(word完整版)一元二次方程经典复习题(含答案),推荐文档

合集下载

第一章一元二次方程复习测试(含答案)

第一章一元二次方程复习测试(含答案)

4x ﹣ 5x+2=0B . x ﹣ 6x+9=0C . 5x ﹣ 4x ﹣1=0D . 3x一、选择题(共 20 分)一元二次方程 复习测试1. 如果关于 x 的一元二次方程 xpx q 0 的两根分别为 x 1 2 , x 2 1 ,那么 p 、 q 的值分别是()A . -3,2B. 3, -2C. 2,-3D. 2, 32. 在一元二次方程 ax2bx c 0 中,如果 a 和 c 异号,那么这个方程()A .无实数根B. 有两个相等的实数根C .有两个不相等的实数根 D. 不能确定25 23. 若 x 2 是 关 于 x 的 一 元 二 次 方 程 xax a 20 的 一 个 根 , 则 a 的 值 为()A . 1 或 4 B. -1 或-4 C. -1 或 4 D. 1 或 44. 某超市一月份的营业额为 36 万元,三月份的营业额为 48 万元 .设每月的平均增长率为 x ,则可列方程为()A. 48(1 x)236B. 48(1 x)236 B. C. 36(1 x) 248D. 36(1 x)2485. 已 知 关 于 x 的 一 元 二 次 方 程 x () ax b 0 有 一 个 非 零 根 b , 则 a b 的 值 为A . 1B. -1C. 0D. -26. 已知关于 x 的一元二次方程 (k 2 22) x (2 k 1)x 1 0 有两个不相等的实数根, 则 k 的 取值范围是() 4 4 A .k且 k2 33B . k 且 k 2 33 B. C. k且 k 24D. k且 k 247. 下列一元二次方程中,没有实数根的是()A . 22228. 某种品牌运动服经过两次降价,每件件零售价由560 元降为 315 元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为 x ,下面所列的方程中正确的是()A .560( 1+ x )2=315B . 560( 1﹣ x ) 2=315C . 560( 1﹣ 2x ) 2=315D . 560( 1﹣ x 2)=31522 29. 设 x 1, x 2 是方程 x +5x ﹣3=0 的两个根,则x 1 +x 2 的值是()A . 19B . 25C . 31D . 30﹣ 4x+1=02221 2 1 2 12 210.等 腰 三 角 形 三 边 长 分 别 为 a 、b 、2 , 且 a 、b 是 关 于 x 的 一 元 二 次 方 程x26 x n 1 0 的两根,则 n 的值为()A .9B. 10C. 9 或 10D. 8 或 10二、填空题(共 20 分)11 . 方 程 ( 2x1)x( 1) 化1 成 一 般 形 式 是, 其 中 二 次 项 系 数是,一次项系数是.12. 若关于 x 的方程 x22 m x m23m 2 0 有两个实数根 x 、 x 则 x ( x x ) x 的最小值为.13. 若两个连续自然数的积为 72,则这两个数分别是 .14. 若关于 x 的一元二次方程x2(a 1)x a20 的两个根互为倒数,则 a =.15 . 若 一 元 二 次 方 程 x2b.ax b 0 配 方 后 为 (x 4) 23 , 则 a,16. 若三角形的每条边长都是方程x26 x 8 0 的根,则三角形的周长是.17. 若关于 x 的一元二次方程x22 x m 0 有两个实数根, 则 m 的取值范围是.18. 有一个矩形铁片,长是60cm ,宽是 40cm 中间挖去 288 cm 的矩形,剩下的铁框四周一样宽,若设宽度为, x cm ,那么挖去的矩形长是cm ,宽是cm ,根据题意可得方程.19. 一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液 10L ,则每次倒出的液体是 L .20. 已知实数 m , n 满足 3m三、解答题(共 60 分)21. 按要求解下列方程:2 +6m ﹣ 5=0, 3n 2m n +6n ﹣5=0,且 m ≠n ,则 = .n m(1) 2 x21 3x (用配方法) ; ( 2) x23 x 1 0 (用公式法) ;(3) (3 y 1)( y 1)4 ;(4) (2 x 3)22 3(2 x 3)22. 请阅读下列材料 :问题 :已知方程, 求一个一元二次方程 x2x 1 0 ,使它的根分别是已知方程的根的2 倍.解: 设所求方程的根为 y ,则 y2x ,所以 xy .2把 xy 2代入已知方程,得 2y y 1 0 .22化简,得 y22 y 4 0 .故所求方程为 y22 y 4 0 .这种利用方程根的代换求新方程的方法,我们称为“换根法” .请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式 ).(1) 已知方程 x反数 ;x 2 0 ,求一个一元二次方程,使它的根分别是已知方程的根的相(2) 已知关于 x 的一元二次方程 ax2bx c 0 ( a 0 )有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程的根的倒数.23. 已知关于 x 的一元二次方程 (a c)x22bx (a c) 0 ,其中 a 、 b 、 c 分别为△ ABC三边的长。

一元二次方程精编复习题(含解析)

一元二次方程精编复习题(含解析)

一元二次方程精编复习题1.下列方程中,是关于x 的一元二次方程的是( )A .2270x x -=B .5521x x +=-C .20ax bx c ++=D .2221x x+= 2.已知2是方程240x x c -+=的一个根,则c 的值为______.3.已知关于x 的方程240x x n ++=可以配方成2()3x m +=,则2()m n -=_____________ 4.若关于x 的一元二次方程2(1)10k x x -++=有实数根,则实数k 的取值范围是______. 5.方程2(3)3x x x +=+的解是______.6.方程(y ﹣2)(y ﹣3)=12解为___.7.已知一个直角三角形的两边长分别是方程214480x x -+=的两根,则此三角形的斜边长为___________. 8.已知12,x x 是一元二次方程x 2-4x -7=0的两个实数根,则1211+x x 的值是________. 9.设方程2x 2+3x +1=0的根为x 1、x 2,则x 12+x 22=_____________.10.若方程x 2+5x ﹣6=0的两根为x 1,x 2,则|x 1﹣x 2|=___.11.设a ,b 是方程220210x x +-=的两个实数根,则22a a b ++的值是_____.12.已知a ,b 分别为一元二次方程x 2+2x ﹣2011=0的两个实数根,则a 2﹣3a ﹣5b =___. 13.有一人感染了传染性很强的病毒,经过两轮传染后共有625人患病,每轮传染中平均一人传染___人. 14.某商品两次连续涨价由原来的每件100元上涨为每件144元.若两次涨价百分比相同,则每次涨_____%. 15.某种家电价连续两次降价,由原来售价5000元降到3200元,则平均每次降价的百分率为 ____. 16.组织篮球比赛,赛制为单循环形式,共进行了15场比赛,则这次参加比赛的球队个数为____. 17.一个凸多边形总共有20条对角线,它的边数n =____________.18.如图,在宽为4m 、长为6m 的长方形花坛上铺设两条同样宽的石子路,余下部分种植花卉.若种植花卉的面积215m ,则铺设的石子路的宽应为_________m .19.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m 2,则小路的宽为 _____. 20.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为468m 2,那么小道进出口的宽度应为 ___m .21.如图,在Rt △ABC 中,∠ABC =90°,AB =6cm ,BC =8cm ,动点P 从点A 出发沿AB 边以1cm /s 的速度向点B 匀速移动,同时点Q 从点B 出发沿BC 边以2cm /s 的速度向点C 匀速移动,当P ,Q 两点中有一个点到达终点时,另一个点也停止运动,当△PBQ 的面积为5cm 2时,点P ,Q 运动的时间为__秒. 22.解方程:2269(52)x x x -+=-23.解方程(1)x 2﹣5x ﹣6=0 (2)4x 2﹣8x +1=0(用配方法解).24.解一元二次方程:(1)22530x x +-= (2)()2236x x +=+25.请阅读下面解方程()()22212130x x +-+-=的过程. 解:设21x y +=,则原方程可变形为2230y y --=.解得13y =,21y =-.当3y =时,213x +=,∴x =当1y =-时,211x +=-,22x =-,此方程无实数解,∴原方程的解为:1x ,2x =我们将上述解方程的方法叫作换元法. 请用换元法解方程:211280x x x x --⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭.26.已知方程关于x 的一元二次方程23540x x k +-=的一个根是-2,求k 和方程另一个根α的值.27.已知关于x 的一元二次方程221(21)202x k x k -++-=. (1)求证:无论k 为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根1x ,2x 满足212()9x x -=,求k 的值.28.如图,要建一个矩形花圃,花圃的一边利用长为12m 的住房墙,另外三边用25m 长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,花圃面积为80m 2,求与墙垂直的一边的长度.29.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如果调整价格每件的售价每涨1元,那么每星期少卖10件.已知商品的进价为每件40元.设每件涨价x元,每星期的销量为y件.(1)写出y与x的函数解析式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大?每星期的最大利润是多少?30.某快餐店新推出一种外卖,每份的成本为20元,推出后每份售价为50元,每月可售出200份,经过试卖发现,该外卖每份售价每降价1元,每月可多卖出10份,由于制作能力有限,每月最多制作该外卖350份.设该外卖每份售价x元(x≤50),每月的销售利润为w元.(1)求w与x之间的函数关系式;(2)该外卖每份售价多少元时,每月的销售利润最大?最大利润是多少?(3)该外卖每份售价在什么范围时,每月的销售利润不低于4000元.一元二次方程精典复习题(解析)1.下列方程中,是关于x 的一元二次方程的是( )A .2270x x -=B .5521x x +=-C .20ax bx c ++=D .2221x x+= 【答案】A【分析】根据一元二次方程的定义对各选项进行判断.【详解】解:A 、2270x x -=为一元二次方程,所以A 选项符合题意;B 、5521x x +=-为一元一次方程,所以B 选项不符合题意;C 、对于20ax bx c ++=,只有当0a ≠时,它为一元二次方程,所以C 选项不符合题意;D 、2221x x+=为分式方程,所以D 选项不符合题意. 故选:A .【点睛】本题考查了一元二次方程的一般式,解题的关键是掌握任何一个关于x 的一元二次方程经过整理,都能化成如下形式20(a 0)++=≠ax bx c .这种形式叫一元二次方程的一般形式.也考查了一元二次方程的定义.2.已知2是方程240x x c -+=的一个根,则c 的值为______.【答案】1【分析】将2240x x c -+=即可得出答案.【详解】解:∵2是方程240x x c -+=的一个根,∴2(24(20c -+=,解得:1c =,故答案为:1.【点睛】本题考查了一元二次方程的解,熟知方程的根是指能使方程两边相等的x 的值是解本题的关键.3.已知关于x 的方程240x x n ++=可以配方成2()3x m +=,则2()m n -=_____________【答案】1【分析】将配方后的方程转化成一般方程即可求出m 、n 的值,由此可求得答案.【详解】解:由(x +m )2=3,得:x 2+2mx +m 2﹣3=0,∴2m =4,m 2﹣3=n ,∴m =2,∴n =1,∴(m ﹣n )2=1,故答案为:1.【点睛】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.若关于x 的一元二次方程2(1)10k x x -++=有实数根,则实数k 的取值范围是______. 【答案】54k ≤且1k ≠ 【分析】根据二次项系数非零及根的判别式0∆≥,即可得出关于k 的一元一次不等式组,解之即可得出结论.【详解】解:∵关于x 的一元二次方程2(1)10k x x -++=有实数根, ∴()1014110k k -≠⎧⎨∆=--⨯≥⎩解得:54k ≤且1k ≠. 故答案为:54k ≤且1k ≠. 【点睛】本题考查了根的判别式以及一元二次方程的定义,利用二次项系数非零及根的判别式0∆≥,找出关于k 的一元一次不等式组是解题的关键.5.方程2(3)3x x x +=+的解是______.【答案】13x =-,212x =【分析】先移项,使方程右边为0,再提公因式(3)x +,然后根据“两式相乘值为0,这两式中至少有一式值为0”进行求解.【详解】解:原方程可化为:2(3)(3)0x x x +-+=,因式分解得:(3)(21)0+-=x x ,所以30x +=或210x -=,解得:13x =-,212x =, 故答案为:13x =-,212x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.6.方程(y ﹣2)(y ﹣3)=12解为___.【答案】16y =,21y =-【分析】将方程转化为一般形式,再根据因式分解法求解即可.【详解】解:()22()31y y --=化简得:2560y y --=(6)(1)0y y -+=解得16y =,21y =-故答案为16y =,21y =-【点睛】此题考查了一元二次方程的求解,熟练掌握因式分解法求解一元二次方程是解题的关键.7.已知一个直角三角形的两条直角边长恰好分别是方程214480x x -+=的两根,则此三角形的斜边长为___________.【答案】10【分析】先解方程214480x x -+=,得出两根,再利用勾股定理来求解即可.【详解】解:∵214480x x -+=,∴(x −6)(x −8)=0,∴x =6或8;∴两直角边为6和8,∴=10,故答案是:10.【点睛】本题考查一元二次方程的解法,用到的知识点是因式分解法和勾股定理,关键是根据方程的特点选择合适的解法.8.已知12,x x 是一元二次方程x 2-4x -7=0的两个实数根,则1211+x x 的值是________. 【答案】47- 【分析】 根据一元二次方程根与系数的关系可得12b x x a +=-,12c x x a =,再将1211+x x 变形可得1212x x x x +,最后代入即可求解.【详解】解:因为12,x x 是一元二次方程x 2-4x -7=0的两个实数根, 所以124b x x a +=-=,127c x x a==-, 因为1211+x x =1212x x x x +, 所以1211+x x =1212x x x x +=4477=--, 故答案为:47-. 【点睛】本题主要一元二次方程根与系数关系,解决本题的关键是要灵活运用一元二次方程根与系数关系. 9.设方程2x 2+3x +1=0的根为x 1、x 2,则x 12+x 22=_____________. 【答案】54【分析】利用根与系数的关系求出两根之和与两根之积,原式利用完全平方公式变形后代入计算即可求出值.【详解】解:∵方程2x 2+3x +1=0的根为x 1、x 2,∴1232x x +=-,1212x x =, 则22221212123195()2()212244x x x x x x +=+-=--⨯=-=. 故答案为:54. 【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键.10.若方程x 2+5x ﹣6=0的两根为x 1,x 2,则|x 1﹣x 2|=___.【答案】7【分析】根据根与系数的关系、完全平方公式即可完成.【详解】∵方程x 2+5x ﹣6=0的两根为x 1,x 2,∴x 1+x 2=﹣5,x 1x 2=﹣6,∴|x 1﹣x 2|2=(x 1+x 2)2﹣4x 1x 2=(﹣5)2﹣4×(﹣6)=49,∴|x 1﹣x 2|=7,故答案为:7.【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式的变形应用,关键是完全平方公式的变形应用.11.设a ,b 是方程220210x x +-=的两个实数根,则22a a b ++的值是_____.【答案】2020【分析】根据一元二次方程的解的定义可以求得a 2+a =2021,利用根与系数的关系可以求得a +b =﹣1.将其代入所求代数式,可求解.【详解】解:∵a 、b 是方程x 2+x ﹣2021=0的两根,∴a 2+a ﹣2021=0,a +b =﹣1,∴a 2+a =2021,∴a 2+2a +b =a 2+a +a +b =2021﹣1=2020,故答案为:2020.【点睛】本题考查了根与系数的关系,一元二次方程的解,解题时,采用了“整体代入”的数学思想.12.已知a ,b 分别为一元二次方程x 2+2x ﹣2011=0的两个实数根,则a 2﹣3a ﹣5b =___.【答案】2021【分析】根据一元二次方程的解的定义得到2220110a a +-=,即222011a a +=,则235a a b --化简为225()a a a b +-+,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:a 为一元二次方程2220110x x +-=的根,2220110a a ∴+-=,222011a a ∴+=, a ,b 分别为一元二次方程2220110x x +-=的两个实数根,2a b ∴+=-,223525()20115(2)2021a a b a a a b ∴--=+-+=-⨯-=.故答案为2021.【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(a 0)++=≠ax bx c 的两根时,12b x x a +=-,12c x x a=.也考查了一元二次方程的解. 13.有一人感染了传染性很强的病毒,经过两轮传染后共有625人患病,每轮传染中平均一人传染______人.【答案】24【分析】根据题意列一元二次方程,解方程即可【详解】设每轮传染中平均一人传染x 人,则第一轮有(1)x +人感染,第二轮有2(1)x +人感染,根据题意可得: 2(1)=625x +解得:1224,26x x ==-(不符题意,舍去)故答案为24【点睛】本题考查了一元二次方程的应用,解一元二次方程,根据题意列出方程是解题的关键.14.某商品经过两次连续涨价,由原来的每件100元上涨为每件144元.若两次涨价的百分比相同,则每次涨_______%.【答案】20【分析】此题可设平均每次涨价的百分率为x,那么第一次涨价后的单价是原来的(1+x),那么第二次涨价后的单价是原来的(1+x)2,根据题意列方程解答即可.【详解】解:设平均每次涨价的百分率为x,根据题意列方程得100(1+x)2=144,解得x1=0.2,x2=-2.2(不符合题意,舍去),即该商品平均每次涨价的百分率为20%.故答案是:20.【点睛】本题考查了一元二次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.15.某种家电价格受市场购买力影响,连续两次降价,由原来售价5000元降到3200元,则平均每次降价的百分率为____.【答案】20%.【分析】设平均每次降价的百分率为x,根据题意列出一元二次方程,故可求解.【详解】设平均每次降价的百分率为x,依题意得:5000(1﹣x)2=3200,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).故答案为:20%.【点睛】此题主要考查一元二次方程的实际应用,解题的关键是根据题意找到数量关系列方程.16.组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了15场比赛,则这次参加比赛的球队个数为____.【答案】6【分析】设这次参加比赛的球队个数为x个,根据“赛制为单循环形式(每两队之间都赛一场),共进行了15场比赛”,列出关于x的一元二次方程,解之即可.【详解】解:设这次参加比赛的球队个数为x个,根据题意得:12x (x −1)=15,解得:x 1=6(舍去),x 2=-5(舍去),即这次参加比赛的球队个数为6个,故答案是:6.【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.17.一个凸多边形总共有20条对角线,它的边数n =____________.【答案】8【分析】根据凸多边形的对角线的条数与边数的关系,可列出方程,解出即可.【详解】解:根据题意可得:()3202n n -= ,解得:18n = ,25n =- (不合题意,舍去)∴它的边数8n =.故答案为:8 .【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到凸多边形的对角线的条数与边数的关系是解题的关键.18.如图,在宽为4m 、长为6m 的长方形花坛上铺设两条同样宽的石子路,余下部分种植花卉.若种植花卉的面积215m ,则铺设的石子路的宽应为_________m .【答案】1【分析】首先设铺设的石子路的宽应为x 米,由题意得等量关系:(长方形的宽−石子路的宽)×(长方形的长−石子路的宽)=15,根据等量关系列出方程,再解即可.【详解】解:设铺设的石子路的宽应为x 米,由题意得:(4−x )(6−x )=15,解得:x 1=1,x 2=9(不合题意,舍去)故答案为:1.【点睛】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.19.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,则小路的宽为_____.【答案】1m【分析】设小路的宽为x m,则种草的部分可合成长为(16-2x)m,宽为(9-x)m的矩形,利用矩形的面积计算公式,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小路的宽为xm,则种草的部分可合成长为(16﹣2x)m,宽为(9﹣x)m的矩形,依题意得:(16﹣2x)(9﹣x)=112,整理得:x2﹣17x+16=0,解得:x1=1,x2=16.当x=1时,16﹣2x=14>0,符合题意;当x=16时,16﹣2x=﹣16<0,不合题意,舍去.故答案为:1m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为468m2,那么小道进出口的宽度应为___m.【答案】2【分析】设小道进出口的宽度应为xm ,则剩余部分可合成长为(30﹣2x )m ,宽为(20﹣x )m 的矩形,根据矩形的面积计算公式,结合种植花草的面积为468m 2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小道进出口的宽度应为xm ,则剩余部分可合成长为(30﹣2x )m ,宽为(20﹣x )m 的矩形, 依题意得:(30﹣2x )(20﹣x )=468,整理得:x 2﹣35x +300=0,解得:x 1=2,x 2=35.当x =2时,30﹣2x =26,符合题意;当x =35时,30﹣2x =﹣40<0,不合题意,舍去.故答案为:2.【点睛】本题主要考查了一元二次方程的实际应用,解题的关键在于找到等量关系列出方程.21.如图,在Rt △ABC 中,∠ABC =90°,AB =6cm ,BC =8cm ,动点P 从点A 出发沿AB 边以1cm /s 的速度向点B 匀速移动,同时点Q 从点B 出发沿BC 边以2cm /s 的速度向点C 匀速移动,当P ,Q 两点中有一个点到达终点时,另一个点也停止运动,当△PBQ 的面积为5cm 2时,点P ,Q 运动的时间为__秒.【答案】1【分析】设点P ,Q 运动的时间为t 秒,则AP tcm = ,2BQ tcm = ,(6)BP t cm =- , 根据△PBQ 的面积为5cm 2, 可列出关于t 的方程,解出t 即可.【详解】解:设点P ,Q 运动的时间为t 秒,则AP tcm = ,2BQ tcm = ,(6)BP t cm =- , ∴11(6)222PBQ S BP BQ t t =⋅=-⋅ , ∵△PBQ 的面积为5cm 2, ∴1(6)252t t -⋅=,解得:11t = 或25t = , ∵当P ,Q 两点中有一个点到达终点时,另一个点也停止运动,∴25t =不符合题意,舍去.故答案为:1【点睛】本题主要考查了一元二次方程的应用,明确题意,找准等量关系,正确列出一元二次方程是解题的关键.22.分别用公式法和因式分解法解方程2269(52)x x x -+=-.【答案】12x =,283x = 【分析】利用公式法和因式分解法分别求解一元二次方程即可.【详解】解:公式法:原方程可化为2314160x x -+=,∵a =3,b =-14,c =16,∴24b ac -=2(14)4316--⨯⨯=4>0,∴x =713±, ∴原方程的根为12x =,283x =; 因式分解法:原方程可化为[(x 3)(52x)][(x 3)(52x)]-+----=0,∴(2-x )(3x -8)=0,∴2-x =0或3x -8=0,∴原方程的根为12x =,283x =. 【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握公式法和因式分解法解一元二次方程方程.23.解方程(1)x 2﹣5x ﹣6=0;(2)4x 2﹣8x +1=0(用配方法解).【答案】(1)x 1=6,x 2=﹣1;(2)x 1=x 2=1【分析】(1)利用因式分解法可得方程的解;(2)利用配方法解方程可得答案.【详解】解:(1)x 2﹣5x ﹣6=0,因式分解,得(x ﹣6)(x +1)=0,于是,得x ﹣6=0或x +1=0,解得x 1=6,x 2=﹣1;(2)4x 2﹣8x +1=0, 整理得:2124x x -=-, 配方得:212114x x -+=-+,即23(1)4x -=,开方得:1x -=解得:x 1=x 2=1 【点睛】 本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.24.解一元二次方程:(1)22530x x +-=(2)()2236x x +=+【答案】(1)112x =,23x =-;(2)12x =-,21x = 【分析】(1)根据一元二次方程的求根公式即可求解;(2)利用因式分解法求解一元二次方程即可.【详解】(1)22530x x +-=.解:2a =,5b =,3c =-, ()224541349b ac -=-⨯⨯-=,x =112x =,23x =-. (2)解:2(2)36x x +=+()()22320x x +-+=()()2230x x ++-=20x +=或10x -=12x =-,21x =.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知公式法及因式分解法的运用.25.请阅读下面解方程()()22212130x x +-+-=的过程. 解:设21x y +=,则原方程可变形为2230y y --=.解得13y =,21y =-.当3y =时,213x +=,∴x =当1y =-时,211x +=-,22x =-,此方程无实数解,∴原方程的解为:1x ,2x =我们将上述解方程的方法叫作换元法. 请用换元法解方程:211280x x x x --⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭. 【答案】13x =或13x =- 【分析】 设1x y x -=,则原方程变形为:2280y y --=,从而得到,12y =-,24y =,则得到12x x-=-和 14x x -=,解出即可.【详解】 解:设1x y x-=, 则原方程变形为:2280y y --=,解得,12y =-,24y =,当2y =-时,12x x-=-,解得,13x =, 经检验13x =是分式方程的解. 当4y =时,14x x -=,解得13x =-, 经检验13x =-是分式方程的解, ∴原分式方程的解为113x =,213x =-. 【点睛】本题主要考查了解一元二次方程,解分式方程,根据题意,理解换元法是解题的关键.26.已知方程关于x 的一元二次方程23540x x k +-=的一个根是-2,求k 和方程另一个根α的值.【答案】k 的值为12,方程另一个根α的值为13.【分析】方法1,根据方程的根的意义,先求得k 的值,再解一元二次方程求得另一个根,方法2 ,根据根与系数的关系,列出方程组,解方程即可求得,k α的值.【详解】方法1,根据方程的根的意义可知,()()2325240k ⨯-+⨯--=,则12k =. ∴原方程为23520x x +-=,解得12x =-,213x =. ∴k 的值为12,方程另一个根α的值为13. 方法2 ,根据根与系数的关系得()()523423k αα⎧+-=-⎪⎪⎨-⎪⋅-=⎪⎩,解得1312k α⎧=⎪⎪⎨⎪=⎪⎩. ∴k 的值为12,方程另一个根α的值为13. 【点睛】本题考查了解一元二次方程,方程的根的意义,根与系数的关系,熟练掌握一元二次方程的解法,根与系数的关系是解题的关键.27.已知关于x 的一元二次方程221(21)202x k x k -++-=. (1)求证:无论k 为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根1x ,2x 满足212()9x x -=,求k 的值.【答案】(1)见解析;(2)0k =或2k =-【分析】(1)根据方程的系数结合根的判别式可得出22(1)7k ∆=++,结合偶次方的非负性可得出0∆>,进而可证出:无论k 为何实数,方程总有两个不相等的实数根;(2)根据根与系数的关系可得出12(21)x x k +=+,212122x x k =-,结合212()9x x -=,即可得出关于k 的方程,解之即可得出结论.【详解】(1)证明:22221[(21)]41(2)2492(1)72k k k k k ∆=-+-⨯⨯-=++=++. 2(1)0k +,22(1)70k ∴++>,即0∆>,∴无论k 为何实数,方程总有两个不相等的实数根.(2)解:1x ,2x 是方程221(21)202x k x k -++-=的两个实数根,1221x x k ∴+=+,212122x x k =-. 212()9x x -=,222121212122()49x x x x x x x x ∴+-=+-=,即221(21)4(2)92k k +--=, 2240k k ∴+=,解得:10k =,22k =-,k ∴的值为0或2-.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)牢记“当△0>时,方程有两个不相等的实数根”;(2)利用根与系数的关系结合212()9x x -=,找出关于k 的方程.28.如图,要建一个矩形花圃,花圃的一边利用长为12m 的住房墙,另外三边用25m 长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,花圃面积为80m 2,求与墙垂直的一边的长度.【答案】8m【分析】根据题意,得四边形ABCD 为矩形;根据花园面积及篱笆的总长度,AB x =,通过列一元二次方程并求解,结合题意分析,即可得到答案.【详解】如下图:根据题意,得四边形ABCD 为矩形,1EF =m∴AB CD =,AD BC =∴25m 26m AB BC CD EF ++=+=,12m AD BC =≤∴226AB BC +=m∵花圃面积为80m 2∴80AB BC ⨯=m 2设AB x =m ,则()262m BC x =-∴()26280x x -=∴213400x x -+=∴()()580x x --=∴5x =或8x =当5x =时,26216BC x =-=m∵12AD BC =≤∴5x =不符合题意当8x =时,26210BC x =-=m∴8x =符合题意∴与墙垂直的一边的长度为8m .【点睛】本题考查了一元二次方程的应用;解题的关键是根据题意列出一元二次方程,从而完成求解.29.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如果调整价格每件的售价每涨1元,那么每星期少卖10件.已知商品的进价为每件40元.设每件涨价x 元,每星期的销量为y 件.(1)写出y 与x 的函数解析式及自变量x 的取值范围;(2)如何定价才能使每星期的利润最大?每星期的最大利润是多少?【答案】(1) y =300﹣10x (0≤x ≤30);(2)定价65元时,每星期的利润最大,最大利润是6250元.【分析】(1)根据涨价时,每涨价1元,每星期要少卖出10件,可列出销售量的代数式,进一步即可求出x 的取值范围;(2)根据涨价的函数表达式,利用二次函数的性质解答即可.【详解】解:(1)∵每涨价1元,每星期要少卖出10件,∴每件涨价x 元,每星期实际可卖出(300﹣10x )件,∴y 与x 的函数解析式为:y =300﹣10x ;由y ≥0,即300﹣10x ≥0,解得x ≤30,∴x 的取值范围是0≤x ≤30;(2)设每星期的利润为w 元,则由题意得:w =(60﹣40+x )(300﹣10x )=﹣10x2+100x+6000=﹣10(x﹣5)2+6250,∵﹣10<0,∴当x=5时,w与取得最大值,最大值为6250,∴定价65元时,每星期的利润最大,最大利润是6250元.【点睛】本题考查二次函数的应用,解题的关键是正确理解题意列出函数关系,本题属于中等题型.30.某快餐店新推出一种外卖,每份的成本为20元,推出后每份售价为50元,每月可售出200份,经过试卖发现,该外卖每份售价每降价1元,每月可多卖出10份,由于制作能力有限,每月最多制作该外卖350份.设该外卖每份售价x元(x≤50),每月的销售利润为w元.(1)求w与x之间的函数关系式;(2)该外卖每份售价多少元时,每月的销售利润最大?最大利润是多少?(3)该外卖每份售价在什么范围时,每月的销售利润不低于4000元.【答案】(1)w=−10x2+900x-14000(35≤x≤50)(2)当外卖每份售价45元,每月的销售利润最大利润6250元;(3)35≤x≤50【分析】(1)根据“总利润=单份利润×月销售数量”列出函数解析式,(2)将函数配方成顶点式,利用二次函数的性质可得;(3)先求得W=4000元时x的值,再结合二次函数的性质确定W≥4000时x的范围即可得.【详解】(1)设该外卖每份售价x元,则每份的利润为(x-20)元,每月的销售量为200+(50-x)×10,根据题意得w=(x-20)[200+(50-x)×10]=−10x2+900x-14000,∵每月最多制作该外卖350份∴200+(50-x)×10≤350解得x≥35∵x≤50,∴自变量x的取值为35≤x≤50,∴w与x之间的函数关系式为w=−10x2+900x-14000(35≤x≤50)(2)∵w=−10x2+900x-14000=-10(x-45)2+6250∴当x=45时,每月的销售利润最大w=6250;(3)当W=4000时,得:−10x2+900x-14000=4000,解得:x1=30,x2=60,∵35≤x≤45时,w随x的增大而增大;45≤x≤50时,w随x的增大而减小∴要使每月的销售利润不低于4000元,x的取值为35≤x≤50.【点睛】本题主要考查二次函数的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出函数解析式及二次函数的图象和性质.。

(完整版)一元二次方程的解练习题及答案

(完整版)一元二次方程的解练习题及答案

【考点训练】一元二次方程的解-1一、选择题(共5小题)1. (7.7分)若0是关于x的方程(m-2)x2+3x+m2- 4=0的解,则m的值是()A. 土2B.- 2C. 2D. 02. (7.7分)关于x的方程x2+3x+a=0有一个根为-1,则a的值为()A. 1B.- 1C. 2D.- 23. (7.7分)若2-逅是方程x2-4x+c=0的一个根,贝U c的值是()A. 1B. A」C. 「; D t4. (7.7分)下列说法不正确的是()A.方程x2=x有一根为0B•方程x2-仁0的两根互为相反数C•方程(x- 1)2-仁0的两根互为相反数D.方程x2- x+2=0无实数根5. (7.7分)已知x=1是方程x2- 2x+c=0的一个根,则实数c的值是()A.- 1B. 0C. 1D. 2二、填空题(共5小题)(除非特别说明,请填准确值)6. (7.7分)请构造一个一元二次方程,使它能满足下列条件:①二次项系数不为1;②有一个根为-2.则你构造的一元二次方程是__________ .7. (7.7分)若关于x的方程x2+mx+2=0的一个根是1,则m的值为_______ .8. (7.7分)已知x=2是关于x的方程x2-2mx+3m=0的一个根,并且等腰三角形ABC的腰和底边长恰好是这个方程的两个根,则△ ABC的周长为 ________ . 9. ______ (7.7分)已知m是方程x2- 4x- 2=0的一个根,则代数式2m2- 8m+1的值为__ .10 . (7.7分)若方程x^+mx- 3=0的一根为3,则m等于_______ .三、解答题(共3小题)(选答题,不自动判卷)11 . (7.7分)已知x=0是—-兀二次方程〔叩F+Sx+m,- 2=0的一个根,求m 的值.12. (7.7分)已知2是关于x的方程x2-2mx+3m=0的一个根,而这个方程的两个根恰好是等腰厶ABC的两条边长.(1)求m的值;(2)求厶ABC的周长.13. (7.6 分)已知:关于x 的一元二次方程x2-( 2m+3) x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作ABC中AB AC( AB V AC)的边长,当BC=二时,△ ABC是等腰三角形,求此时m的值.【考点训练】一元二次方程的解-1参考答案与试题解析一、选择题(共5小题)1. (7.7分)若0是关于x的方程(m-2)x2+3x+m2-4=0的解,则m的值是()A. 土2B.- 2C. 2D. 0【解答】解:把x=0代入方程(m - 2)x2+3x+m2- 4=0得方程m2-4=0,解得m i=2, m2=- 2,所以m=±2.故选:A.2. (7.7分)关于x的方程x2+3x+a=0有一个根为-1,则a的值为()A. 1B.- 1C. 2D.- 2【解答】解:把x=- 1代入方程得1 - 3+a=0,解得a=2.故选:C.3. (7.7分)若2-贡是方程x2-4x+c=0的一个根,贝U c的值是()A. 1B.C. 「;D. -;【解答】解:把2-典代入方程x2- 4x+c=0,得(2 W3)2-4 (2-宾)+c=0, 解得c=1; 故选:A.4. (7.7分)下列说法不正确的是()A.方程x2=x有一根为0B•方程x2-仁0的两根互为相反数C•方程(x- 1)2-仁0的两根互为相反数D.方程x2- x+2=0无实数根【解答】解:A、x2=x,移项得:x2- x=0,因式分解得:x (x- 1)=0, 解得x=0或x=1,所以有一根为0,此选项正确;B、x2-仁0,移项得:x2=1,直接开方得:x=1或x=- 1,所以此方程的两根互为相反数,此选项正确;C、(x- 1)2-仁0,移项得:(x- 1)2=1,直接开方得:x- 1=1或x-仁-1,解得x=2或x=0,两根不互为相反数,此选项错误;D、x2-x+2=0,找出a=1, b=- 1 , c=2,则厶=1 - 8=- 7v0,所以此方程无实数根,此选项正确.所以说法错误的选项是C.故选:C.5. (7.7分)已知x=1是方程x2- 2x+c=0的一个根,则实数c的值是()A.- 1B. 0C. 1D. 2【解答】解:根据题意,将x=1代入x2- 2x+c=0,得:1 - 2+c=0, 解得:c=1, 故选:C.二、填空题(共5小题)(除非特别说明,请填准确值)6. (7.7分)请构造一个一元二次方程,使它能满足下列条件:①二次项系数不为1;②有一个根为-2 .则你构造的一元二次方程是2/ - 8=0 .【解答】解:满足二次项系数不为1,有一个根为-2的一元二次方程可为2x2-8=0.故答案为2x2- 8=0.7. (7.7分)若关于x的方程x2+mx+2=0的一个根是1,则m的值为 -3【解答】解:令x=1代入x2+mx+2=01+m+2=0m=- 3故答案为:-38. (7.7分)已知x=2是关于x的方程x2-2mx+3m=0的一个根,并且等腰三角形ABC的腰和底边长恰好是这个方程的两个根,则△ ABC的周长为14 . 【解答】解:••• 2是关于x的方程x2- 2mx+3m=0的一个根,•••把x=2代入方程整理得:4 - 4m+3m=0,•••解得m=4,•原方程为:x2-8x+12=0,•方程的两个根分别是2, 6,又•••等腰三角形ABC的腰和底边长恰好是这个方程的两个根,•••若2是等腰三角形ABC的腰长,贝U 2+2=4v 6构不成三角形,•等腰三角形ABC的腰长为6,底边长为2,•三角形ABC的周长为:6+6+2=14,故答案是:14.9. (7.7分)已知m是方程x2-4x- 2=0的一个根,则代数式2m2-8m+1的值为5 .【解答】解:I m是方程x2- 4x- 2=0的一个根,•m2- 4m - 2=0,•m2- 4m=2,•2m2- 8m+1=2 (m2- 4m)+1=2x 2+1=5.故答案为5.10. (7.7分)若方程x^+mx- 3=0的一根为3,则m等于 -2 .【解答】解:把x=3代入方程x2+mx- 3=0得9+3m - 3=0,解得m=- 2.故答案为-2.三、解答题(共3小题)(选答题,不自动判卷)11. (7.7分)已知x=0是— -兀—次方程F+3计即‘ -2=0的一个根,求m 的值.【解答】解:当x=0时,m2- 2=0,解得m i=旳,m2=-::.••• m-产0,••• m=- _ :.12. (7.7分)已知2是关于x的方程x2-2mx+3m=0的一个根,而这个方程的两个根恰好是等腰厶ABC的两条边长.(1)求m的值;(2)求厶ABC的周长.【解答】解:(1)把x=2代入方程得4- 4m+3m=0,解得m=4;(2)当m=4 时,原方程变为x2- 8x+12=0,解得x i=2, X2=6,•••该方程的两个根恰好是等腰厶ABC的两条边长,且不存在三边为2, 2, 6的等腰三角形•△ ABC的腰为6,底边为2,•△ ABC的周长为6+6+2=14.13. (7.6 分)已知:关于x 的一元二次方程x2-( 2m+3) x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作ABC中AB AC( AB V AC)的边长,当BC=- 时,△ ABC是等腰三角形,求此时m的值.【解答】解:(1)v x=2是方程的一个根,•- 4 —2 (2m+3) +m2+3m+2=0,•m=0 或m=1 ;(2)v^ = (2m+3) 2-4 (m2+3m+2) =1,=1;•、—-Lil _ + -.・x --z•X1=m+2, X2=m+1,••• AB AC (AB V AC的长是这个方程的两个实数根,•AC=m+2, AB=m+1.••• BC= -,△ ABC是等腰三角形,•••当AB=BC时,有m+仁!.,-m=Js - 1 ;当AC=BC寸,有m+2=.,• m= . 2,综上所述,当m朋-1或m祢-2时,△ ABC是等腰三角形.。

一元二次方程解法题型,易错题型,综合题型(word文档有答案)

一元二次方程解法题型,易错题型,综合题型(word文档有答案)

一元二次方程解法,易错,综合题型一、类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1-2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝ ⎛⎭⎪⎫t -742=8116D .3x 2-4x -2=0化为⎝ ⎛⎭⎪⎫x -232=1093.利用配方法解下列方程:(1)(淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二配方法求最值或证明4.代数式x2-4x+5的最小值是()A.-1 B.1 C.2 D.55.下列关于多项式-2x2+8x+5的说法正确的是()A.有最大值13 B.有最小值-3C.有最大值37 D.有最小值16.(夏津县月考)求证:代数式3x2-6x+9的值恒为正数.7.若M=10a2+2b2-7a+6,N=a2+2b2+5a+1,试说明无论a,b为何值,总有M>N.◆类型三完全平方式中的配方8.如果多项式x2-2mx+1是完全平方式,则m的值为()A.-1 B.1 C.±1 D.±29.若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为()A.-9或11 B.-7或8C.-8或9 D.-6或7◆类型四利用配方构成非负数求值10.已知m2+n2+2m-6n+10=0,则m+n的值为()A.3 B.-1 C.2 D.-211.已知x2+y2-4x+6y+13=0,求(x+y)2016的值.二、类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法一、十字相乘法方法点拨:例如:解方程:x2+3x-4=0.第1种拆法:4x-x=3x(正确),第2种拆法:2x-2x=0(错误),所以x2+3x-4=(x+4)(x-1)=0,即x+4=0或x-1=0,所以x1=-4,x2=1.2.解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程:(1)x2-5x-6=0;(2)x2+9x-36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=_______.5.解方程:(x2+5x+1)(x2+5x+7)=7.三、易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(江都区期中)若关于x 的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或03.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值;(2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三利用根与系数关系求值时,忽略“Δ≥0”7.(朝阳中考)关于x的一元二次方程x2+kx+k+1=0的两根分别为x1,x2,且x21+x22=1,则k的值为_______.【易错2】8.已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m的值.【易错2】◆类型四与三角形结合时忘记取舍9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x2-14x+48=0的根,则这个三角形的周长为()A.11 B.17C.17或19 D.1910.在等腰△ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.四、考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD 的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二 一元二次方程与一次函数的 综合8.(泸州中考)若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是( )9.(安顺中考)若一元二次方程x 2-2x -m =0无实数根,则一次函数y =(m +1)x +m -1的图象不经过( )A .第四象限B .第三象限C .第二象限D .第一象限10.(葫芦岛中考)已知k 、b 是一元二次方程(2x +1)(3x -1)=0的两个根,且k >b ,则函数y =kx +b 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y =(5-m 2)x 和关于x 的一元二次方程(m +1)x 2+mx +1=0中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是______.◆类型三 一元二次方程与二次根式的综合12.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( ) A .m >52 B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠213.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是______.一、类比归纳专题:配方法的应用答案:二、类比归纳专题:一元二次方程的解法参考答案1.解:(1)移项,得⎝⎛⎭⎫x -522=14,两边开平方,得x -52=±14,即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2,∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24;|(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0,∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0,∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3.4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x=0或x+5=0,∴x1=0,x2=-5;当t=-7时,x2+5x+1=-7,x2+5x+8=0,∴b2-4ac=52-4×1×8<0,此时方程无实数根.∴原方程的解为x1=0,x2=-5.三、易错易混专题:一元二次方程中的易错问题参考答案四、考点综合专题:一元二次方程与其他知识的综合答案:12.B 13.。

(word完整版)一元二次方程经典测试题(含答案)(2),推荐文档

(word完整版)一元二次方程经典测试题(含答案)(2),推荐文档

(word完整版)⼀元⼆次⽅程经典测试题(含答案)(2),推荐⽂档评卷⼈得分⼀ ?选择题(共12⼩题,每题3分,共36分) 1 ?⽅程x (x - 2) =3x 的解为()A. x=5 B . x i =O , X 2=5 C. x i =2, X 2=0 D . x i =O , X 2=- 5 2?下列⽅程是⼀元⼆次⽅程的是()A. a?+bx+c=O B . 3x 2 - 2x=3 (x 2- 2) C . x 3 - 2x - 4=0 D. (x - 1) 2+仁0 3.关于x 的⼀元⼆次⽅程x 2+a 2 -仁0的⼀个根是0,则a 的值为( )A.- 1 B . 1 C . 1 或-1 D . 34 .某旅游景点的游客⼈数逐年增加,据有关部门统计,2015年约为12万⼈次,若2017年约为17万⼈次,设游客⼈数年平均增长率为 X ,则下列⽅程中正确的是( ) A. 12 (1+x ) =17 B . 17 (1 - x ) =12C . 12 (1+x ) 2=17D . 12+12 (1+x ) +12 (1+x ) 2=175. 如图,在⼛ABC 中,/ABC=90, AB=8cm, BC=6cm 动点P ,Q 分别从点 A , B 同时开始移动,点P 的速度为1cm/秒,点Q 的速度为2cm/秒,点Q 移动到点C 后停⽌,点P 也随之停⽌运动.下列时间瞬间中,能使△ PBQ 的⾯积为15cm 2的是( )A. 2秒钟B. 3秒钟C. 4秒钟D. 5秒钟6. 某幼⼉园要准备修建⼀个⾯积为 210平⽅⽶的矩形活动场地,它的长⽐宽多 12⽶,设场地的长为x ⽶,可列⽅程为()A . x (x+12) =210 B. x (x - 12) =210 C. 2x+2 (x+12) =210D . 2x+2 (x - 12) =2107. —元⼆次⽅程x 2+bx - 2=0中,若b v 0,则这个⽅程根的情况是( )A .有两个正根 B.有⼀正根⼀负根且正根的绝对值⼤ C .有两个负根 D .有⼀正根⼀负根且负根的绝对值⼤8.X 1, X 2是⼀元⼆次⽅程测试题考试范围:题号得分元⼆次⽅程;考试时间:120分钟;命题⼈:瀚博教育总分第I 卷(选择题)C⽅程?+x+k=0的两个实根,若恰X12+X1x2+X22=2k2成⽴,k的值为( )A . — 1B .丄或—1 C.⼇ D .—丄或19. ⼀元⼆次⽅程ax 2+bx+c=0中,若a >0, b v 0, c v 0,则这个⽅程根的情况是() A .有两个正根B.有两个负根C .有⼀正根⼀负根且正根绝对值⼤D .有⼀正根⼀负根且负根绝对值⼤10. 有两个⼀元⼆次⽅程:M : ax 2+bx+c=0; N : cW+bx+an ,其中a —⽢0,以下列四个结论中,错误的是()如果⽅程M 有两个不相等的实数根,那么⽅程 N 也有两个不相等的实数根A . 7B . 11 C. 12 D . 1612.设关于x 的⽅程ax 2+ (a+2) x+9a=0,有两个不相等的实数根 X 1、X 2,且x 1 v 1 v x 2,那么实数a 的取值范围是()A .⾗寻B.孕C ⾢>售 D .孑W11 7 5 5 11第U 卷(⾮选择题)评卷⼈得分⼆.填空题(共8⼩题,每题3分,共24分)13 .若X 1,沁是关于x 的⽅程x 2 — 2x- 5=0的两根,则代数式X 12- 3X 1 - X 2 -6的值是 _________ . 14.已知X 1, X 2是关于x 的⽅程x 2+ax- 2b=0的两实数根,且X 1+X 2=— 2, X 1 ?X 2=1,贝U b a 的值是 ______ .15 .已知2x |m| —2+3=9是关于x 的⼀元⼆次⽅程,则m= ________ .16 .已知x 2+6x=— 1可以配成(x+p ) 2=q 的形式,贝U q= ____ .17. 已知关于x 的⼀元⼆次⽅程(m - 1) X 2 — 3x+仁0有两个不相等的实数根,且关于 x 的不等式组 2的解集是x v — 1,则所有符合条件的整数 m 的个数是__________ .j?+4>3Cx+2)18. 关于x 的⽅程(m - 2) x 2+2x+仁0有实数根,则偶数 m 的最⼤值为 ______ . 19. 如图,某⼩区有⼀块长为18⽶,宽为6⽶的矩形空地,计划在其中修建两块相同的矩形A . 如果⽅程M 有两根符号相同,那么⽅程 N 的两根符号也相同如果5是⽅程M 的⼀个根,那么■;-是⽅程N 的⼀个根如果⽅程M 和⽅程N 有⼀个相同的根,那么这个根必是x=111.已知m , n 是关于x 的⼀元⼆次⽅程x 2 — 2tx+t 2— 2t+4=0的两实数根,则(m+2)(n+2)的最⼩值是()B .C .D .绿地,它们⾯积之和为60⽶2,两块绿地之间及周边留有宽度相等的⼈⾏通道,则⼈⾏道的宽度为 ______ ⽶.EH1$⽶20.如图是⼀次函数y=kx+b的图象的⼤致位置,试判断关于x的⼀元⼆次⽅程的根的判别式△ _______ 0 (填:、”或“我N”).评卷⼈得分x2—2x+kb+1=0三.解答题(共8⼩题)21. (6分)解下列⽅程.(1)x2—14x=8 (配⽅法)(2) x2—7x—18=0(公式法)(3) (2x+3) 2=4 (2x+3)(因式分解法)22. (6分)关于x的⼀元⼆次⽅程(m- 1)x2—x—2=0(1)若x=—1是⽅程的⼀个根,求m的值及另⼀个根. (2)当m为何值时⽅程有两个不同的实数根.23. (6分)关于x的⼀元⼆次⽅程(a- 6) x2-8x+9=0有实根.(1)求a的最⼤整数值;(2)当a取最⼤整数值时,①求出该⽅程的根;②求2x2- 1 的值.24. (6分)关于x的⽅程x2-( 2k- 3) x+k2+1=0有两个不相等的实数根x i、x?.(1)求k的取值范围;(2)若x i x2+|x i|+| X2|=7,求k 的值.25. (8分)某茶叶专卖店经销⼀种⽇照绿茶,每千克成本80元,据销售⼈员调查发现,每⽉的销售量y (千克)与销售单价x (元/千克)之间存在如图所⽰的变化规律.(1)求每⽉销售量y与销售单价x之间的函数关系式.(2)若某⽉该茶叶点销售这种绿茶获得利润1350元,试求该⽉茶叶的销售单价x为多少元.26. (8分)如图,为美化环境,某⼩区计划在⼀块长⽅形空地上修建⼀个⾯积为1500平⽅⽶的长⽅形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长⽅形空地的长为60⽶, 宽为40⽶.(1)求通道的宽度;(2)晨光园艺公司承揽了该⼩区草坪的种植⼯程,计划种植四季青”和⿊麦草”两种绿草,该公司种植四季青”的单价是30元/平⽅⽶,超过50平⽅⽶后,每多出5平⽅⽶,所有四季青” 的种植单价可降低1元,但单价不低于20元/平⽅⽶,已知⼩区种植四季青”的⾯积超过了50 平⽅⽶,⽀付晨光园艺公司种植四季青”的费⽤为2000元,求种植四季青”的⾯积.通G咪27. ( 10分)某商店经销甲、⼄两种商品,现有如下信息:信息1:甲、⼄两种商品的进货单价之和是3元;信息2:甲商品零售单价⽐进货单价多1元,⼄商品零售单价⽐进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和⼄商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、⼄两种商品的零售单价;(2)该商店平均每天卖出甲⼄两种商品各500件,经调查发现,甲种商品零售单价每降0.1 元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、⼄两种商品获取的总利润为1000 元?28. (10分)已知关于x的⼀元⼆次⽅程x2-( m+6) x+3m+9=0的两个实数根分别为x i, X2. ( 1)求证:该⼀元⼆次⽅程总有两个实数根;(2)若n=4 (x i+x2)- x i x2,判断动点P (m, n)所形成的函数图象是否经过点 A (1, 16), 并说明理由.。

一元二次方程经典复习题(含答案)

一元二次方程经典复习题(含答案)

一元二次方程测试题考试范围:一元二次方程;考试时间:100分钟;命题人:刘笑天题号一二三总分得分第一卷〔选择题〕评卷人得分一.选择题〔共12小题〕1.方程x〔x﹣2〕=3x的解为〔〕A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.以下方程是一元二次方程的是〔〕A.ax2+bx+c=0 B.3x2﹣2x=3〔x2﹣2〕C.x3﹣2x﹣4=0 D.〔x﹣1〕2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,那么a的值为〔〕A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2021 年约为12万人次,假设2021年约为17万人次,设游客人数年平均增长率为x,那么以下方程中正确的选项是〔〕A.12〔1+x〕=17 B.17〔1﹣x〕=12C.12〔1+x〕2=17 D.12+12〔1+x〕+12〔1+x〕2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开场挪动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q挪动到点C后停顿,点P也随之停顿运动.以下时间瞬间中,能使△PBQ的面积为15cm2的是〔〕A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为〔〕A.x〔x+12〕=210 B.x〔x﹣12〕=210C.2x+2〔x+12〕=210 D.2x+2〔x﹣12〕=2107.一元二次方程x2+bx﹣2=0中,假设b<0,那么这个方程根的情况是〔〕A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,假设恰x12+x1x2+x22=2k2成立,k的值为〔〕A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,假设a>0,b<0,c<0,那么这个方程根的情况是〔〕A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以以下四个结论中,错误的选项是〔〕A.假如方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.假如方程M有两根符号一样,那么方程N的两根符号也一样C.假如5是方程M的一个根,那么是方程N的一个根D.假如方程M和方程N有一个一样的根,那么这个根必是x=111.m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,那么〔m+2〕〔n+2〕的最小值是〔〕A.7 B.11 C.12 D.1612.设关于x的方程ax2+〔a+2〕x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是〔〕A. B.C.D.第二卷〔非选择题〕评卷人得分二.填空题〔共8小题〕13.假设x1,x2是关于x的方程x2﹣2x﹣5=0的两根,那么代数式x12﹣3x1﹣x2﹣6的值是.14.x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,那么b a的值是.15.2x|m|﹣2+3=9是关于x的一元二次方程,那么m=.16.x2+6x=﹣1可以配成〔x+p〕2=q的形式,那么q=.17.关于x的一元二次方程〔m﹣1〕x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,那么所有符合条件的整数m的个数是.18.关于x的方程〔m﹣2〕x2+2x+1=0有实数根,那么偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,方案在其中修建两块一样的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,那么人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0〔填:“>〞或“=〞或“<〞〕.评卷人得分三.解答题〔共8小题〕21.解以下方程.〔1〕x2﹣14x=8〔配方法〕〔2〕x2﹣7x﹣18=0〔公式法〕〔3〕〔2x+3〕2=4〔2x+3〕〔因式分解法〕〔4〕2〔x﹣3〕2=x2﹣9.22.关于x的一元二次方程〔m﹣1〕x2﹣x﹣2=0〔1〕假设x=﹣1是方程的一个根,求m的值及另一个根.〔2〕当m为何值时方程有两个不同的实数根.23.关于x的一元二次方程〔a﹣6〕x2﹣8x+9=0有实根.〔1〕求a的最大整数值;〔2〕当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.关于x的方程x2﹣〔2k﹣3〕x+k2+1=0有两个不相等的实数根x1、x2.〔1〕求k的取值范围;〔2〕假设x1x2+|x1|+|x2|=7,求k的值.25.某茶叶专卖店经销一种日照绿茶,每千克本钱80元,据销售人员调查发现,每月的销售量y〔千克〕与销售单价x〔元/千克〕之间存在如下图的变化规律.〔1〕求每月销售量y与销售单价x之间的函数关系式.〔2〕假设某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.如图,为美化环境,某小区方案在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,长方形空地的长为60米,宽为40米.〔1〕求通道的宽度;〔2〕晨光园艺公司承揽了该小区草坪的种植工程,方案种植“四季青〞和“黑麦草〞两种绿草,该公司种植“四季青〞的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青〞的种植单价可降低1元,但单价不低于20元/平方米,小区种植“四季青〞的面积超过了50平方米,支付晨光园艺公司种植“四季青〞的费用为2000元,求种植“四季青〞的面积.27.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购置甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答以下问题:〔1〕求甲、乙两种商品的零售单价;〔2〕该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m〔m>0〕元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.关于x的一元二次方程x2﹣〔m+6〕x+3m+9=0的两个实数根分别为x1,x2.〔1〕求证:该一元二次方程总有两个实数根;〔2〕假设n=4〔x1+x2〕﹣x1x2,判断动点P〔m,n〕所形成的函数图象是否经过点A〔1,16〕,并说明理由.2021年02月28日刘笑天的初中数学组卷参考答案与试题解析一.选择题〔共12小题〕1.方程x〔x﹣2〕=3x的解为〔〕A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x〔x﹣2〕=3x,x〔x﹣2〕﹣3x=0,x〔x﹣2﹣3〕=0,x=0,x﹣2﹣3=0,x1=0,x2=5,应选B.2.以下方程是一元二次方程的是〔〕A.ax2+bx+c=0 B.3x2﹣2x=3〔x2﹣2〕C.x3﹣2x﹣4=0 D.〔x﹣1〕2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;应选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,那么a的值为〔〕A.﹣1 B.1 C.1或﹣1 D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,应选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2021 年约为12万人次,假设2021年约为17万人次,设游客人数年平均增长率为x,那么以下方程中正确的选项是〔〕A.12〔1+x〕=17 B.17〔1﹣x〕=12C.12〔1+x〕2=17 D.12+12〔1+x〕+12〔1+x〕2=17【解答】解:设游客人数的年平均增长率为x,那么2021的游客人数为:12×〔1+x〕,2021的游客人数为:12×〔1+x〕2.那么可得方程:12〔1+x〕2=17.应选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开场挪动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q 挪动到点C后停顿,点P也随之停顿运动.以下时间瞬间中,能使△PBQ的面积为15cm2的是〔〕A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,那么BP为〔8﹣t〕cm,BQ为2tcm,由三角形的面积计算公式列方程得,×〔8﹣t〕×2t=15,解得t1=3,t2=5〔当t=5时,BQ=10,不合题意,舍去〕.答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为〔〕A.x〔x+12〕=210 B.x〔x﹣12〕=210 C.2x+2〔x+12〕=210 D.2x+2〔x ﹣12〕=210【解答】解:设场地的长为x米,那么宽为〔x﹣12〕米,根据题意得:x〔x﹣12〕=210,应选:B.7.一元二次方程x2+bx﹣2=0中,假设b<0,那么这个方程根的情况是〔〕A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大【解答】解:x2+bx﹣2=0,△=b2﹣4×1×〔﹣2〕=b2+8,即方程有两个不相等的实数根,设方程x2+bx﹣2=0的两个根为c、d,那么c+d=﹣b,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c+d=﹣b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,应选B.8.x1,x2是方程x2+x+k=0的两个实根,假设恰x12+x1x2+x22=2k2成立,k的值为〔〕A.﹣1 B.或﹣1 C.D.﹣或1【解答】解:根据根与系数的关系,得x1+x2=﹣1,x1x2=k.又x12+x1x2+x22=2k2,那么〔x1+x2〕2﹣x1x2=2k2,即1﹣k=2k2,解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去.∴取k=﹣1.故此题选A.9.一元二次方程ax2+bx+c=0中,假设a>0,b<0,c<0,那么这个方程根的情况是〔〕A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大【解答】解:∵a>0,b<0,c<0,∴△=b2﹣4ac>0,<0,﹣>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大.应选:C.10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以以下四个结论中,错误的选项是〔〕A.假如方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.假如方程M有两根符号一样,那么方程N的两根符号也一样C.假如5是方程M的一个根,那么是方程N的一个根D.假如方程M和方程N有一个一样的根,那么这个根必是x=1【解答】解:A、在方程ax2+bx+c=0中△=b2﹣4ac,在方程cx2+bx+a=0中△=b2﹣4ac,∴假如方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、∵“和符号一样,和符号也一样,∴假如方程M有两根符号一样,那么方程N的两根符号也一样,正确;C、∵5是方程M的一个根,∴25a+5b+c=0,∴a+b+c=0,∴是方程N的一个根,正确;D、M﹣N得:〔a﹣c〕x2+c﹣a=0,即〔a﹣c〕x2=a﹣c,∵a﹣c≠1,∴x2=1,解得:x=±1,错误.应选D.11.m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,那么〔m+2〕〔n+2〕的最小值是〔〕A.7 B.11 C.12 D.16【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴〔m+2〕〔n+2〕=mn+2〔m+n〕+4=t2+2t+8=〔t+1〕2+7.∵方程有两个实数根,∴△=〔﹣2t〕2﹣4〔t2﹣2t+4〕=8t﹣16≥0,∴t≥2,∴〔t+1〕2+7≥〔2+1〕2+7=16.应选D.12.设关于x的方程ax2+〔a+2〕x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是〔〕A. B.C.D.【解答】解:方法1、∵方程有两个不相等的实数根,那么a≠0且△>0,由〔a+2〕2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么〔x1﹣1〕〔x2﹣1〕<0,∴x1x2﹣〔x1+x2〕+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.应选D.方法2、由题意知,a≠0,令y=ax2+〔a+2〕x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+〔a+2〕+9a<0,∴a<﹣〔不符合题意,舍去〕,当a<0时,x=1时,y>0,∴a+〔a+2〕+9a>0,∴a>﹣,∴﹣<a<0,应选D.二.填空题〔共8小题〕13.假设x1,x2是关于x的方程x2﹣2x﹣5=0的两根,那么代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=〔x12﹣2x1〕﹣〔x1+x2〕﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,那么b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=〔﹣〕2=.故答案为:.15.2x|m|﹣2+3=9是关于x的一元二次方程,那么m=±4.【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.x2+6x=﹣1可以配成〔x+p〕2=q的形式,那么q=8.【解答】解:x2+6x+9=8,〔x+3〕2=8.所以q=8.故答案为8.17.关于x的一元二次方程〔m﹣1〕x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,那么所有符合条件的整数m的个数是4.【解答】解:∵关于x的一元二次方程〔m﹣1〕x2﹣3x+1=0有两个不相等的实数根,∴m﹣1≠0且△=〔﹣3〕2﹣4〔m﹣1〕>0,解得m<且m≠1,,∵解不等式组得,而此不等式组的解集是x<﹣1,∴m≥﹣1,∴﹣1≤m<且m≠1,∴符合条件的整数m为﹣1、0、2、3.故答案为4.18.关于x的方程〔m﹣2〕x2+2x+1=0有实数根,那么偶数m的最大值为2.【解答】解:由得:△=b2﹣4ac=22﹣4〔m﹣2〕≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,方案在其中修建两块一样的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,那么人行道的宽度为1米.【解答】解:设人行道的宽度为x米〔0<x<3〕,根据题意得:〔18﹣3x〕〔6﹣2x〕=60,整理得,〔x﹣1〕〔x﹣8〕=0.解得:x1=1,x2=8〔不合题意,舍去〕.即:人行通道的宽度是1米.故答案是:1.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△>0〔填:“>〞或“=〞或“<〞〕.【解答】解:∵次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴△=〔﹣2〕2﹣4〔kb+1〕=﹣4kb>0.故答案为>.三.解答题〔共8小题〕21.解以下方程.〔1〕x2﹣14x=8〔配方法〕〔2〕x2﹣7x﹣18=0〔公式法〕〔3〕〔2x+3〕2=4〔2x+3〕〔因式分解法〕〔4〕2〔x﹣3〕2=x2﹣9.【解答】解:〔1〕x2﹣14x+49=57,〔x﹣7〕2=57,x﹣7=±,所以x1=7+,x2=7﹣;〔2〕△=〔﹣7〕2﹣4×1×〔﹣18〕=121,x=,所以x1=9,x2=﹣2;〔3〕〔2x+3〕2﹣4〔2x+3〕=0,〔2x+3〕〔2x+3﹣4〕=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;〔4〕2〔x﹣3〕2﹣〔x+3〕〔x﹣3〕=0,〔x﹣3〕〔2x﹣6﹣x﹣3〕=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程〔m﹣1〕x2﹣x﹣2=0〔1〕假设x=﹣1是方程的一个根,求m的值及另一个根.〔2〕当m为何值时方程有两个不同的实数根.【解答】解:〔1〕将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即〔x+1〕〔x﹣2〕=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.〔2〕∵方程〔m﹣1〕x2﹣x﹣2=0有两个不同的实数根,∴,解得:m>且m≠1,∴当m>且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程〔a﹣6〕x2﹣8x+9=0有实根.〔1〕求a的最大整数值;〔2〕当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:〔1〕根据题意△=64﹣4×〔a﹣6〕×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;〔2〕①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x+=2〔x2﹣8x〕+=2×〔﹣9〕+=﹣.24.关于x的方程x2﹣〔2k﹣3〕x+k2+1=0有两个不相等的实数根x1、x2.〔1〕求k的取值范围;〔2〕假设x1x2+|x1|+|x2|=7,求k的值.【解答】解:〔1〕∵原方程有两个不相等的实数根,∴△=[﹣〔2k﹣3〕]2﹣4〔k2+1〕=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k<;〔2〕∵k<,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣〔x1+x2〕=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k<,∴k=﹣1.25.某茶叶专卖店经销一种日照绿茶,每千克本钱80元,据销售人员调查发现,每月的销售量y〔千克〕与销售单价x〔元/千克〕之间存在如下图的变化规律.〔1〕求每月销售量y与销售单价x之间的函数关系式.〔2〕假设某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.【解答】解:〔1〕设一次函数解析式为y=kx+b,把〔90,100〕,〔100,80〕代入y=kx+b得,,解得,,y与销售单价x之间的函数关系式为y=﹣2x+280.〔2〕根据题意得:w=〔x﹣80〕〔﹣2x+280〕=﹣2x2+440x﹣22400=1350;解得〔x﹣110〕2=225,解得x1=95,x2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区方案在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,长方形空地的长为60米,宽为40米.〔1〕求通道的宽度;〔2〕晨光园艺公司承揽了该小区草坪的种植工程,方案种植“四季青〞和“黑麦草〞两种绿草,该公司种植“四季青〞的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青〞的种植单价可降低1元,但单价不低于20元/平方米,小区种植“四季青〞的面积超过了50平方米,支付晨光园艺公司种植“四季青〞的费用为2000元,求种植“四季青〞的面积.【解答】解:〔1〕设通道的宽度为x米.由题意〔60﹣2x〕〔40﹣2x〕=1500,解得x=5或45〔舍弃〕,答:通道的宽度为5米.〔2〕设种植“四季青〞的面积为y平方米.由题意:y〔30﹣〕=2000,解得y=100,答:种植“四季青〞的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购置甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答以下问题:〔1〕求甲、乙两种商品的零售单价;〔2〕该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m〔m>0〕元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?【解答】22.〔1〕假设甲种商品的进货单价为x元、乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.〔2〕根据题意得出:〔1﹣m〕〔500+×100〕+500=1000即2m2﹣m=0,解得m=0.5或m=0〔舍去〕,答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.关于x的一元二次方程x2﹣〔m+6〕x+3m+9=0的两个实数根分别为x1,x2.〔1〕求证:该一元二次方程总有两个实数根;〔2〕假设n=4〔x1+x2〕﹣x1x2,判断动点P〔m,n〕所形成的函数图象是否经过点A〔1,16〕,并说明理由.【解答】解〔1〕∵△=〔m+6〕2﹣4〔3m+9〕=m2≥0∴该一元二次方程总有两个实数根〔2〕动点P〔m,n〕所形成的函数图象经过点A〔1,16〕,∵n=4〔x1+x2〕﹣x1x2=4〔m+6〕﹣〔3m+9〕=m+15∴P〔m,n〕为P〔m,m+15〕.∴A〔1,16〕在动点P〔m,n〕所形成的函数图象上.。

一元二次方程复习题(含答案)

一元二次方程复习题(含答案)

一元二次方程测试题一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5B.x1=0,x2=5C.x1=2,x2=0D.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0D.(x﹣1)2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1B.1C.1或﹣1D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q 移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210B.x(x﹣12)=210C.2x+2(x+12)=210D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1B.或﹣1C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7B.11C.12D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>”或“=”或“<”).三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.2018年02月28日刘笑天的初中数学组卷参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5B.x1=0,x2=5C.x1=2,x2=0D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1B.1C.1或﹣1D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程1中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q 移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的)面积为15cm2的是(A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm ,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210B.x(x﹣12)=210C.2x+2(x+12)=210D.2x+2(x ﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.27.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大【解答】解:x2+bx﹣2=0,△=b2﹣4×1×(﹣2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx﹣2=0的两个根为c、d,则c+d=﹣b,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c+d=﹣b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故选B.8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1B .或﹣1C .D .﹣或1【解答】解:根据根与系数的关系,得x1+x2=﹣1,x1x2=k.又x12+x1x2+x22=2k2,则(x1+x2)2﹣x1x2=2k2,即1﹣k=2k2,解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去.∴取k=﹣1.故本题选A.9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大3D.有一正根一负根且负根绝对值大【解答】解:∵a>0,b<0,c<0,∴△=b2﹣4ac>0,<0,﹣>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大.故选:C.10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M 的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【解答】解:A、在方程ax2+bx+c=0中△=b2﹣4ac,在方程cx2+bx+a=0中△=b2﹣4ac,∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、∵“和符号相同,和符号也相同,∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;C、∵5是方程M的一个根,∴25a+5b+c=0,∴a +b +c=0,∴是方程N的一个根,正确;D、M﹣N得:(a﹣c)x2+c﹣a=0,即(a﹣c)x2=a﹣c,∵a﹣c≠1,∴x2=1,解得:x=±1,错误.故选D.11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则4(m+2)(n+2)的最小值是()A.7B.11C.12D.16【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=±4.【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8.【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是4.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,∴m﹣1≠0且△=(﹣3)2﹣4(m﹣1)>0,解得m<且m≠1,,∵解不等式组得,而此不等式组的解集是x<﹣1,∴m≥﹣1,∴﹣1≤m<且m≠1,∴符合条件的整数m为﹣1、0、2、3.故答案为4.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为2.【解答】解:由已知得:△=b2﹣4ac=22﹣4(m﹣2)≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为1米.【解答】解:设人行道的宽度为x米(0<x<3),根据题意得:(18﹣3x)(6﹣2x)=60,整理得,(x﹣1)(x﹣8)=0.解得:x1=1,x2=8(不合题意,舍去).即:人行通道的宽度是1米.故答案是:1.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△>0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴△=(﹣2)2﹣4(kb+1)=﹣4kb>0.故答案为>.三.解答题(共8小题)21.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m>且m≠1,∴当m>且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x+=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k<;(2)∵k<,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k<,∴k=﹣1.25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.【解答】解:(1)设一次函数解析式为y=kx+b,把(90,100),(100,80)代入y=kx+b得,,解得,,y与销售单价x之间的函数关系式为y=﹣2x+280.(2)根据题意得:w=(x﹣80)(﹣2x+280)=﹣2x2+440x﹣22400=1350;解得(x﹣110)2=225,解得x1=95,x2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x米.由题意(60﹣2x)(40﹣2x)=1500,解得x=5或45(舍弃),答:通道的宽度为5米.(2)设种植“四季青”的面积为y平方米.由题意:y(30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?【解答】22.(1)假设甲种商品的进货单价为x元、乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m)(500+×100)+500=1000即2m2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.。

一元二次方程综合复习(含知识点和练习)(含答案)

一元二次方程综合复习(含知识点和练习)(含答案)

一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,也是方程中重点内容,是学习二次函数等内容的基础,本节是本章的起始内容,主要学习下列三个内容:建立一元二次方程此内容是本节课的难点之一,在后续的内容中将继续学习,为此设计较易的[拓展应用]的例4及其变式题,[课时作业]的第6、7题。

1.一元二次方程的概念此内容是本节课的重点,是学习一元二次方程的基础,为此设计[拓展应用]的例1、例3,[当堂检测]的第1、2、4题,[课时作业]的第1—5题。

2.一元二次方程的解的含义利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计[拓展应用]的例2,[当堂检测]的第3题,[选做题]和[备选题目]的问题。

点击一:一元二次方程的定义答案:(5)针对练习。

答案:一元二次方程二次项的系数不等于零。

故m≠-3点击二:一元二次方程的一般形式元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,bx是一次项,c是常数项,a是二次项系数,b是一次项系数,c是常数.任何一个一元二次方程都可以通过整理转化成一般形式.由此,对于一个方程从形式上,应先将这个方程进行整理,看是否符合ax2+bx+c=0(a≠0)的一般形式.其中,尤其注意a≠0的条件,有了a≠0的条件,就能说明ax2+bx+c=0是一元二次方程.若不能确定a≠0,并且b≠0,则需分类讨论:当a≠0时,它是一元二次方程;当a=0时,它是一元一次方程.针对练习3:答案:原方程化为一般形式是:5x2+8x-2=0(若写成-5x2-8x+2=0,则不符合人们的习惯),其中二次项是5x2,二次项系数是5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).点击三:一元二次方程的根的定义的意义一元二次方程的根的定义可以当作性质定理使用,即若有实数m是一元二次方程ax 2+bx +c =0(a ≠0)的根,则m 必然满足该方程,将m 代入该方程,便有am 2+bm +c =0(a ≠0);定义也可以当作判定定理使用,即若有数m 能使am 2+bm +c =0(a ≠0)成立,则m 一定是ax 2+bx +c =0的根.我们经常用定义法来解一些常规方法难以解决的问题,能收到事半功倍的效果.针对练习答案: m 3+2m 2+2009=m 3+ m 2+m 2+2009=m (m 2+ m )+ m 2+2009=m+ m 2+2009=1+2009=2010.类型之一:一元二次方程的定义例1.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件? 【解析】先把这个方程变为一般形式,只要二次项的系数不为0即可.【解答】由mx 2-3x=x 2-mx+2得到(m -1)x 2+(m -3)x -2=0,所以m -1≠0,即m≠1.所以关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足m≠1.【点评】要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.类型之二:考查一元二次方程一般形式一元二次方程的一般形式是ax 2+bx+c=0(a 、b 、c 是已知数,a≠0),其中a 叫做二次项系数,b 叫做一次项系数c 叫做常数项.只有将方程化为一般形式之后,才能确定它的二次项系数、一次项系数和常数项.这里特别要注意各项系数的符号。

(完整word版)一元二次方程100道计算题练习(附答案)

(完整word版)一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2-52=0 9、8(3 -x)2–72=010、3x (x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2—2x-4=0 24、x 2-3=4x28、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x —1)2+3(2x —1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5—x ) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)235、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2042=-x x 3(1)33x x x +=+x 2()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x —3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0。

一元二次方程单元试卷(word版含答案)

一元二次方程单元试卷(word版含答案)

一元二次方程单元试卷(word 版含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根.点P 从点A 出发,以每秒1个单位的速度沿△ABC 边 A →B →C →A 的方向运动,运动时间为t (秒).(1)求AB 与BC 的长;(2)当点P 运动到边BC 上时,试求出使AP 长为10时运动时间t 的值;(3)当点P 运动到边AC 上时,是否存在点P ,使△CDP 是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.【答案】(1) AB =3,BC =4;(2) t =4;(3) t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形. 【解析】试题分析:(1)解一元二次方程即可求得边长; (2)结合图形,利用勾股定理求解即可;(3)根据题意,分为:PC =PD ,PD =PC ,PD =CD ,三种情况分别可求解. 试题解析:(1)∵x 2-7x +12=(x -3)(x -4)=0 ∴1x =3或2x =4 . 则AB =3,BC =4(2)由题意得()223t-310?+=() ∴14t =,22t =(舍去) 则t =4时,AP 10.(3)存在点P ,使△CDP 是等腰三角形. ①当PC =PD =3时, t =3431++ =10(秒). ②当PD =PC(即P 为对角线AC 中点)时,AB =3,BC =4. 2234+=5,CP 1= 12AC =2.5 ∴t=34 2.51++ =9.5(秒)③当PD=CD=3时,作DQ⊥AC于Q.1341221552DQ⨯⨯==⨯,22129355PQ⎛⎫=-=⎪⎝⎭∴PC=2PQ=18 5∴183453515t++==(秒)可知当t为10秒或9.5秒或535秒时,△CDP是等腰三角形.2.(1)课本情境:如图,已知矩形AOBC,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q之间的距离是10cm;(2)逆向发散:当运动时间为2s时,P,Q两点的距离为多少?当运动时间为4s时,P,Q 两点的距离为多少?(3)拓展应用:若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12cm2?【答案】(1)85s或245s(2)62cm;213cm(3)4s或6s【解析】【分析】(1)过点P作PE⊥BC于E,得到AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,利用勾股定理得到方程,故可求解;(2)根据运动时间求出EQ、PE,利用勾股定理即可求解;(3) 分当点P在AO上时,当点P在OC上时和当点P在CB上时,根据三角形的面积公式列出方程即可求解.【详解】解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P 和点Q 之间的距离是10 cm , ∴62+(16﹣5t )2=100, 解得t 1=85,t 2=245, ∴t =85s 或245s . 故答案为85s 或245s(2)t=2时,由运动知AP =3×2=6 cm ,CQ =2×2=4 cm , ∴四边形APEB 是矩形, ∴PE =AB =6,BE =6,∴EQ =BC ﹣BE ﹣CQ =16﹣6﹣4=6, 根据勾股定理得PQ=2262PE EQ +=, ∴当t =2 s 时,P ,Q 两点的距离为62 cm ;当t =4 s 时,由运动知AP =3×4=12 cm ,CQ =2×4=8cm , ∴四边形APEB 是矩形, ∴PE =AB =6,BQ =8,CE=OP=4 ∴EQ =BC ﹣CE ﹣BQ =16﹣4﹣8=4, 根据勾股定理得PQ=22213PE EQ +=, P ,Q 两点的距离为213cm .(3)点Q 从C 点移动到B 点所花的时间为16÷2=8s , 当点P 在AO 上时,S △POQ =2PO CO ⋅=(163)62t -⋅=12, 解得t =4.当点P 在OC 上时,S △POQ =2PO CQ ⋅=(316)22t t-⋅=12, 解得t =6或﹣23(舍弃). 当点P 在CB 上时,S △POQ =2PQ CO ⋅=(2223)62t t +-⨯=12, 解得t =18>8(不符合题意舍弃),综上所述,经过4 s 或6 s 时,△POQ 的面积为12 cm 2. 【点睛】此题主要考查勾股定理的应用、一元二次方程与动点问题,解题的关键是熟知勾股定理的应用,根据三角形的面积公式找到等量关系列出方程求解.3.如图,在平面直角坐标系中,O 为原点,点A (0,8),点B (m ,0),且m >0.把△AOB 绕点A 逆时针旋转90°,得△ACD ,点O ,B 旋转后的对应点为C ,D , (1)点C 的坐标为 ;(2)①设△BCD 的面积为S ,用含m 的式子表示S ,并写出m 的取值范围; ②当S=6时,求点B 的坐标(直接写出结果即可).【答案】(1)C (8,8);(2)①S=0.5m 2﹣4m (m >8),或S=﹣0.5m 2+4m (0<m <8);②点B 的坐标为(7,0)或(2,0)或(6,0). 【解析】 【分析】(1)由旋转的性质得出AC =AO =8,∠OAC =90°,得出C (8,8)即可;(2)①由旋转的性质得出DC =OB =m ,∠ACD =∠AOB =90°,∠OAC =90°,得出∠ACE =90°,证出四边形OACE 是矩形,得出DE ⊥x 轴,OE =AC =8,分三种情况:a 、当点B 在线段OE 的延长线上时,得出BE =OB−OE =m−8,由三角形的面积公式得出S =0.5m 2−4m (m >8)即可;b 、当点B 在线段OE 上(点B 不与O ,E 重合)时,BE =OE−OB =8−m ,由三角形的面积公式得出S =−0.5m 2+4m (0<m <8)即可;c 、当点B 与E 重合时,即m =8,△BCD 不存在;②当S =6,m >8时,得出0.5m 2−4m =6,解方程求出m 即可; 当S =6,0<m <8时,得出−0.5m 2+4m =6,解方程求出m 即可. 【详解】(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:m=4±27(负值舍去),∴m=4+27;当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B的坐标为(4+27,0)或(2,0)或(6,0).【点睛】本题是三角形综合题目,考查了坐标与图形性质、旋转的性质、矩形的判定与性质、三角形面积公式、一元二次方程的解法等知识;本题综合性强,有一定难度.4.如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t 秒.(1)当 t 为何值时,△PBQ的面积等于 35cm2?(2)当 t 为何值时,PQ的长度等82cm?(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?【答案】(1)t为5或7;(2)t为45或4;(3)t为4或16【解析】【分析】(1)分别用含t的代数式表示PB,BQ的长,利用面积公式列方程求解即可.(2)分别用含t的代数式表示PB,BQ的长,利用勾股定理列方程求解即可.(3)分段要清楚,,P,Q都没有返回,表示好PB,CQ的长,用面积公式列方程,,P不返回,Q返回,表示好PB,CQ的长,用面积公式列方程,,两点都返回,表示好PB,CQ的长,用面积公式列方程即可得到答案.【详解】解:(1),.根据三角形的面积公式,得,即,整理,得,解得,.故当为5或7时,的面积等于35.(2)根据勾股定理,得,整理,得,解得,.故当为或4时,的长度等于.(3)①当时,,,由题意,得,解得:,(舍去).②当时,,,由题意,得,次方程无解.③当时,,,由题意,得,解得:(舍去),.综上所述,当为4或16时,的面积等于.【点睛】本题考查的是在运动过程中应用一元二次方程解决实际问题,建立正确情境下的几何模型是解决问题的关键,特别是最后一问,关键是弄懂分段的时间界点,才能正确的表示PB ,CQ 的长.5.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价? 【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件 【解析】 【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= , 解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=, 解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件. 【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.6.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%. ①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少? 【答案】(1)28(2)①76%②75,84% 【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg ); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x 千克,则 x{1﹣[60%+1.6%(90﹣x )]}=12, 整理得:x 2﹣65x ﹣750=0, (x ﹣75)(x+10)=0, 解得:x 1=75,x 2=﹣10(舍去), 60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用7.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.8.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点, ∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根. ∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0. 解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0. 则x 1+x 2=2k-1,x 1•x 2=k 2+1, ∵=== 32-,解得:k=-1或k= 13-(舍去), ∴k=﹣19.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】 【分析】(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案. 【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0, (x +3)(x ﹣4)=0, x +3=0或x ﹣4=0, ∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,, ∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0, 解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦, 把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9, 解得:a =﹣4,a =2(舍去), 所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.10.如图直线y =kx +k 交x 轴负半轴于点A ,交y 轴正半轴于点B ,且AB =2 (1)求k 的值;(2)点P 从A 出发,以每秒1个单位的速度沿射线AB 运动,过点P 作直线AB 的垂线交x 轴于点Q ,连接OP ,设△PQO 的面积为S ,点P 运动时间为t ,求S 与t 的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=7(BQ﹣OP),求此时直线PQ的解析式.【答案】(1)k32)当0<t<12时,S=12•OQ•P y=12(1﹣2t3=﹣323.当t>12时,S=12OQ•P y=12(2t﹣1)•32t=32t2﹣34t.(3)直线PQ的解析式为y 353.【解析】【分析】(1)求出点B的坐标即可解决问题;(2)分两种情形①当0<t<12时,②当t>12时,根据S=12OQ•P y,分别求解即可;(3)根据已知条件构建方程求出t,推出点P,Q的坐标即可解决问题.【详解】解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB223AB OA-=∴k3(2)如图,∵tan ∠BAO =3OB OA= ∴∠BAO =60°,∵PQ ⊥AB ,∴∠APQ =90°,∴∠AQP =30°,∴AQ =2AP =2t , 当0<t <12时,S =12•OQ •P y =12(1﹣2t 3323. 当t >12时,S =12OQ •P y =12(2t ﹣1)•32t =32t 2﹣34t . (3)∵OQ +AB 7(BQ ﹣OP ),∴2t ﹣1+22221373(21)(1)24t t t +--+ ∴2t +1271t t -+∴4t 2+4t +1=7t 2﹣7t +7,∴3t 2﹣11t +6=0,解得t =3或23(舍弃), ∴P (1233Q (5,0), 设直线PQ 的解析式为y =kx +b ,则有133250k b k b ⎧+=⎪⎨⎪+=⎩解得353k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线PQ 的解析式为33y x =-+. 【点睛】 本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题.。

《一元二次方程》基础练习含答案(5套)

《一元二次方程》基础练习含答案(5套)

《一元二次方程》基础知识反馈卡·第一份时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若(a-1)x2+bx+c=0是关于x的一元二次方程,则( )A.a≠0 B.a≠1C.a=1 D.a≠-12.一元二次方程2x2-(m+1)x+1=x(x-1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为( )A.-1 B.1 C.-2 D.2二、填空题(每小题4分,共12分)3.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=_______________.4.若关于x的方程mx2+(m-1)x+5=0有一个解为2,则m的值是______.5.把一元二次方程(x-3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________.三、解答题(共7分)6.已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.用配方法解方程x 2-23x -1=0,正确的配方为( )A.⎝ ⎛⎭⎪⎫x -132=89B.⎝ ⎛⎭⎪⎫x -232=59C.⎝ ⎛⎭⎪⎫x -132+109=0D.⎝⎛⎭⎪⎫x -132=1092.一元二次方程x 2+x +14=0的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定二、填空题(每小题4分,共12分)3.方程x 2-4x -12=0的解x 1=________,x 2=________. 4.x 2+2x -5=0配方后的方程为____________. 5.用公式法解方程4x 2-12x =3,得到x =________. 三、解答题(共7分)6.已知关于x 的一元二次方程x 2-mx -2=0.(1)对于任意实数m ,判断此方程根的情况,并说明理由; (2)当m =2时,求方程的根.时间:10分钟 满分:25分一、选择题(每小题3分,共6分) 1.一元二次方程x 2=3x 的根是( ) A .x =3 B .x =0C .x 1=0,x 2=3D .x 1=0,x 2=-32.方程4(x -3)2+x (x -3)=0的根为( )A .x =3B .x =125C .x 1=-3,x 2=125D .x 1=3,x 2=125二、填空题(每小题4分,共12分)3.方程x 2-16=0的解是____________.4.如果(m +n )(m +n +5)=0,则m +n =______. 5.方程x (x -1)=x 的解是________. 三、解答题(共7分)6.解下列一元二次方程:(1)2x 2-8x =0; (2)x 2-3x -4=0.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是( ) A.4 B.3 C.-4 D.-32.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,3二、填空题(每小题4分,共12分)3.已知一元二次方程的两根之和为7,两根之积为12,则这个方程为____________________.4.已知方程x2-3x+m=0的一个根是1,则它的另一个根是______,m的值是______.5.已知x1,x2是方程x2-3x-3=0的两根,不解方程可求得x21+x22=________.三、解答题(共7分)6.已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,求m的值.时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A.173(1+x%)2=127 B.173(1-2x%)=127C.173(1-x%)2=127 D.127(1+x%)2=1732.某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A.19% B.20% C.21% D.22%3.一个面积为120 cm2的矩形花圃,它的长比宽多2 m,则花圃的长是( ) A.10 m B.12 m C.13 m D.14 m二、填空题(每小题4分,共8分)4.已知一种商品的进价为50元,售价为62元,则卖出8件所获得的利润为__________元.5.有一个两位数等于其数字之和的4倍,其十位数字比个位数字小2,则这个两位数是________.三、解答题(共8分)6.某西瓜经营户以2元/千克的进价购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天赢利200元,应将每千克小型西瓜的售价降低多少元?参考答案基础知识反馈卡·21.11.B 2.B 3.2 4.-125.x 2-6x +4=0 x 2 -6 4 6.解:把x =-1代入原方程,得2m -1-3m +5=0,解得m =4. 基础知识反馈卡·21.2.1 1.D 2.B 3.6 -24.(x +1)2=6 5.3±2 326.解:(1)Δ=b 2-4ac =m 2+8, ∵对于任意实数m ,m 2≥0, ∴m 2+8>0.∴对于任意的实数m ,方程总有两个不相等的实数根.(2)当m =2时,原方程变为x 2-2x -2=0, ∵Δ=b 2-4ac =(-2)2-4×1×(-2)=12,∴x =2±122.解得x 1=1+3,x 2=1- 3. 基础知识反馈卡·21.2.2 1.C 2.D3. x =±44.0或-55.0或2 6.(1)x 1=0,x 2=4 (2)x 1=4,x 2=-1基础知识反馈卡·*21.2.3 1.B 2.A3.x 2-7x +12=0(答案不唯一) 4.2 2 5.156.解:∵方程有两个不相等的实数根,∴Δ>0.∴(2m -3)2-4m 2>0.解得m <34.∵1α+1β=1,即α+βαβ=1. ∴α+β=αβ.又α+β=-(2m -3),αβ=m 2. 代入上式,得3-2m =m 2. 解得m 1=-3,m 2=1.∵m 2=1>34,故舍去.∴m =-3.基础知识反馈卡·21.31.C 2.B 3.B 4.96 5.24 6.解:设每千克小型西瓜的售价降低x 元,根据题意,得(3-2-x )·⎝ ⎛⎭⎪⎫200+x0.1×40-24=200,整理,得50x -25x +3=0, 解得x 1=0.2,x 2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.。

一元二次方程练习复习题(含答案))

一元二次方程练习复习题(含答案))

一元二次方程复习课前练习1.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0D.x2﹣2y﹣1=02.关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m≤1B.m<1C.m≥1D.m>13.一元二次方程x2﹣6x﹣1=0配方后可变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x+3)2=8D.(x+3)2=104.方程x2+x=0的解是()A.x1=x2=0B.x1=x2=1C.x1=0,x2=1D.x1=0,x2=﹣15.已知关于x的方程x2﹣kx﹣6=0的一个根为x=﹣3,则实数k的值为()A.1B.﹣1C.2D.﹣26.我校图书馆三月份借出图书70本,计划四、五月份共借出图书220本,设四、五月份借出的图书每月平均增长率为x,则根据题意列出的方程是()A.70(1+x)2=220B.70(1+x)+70(1+x)2=220C.70(1﹣x)2=220D.70+70(1+x)+70(1+x)2=2207.下列一元二次方程没有实数根的是()A.x2+x+3=0B.x2+2x+1=0C.x2﹣2=0D.x2﹣2x﹣3=08.下列方程中,满足两个实数根的和等于3的方程是()A.2x2+6x﹣5=0B.2x2﹣3x﹣5=0C.2x2﹣6x+5=0D.2x2﹣6x﹣5=09.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为.10.如果关于x的方程2x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.11.已知关于x的一元二次方程mx2﹣2x+1=0有两个不相等的实数根,那么m的取值范围是.12.若关于x的方程kx2+4x﹣1=0有实数根,则k的取值范围是.13.已知关于x的一元二次方程(m﹣2)x2+x﹣1=0有两个不相等的实数根,则m的取值范围是.14.关于x的方程mx2﹣4mx+m+3=0有两个相等的实数根,那么m=.15.(1)x2+4x﹣5=0 (2)(10+x)(500﹣20x)=6000 (3)(72﹣55﹣y)(100+10y)=1800知识点一一元二次方程根与系数的关系笔记:例一.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.练习1.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.2.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.知识点二:一元二次方程的应用之面积问题例二.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m2?(2)能否使所围矩形场地的面积为810m2,为什么?练习1.兴隆镇某养鸡专业户准备建造如图所示的矩形养鸡场,要求长与宽的比为2:1,在养鸡场内,沿前侧内墙保留3m宽的走道,其他三侧内墙各保留1m宽的走道,当矩形养鸡场长和宽各为多少时,鸡笼区域面积是288m2?2.如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占的面积是图案面积的,则竖彩条宽度为多少?3.如图,有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门.(1)设花圃的宽AB为x米,请你用含x的代数式表示BC的长米;(2)若此时花圃的面积刚好为45m2,求此时花圃的宽.知识点四:一元二次方程的应用利润问题例4.某超市以3元/本的价格购进某种笔记本若干,然后以每本5元的价格出售,每天可售出20本.通过调查发现,这种笔记本的售价每降低0.1元,每天可多售出4本,为保证每天至少售出50本,该超市决定降价销售.(1)若将这种笔记本每本的售价降低x元,则每天的销售量是本;(用含x的代数式表示)(2)要想销售这种笔记本每天赢利60元,该超市需将每本的售价降低多少元?练习1.某商场将进价每件30元的衬衫以每件40元销售,平均每月可售出600件.为了增加盈利,商场采取涨价措施.若在一定范围内,衬衫的单价每涨1元,商场平均每月会少售出10件.为了实现平均每月10000元的销售利润,这种衬衫每件的价格应定为多少元?2.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.假设每台冰箱降价x元,(1)则每天能售出台.(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱降价多少元?3.为了让学生亲身感受常州城市的变化,正衡中学天宁分校组织九年级某班学生进行“太湖一日研学”活动.某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?知识点5因运动产生的一元二次方程的应用问题例5.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?练习.等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.一元二次方程复习参考答案与试题解析1.下列方程中,关于x的一元二次方程是(C)A.x2﹣x(x+3)=0 B.ax2+bx+c=0 C.x2﹣2x﹣3=0D.x2﹣2y﹣1=02.关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是(A)A.m≤1B.m<1C.m≥1D.m>13.一元二次方程x2﹣6x﹣1=0配方后可变形为(B)A.(x﹣3)2=8B.(x﹣3)2=10C.(x+3)2=8D.(x+3)2=104.方程x2+x=0的解是(D)A.x1=x2=0B.x1=x2=1C.x1=0,x2=1D.x1=0,x2=﹣15.已知关于x的方程x2﹣kx﹣6=0的一个根为x=﹣3,则实数k的值为(B)A.1B.﹣1C.2D.﹣26.我校图书馆三月份借出图书70本,计划四、五月份共借出图书220本,设四、五月份借出的图书每月平均增长率为x,则根据题意列出的方程是(B)A.70(1+x)2=220B.70(1+x)+70(1+x)2=220C.70(1﹣x)2=220D.70+70(1+x)+70(1+x)2=2207.下列一元二次方程没有实数根的是(A)A.x2+x+3=0B.x2+2x+1=0C.x2﹣2=0D.x2﹣2x﹣3=08.下列方程中,满足两个实数根的和等于3的方程是(D)A.2x2+6x﹣5=0B.2x2﹣3x﹣5=0C.2x2﹣6x+5=0D.2x2﹣6x﹣5=09.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为2020.10.如果关于x的方程2x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.11.已知关于x的一元二次方程mx2﹣2x+1=0有两个不相等的实数根,那么m的取值范围是m<1且m≠0.12.若关于x的方程kx2+4x﹣1=0有实数根,则k的取值范围是k≥﹣4.13.已知关于x的一元二次方程(m﹣2)x2+x﹣1=0有两个不相等的实数根,则m的取值范围是m且m ≠2.14.关于x的方程mx2﹣4mx+m+3=0有两个相等的实数根,那么m=1.15.(1)x2+4x﹣5=0 (2)(10+x)(500﹣20x)=6000 (3)(72﹣55﹣y)(100+10y)=1800∴x1=﹣5,x2=1;x=5或x=10,y1=2,y2=5.知识点一一元二次方程根与系数的关系笔记:例一.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【解答】(1)解:把x=1代入方程x2﹣(k+3)x+3k=0得1﹣k﹣3+3k=0,解得k=1;(2)证明:△=(k+3)2﹣4•3k=(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.练习1.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)△ABC是等腰三角形,理由:当x=﹣1时,(a+b)﹣2c+(b﹣a)=0,∴b=c,∴△ABC是等腰三角形,(2)△ABC是直角三角形,理由:∵方程有两个相等的实数根,∴△=(2c)2﹣4(a+b)(b﹣a)=0,∴a2+c2=b2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴a=b=c,∴原方程可化为:2ax2+2ax=0,即:x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,即:这个一元二次方程的根为x1=0,x2=﹣1.2.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.解:(1)因为一元二次方程x2+2x+2m=0有两个不相等的实数根,所以△=4﹣8m>0,解得:m<.故m的取值范围为m<.(2)根据根与系数的关系得:x1+x2=﹣2,x1•x2=2m,∵x12+x22=(x1+x2)2﹣2x1x2=4﹣4m=8,所以m=﹣1验证当m=﹣1时△>0..故m的值为m=﹣1.知识点二:一元二次方程的应用之面积问题例二.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m2?(2)能否使所围矩形场地的面积为810m2,为什么?解:(1)设所围矩形ABCD的长AB为x米,则宽AD为(80﹣x)米依题意,得x•(80﹣x)=750即,x2﹣80x+1500=0,得x1=30,x2=50∵墙的长度不超过45m,∴x2=50不合题意,应舍去当x=30时,(80﹣x)=×(80﹣30)=25,所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2(2)不能.因为由x•(80﹣x)=810得x2﹣80x+1620=0又∵b2﹣4ac=(﹣80)2﹣4×1×1620=﹣80<0,∴上述方程没有实数根因此,不能使所围矩形场地的面积为810m2练习1.兴隆镇某养鸡专业户准备建造如图所示的矩形养鸡场,要求长与宽的比为2:1,在养鸡场内,沿前侧内墙保留3m宽的走道,其他三侧内墙各保留1m宽的走道,当矩形养鸡场长和宽各为多少时,鸡笼区域面积是288m2?解:设鸡场的宽为xm,则长为2xm.(2x﹣4)(x﹣2)=288,(x﹣14)(x+10)=0,解得x=14,或x=﹣10(不合题意,舍去).∴2x=28.答:鸡场的长为28m,宽为14m2.如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占的面积是图案面积的,则竖彩条宽度为多少?解:设竖彩条的宽为xcm,则横彩条的宽为2xcm,则(30﹣2x)( 20﹣4x)=30×20×(1﹣),整理得:x2﹣20x+19=0,解得:x1=1,x2=19(不合题意,舍去).答:竖彩条的宽度为1cm.3.如图,有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门.(1)设花圃的宽AB为x米,请你用含x的代数式表示BC的长(24﹣3x)米;(2)若此时花圃的面积刚好为45m2,求此时花圃的宽.】解:(1)BC=22+2﹣3x=24﹣3x.(2)x(24﹣3x)=45,化简得:x2﹣8x+15=0,解得:x1=5,x2=3.当x=5时,24﹣3x=9<14,符合要求;当x=3时,24﹣3x=15>14,不符合要求,舍去.答:花圃的宽为5米.知识点四:一元二次方程的应用利润问题例4.某超市以3元/本的价格购进某种笔记本若干,然后以每本5元的价格出售,每天可售出20本.通过调查发现,这种笔记本的售价每降低0.1元,每天可多售出4本,为保证每天至少售出50本,该超市决定降价销售.(1)若将这种笔记本每本的售价降低x元,则每天的销售量是(20+40x)本;(用含x的代数式表示)(2)要想销售这种笔记本每天赢利60元,该超市需将每本的售价降低多少元?【解答】解:(1)将这种笔记本每本的售价降低x元,则每天的销售量是20+×4=20+40x(本);(2)设这种笔记本每本降价x元,根据题意得:(5﹣3﹣x)(20+40x)=60,2x2﹣3x+1=0,解得:x=0.5或x=1,当x=0.5时,销售量是20+40×0.5=40<50;当x=1时,销售量是20+40=60>50.∵每天至少售出50本,∴x=1.答:超市应将每本的销售价降低1元.练习1.某商场将进价每件30元的衬衫以每件40元销售,平均每月可售出600件.为了增加盈利,商场采取涨价措施.若在一定范围内,衬衫的单价每涨1元,商场平均每月会少售出10件.为了实现平均每月10000元的销售利润,这种衬衫每件的价格应定为多少元?【解答】解:设这种衬衫每件的价格应定为x元.根据题意,得(x﹣30)[600﹣(x﹣40)×10]=10000.解得x1=50,x2=80.答:这种衬衫每件的价格应定为 50 元或 80 元.2.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.假设每台冰箱降价x元,(1)则每天能售出(8+4×)台.(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱降价多少元?【解答】解:(1)根据题意,得(8+4×);(2)设出每台冰箱应降价x元,由题意得:(2400﹣2000﹣x)(8+×4)=4800,﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200元.∴每台冰箱应降价200元.3.为了让学生亲身感受常州城市的变化,正衡中学天宁分校组织九年级某班学生进行“太湖一日研学”活动.某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【解答】解:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设共有x名同学参加了研学游活动,由题意得:x[100﹣2(x﹣30)]=3150,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意;当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:共有35名同学参加了研学游活动.知识点5因运动产生的一元二次方程的应用问题例5.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?【解答】解:(1)设经过x秒,线段PQ能将△ABC分成面积相等的两部分由题意知:AP=x,BQ=2x,则BP=6﹣x,∴(6﹣x)•2x=××6×8,∴x2﹣6x+12=0,∵b2﹣4ac<0,此方程无解,∴线段PQ不能将△ABC分成面积相等的两部分;(2)设t秒后,△PBQ的面积为1①当点P在线段AB上,点Q在线段CB上时此时0<t≤4(6﹣t)(8﹣2t)=1,整理得:t2﹣10t+23=0,解得:t1=5+(不合题意,应舍去),t2=5﹣,②当点P在线段AB上,点Q在线段CB的延长线上时此时4<t≤6,由题意知:(6﹣t)(2t﹣8)=1,整理得:t2﹣10t+25=0,解得:t1=t2=5,③当点P在线段AB的延长线上,点Q在线段CB的延长线上时此时t>6,(t﹣6)(2t﹣8)=1,整理得:t2﹣10t+23=0,解得:t1=5+,t2=5﹣,(不合题意,应舍去),综上所述,经过5﹣秒、5秒或5+秒后,△PBQ的面积为1.练习.等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.【解答】解:(1)当t<10秒时,P在线段AB上,此时CQ=t,PB=10﹣t∴当t>10秒时,P在线段AB得延长线上,此时CQ=t,PB=t﹣10∴(4分)(2)∵S△ABC=(5分)∴当t<10秒时,S△PCQ=整理得t2﹣10t+100=0无解(6分)当t>10秒时,S△PCQ=整理得t2﹣10t﹣100=0解得t=5±5(舍去负值)(7分)∴当点P运动秒时,S△PCQ=S△ABC(8分)(3)当点P、Q运动时,线段DE的长度不会改变.证明:过Q作QM⊥AC,交直线AC于点M易证△APE≌△QCM,∴AE=PE=CM=QM=t,∴四边形PEQM是平行四边形,且DE是对角线EM的一半.又∵EM=AC=10∴DE=5∴当点P、Q运动时,线段DE的长度不会改变.同理,当点P在点B右侧时,DE=5综上所述,当点P、Q运动时,线段DE的长度不会改变.。

初中数学-一元二次方程复习题及答案

初中数学-一元二次方程复习题及答案

初中数学-一元二次方程复习题及答案一元二次方程1.一元二次方程 x(x-1)=0 的解是(B)x=1.2.用配方法解一元二次方程 x-4x=5 的过程中,配方正确的是(D)(x-2)2=9.3.如果关于 x 的一元二次方程 x2+px+q=0 的两根分别为x1=2,x2=1,那么 p,q 的值分别是(A)-3,2.4.若分式 (x-3)/(x-3) 为零,则 x 的值为(A)3.5.已知 3 是关于 x 的方程 x2-5x+c=0 的一个根,则这个方程的另一个根是(B)-1.6.若 a+b+c=0,则关于 x 的一元二次方程 ax2+bx+c=0(a≠0)有一根是(C)2.7.方程 2x(x-1)=x-1 的解是(A)x1=1.8.关于 x 的一元二次方程 x+(m-2)x+m+1=0 有两个相等的实数根,则 m 的值是(D)-3.9.如果 x2+x-1=0,那么代数式 x3+2x2-7 的值是(B)8.10.已知关于 x 的一元二次方程 (a-1)x2-2x+1=0 有两个不相等的实数根,则 a 的取值范围为(C)a<2且a≠1.11.三角形两边的长是 3 和 4,第三边的长是方程 x2-12x+35 的根,则该三角形的周长为(A)14.填空题12.方程 (x-1)2=4 的解是 3.1.若$x=2$是关于$x$的方程$x-x-a+5=0$的一个根,则$a$的值为______.2.已知关于$x$的一元二次方程的一个根是1,写出一个符合条件的方程:3.某城市居民最低生活保障在20XX年是240元,经过连续两年的增加,到20XX年提高到345.6元,则该城市两年来最低生活保障的平均年增长率是_______________.17.已知2是关于$x$的一元二次方程$x^2+4x-p=0$的一个根,则该方程的另一个根是______.18.如果关于$x$的方程$x^2-2x+m=0$有两个相等实数根,那么$m$=______.19.已知一元二次方程$x^2-6x-5=0$的两根为$a$、$b$,则$\frac{a+b}{ab}$的值是______.20.解下列方程:1)$2x-2x-2=0$;2)$(x-3)^2+4x(x-3)=0$.21.已知$|a-1|+b+2=0$,求方程$\frac{a}{x}+bx=1$的解.22.已知关于$x$的一元二次方程$x+kx-1=0$:1)求证:方程有两个不相等的实数根;2)设方程的两根分别为$x_1$,$x_2$,且满足$x_1+x_2=x_1x_2$,求$k$的值.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.20XX年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到20XX年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.1)求每年市政府投资的增长率;2)若这两年内的建设成本不变,求到20XX年底共建设了多少万平方米廉租房.24.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价$x$元.据此规律,请回答:1)商场日销售量增加$2x+60$件,每件商品盈利$50-x$元;2)在上述条件不变、销售正常情况下,每件商品降价$10$元时,商场日盈利可达到2100元.25.由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的$80\%$.经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元.1.求4月初猪肉价格下调后每斤多少元?答:4月初猪肉价格下调后每斤10元。

一元二次方程经典复习题(含答案)

一元二次方程经典复习题(含答案)
(1)求通道的宽度;
(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.
A.2秒钟B.3秒钟C.4秒钟D.5秒钟
6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为( )
A.x(x+12)=210B.x(x﹣12)=210
C.2x+2(x+12)=210D.2x+2(x﹣12)=210
7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是( )
一元二次方程测试题
考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育
题号



总分
得分
第Ⅰ卷(选择题)
评卷人
得分
一.选择题(共12小题,每题3分,共36分)
1.方程x(x﹣2)=3x的解为( )
A.x=5B.x1=0,x2=5C.x1=2,x2=0D.x1=0,x2=﹣5
2.下列方程是一元二次方程的是( )
A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0D.(x﹣1)2+1=0
3.关于x的一元二次方程x2+a2﹣1=0的一个D.3
4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是( )

(完整版)九年级数学中考复习专题一元二次方程练习题及答案

(完整版)九年级数学中考复习专题一元二次方程练习题及答案

中考数学复习专题一元二次方程一、选择题:1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于()A.﹣2 B.2 C.﹣2或2 D.02、方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=43、关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于()A.1 B.2 C.1或2 D.04、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1965、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>16、关于x的一元二次方程x2+2x﹣m=0有两个实数根,则m的取值范围是( )A.m≥﹣1 B.m>﹣1 C.m≤﹣1且m≠0 D.m≥﹣1且m≠07、已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为() A.﹣10 B.4 C.﹣4 D.108、若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn的值是()A.﹣7 B.7 C.3 D.﹣39、有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x值为() A.5 B.6 C.7 D.810、毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为()A.5人 B.6人 C.7人 D.8人11、某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计今年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)212、设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为()二、填空题:13、方程2x2﹣1=的二次项系数是,一次项系数是,常数项是.14、若关于x的方程(a+3)x|a|-1-3x+2=0是一元二次方程,则a的值为________________.15、把方程(2x+1)(x—2)=5-3x整理成一般形式后,得,其中二次项系数是,一次项系数是,常数项是。

一元二次方程50题 参考答案与试题解析

一元二次方程50题  参考答案与试题解析

一元二次方程参考答案与试题解析一.解答题(共50小题)1.【分析】方程变形后,开方即可求出解.【解答】解:(2x﹣1)2﹣121=0,(2x﹣1)2=121,2x﹣1=±11,2x=±11+1.∴x1=6,x2=﹣5.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解本题的关键.2.【分析】根据直接开平方法可以解答此方程.【解答】解:∵(x﹣2)2﹣9=0,∴(x﹣2)2=9,∴x﹣2=±3,∴x﹣2=3或x﹣2=﹣3,解得,x1=5,x2=﹣1.【点评】本题考查解一元二次方程﹣直接开平方法,解答本题的关键是明确解一元二次方程的方法.3.【分析】(1)利用直接开平方法求解可得;(2)先整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵4(x﹣5)2=16,∴(x﹣5)2=4,∴x﹣5=2或x﹣5=﹣2,解得x1=7,x2=3;(2)将方程整理为一般式,得:x2+2x﹣8=0,∴(x+4)(x﹣2)=0,则x+4=0或x﹣2=0,解得x1=﹣4,x2=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.【分析】利用直接开平方法求解可得.【解答】解:∵(x﹣1)2=3,∴x﹣1=±,解得:,.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.【分析】首先两边直接开平方可得2x﹣3=±5,再解一元一次方程即可.【解答】解:两边直接开平方得:2x﹣3=±5,则2x﹣3=5,2x﹣3=﹣5,故x=4,x=﹣1.【点评】此题主要考查了直接开平方法解一元一次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.6.【分析】先两边开方得到2x﹣1=±(3﹣x),然后解两个一次方程即可.【解答】解:2x﹣1=±(3﹣x),2x﹣1=3﹣x或2x﹣1=﹣3+x,所以x1=,x2=﹣2.【点评】本题考查了解一元二次方程﹣直接开平方的方法:形如x2=p或(nx+m)2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.7.【分析】(1)利用直接开平方法求解可得;(2)先将方程整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵121x2﹣25=0,∴121x2=25,则x2=,∴x1=,x2=﹣;(2)将方程整理为一般式得x2+2x﹣3=0,∴(x﹣1)(x+3)=0,则x﹣1=0或x+3=0,解得x1=1,x2=﹣3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8.【分析】先把给出的方程进行整理,再利用直接开方法求出解即可.【解答】解:(y+2)2﹣6=0,(y+2)2=12,y+2=±2,y1=2﹣2,y2=﹣2﹣2.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握各种解法是解本题的关键.9.【分析】移项后利用直接开平方法求解可得.【解答】解:∵y2﹣4=0,∴y2=4,则y1=2,y2=﹣2.【点评】本题主要考查解一元二次方程﹣直接开平方法,形如x2=p或(nx+m)2=p(p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.10.【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)(x+1)2=5,x+1=±,解得:x1=﹣1+,x2=﹣1﹣;(2)去分母得:3﹣(x+2)(1﹣x)=x2﹣4,整理得:3+x2+x﹣2=x2﹣4,即x=﹣5,经检验:x=﹣5是原方程的根.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.【分析】(1)利用直接开平方法解方程;(2)先去分母,把分式方程化为3+x﹣5(x﹣1)=﹣2x,然后解整式方程后进行检验确定原方程的解.【解答】解:(1)x+1=±2,所以x1=1,x2=﹣3;(2)解方程两边同乘(x﹣1)得3+x﹣5(x﹣1)=﹣2x,解这个方程得x=4.检验:当x=4时,x﹣1≠0,所以x=4是原方程的解.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.也考查了解分式方程.12.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程利用完全平方公式变形,开方即可求出解.【解答】解:(1)两边都乘以(x+3)(x﹣1),得:(x﹣1)2﹣2(x+3)=(x﹣1)(x+3),整理得:x2﹣2x+1﹣2x﹣6=x2+2x﹣3解得,x=﹣,检验:当x=﹣时,(x+3)(x﹣1)≠0,所以,原分式方程的解为x=﹣;(2)方程两边同除以2,变形得x2﹣2x=,配方,得x2﹣2x+1=+1,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了解分式方程,以及解一元二次方程,熟练掌握运算方法是解本题的关键.13.【分析】(1)先把各二次根式化为最简二次根式,然后进行二次根式的乘法运算即可;(2)利用配方法得到(x﹣2)2=3,然后利用直接开平方法解方程.【解答】解:(1)原式=4﹣2+×3=2+;(2)x2﹣4x=﹣1,x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了二次根式的混合运算.14.【分析】(1)方程利用配方法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程整理得:x2+4x=1,配方得:x2+4x+4=5,即(x+2)2=5,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)去分母得:2x2﹣x+5=2x2﹣10x,解得:x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,熟练掌握各自的解法是解本题的关键.15.【分析】(1)方程利用直接开平方法求出解即可;(2)方程利用配方法求出解即可.【解答】解:(1)方程整理得:x2=9,开方得:x=±3,解得:x1=3,x2=﹣3;(2)方程整理得:x2﹣4x=1,配方得:x2﹣4x+4=5,即(x﹣2)2=5,开方得:x﹣2=±,解得:x1=2+,x2=2﹣.【点评】此题考查了解一元二次方程﹣配方法,以及直接开平方法,熟练掌握各种解法是解本题的关键.16.【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1,即x1=1+,x2=1﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17.【分析】首先展开化为x2﹣6x+9=0,再配方后开方计算即可求解.【解答】解:(x﹣4)(x﹣2)+1=0,方程化为x2﹣6x+9=0,(x﹣3)2=0,解得x1=x2=3.【点评】本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.【分析】(1)方程利用配方法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程整理得:x2﹣6x=﹣4,配方得:x2﹣6x+9=5,即(x﹣3)2=5,开方得:x﹣3=±,解得:x1=3+,x2=3﹣;(2)去分母得:5x+10=6x﹣3,解得:x=13,经检验x=13是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,熟练掌握完全平方公式是解本题的关键.19.【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x2﹣8x+11=0,∴x2﹣8x=﹣11,则x2﹣8x+16=﹣11+16,即(x﹣4)2=5,∴x﹣4=±,∴x=4±.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【分析】(1)利用配方法求解可得;(2)根据解分式方程的步骤依次计算可得.【解答】解:(1)∵x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,即(x﹣4)2=15,则x﹣4=±,∴x=4;(2)两边都乘以x﹣2,得:3+1﹣x=x﹣2,解得x=3,经检验x=3是原分式方程的解.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【分析】(1)利用解一元二次方程的方法﹣直接开平方法解方程即可;(1)先移项得x2﹣4x=3,再把方程两边加上4得到x2﹣4x+4=3+4,即(x﹣2)2=7,然后利用直接开平方法求解;【解答】解:(1)(2x+3)2=9,∴2x+3=±3,∴2x+3=3或2x+3=﹣3,∴x1=0,x2=﹣3;(2)x2﹣4x﹣3=0,移项得,x2﹣4x=3,方程两边加上4得,x2﹣4x+4=7,配方得,(x﹣2)2=7,∴x﹣2=±,∴x1=2+,x2=2﹣.【点评】本题考查的是一元二次方程的解法,掌握配方法、因式分解法、公式法解一元二次方程的一般步骤是解题的关键.22.【分析】(1)利用配方法求解可得;(2)整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x=1,∴x2﹣2x+1=1+1,即(x﹣1)2=2,则x﹣1=±,∴x=1;(2)方程整理为一般式,得:x2﹣4x﹣12=0,∵(x+2)(x﹣6)=0,∴x+2=0或x﹣6=0,解得x=﹣2或x=6.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.【分析】利用配方法求解可得.【解答】解:∵2x2﹣4x=8,∴x2﹣2x=4,则x2﹣2x+1=4+1,即(x﹣1)2=5,∴x﹣1=,则x1=+1,x2=+1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.【分析】方程变形后,利用配方法求出解即可.【解答】解:方程变形得:x2﹣4x=5,即x2﹣4x+4=9,变形得:(x﹣2)2=9,开方得:x﹣2=3或x﹣2=﹣3,解得:x1=5,x2=﹣1.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.25.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2+2x=1,配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.26.【分析】方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【解答】解:方程移项得:3x2﹣6x=﹣1,即x2﹣2x=﹣,配方得:(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.27.【分析】把常数项2移项后,应该在左右两边同时加上一次项系数﹣5的一半的平方.【解答】解:把方程x2﹣5x+2=0的常数项移到等号的右边,得x2﹣5x=﹣2,方程两边同时加上一次项系数一半的平方,得x2﹣5x+(﹣)2=﹣2+(﹣)2,配方,得(x﹣)2=.开方,得x﹣=±,解得x1=,x2=.【点评】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.28.【分析】先进行移项,然后系数化1,再进行配方,即可求出答案.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方x2﹣x+()2=﹣+()2,(x﹣)2=,由此可得x ﹣=,x 1=1,x 2=.【点评】本题考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.29.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:配方得x 2﹣4x +4=1+4,即(x ﹣2)2=5,开方得x ﹣2=±,∴x 1=2+,x 2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型,方程两边同时除以二次项系数,即化成x 2+px +q =0,然后配方.30.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x 2﹣4x =3,配方得x 2﹣4x +4=3+4,即(x ﹣2)2=,开方得x ﹣2=±,∴x 1=2+,x 2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型,方程两边同时除以二次项系数,即化成x 2+px +q =0,然后配方.31.【分析】先利用配方法将原式化为完全平方的形式,再用直接开平方法解答.【解答】解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x1=﹣2+;x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣﹣配方法,熟悉完全平方公式是解题的关键.32.【分析】在本题中,把常数项﹣4移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.【点评】本题考查了一元二次方程的解法﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.33.【分析】解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.然后利用直接开平方法即可求解.【解答】解:2x2﹣4x﹣1=0x2﹣2x﹣=0x2﹣2x+1=+1(x﹣1)2=∴x1=1+,x2=1﹣.【点评】用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.34.【分析】先将已知方程转化为一般式,然后根据求根公式解答.【解答】解:由原方程,得x2+2x+2=0.这里a=1,b=2,c=2.∵△=b2﹣4ac=(2)2﹣4×1×2=0.∴x==﹣.即x1=x2=﹣.【点评】本题主要考查了解一元二次方程﹣公式法.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.35.【分析】整理后求出b2﹣4ac的值,再代入公式求出即可,也可以用因式分解法求解.【解答】解:方法一、整理得:x2+3x+2=0,b2﹣4ac=32﹣4×1×2=1,x=,x1=﹣1,x2=﹣2;方法二、整理得:x2+3x+2=0,(x+1)(x+2)=0,x+1=0,x+2=0,x1=﹣1,x2=﹣2.【点评】本题考查了解一元二次方程,能熟记公式是解此题的关键.36.【分析】(1)利用配方法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵x2+2x=29,∴x2+2x+1=29+1,即(x+1)2=30,则x+1=±,∴x1=﹣1+,x2=﹣1﹣;(2)∵a=2,b=﹣,c=﹣1,∴△=(﹣)2﹣4×2×(﹣1)=10>0,则x=,即x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.37.【分析】首先找出a、b、c的值,计算根的判别式,进一步利用求根公式求得答案即可.【解答】解:x2+4x﹣5=0,∵a=1,b=4,c=﹣5,∴△=b2﹣4ac=42﹣4×1×(﹣5)=36,则x==,解得x1=﹣5,x2=1.【点评】此题考查用公式法解一元二次方程,掌握用公式法解方程的步骤与方法是解决问题的关键.38.【分析】(1)直接开平方法求解可得;(2)根据公式法求解可得.【解答】解:(1)(x﹣1)2=4,x﹣1=±2,解得x1=﹣1,x2=3;(2)x2﹣x﹣1=0,∵a=1,b=﹣,c=﹣1,∴△=3﹣4×1×(﹣1)=7>0,x=,解得x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.39.【分析】先进行整理,再根据公式法求解可得.【解答】解:x2﹣4=6(x+2).整理得x2﹣6x﹣16=0,∵a=1,b=﹣6,c=﹣16,∴△=36﹣4×1×(﹣16)=100>0,x==3±5,解得x1=﹣2,x2=8.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.40.【分析】(1)利用直接开平方法求解可得;(2)利用配方法求解可得.【解答】解:(1)方程两边除以2,得:(x﹣1)2=9,则x﹣1=3或x﹣1=﹣3,则x1=4,x2=﹣2;(2)原方程可整理为:x2﹣4x﹣1=0,∵a=1,b=﹣4,c=﹣1,∴△=(﹣4)2﹣4×1×(﹣1)=20>0,则x==2,解得:x1=2+,x2=2﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.41.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣4,c=﹣7,∴△=(﹣4)2﹣4×1×(﹣7)=44>0,则x==2,即x1=2+,x2=2﹣;(2)∵3x(2x+1)=2(2x+1),∴3x(2x+1)﹣2(2x+1)=0,则(2x+1)(3x﹣2)=0,∴2x+1=0或3x﹣2=0,解得x1=﹣,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.42.【分析】(1)利用直接开平方法求解可得;(2)整理为一般式,再利用公式法求解可得.【解答】解:(1)∵(x﹣3)2﹣4=0,∴(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,解得x1=5,x2=1;(2)将方程整理为一般式,得:x2﹣3x﹣1=0,∵a=1,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×1×(﹣1)=13>0,则x=,即x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.43.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣8,c=3,∴△=(﹣8)2﹣4×1×3=52>0,∴x==4,即x1=4+,x2=4﹣;(2)方程整理为一般式,得:2x2﹣7x=0,则x(2x﹣7)=0,∴x=0或2x﹣7=0,解得x1=0,x2=3.5.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.44.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1;(2)∵3x(2x+3)=2(2x+3),∴3x(2x+3)﹣2(2x+3)=0,∴(2x+3)(3x﹣2)=0,则2x+3=0或3x﹣2=0,解得x=﹣或x=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.45.【分析】(1)直接利用配方法解方程得出答案;(2)直接利用提取公因式法解方程进而得出答案.【解答】解:(1)x2﹣6x=﹣7,则x2﹣6x+9=﹣7+9,故(x﹣3)2=2x﹣3=±,解得:x1=3+,x2=3﹣;(2)x(x﹣2)=6﹣3xx(x﹣2)﹣3(2﹣x)=0,(x﹣2)(x+3)=0,则x﹣2=0或x+3=0,解得:x1=2,x2=﹣3.【点评】此题主要考查了配方法以及因式分解法解方程,正确掌握解题方法是解题关键.46.【分析】(1)利用直接开平方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣9=0,∴x2=9,则x1=3,x2=﹣3;(2)∵x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,则x+1=0或x﹣3=0,解得x1=﹣1,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.47.【分析】(1)先整理为一般式,再利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)将方程整理为一般式为5x2﹣4x﹣1=0,则(x﹣1)(5x+1)=0,∴x﹣1=0或5x+1=0,解得x1=1,x2=﹣0.2;(2)∵x(x﹣2)=3x﹣6,∴x(x﹣2)﹣3(x﹣2)=0,则(x﹣2)(x﹣3)=0,∴x﹣2=0或x﹣3=0,解得x1=2,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.48.【分析】利用因式分解法或直接开平方法求解可得.【解答】解:方法一:∵(2x+3)2=(x﹣1)2,∴2x+3=x﹣1或2x+3=1﹣x,解得x1=﹣4,x2=﹣.方法二:∵(2x+3)2=(x﹣1)2,∴(2x+3)2﹣(x﹣1)2=0,则(2x+3+x﹣1)(2x+3﹣x+1)=0,∴3x+2=0或x+4=0,解得:x1=﹣4,x2=﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.49.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x﹣8=0,∴x2+4x=8,则x2+4x+4=8+4,即(x+2)2=12,∴x+2=±2,∴x1=﹣2+2,x2=﹣2﹣2;(2)∵(x﹣3)2=5(x﹣3),∴(x﹣3)2﹣5(x﹣3)=0,则(x﹣3)(x﹣3﹣5)=0,∴x﹣3=0或x﹣8=0,解得x1=3,x2=8.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.50.【分析】(1)先把方程化为整式方程3(x+3)=5(x+1),再解整式方程,然后进行检验确定原方程的解;(2)先把方程化为整式方程5﹣2(x+1)=2x,再解整式方程,然后进行检验确定原方程的解.(3)先利用配方法得到(x﹣2)2=5,然后利用直接开平方法解方程;(4)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)去分母得3(x+3)=5(x+1),解得x=2,经检验,原方程的解为x=2;(2)去分母得5﹣2(x+1)=2x,解得x=,经检验,原方程的解为x=;(3)x2﹣4x+4=5,(x﹣2)2=5,x﹣2=±,所以x1=2+,x2=2﹣;(4)x2+x﹣6=0,(x+3)(x﹣2)=0,x+3=0或x﹣2=0,所以x1=﹣3,x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程和解分式方程.。

一元二次方程200题(含答案详解)

一元二次方程200题(含答案详解)
一元二次方程 200 题(含解析)---朱韬老师共享
一元二次方程:
填空:
1.ቤተ መጻሕፍቲ ባይዱ元二次方程 x2﹣3x=4 中,b2﹣4ac=

2.一元二次方程 x(x﹣1)=0 的解是

3.若 x=2 是关亍 x 的方程 x2﹣x﹣a2+5=0 的一个根,则 a 的值为

4.如果二次三项式 x2﹣6x+m2是一个完全平方式,那么 m 的值为

32.方程(x﹣1)2=4 的解为

33.一元二次方程 x2=16 的解是

34.在实数范围内定义运算“☆”,其觃则为:a☆b=a2﹣b2,则方程(4☆3)
☆x=13 的解为 x=

35.将 4 个数 a,b,c,d 排成 2 行、2 列,两边各加一条竖直线记成 ,定
义 =ad﹣bc,上述记号就叫做 2 阶行列式.若

16.若 x=1 是一元二次方程 x2+x+c=0 的一个解,则 c2=

17.已知 x=1 是关亍 x 的一元二次方程 2x2+kx﹣1=0 的一个根,则实数 k 的
值是

18.已知关亍 x 的方程 x2﹣5x+m=0 的一个根是 1,则 m 的值是

19.已知 x=1 是方程 ax2+x﹣2=0 的一个根,则 a=
5.一个广告公司制作广告的收费标准是:以面积为单位,在丌超过觃定面积 A
(m2)的范围内,每张广告收费 1 000 元,若超过 Am2,则除了要交返 1 000
元的基本广告费以外,超过部分迓要按每平方米 50A 元缴费.下表是该公司对
两家用户广告的面积及相应收费情况的记载:

一元二次方程单元复习练习(Word版 含答案)

一元二次方程单元复习练习(Word版 含答案)
由(1)知,点A,B分别在反比例函数 (x<0), (x>0)的图象上,
∴S△ACO= × =1 ,S△ODB= ×3= .∵∠AOB=90°,
∴∠AOC+∠BOD=90°,∵∠AOC+∠OAC=90°,∴∠OAC=∠BOD.
又∵∠ACO=∠ODB=90°,∴△ACO∽△ODB.
∴ = = ,∴ =± (舍负取正),即 = .
(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;
②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.
试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);
(2)①60%+1.6%(90﹣80)=76%;
②设润滑用油量是x千克,则
∴在Rt△AOB中,tan∠OBA= = .
4.已知关于x的一元二次方程 有两个实数根.
求k的取值范围;
设方程两实数根分别为 , ,且满足 ,求k的值.
【答案】(1) ;(2) .
【解析】
【分析】
根据方程有实数根得出 ,解之可得.
利用根与系数的关系可用k表示出 和 的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍.
2009年底汽车数量为14.4×90%+y,
2010年底汽车数量为(14.4×90%+y)×90%+y,
∴(14.4×90%+y)×90%+y≤15.464,
∴y≤2.
答:每年新增汽车数量最多不超过2万辆.
考点:一元二次方程—增长率的问题
2.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x 32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程()+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x -= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______. 10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________. 14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y 2+1=; (3)(x-a)2=1-2a+a 2(a 是常数)18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗? 19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根. (2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值. 四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD 二、9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k =四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程测试题考试范围:一元二次方程;考试时间:100分钟;命题人:刘笑天题号一二三总分得分第I卷(选择题)评卷人得分一•选择题(共12小题)1 •方程x (X-2) =3x的解为( )A. x=5B. x i=0, X2=5C. X I=2, X2=0D. x i=0, X2= - 52•下列方程是一元二次方程的是( )A. ax2+bx+c=0B. 3x2- 2x=3 (x2- 2)C. x3- 2x- 4=0D. (x - 1) 2+仁03. 关于x的一元二次方程x2+a2-仁0的一个根是0,则a的值为( )A. - 1B. 1C. 1 或-1D. 34. 某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为X,则下列方程中正确的是( )A. 12 (1+x) =17B. 17 (1 - x) =12C. 12 (1+x) 2=17D. 12+12 (1+x) +12 (1+x) 2=175. 如图,在△ ABC中,/ ABC=90, AB=8cm, BC=6cm 动c点P,Q分别从点A,B同时开始移动,点P的速度为1cm/」秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P -也随之停止运动.下列时间瞬间中,能使△PBQ的面积为-二、 _15cm2的是( )A. 2秒钟B. 3秒钟C. 4秒钟D. 5秒钟6. 某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为( )A. x (x+12) =210B. x (x- 12) =210C. 2x+2 (x+12) =210D. 2x+2 (x- 12) =2107. —元二次方程x2+bx- 2=0中,若b v0,则这个方程根的情况是( )A •有两个正根 B.有一正根一负根且正根的绝对值大C•有两个负根D.有一正根一负根且负根的绝对值大8. X1, X2是方程x2+x+k=0的两个实根,若恰X i2+X i x?+X22=2k2成立,k的值为()A.- 1B.丄或-1C. —D.-丄或12 2 29. 一元二次方程ax2+bx+c=0中,若a>0, b v0, c v0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10. 有两个一元二次方程:M : ax2+bx+c=0; N:cx2+bx+a=0,其中a- C M0,以下列四个结论中,错误的是()A. 如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B. 如果方程M有两根符号相同,那么方程N的两根符号也相同C. 如果5是方程M的一个根,那么二是方程N的一个根5D. 如果方程M和方程N有一个相同的根,那么这个根必是x=111. 已知m, n是关于x的一元二次方程x2- 2tx+t2- 2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A. 7B. 11C. 12D. 1612. 设关于x的方程ax2+ (a+2)x+9a=0,有两个不相等的实数根X1、比,且X1< 1 v X2,那么实数a的取值范围是()A,虫岳B. ^<1C D.岳心第U卷(非选择题)评卷人得分二.填空题(共8小题)13 .若X1, X2是关于x的方程x2- 2x- 5=0的两根,则代数式X12- 3x1 - X2- 6的值是____________14. 已知X1 ,X2是关于x的方程x2+ax- 2b=0的两实数根,且X1 +X2= - 2,X1 ?X2=1,则b a的值是_______.15. 已知2x|m|-2+3=9是关于x的一元二次方程,则m= ________ . 题答内线订装在要不请16 .已知x2+6x=- 1可以配成(x+p)2=q的形式,贝U q= _____ 17.已知关于x 的一元二次方程(m - 1)x2- 3x+1=0有两个不相等的实数根,且关于x的不等式组T<0的解集是J+4>3(I+2)xv- 1,则所有符合条件的整数m的个数是18 .关于x的方程(m - 2)«+2x+1=0有实数根,则偶数m的最大值为 ____19 .如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 ___________ 米.20. 如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2- 2x+kb+仁0的根的判别式△ ________ 0(填:、”或“我V”.评卷人得分三.解答题(共8小题)21. 解下列方程.(1)x2- 14x=8 (配方(2) x2-7x- 18=0 (公式法) (3) (2x+3) 2=4 (2x+3)(因式分解法) (4) 2 (x- 3) 2=x2- 9.22. 关于x的一元二次方程(m - 1)x2-x- 2=0(1)若x=- 1是方程的一个根,求m的值及另一个根.23. 关于x的一元二次方程(a- 6) x2- 8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2-込-7的值.X2-8X+L124. 关于x的方程x2-( 2k- 3) x+k2+1=0有两个不相等的实数根X i、X2.(1)求k的取值范围;(2)若x i x2+| x i|+| X2| =7,求k 的值.25. 某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.题答内线订装在要不请26. 如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为 1500 平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知 长方形空地的长为60米,宽为40米. (1) 求通道的宽度; (2) 晨光园艺公司承揽了该小区草坪的种植工程, 四季青”的单价是30元/平方米,超过50平方米后, 每多出5平方米,所有 四季青”的种植单价可降低 元,但单价不低于20元/平方米,已知小区种植 四季 青”的面积超过了 50平方米,支付晨光园艺公司种植 元,求种植 四季青”的面积. 27. 某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是 3元; 信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的 2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了 12元. 请根据以上信息,解答下列问题: (1) 求甲、乙两种商品的零售单价; (2) 该商店平均每天卖出甲乙两种商品各 500件,经调查发现,甲种商品 零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品 的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当 m 为多少 时,商店每天销售甲、乙两种商品获取的总利润为 1000元? 计划种植四季青”和黑麦草”两种绿草,该公司种植 四季青”的费用为200028 .已知关于x的一元二次方程x2-(m+6) x+3m+9=0的两个实数根分别为X1, X2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4 (X1+X2)- X1X2,判断动点P ( m, n)所形成的函数图象是否经过点A(1, 16),并说明理由.题答内线订装在要不请O O 线线O O 订号考订O 级班O 名姓装校学装O O外内O O试卷第8页,总7页试卷第9页,总7页2018年02月28 日刘笑天的初中数学组卷参考答案与试题解析一.选择题(共12 小题)1方程x (X-2) =3x的解为( )A. x=5B. x i=0, X2=5C. X I=2, X2=0D. X I=0, X2= - 5【解答】解:x( x- 2) =3x,x( x- 2)- 3x=0,x( x- 2- 3) =0,x=0,x- 2- 3=0,x1=0,x2=5,故选B.2. 下列方程是一元二次方程的是( )A、ax2+bx+c=0 B. 3x2- 2x=3( x2- 2) C. x3- 2x- 4=0 D.( x- 1) 2+1=0 【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x- 6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3. 关于x的一元二次方程x2+a2-仁0的一个根是0,则a的值为( ) A.- 1 B. 1 C. 1或- 1 D. 3【解答】解:•••关于x的一元二次方程x2+a2- 1=0的一个根是0,••• 02+石-1=0,解得,a=±1 ,故选C.4. 某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为X,则下列方程中正确的是( )A . 12 (1+x ) =17 B. 17 (1 - x ) =12C . 12 (1+x ) 2=17 D. 12+12 (1+x ) +12 (1+x ) 2=17【解答】解:设游客人数的年平均增长率为 x ,则2016的游客人数为:12X( 1+x ),2017的游客人数为:12X( 1+x ) 2.那么可得方程:12 (1+x ) 2=17.故选:C .5. 如图,在△ ABC 中,/ ABC=90, AB=8cm, BC=6cm 动点 P , Q 分别从点A ,B 同时开始移动,点P 的速度为1cm/秒,点Q 的速度为2cm/秒,点Q 移动到点C 后停止,点P 也随之停止运动.下列时间瞬间中,能使△ PBQ 的C . 4秒钟D . 5秒钟 【解答】解:设动点P ,Q 运动t 秒后,能使△ PBQ 的面积为15cm 2,则BP %( 8 -t ) cm , BQ 为2tcm ,由三角形的面积计算公式列方程得,丄X ( 8 - t )X 2t=15, 2解得t 1=3, t 2=5 (当t=5时,BQ=10,不合题意,舍去).答:动点P, Q 运动3秒时,能使△ PBQ 的面积为15cm 2.6. 某幼儿园要准备修建一个面积为 210平方米的矩形活动场地,它的长比 宽多12米,设场地的长为x 米,可列方程为( )A . x (x+12) =210 B. x (x - 12) =210 C. 2x+2 (x+12) =210 D . 2x+2 (x-12) =210【解答】解:设场地的长为x 米,贝U 宽为(x -⑵米,根据题意得:x (x - 12) =210,故选:B.A . 2秒钟 B. 3秒钟7. —元二次方程x2+bx- 2=0中,若b v0,则这个方程根的情况是()A. 有两个正根B. 有一正根一负根且正根的绝对值大C. 有两个负根D. 有一正根一负根且负根的绝对值大【解答】解:x2+bx - 2=0,△=b2- 4X 1X( -2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx- 2=0的两个根为c、d,贝U c+d= - b, cd=- 2,由cd=- 2得出方程的两个根一正一负,由c+d=- b和b v 0得出方程的两个根中,正数的绝对值大于负数的绝对值,故选B.8. x i, x?是方程x2+x+k=0的两个实根,若恰x i2+x i x2+x22=2k2成立,k的值为()A. - iB.丄或- iC.二D.-丄或I222【解答】解:根据根与系数的关系,得x i+x2=- 1 , x i x2=k. 又x i2+x i x2+X22=2k2,则(x i+x2)2- x i x2=2k2,即i - k=2k2,解得k=- i或二.2当k丄时,△ =i - 2v0,方程没有实数根,应舍去.•••取k=- i.故本题选A.9. 一元二次方程ax2+bx+c=0中,若a>0, b v 0, c v0,则这个方程根的情况是()A. 有两个正根B. 有两个负根C•有一正根一负根且正根绝对值大D •有一正根一负根且负根绝对值大【解答】解::a>0, b v0, c v0,•••△ =b2- 4ac>0,二v0,-— >0,•••一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大.故选:C.10. 有两个一元二次方程:M : ax2+bx+c=0; N:cx2+bx+a=0,其中a- C M0,以下列四个结论中,错误的是()A. 如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B. 如果方程M有两根符号相同,那么方程N的两根符号也相同C. 如果5是方程M的一个根,那么二是方程N的一个根5D. 如果方程M和方程N有一个相同的根,那么这个根必是x=1【解答】解:A、在方程ax2+bx+c=0中厶=b2- 4ac,在方程cx2+bx+a=0中厶=b2- 4ac,•••如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、:“和空符号相同,直和寻符号也相同,a c a b•••如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;C、:5是方程M的一个根,• 25a+5b+c=0,•••于是方程N的一个根,正确;D、M - N 得:(a - c)x2+c- a=0,即(a - c)x2=a- c,I a-C M 1,•-x2=1,解得:x=± 1,错误.故选D.11. 已知m, n是关于x的一元二次方程x2- 2tx+t2- 2t+4=0的两实数根,则(m+2) (n+2)的最小值是()A . 7B . 11 C. 12 D . 16 【解答】解:I m , n 是关于x 的一元二次方程x 2 - 2tx+t 2- 2t+4=0的两实数 根,m+n=2t , mn=t 2- 2t+4,•••( m+2) (n+2) =mn+2 (m+ n ) +4=t 2+2t+8= (t+1) 2+7.•.•方程有两个实数根,• △ = (- 2t ) 2- 4 (t 2- 2t+4) =8t - 16>0,• t > 2,• ( t+1) 2+7>( 2+1) 2+7=16.故选D.12. 设关于x 的方程ax 2+ (a+2) x+9a=0,有两个不相等的实数根X 1、X 2,且【解答】解:方法1、t 方程有两个不相等的实数根, 则a ^0且厶> 0,由(a+2) 2 - 4a x 9a=- 35a 2+4a+4> 0,又I X 1< 1< x 2,• x 1 - 1 < 0 , X 2 - 1 > 0, 那么(X 1 - 1) ( X 2 — 1)< 0 ,•-X 1X 2 -( X 1+X 2) +1 < 0,即 9』一+1< 0, aC I解得 < a < 0,最后a 的取值范围为:〒■< a <0.故选D.方法 2、由题意知,a ^0,令 y=af+ (a+2) x+9a , 由于方程的两根一个大于1,一个小于1, •••抛物线与x 轴的交点分别在1两侧, 当 a >0 时,x=1 时,y v 0, • a+ (a+2) +9a v 0,X 1< 1v x 2,那么实数a 的取值范围是(•a v-寻(不符合题意,舍去),当a v 0 时,x=1 时,y > 0,•- a+ (a+2) +9a> 0,• a>-故选D.二•填空题(共8小题)13. 若x i, X2是关于x的方程X2-2x- 5=0的两根,则代数式x i2- 3x i - X2- 6的值是 -3 .【解答】解:••• X1,沁是关于x的方程X2- 2x- 5=0的两根,•X12- 2x1=5,X1+X2=2,•X12- 3x1 - X2- 6=(X12- 2x1)-(X1+X2)- 6=5- 2 - 6= - 3.故答案为:-3.14. 已知X1 ,x?是关于x的方程x2+ax- 2b=0的两实数根,且X1 +X2= -2,X1 ?X2=1,则b a的值是丄.【解答】解::X1, X2是关于x的方程x2+ax- 2b=0的两实数根,• X1+x2= - a=- 2, X1 ?X2= - 2b=1,故答案为:15. 已知2x lml「2+3=9是关于x的一元二次方程,则m= 土4【解答】解:由题意可得|m| - 2=2,解得,m=± 4.故答案为:土 4.16 .已知X 2+6X =- 1可以配成(x+p ) 2=q 的形式,贝U q= 8【解答】解:X 2+6X +9=8,(X +3) 2=8. 所以q=8.故答案为8.17.已知关于X 的一元二次方程(m - 1) X 2- 3X +1=0有两个不相等的实数根,m 的个数是 4 .【解答】解:•••关于X 的一元二次方程(m - 1) X 2-3X +1=0有两个不相等的 实数根,二 m - 1 工 0 且厶=(-3) 2 - 4 (m - 1)> 0,解得 mv —且 1,而此不等式组的解集是X V- 1 , 二 m >- 1,••• — 1 < m v 二^且 m ^ 1,Q•••符合条件的整数m 为-1、0、2、3.故答案为4.18.关于X 的方程(m - 2) X 2+2X +1=0有实数根,贝M 禺数m 的最大值为 2【解答】解:由已知得:△ =b 2-4ac=22- 4 (m - 2)> 0,即 12-4m > 0,解得:m <3,•偶数m 的最大值为2.故答案为:2.19•如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修 建两块相同的矩形绿地,它们面积之和为 60米2,两块绿地之间及周边留有 宽度相等的人行通道,则人行道的宽度为 1米.且关于X 的不等式组的解集是X V- 1,则所有符合条件的整数13 号<0x+4>3(x+2)得'【解答】解:设人行道的宽度为x米(O v x v 3),根据题意得:(18 - 3x) (6 - 2x) =60,整理得,(x- 1) (x-8) =0. 解得:X1 = 1,x2=8 (不合题意,舍去).即:人行通道的宽度是1米.故答案是:1.20. 如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2- 2x+kb+1=0的根的判别式△> 0 (填:、”或“我V”.【解答】解:•••次函数y=kx+b的图象经过第一、三、四象限,k>0,b v0,•••△ = (- 2) 2- 4 (kb+1) =- 4kb>0.故答案为〉.三.解答题(共8小题)21. 解下列方程.(1)x2- 14x=8 (配方法)(2)x2- 7x- 18=0 (公式法)(3)(2x+3) 2=4 (2x+3)(因式分解法)(4) 2 (x- 3) 2=x^- 9.【解答】解:(1) x2- 14x+49=57,本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

相关文档
最新文档