,F为CE的中点,连接BD,DF,BD与AC交于点P.(1)求证:DF是⊙O的切线;(2)若AC=2DE,求tan∠ABD的值;(3)若∠DPC=45°,PD2+PB2=8,求AC的长.7.如图,四边形ABCD内接于⊙O,AB=AC,∠BAD=90°,延长AD、BC交于点F.点E在BF上,且DE=EF.(1)求证:DE是⊙O的切线;(2)已知CE=3,EF=5,求AB的长;(3)在(2)的条件下,求图中阴影部分的面积.8.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接AD,过点D作DM⊥AC,垂足为M,AB、MD的延长线交于点N.(1)求证:MN是⊙O的切线;(2)求证:DN2=BN•(BN+AC);(3)若BC=6,cos C=,求DN的长.1【解答】解:(1)∵D是的中点,则,∵AB为⊙O的直径,DF⊥AB,∴,∴,∴BF=CD,又∵∠BFG=∠DCG,∠BGF=∠DGC,∴△BFG≌△DCG(AAS);(2)如图1,连接OD交BC于点M,∵D为的中点,∴OD⊥BC,∴BM=CM,∵OA=OB,∴OM是△ABC的中位线,∴OM=AC=5,∵,∴,∴OE=OM=5,∴OD=OB=OE+BE=5+8=13,∴EF=DE==12,∴BF===4;(3)如图2,∵弦CP交AB于点H,则点P与点C在直径的两侧,则∠CBP>∠HBP,∵△BPH与△CPB相似,∴∠ABP=∠PCB,又∵∠CPB=∠BPH,∴∠ACP=∠BCP,∵AB是直径,则∠ACB=∠APB=90°,∴∠ACP=∠BCP=45°,过点B作BN⊥PC于点N,由(2)得AB=26,在Rt△CBN中,CN=BN=BC=12,∵∠CAB=∠CPB,∴tan∠CAB=tan∠CPB=,即,故PN=5,∴PC=CN+PN=5+12=17.2【解答】解:(1)因为点D是弧BC的中点,所以∠CAD=∠BAD,即∠CAB=2∠BAD,而∠BOD=2∠BAD,所以∠CAB=∠BOD,所以DO∥AC;(2)∵D是的中点,∴∠CAD=∠DCB,∴△DCE∽△DAC,∴CD2=DE•DA;(3)∵AB为⊙O的直径∴∠ACB=90°,在Rt△ACB中,BC=.=8,∵OD∥AC,∴△BOF∽△BAC,∴,即=,∴BF=4.即BF的长为4.3【解答】(1)证明:如图1中,连接BE.∵AB是直径,∴∠AEB=90°,∴∠A+∠ABE=90°,∵∠A=∠D=∠EBC,∴∠ABE+∠EBC=90°,∴∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)如图2中,连接OD、BE.∵BD平分∠ABE,∴D是的中点,∴OD⊥AE,∵AE⊥BE,∴BE∥OD,∵P A=OA=OB,∴OP=2OB,∴==2,∴PD=2DE=4,∵△PDB∽∠P AE,∴=,∴PD•PE=P A•PB,∴.4【解答】解:(1)直线DE与⊙O相切,证明如下:连接OD,∵CA平分∠ECB,∴∠ECD=∠OCD,∵OD=OC,∴∠OCD=∠ODC,∴∠ODC=∠ECD,∴OD∥CE,∴OD⊥DE,∵D为⊙O与斜边AC的交点,∴直线DE与⊙O相切;(2)如图2,连接BD,OD,在Rt△CED中,DE=3,CE=4,∴DC==5,∵BD为直径,∴∠BDC=90°,∵CE⊥DE,∴∠E=90°∴∠BDC=∠E=90°,∵由(1)知∠ECD=∠DCB,∴△BDC∽△DEC,∴,即,∴BC=,即⊙O的半径为;(3)在四边形BODF中,∠FBO=∠FDO=90°,∴∠BFD+∠BOD=180°=∠BFD+∠AFD,∴∠BOD=∠AFD,∴sin∠BOD=sin∠AFD,∵△BDC∽△DEC,∴=,,∴,设BC=2,CD=2,∴BD===2,过点D作DG⊥BC于G,如图3,∵S△EDC=BC•DG=BD•CD,∴2×DG=2×2.∴DG=,在Rt△ODG中,sin∠GOD=,∴sin∠AFD=.5【解答】(1)解:如图,(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵PD切⊙O于点C,∴OC⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF,即△PCF是等腰三角形;(3)解:连接AE,∵CE平分∠ACB,∴=,∴AE=BE,∵AB是⊙O的直径,∴∠AEB=90°,∴△ABE是等腰直角三角形,∵BE=7,∴AB=BE=14,∵∠P AC=∠PCB,∠CPB=∠APC,∴△P AC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.6、【解答】证明:(1)证明:如图,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠EDC=90°,∵F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠ODC=∠OCD,∵AC⊥CE,∴∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠FCD=∠OCF=90°,即DF⊥OD,∴DF是⊙O的切线;(2)∵∠CAE+∠E=90°,∠CAE+∠ACD=90°,∴∠E=∠ACD,又∠ACE=∠ADC=90°,∴△ACE∽△ADC,∴,即AC2=AD•AE.设DE=x,则AC=x,即(x)2=AD(AD+x).整理,得AD2+AD•x﹣20x2=0.解得AD=4x或AD=﹣5x(舍去).∴DC==2x.∴tan∠ABD=tan∠ACD===2;(3)如图,过点O作OG⊥BD于点G,由垂径定理,得BG=DG,设BG=DG=m,则PD=m+PG,PB=m﹣PG,∵PD2+PB2=8,∴(m+PG)2+(m﹣PG)2=8,整理,得2m2+2PG2=8,即m2+PG2=4.∵∠DPC=45°,∴OG=PG.∴OD2=DG2+OG2=m2+PG2=4,∴⊙O的半径为2.∴AC=4.7、【解答】证明:(1)连接BD,∵∠BAD=90°,∴BD是直径,∠ABF+∠F=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠ADB,∴∠ADB=∠ABC,∴∠ADB+∠F=90°,∵DE=EF,∴∠F=∠EDF,∴∠ADB+∠EDF=90°,∴∠BDE=90°,∴DE⊥BD,又∵BD是直径,∴DE是⊙O的切线;(2)∵BD是直径,∴∠BCD=90°=∠DCE,∵CE=3,DE=EF=5,∴CD===4,∴DF===4,∵∠F+∠ADB=90°,∠ADB+∠ABD=90°,∴∠F=∠ABD,又∵∠BAD=∠DCF=90°,∴△DCF∽△DAB,∴,∴AB=2AD,∵∠ABD=∠F,∠BAD=∠BAD,∴△ABD∽△AFB,∴,∴==,∴AB=;(3)∵AB=,AB=2AD,∴AD=,∴BD===,∴BO=∵S阴影=×π×()2﹣×AB×AD=π﹣××,∴S阴影=π﹣.8、【解答】证明:(1)如图,连接OD,∵AB是直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD,∠BAD=∠CAD,∵AO=BO,BD=CD,∴OD∥AC,∵DM⊥AC,∴OD⊥MN,又∵OD是半径,∴MN是⊙O的切线;(2)∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠BAD=90°,∠ACB+∠CDM=90°,∴∠BAD=∠CDM,∵∠BDN=∠CDM,∴∠BAD=∠BDN,又∵∠N=∠N,∴△BDN∽△DAN,∴,∴DN2=BN•AN=BN•(BN+AB)=BN•(BN+AC);(3)∵BC=6,BD=CD,∴BD=CD=3,∵cos C==,∴AC=5,∴AB=5,∴AD===4,∵△BDN∽△DAN,∴==,∴BN=DN,DN=AN,∴BN=(AN)=AN,∵BN+AB=AN,∴AN+5=AN∴AN=,∴DN=AN=.。
全国各地2019年中考数学真题分类解析汇编 48与圆有关的压轴题
与圆有关的压轴题2019年与圆有关的压轴题,考点涉及:垂径定理;圆周角定理;圆内接四边形的性质;切线性质;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理;特殊四边形性质;等.数学思想涉及:数形结合;分类讨论;化归;方程.现选取部分省市的2019年中考题展示,以飨读者.【题1】(2019年江苏南京,26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.【分析】:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.【解】:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得 r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得 t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得 t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.【点评】:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.【题2】(2018•泸州24题)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.PC=AC==,=,PC=4==2中有,DF=【题3】(2018•济宁21题)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC 被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.、易得.=+=.==20====.【题4】(2018.福州20题)如图,在△ABC中,∠B=45°,∠ACB=60°,AB D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ABC的外接圆.(1)求BC的长;(2)求⊙O的半径.【解析】∴BC 3=+(2)由(1)得,在Rt △ACE 中,∵∠EAC =30°,,∴AC=.∵∠D =∠ACB ,∠B =∠B ,∴△BAC ∽△BCD . ∴AB AC CB CD ==.∴DM=4.∴⊙O 的半径为2.【考点】:1. 锐角三角函数定义;2.特殊角的三角函数值;3.相似三角形的判定和性质;4.圆周角定理;5.圆内接四边形的性质;6.含30度角直角三角形的性质;7.勾股定理.【题5】(2018.广州25题)如图7,梯形中,,,,,,点为线段上一动点(不与点重合),关于的轴对称图形为,连接,设,的面积为,的面积为.(1)当点落在梯形的中位线上时,求的值;(2)试用表示,并写出的取值范围;(3)当的外接圆与相切时,求的值.【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图2,交于点,与关于对称,则有:,又又与关于对称,(3)如图3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连接,得则又解得:(舍去)① ② ③【题6】(2018•湖州24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.【解答】:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE ∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.【题7】(2018•宁波26)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.,即为半径.由r=r=时,(时,();时,(>(();时,r=﹣=时,r=(),时,最大为.<<,【题8】(2018•苏州28)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB 分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105 °;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).AB=4CD=4=,∴∠=2=+2+6F=,﹣(=2+2﹣.【题9】(2018•泰州25题)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x 轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.﹣xbb b﹣(﹣(FGb b﹣有两个交点y=x+5,)【题10】(2019年江苏徐州28) 如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.【点评】:本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强.而发现∠CDG=∠ADB及∠FCE=∠ADB是解决本题的关键.【题11】(2018.连云港25题)为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O 为圆心,半径为4km 圆形考察区域,线段P 1、P 2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n 年,冰川的边界线P 1P 2移动的距离为s(km),并且s 与n (n 为正整数)的关系是2575092032+-=n n s .以O 为原点,建立如图所示的平面直角坐标系,其中P 1、P 2的坐标分别是(-4,9)、(-13,-3). (1)求线段P 1P 2所在的直线对应的函数关系式; (2)求冰川的边界线移动到考察区域所需要的最短时间.【解答】(第25题图)。
中考数学压轴题提升训练圆中证明及计算问题含解析
圆中证明及计算问题【例1】如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:AB•CP=BD•CD;(3)当AB=5 cm,AC=12 cm时,求线段PC的长.【答案】见解析.【解析】(1)证明:连接OD.∵∠BAD=∠CAD,∴弧BD=弧CD,∴∠BOD=∠COD=90°,∵BC∥PA,∴∠ODP=∠BOD=90°,即OD⊥PA,∴PD是⊙O的切线.(2)证明:∵BC∥PD,∴∠PDC=∠BCD.∵∠BCD=∠BAD,∴∠BAD=∠PDC,∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,∴∠ABD=∠PCD,∴△BAD∽△CDP,∴AB BD,CD CP∴AB•CP=BD•CD.(3)∵BC是直径,∴∠BAC=∠BDC=90°,∵AB=5,AC=12,由勾股定理得:BC=13,由(1)知,△BCD是等腰直角三角形,∴BD=CD=∵AB•CP=BD•CD..∴PC=16910【变式1-1】如图,△ABC内接于⊙O,且AB=AC,延长BC 到点D,使CD=CA,连接AD交⊙O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,BE=8,则EF的长为.。
【答案】(1)见解析;(2)60;92【解析】(1)证明:连接CE,∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD+∠BCE=∠BAE +∠BCE=180°,∴∠ECD=∠BAE,同理,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE;(2)①60;连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC =60,∴∠AEC =∠AOC =120°,∵OA =OC ,∴∠OAC =∠OCA =30°,∵AB =AC ,∴△ABC 是等边三角形,∴∠ACB =60°,∵∠ACB =∠CAD +∠D ,AC =CD ,∴∠CAD =∠D =30°,∴∠ACE =30°,∴∠OAE =∠OCE =60°,即四边形AOCE 是平行四边形,∵OA =OC ,∴四边形AOCE 是菱形;②由(1)得:△ABE ≌△CDE ,∴BE =DE =8,AE =CE =6,∠D =∠EBC ,由∠CED =∠ABC =∠ACB ,得△ECD ∽△CFB , ∴CE CF DE BC==68, ∵∠AFE =∠BFC ,∠AEB =∠FCB ,∴△AEF ∽△BCF , ∴EF CF AE BC=, 即668EF =,∴EF=9.2【例2】如图,AB为⊙O的直径,点C为AB上方的圆上一动点,过点C作⊙O的切线l,过点A作直线l的垂线AD,交⊙O于点D,连接OC,CD,BC,BD,且BD与OC交于点E.(1)求证:△CDE≌△CBE;(2)若AB=4,填空:①当弧CD的长度是时,△OBE是等腰三角形;②当BC=时,四边形OADC为菱形.;2.【答案】(1)见解析;(2)2【解析】(1)证明:延长AD交直线l于点F,∵AD垂直于直线l,∴∠AFC=90°,∵直线l为⊙O切线,∴∠OCF=90°,∴∠AFC=∠OCF=90°,∴AD∥OC,∵AB为⊙O直径,∴∠ADB =90°,∴∠OEB =90°,∴OC ⊥DB ,∴DE =BE ,∠DEC =∠BEC =90°,∵CE =CE ,∴△CDE ≌△CBE ;(2)①如图2,连接OD ,由(1)知∠OEB =90°,当△OBE 是等腰三角形时,则△OEB 为等腰直角三角形,∴∠BOE =∠OBE =45°,∵OD =OB ,OE ⊥BD ,∴∠DOC =∠BOE =45°,∵AB =4,∴OD =2,∴弧CD 的长=452180π⨯=2π;②当四边形OADC 为菱形时,则AD =DC =OC =AO =2,由(1)知,BC =DC ,∴BC =2.【变式2—1】(2019·河南南阳一模)如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则弧AC 的长为( )A. 2πB. π C 。
(完整)2019年全国中考数学真题分类汇编:圆内有关性质(包含答案),推荐文档
2019 年全国中考数学真题分类汇编:圆内有关性质一、选择题1.(2019 年ft东省滨州市)如图,AB 为⊙O 的直径,C,D 为⊙O 上两点,若∠BCD=40°,则∠ABD 的大小为()A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB 为⊙O 的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2.(2019 年ft东省德州市)如图,点O 为线段BC 的中点,点A,C,D 到点O 的距离相等,若∠ABC=40°,则∠ADC 的度数是()A. 130 ∘B. 140 ∘C. 150 ∘D. 160 ∘【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD 为圆O 的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3.(2019 年ft东省菏泽市)如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,且BC 平分∠ABD,AD 分别与BC,OC 相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB 是⊙O 的直径,BC 平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A 成立;∴AD⊥OC,选项B 成立;∴AF=FD,选项D 成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立;故选:C.4.(2019 年四川省资阳市)如图,直径为2cm 的圆在直线l 上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.2 3 ⏜ ⏜5. (2019 年广西贵港市)如图,AD 是⊙O 的直径,AB =CD ,若∠AOB =40°,则圆周角∠BPC 的度数是()A. 40 ∘B. 50 ∘C. 60 ∘D. 70 ∘【考点】圆周角定理【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC= ∠BOC=50°, 故选:B .6. (2019 年湖北省十堰市) 如图,四边形 ABCD 内接于⊙O ,AE ⊥CB 交 CB 的延长线于点 E ,若 BA 平分∠DBE ,AD =5,CE = 13,则AE =( ) A .3B .3C .4D .2【考点】圆内接四边形的性质、勾股定理【解答】解:连接 AC ,如图,∵BA 平分∠DBE ,∴∠1=∠2,∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA ,∴AC =AD =5,∵AE ⊥CB ,3∴∠AEC=90°,= 52‒ ( 13)2=2 3.∴AE=故选:D.7.(2019 年陕西省)如图,AB 是⊙O 的直径,EF、EB 是⊙O 的弦,且EF=EB,EF 与AB 交于点C,连接OF.若∠AOF=40°,则∠F 的度数是()A.20°B.35°C.40°D.55°【考点】圆内有关性质【解答】连接FB,得到FOB=140°;∴∠FEB=70°∵EF=EB∴∠EFB=∠EBF∵FO=BO,∴∠OFB=∠OBF,∴∠EFO=∠EBO,∠F=35°8.(2019 年浙江省衢州市)一块圆形宣传标志牌如图所示,点A,B,C 在⊙O 上,CD 垂直平分AB 于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dmB. 5dmC. 4dmD. 3dm【考点】垂径定理的应用【解答】解:连结OD,OA,如图,设半径为r,∵AB=8,CD⊥AB,∴AD=4,点O、D、C 三点共线,AC2 ‒C E2∵CD=2,∴OD=r-2,在Rt△ADO 中,∵AO2=AD2+OD2,,即r2=42+(r-2)2,解得:r=5,故答案为:B.9.(2019 年甘肃省天水市)如图,四边形ABCD 是菱形,⊙O 经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC 的度数为()A.20°B.25°C.30°D.35°【考点】菱形的性质,三角形的内角和,圆内接四边形的性质【解答】解:∵四边形ABCD 是菱形,∠D=80°,1 1∴∠ACB=2∠DCB=2(180°﹣∠D)=50°,∵四边形AECD 是圆内接四边形,∴∠AEB=∠D=80°,∴∠EAC=∠AEB﹣∠ACE=30°,故选:C.10.(2019 年甘肃省)如图,AB 是⊙O 的直径,点C、D 是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【考点】圆周角定理【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.11.(2019 年湖北省襄阳市)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC 平分OB 【考点】圆内有关性质【解答】解:∵AD 为直径,∴∠ACD=90°,∵四边形OBCD 为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD 中,sin A==,∴∠A=30°,在Rt△AOP 中,AP=OP,所以A 选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C 选项的结论正确;∴AP=CP,∴OP 为△ACD 的中位线,∴CD=2OP,所以 B 选项的结论正确;∴OB=2OP,∴AC 平分OB,所以D 选项的结论正确.故选:A.12.(2019 年湖北省宜昌市)如图,点A,B,C 均在⊙O 上,当∠OBC=40°时,∠A 的度数是()A.50°B.55°C.60°D.65°【考点】圆周角定理【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:A.13.(2019 年甘肃省武威市)如图,点A,B,S 在圆上,若弦AB 的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°【考点】圆周角定理【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB 的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB 为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.14.(2019 年内蒙古包头市)如图,在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,以BC为直径作半圆,交AB 于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.2【考点】圆周角定理【解答】解:连接CD,∵BC 是半圆的直径,∴CD⊥AB,∵在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,∴△ACB 是等腰直角三角形,∴CD=BD,∴阴影部分的面积=×2 2 =2,故选:D.15.(2019 年内蒙古赤峰市)如图,AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,点D 是⊙O上一点,∠ADC=30°,则∠BOC 的度数为()A.30°B.40°C.50°D.60°【考点】圆内有关性质【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.16.(2019 年西藏)如图,在⊙O 中,半径OC 垂直弦AB 于D,点E 在⊙O 上,∠E=22.5°,AB=2,则半径OB 等于()A.1B.C.2 D.2【考点】勾股定理、垂径定理、圆周角定理【解答】解:∵半径OC⊥弦AB 于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB 是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB 等于:=.故选:B.17.(2019 年海南省)如图,直线l1∥l2,点A 在直线l1 上,以点A 为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C 两点,连结AC、BC.若∠ABC=70°,则∠1 的大小为()A.20°B.35°C.40°D.70°【考点】圆内有关性质【解答】解:∵点A 为圆心,适当长度为半径画弧,分别交直线l1、l2 于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.二、填空题1.(2019 年ft东省德州市)如图,CD 为⊙O 的直径,弦AB⊥CD,垂足为⏜⏜E,= ,CE=1,AB=6,则弦AF 的长度为.【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA、OB,OB 交AF 于G,如图,∵AB⊥CD,1∴AE=BE=2AB=3,设⊙O 的半径为r,则OE=r-1,OA=r,在Rt△OAE 中,32+(r-1)2=r2,解得r=5,∵= ,∴OB⊥AF,AG=FG,在Rt△OAG 中,AG2+OG2=52,①在Rt△ABG 中,AG2+(5-OG)2=62,②24解由①②组成的方程组得到AG= 5 ,48 48∴AF=2AG= 5 .故答案为 5 .⏜2.(2019 年湖北省随州市)如图,点A,B,C 在⊙O 上,点C 在优弧AB上,若∠OBA=50°,则∠C 的度数为.【考点】圆周角定理【解答】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°-50°=80°,∴∠C=∠AOB=40°.故答案为40°.3.(2019 年黑龙江省伊春市)如图,在⊙O 中,半径OA 垂直于弦BC,点D 在圆上且∠ADC=30°,则∠AOB 的度数为.【考点】圆周角定理【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.4.(2019 年江苏省泰州市)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP=3,过点A 作AP 的垂线交于⊙O 点B、C.设PB=x,PC=y,则y 与x 的函数表达式为.【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接 PO 并延长交⊙O 于点N,连接 BN,∵PN 是直径,∴∠PBN=90°.∵AP⊥BC,∴∠PAC =90°,∴∠PBN=∠PAC,又∵∠PNB=∠PCA,∴△PBN∽△PAC,PB PN∴ PA = PC ,x 10∴ 3 = y30∴y= x .30故答案为:y= x .三、解答题1.(2019 年上海市)已知:如图,AB、AC 是⊙O 的两条弦,且AB=AC,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E,联结CD 并延长交⊙O 于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC 是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC,OB,OD,∵AB、AC 是⊙O 的两条弦,且AB=AC,∴A 在BC 的垂直平分线上,∵OB=OA=OD,∴O 在BC 的垂直平分线上,∴AO 垂直平分BC,C D E F O ∴BD =CD ;(2)如图 2,连接 OB ,∵AB 2=AO •AD ,=∴AOAB , ∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形 ABDC 是菱形.2. (2019 年江苏省苏州市)如图,AE 为 O 的直径,D 是弧 BC 的中点 BC 与 AD ,OD 分别交于点 E ,F .(1) 求证: DO ∥AC ;(2) 求证: DE ⋅ DA = DC 2 ;(3) 若 tan ∠CAD = 1,求sin ∠CDA 的值. 2A B【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:∵D 为弧 BC 的中点,OD 为 O 的半径∴ OD ⊥BC又∵AB 为 O 的直径∴ ∠ACB = 90︒∴ AC ∥OD(2) 证明:∵D 为弧 BC 的中点∴ CD = B D ∴ ∠DCB = ∠DAC∴ ∆DCE ∽∆DAC∴ DC = DE DA DC即 DE ⋅ DA = DC 2(3) 解:∵ ∆DCE ∽∆DAC , tan ∠CAD = 12∴ CD = DE = CE = 1 DA DC AC 2设 CD = 2a ,则 DE = a , DA = 4a又∵ AC ∥OD∴ ∆AEC ∽DEF∴ CE = AE = 3 EF DE所以 BC = 8 CE3又 AC = 2CE∴ AB = 10 CE3即sin ∠CDA = sin ∠CBA = CA = 3AB 53. (2019 年河南省)如图,在△ABC 中,BA =BC ,∠ABC =90°,以 AB 为直径的半圆 O 交AC 于点 D ,点 E 是上不与点 B ,D 重合的任意一点,连接 AE 交 BD 于点 F ,连接 BE 并延长交 AC 于点 G .(1) 求证:△ADF ≌△BDG ;(2) 填空: ①若 AB =4,且点 E 是的中点,则 DF 的长为 ; ②取的中点 H ,当∠EAB 的度数为 时,四边形 OBEH 为菱形.2【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图 1,∵BA =BC ,∠ABC =90°,∴∠BAC =45°∵AB 是⊙O 的直径,∴∠ADB =∠AEB =90°,∴∠DAF +∠BGD =∠DBG +∠BGD =90°∴∠DAF =∠DBG∵∠ABD +∠BAC =90°∴∠ABD =∠BAC =45°∴AD =BD∴△ADF ≌△BDG (ASA );(2)①如图 2,过 F 作 FH ⊥AB 于 H ,∵点 E 是的中点,∴∠BAE =∠DAE∵FD ⊥AD ,FH ⊥AB∴FH =FD∵=sin ∠ABD =sin45°= ,∴ ,即 BF = FD ∵AB =4,∴BD =4cos45°=2,即 BF +FD =2 ,( +1)FD =2 ∴FD ==4﹣ 故答案为 .②连接 OE ,EH ,∵点 H 是的中点, ∴OH ⊥AE ,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH 为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°4.(2019 年浙江省温州市)如图,在△ABC 中,∠BAC=90°,点E 在BC 边上,且CA=CE,过A,C,E 三点的⊙O 交AB 于另一点F,作直径AD,连结DE 并延长交AB 于点G,连结CD,CF.(1)求证:四边形DCFG 是平行四边形.(2)当BE=4,CD=AB 时,求⊙O 的直径长.【考点】三角形的外接圆与外心、平行四边形的判定和性质、勾股定理、圆周角定理【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF 是⊙O 的直径,∵AC=EC,∴CF⊥AE,∵AD 是⊙O 的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD 是⊙O 的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG 是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF 中,AF=10,AC=6,∴CF==3 ,即⊙O 的直径长为3 .5.(2019 年湖北省宜昌市)已知:在矩形ABCD 中,E,F 分别是边AB,AD 上的点,过点F 作EF 的垂线交DC 于点H,以EF 为直径作半圆O.(1)填空:点A (填“在”或“不在”)⊙O 上;当=时,tan∠AEF 的值是;(2)如图1,在△EFH 中,当FE=FH 时,求证:AD=AE+DH;(3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH=AE+DH;(4)如图3,点M 在线段FH 的延长线上,若FM=FE,连接EM 交DC 于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF 的值.【考点】圆的有关性质、全等三角形的判定和性质、相似三角形的判定和性质、三角函数【解答】解:(1)连接AO,∵∠EAF=90°,O 为EF 中点,∴AO=EF,∴点A 在⊙O 上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD 中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF 交HD 的延长线于点G,∵F 分别是边AD 上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M 作MQ⊥AD 于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM 为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.AC=2 ,弦BM 平分∠ABC 交AC 于点D,连接MA,MC.(1)求⊙O 半径的长;(2)求证:AB+BC=BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O 作OH⊥AC 于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O 的半径为2.(2)证明:在BM 上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC 是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM 平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM 是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2019年苏州市中考压轴题专题:与圆有关的最值问题(附答案)
与圆有关的最值(取值范围)问题引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求a b的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为( ).A.3 B.6 CD.一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n )为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ;(2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .A例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ).A.4B.3 C.2 D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2019•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2019秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.B【题型训练】1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .2.已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm,点O从A点出发,沿AB以每秒的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点,过E作EG⊥DE交射线BC于G.(1)若点G在线段BC上,则t的取值范围是;(2)若点G在线段BC的延长线上,则t的取值范围是 .3.如图,⊙M,⊙N的半径分别为2cm,4cm,圆心距MN=10cm.P为⊙M上的任意一点,Q 为⊙N上的任意一点,直线PQ与连心线l所夹的锐角度数为α,当P、Q在两圆上任意运动时,tanα∠的最大值为; (B)43;; (D)344.如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( ).(A)4 (B)215(C)358(D)174 5.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB 分别相交于点P、Q,则线段PQ长度的最小值是( ).A.194B.245C.5 D.6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为.7.如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是( ).A.2 B.1 C.22- D.28.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B.113C.103D.49.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).B.10.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P(m n,)是第一象限内一点,且AB=2,则m n-的范围为 .12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则tan ABP m∠=,则m的取值范围是 .13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1.解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠OAC==,随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,∴tan∠BOC≥,故答案为:m≥.引例1图引例2图+≤引例2.a b原题:(2019•武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O 为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b.(1)求证:AE=b+a;(2)求a+b的最大值;(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE,由△OAB为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E的度数,又由AB为⊙D的直径,可求得CE的长,继而求得AE=b+a;(2)首先过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,可得(a+b)2= a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,即可求得答案;(3)由x2+ax=b2+ab,可得(x﹣b)(x+b+a)=0,则可求得x的值,继而可求得m的取值范围.【解答】解:(1)连接BE,∵△OAB为等边三角形,∴∠AOB=60°,∴∠AEB=30°,∵AB为直径,∴∠ACB=∠BCE=90°,∵BC=a,∴BE=2a,CE=a,∵AC=b,∴AE=b+a;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。
2019年中考数学真题分类 圆 解答题(12题)精选 一(含答案)
2019年中考数学真题分类 圆 解答题(12题)精选 一1.如图1,已知⊙O 外一点P 向⊙O 作切线PA ,点A 为切点,连接PO 并延长交⊙O 于点B ,连接AO 并延长交⊙O 于点C ,过点C 作CD ⊥PB ,分别交PB 于点E ,交⊙O 于点D ,连接AD .(1)求证:△APO ~△DCA ;(2)如图2,当AD=AO 时①求∠P 的度数;②连接AB ,在⊙O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出的值;若不存在,请说明理由.2.如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A 、B .(1)若∠A=30°,求证:PA=3PB ;(2)小明发现,∠A 在一定范围内变化时,始终有∠BCP=21(90°-∠P )成立.请你写出推理过程.3.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.4.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.5.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.6.如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.7.如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.8.如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O分别交于AC,BC于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.9.如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠DAC;(2)若AF=10,BC=54,求tan∠BAD的值.10.如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B重合),过点P作射线1⊥AB,分别交弦BC,于D,E两点,在射线l上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若tan∠ABC=,且AB=20,求DE的长.11.如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB交AF于点D,连接BC.(1)连接DO,若BC∥OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.12.如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC至F点,使CF=CD,连接AF.(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan ∠CAE=31,求AE 的长.答案1.解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=2.解:(1)∵AB是直径∴∠ACP=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=0.5AB,∴PA=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°-∠P,∴∠BCP=0.5(90°-∠P)3.证明:(1)∵C是弧BC的中点,∴弧CD=BC,∵AB是⊙O的直径,且CF⊥AB,∴弧BC=弧BF,∴弧CD=弧BF,∴CD=BF,在△BFG和△CDG中,∵∠F=∠CDG,∠FGB=∠DGC,BF=CD.∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵弧CD=弧BC,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴BC2=AB•BE=6×2=12,2.∴BF=BC=54.(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O 作OD ⊥PB 于D ,则PD=DB ,∵∠OPD=∠CPA ,∠ODP=∠CAP=90°,∴△ODP ∽△CAP ,∴PD:PA=OP:CP ,又∵AC=AB=4,AP=OA-OP=2,∴PC=25,PD=553,∴BP=2PD=556.5.解:(1)证明:连接OD ,∵DE 是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB ,∴∠B=∠BDO ,∴∠ADE=∠A .(2)解:连接CD .∵∠ADE=∠A ,∴AE=DE ,∵BC 是⊙O 的直径,∠ACB=90°,∴EC 是⊙O 的切线,∴ED=EC ,∴AE=EC ,∵DE=5,∴AC=2DE=10,在Rt △ADC 中,DC=6,设BD=x ,在Rt △BDC 中,BC 2=x 2+62,在Rt △ABC 中,BC 2=(x+8)2﹣102, ∴x 2+62=(x+8)2﹣102,解得x=,∴BC==.6.解:(1)证明:∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DE•DC∴OA2=DE•DC=EO•DC(2)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD ∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣7.解:(1)∵AF与⊙O相切于点A,∴AF⊥OA,∵BD是⊙O的直径,∴∠BAD=90°,∵∠BAC=120°,∴∠DAC=30°,∴∠DBC=∠DAC=30°,∵∠F=30°,∴∠F=∠DBC,∴AF∥BC,∴OA⊥BC,∴∠BOA=90°﹣30°=60°,∴∠ADB=∠AOB=30°;(2)∵OA⊥BC,∴BE=CE=BC=4,∴AB=AC,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠OBE=30°,∴OE=OB,BE=OE=4,∴OE=,∴AC=AB=OB=2OE=.8.解:(1)证明:连接AE,如图所示:∵AB为⊙O的直径,∴∠ADB=∠AEB=90°,∴AE⊥BC,BD⊥AC,∵AB=AC,∴BE=CE=3,∵EF是⊙O的切线,∴OE⊥EF,∵OA=OB,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD,∴BD∥EF,∵BE=CE,∴CF=DF,∴EF是△CDB的中位线;(2)解:∵∠AEB=90°,∴AE===4,∵△ABC的面积=AC×BD=BC×AE,∴BD===,∵EF是△CDB的中位线,∴EF=BD=.9.解:(1)∵BD⊥AC,CD=CD,∴∠BAC=2∠CBD=2∠CAD;(2)∵DF=DC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB= AF=10, AC=10.又BC=4,设AE=x, CE=10-x, AB2-AE2=BC2-CE2, 100-x2=80-(10-x)2, x=6 ∴AE=6,BE=8,CE=4,("1,2,";"3,4,5";Rt△组合)∴DE===3,作DH⊥AB,垂足为H,则DH=BD·sin∠ABD=11×=, BH= BD·cos∠ABD=11×=∴AH=10-=∴tan∠BAD===10.解:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线.(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②若tan∠ABC=,且AB=20,求DE的长.∵=tan∠ABC=,设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6,∴BP=OB﹣OP=10﹣6=4,∵=tan∠ABC=,即DP=BP==3∴DE=PE﹣DP=8﹣3=5.11.解:(1)证明:连接OC,∵AF为半圆的切线,AB为半圆的直径,∴AB⊥AD,∵CD∥AB,BC∥OD,∴四边形BODC是平行四边形,∴OB=CD,∵OA=OB,∴CD=OA,∴四边形ADCO是平行四边形,∴OC∥AD,∵CD∥BA,∴CD⊥AD,∵OC∥AD,∴OC⊥CD,∴CD是半圆的切线;(2)解:∠AED+∠ACD=90°,理由:如图2,连接BE,∵AB为半圆的直径,∴∠AEB=90°,∴∠EBA+∠BAE=90°,∵∠DAE+∠BAE=90°,∴∠ABE+∠DAE,∵∠ACE=∠ABE ,∴∠ACE=∠DAE ,∵∠ADE=90°,∴∠DAE+∠AED=∠AED+∠ACD=90°.12.解:(1)直线AF 是⊙O 的切线,理由是:连接AC , ∵AB 为⊙O 直径,∴∠ACB=90°,∴AC ⊥BC , ∵CF=CD ,∴∠CAF=∠EAC ,∵AC=CE ,∴∠E=∠EAC ,∵∠B=∠E ,∴∠B=∠FAC ,∵∠B+∠BAC=90°,∴∠FAC+∠BAC=90°,∴OA ⊥AF , 又∵点A 在⊙O 上,∴直线AF 是⊙O 的切线;(2)过点C 作CM ⊥AE ,∵tan ∠CAE=43,∴CM:AM=3:4, ∵AC=10,∴设CM=3x ,则AM=4x ,在Rt △ACM 中,根据勾股定理,CM 2+AM 2=AC 2, ∴(3x )2+(4x )2=100,解得x=2,∴AM=8, ∵AC=CE ,∴AE=2AE=2×8=16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又•••PC?PD=PB?PA
•PA=4也就是半径OB=4在RT^ACB中,
AC=.汗-.「A'-_-=2!■:,
•/AB是直径,
•••/ ADBMACB=90
•••/ FDA+Z BDC=90
/CBA+/ CAB=90
•••/ BDC/CAB
•/FDA/CBA
又•••/AFD/ACB=90
•匹鸟
•CEDC,
△CD0ACAD
•/CDBNDBC
•••四边形ABCD内接于OO,
•BC=CD
(2)解:如图,连接OC
•/BC=CD
•••/ DACMCAB又•••AO=CO
•••/ CABMACO
•••/ DACMACO
•AD// OC
•_l = N
PD PA
••• PB=OB CD=-:,
PC+2J2 3
(2)连接OC先证AD//OC由平行线分线段成比例性质定理求得PC=QE,再由割线定理
PC?PD=PB?P求得半径为4,根据勾股定理求得AC=.,再证明△ACB得
AF_AC_2VjJr-,则可设fd=x,AF祈X,在Rt△AFP中,求得DF一匕.
FDCB2^24
【解答]:(1)证明:••• DC2=CE?CA
【题2](2018?泸州24题)如图,四边形ABCD内接于OO, AB是OO的直径,AC和BD相交于点E,且dC=CE?CA
(1)求证:BC=CD
(2) 分别延长AB, DC交于点P,过点A作AFLCD交CD的延长线于点
【考点]:相似三角形的判定与性质;勾股定理;圆周角定理•菁优
【分析]:(1)求出△CD0ACAD/CDBNDBC得出结论.
①当OP与OO外切时,
如图3,连接op贝y0P=1+t,过点P作PHLOE垂足为
•••/PHEMHEGMPGE=90,
•••四边形PHEG是矩形,
••• HE=PG PH=CE
在Rt△OPH中,
由勾股定理,〔1-幺)+(2-2 )乞仃+t)255
解得t=二.
3
②当OP与OO内切时, 如图4,连接OP贝yOP=t-1,过点O作OMLPG垂足为M.
•••/ MGENOEGMOMG=90,
•四边形OEGMI矩形,•MG=QE OM=EG
•PM=PG MG=t-1,
5
在Rt△OPM中,
由勾股定理,丄:*J — t I-,解得t=2.
55
综上所述,OP与OO相切时,t=2s或t=2s.
3
【点评】:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查 点,总体题目难度不高,是一道非常值得练习的题目.
2019
2019年与圆有关的压轴题,考点涉及:垂径定理;圆周角定理;圆内接四边形的性质;切线性质;锐角三 角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理;特殊四边形性质;等•数学思想涉及:
数形结合;分类讨论;化归;方程•现选取部分省市的2019年中考题展示,以飨读者•
【题1】(2019年江苏南京,26题)如图,在Rt△ABC中,/ACB=90,AC=4cm BC=3cmOOABC的内切圆.
•△AFD^AACB
在Rt△AFP中,设FD=x贝U AF= I,:,•••在APF中有,
求得DF=二.
【点评】:本题主要考查相似三角形的判定及性质,勾股定理及圆周角的有关知识的综合运用能力,关键是
找准对应的角和边求解.
【题3】(2018?济宁21题)阅读材料:
已知,如图(1),在面积为S的厶ABC中,BC=a AC=b AB=c,内切圆O的半径为r.连接OA OB OC△ABC被划分为三个小三角形.
a+b4c
(1) 类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2))各边长分别为AB=a, BC=b, CD=c AD=d求四边形的内切圆半径r;
(2) 理解应用:如图(3),在等腰梯形ABCD中 ,AB// DC AB=21,CD=11, AD=13OO1与OO2分别为△ABD与
r!
△BCD的内切圆,设它们的半径分别为r1和「2,求一的值.
r2
B
⑴
【考点】
【分析】
:圆的综合题.
:(1)已知已给出示例,我们仿照例子,连接OAOB OCOD则四边形被分为四个小三角形,且
每个三角形都以内切圆半径为高,以四边形各边作底,这与题目情形类似•仿照证明过程,r易得.
(2) (1)中已告诉我们内切圆半径的求法,如是我们再相比即得结果•但求内切圆半径需首先知道
菁优
三角形各边边长,根据等腰梯形性质,过点D作AB垂线,进一步易得BD的长,则ri、“、
—-易得.
r2
【解答】
:(1)如图2,连接OA OB OC OD
■/S=SaAOB+SaBO(+SaCO[+SaAOD^旺+丄匚(过+b +寸d)
+1
【点评】
…r=
2S
a+b+c+d
(2)如图3,过点D作DEIAB于E, •••梯形ABCD为等腰梯形,
(1)求00的半径;
(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以
(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切•所以我们要分别讨论,当外切时,圆心 距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差•分别作垂线构造直角三角形,类似( 过表示边长之间的关系列方程,易得t的值.
【解】:(1)如图1,设OO与AB BC CA的切点分别为
贝UAD=AF BD=BE CE=CF
TOOABC的内切圆,
•OFLAC OEL BC即/OFCMOEC=90.•••/ Nhomakorabea=90,
•四边形CEOF是矩形,
•/OE=OF
•四边形CEOF是正方形.
设OO的半径为rcm,贝UFC=EC=OE=rcm在Rt△ABC中,MACB=90,AC=4cm BC=3cm
二AE=(朋-CD)(21—11)=5,
••• EB=AB- AE=21-在Rt△AED中,
•/AD=13 AE=5,
•DE=12
5=16•
•db=7de2+eb^
•AB==5cm
•/AD=AF=AC FC=4-r,BD=BE=BC EC=3-r,
•4-r+3-r=5,解得r=1,即OO的半径为1cm.
(2)如图2,过点P作PGLBC垂直为G.
•••/ PGBMC=90, •PG/ AC
•△PBG^AABC•
••• PG—, 9-.
若OP与OO相切,则可分为两种情况,OP与OO外切,