线性代数第四章分解

合集下载

线性代数第四章线性方程组课件

线性代数第四章线性方程组课件
方程组 AX 0 的两个基础解系, 则由这两个基础解
系分别确定的解集合
S {k11 k22 ktt | k1, k2, 与 T {l11 l22 lt t | l1,l2,
是相等的,即 S T.
, kt是任意常数} , lt是任意常数}
定理5 设 A 是一个 m n矩阵,若齐次线性方程组
一个解.
定理8 设 1,2 是方程组 AX 的两个解,则 1 2 是 AX 导出组 AX 0 的一个解.
由这两个结果, 我们能够得到非齐次线性方程 组解的结构定理.
定理9 设矩阵 A 是一个 mn矩阵.若非齐次线性
方程组 AX 有解, 令 0是 AX 的某一个解
(通常称为特解).
k1, k2, , ks 是任意常数, 则
k11 k22 kss
也是方程组的解. 即齐次线性方程组解的线性组合
还是方程组的解.
记齐次线性方程组 AX 0的解集合为 S , 即
S { (c1,c2, ,cn)T | A 0}.
那么,上面的定理 3 就可以表述为:
对于任意的 1, 2 S , k1, k2是两个任意常数,有
1)当 R(A) R(A) n 时,0是 AX 唯一的解; 2)当 R(A) R(A) n 时,AX 的导出组 AX 0 存在无穷多解, 则 AX 的解集合为 S {0 k11 k22 kss | k1, k2, , ks是任意常数}, 其中 1,2, ,s是 AX 0 的一个基础解系.
是线性无关的.
1, 2, , n
定理2(齐次线性方程组有非零解的判别定理) 齐
次线性方程组 AX 0 有非零解的充分必要条件是
它的系数矩阵 A 的秩 R(A) n .
推论1 如果齐次线性方程组 AX 0 中的方程个数

第三版线代第四章

第三版线代第四章

推论: 对n阶矩阵 A [a1 a2 an ], r( A) n 的充要条件是至 少有一列可由其余列线性表出,此时又等价于 det( A) 0 。
定理5 若已知向量v1、… 、vk线性无关,而加上
向量 v后,向量v 、v1、… 、vk成线性相关,则向量v
可依v1、… 、vk线性表出,且表出式是惟一确定的.
( 5-
先用反证法证明,其中的 先用反证法证明,其中的 不可能等于零 不可能等于零 .
例6 给定向量集S1 {1 , 2 , 3}及S2 {1 , 2 , 3 , 4 },其中
1 1 3 2 , = 2 , = 0 , = 5 , 1 = 1 )S1是否线性相关,(2)S2是否线性相关以及 4可否依S1线性表出?
(4-4)
或写成矩阵-向量形式
Ax b
(4-4)
称m n矩阵A=[aij]为其系数矩阵,分块形式的 m (n+1)矩阵 A [ Ab] 为方程组的增广矩阵,
x=[x1 x2 … xn]T是n维的未知数向量, b=[b1 b2
… bm]T是m维自由项(或右端项)非零向量. 称与 之具有相同系数矩阵的方程组
若将A的任一方子矩阵的行列式称为A的子行
列式或者简称为子式,则定义1可以说成r (A)是A
的一切的非零子式的最高阶数. 即若r (A) = k ,则A
至少有一个取非零值的k阶子式,而任一k + 1阶子 式(如果存在的话)的值必为零.
例1 求下列矩阵的秩:
2 1 1 (2) B (1) A 2 2 1 4 8 2 1
(4)若r(A)=k,则A至少有一个非零的k阶子式,但
不能说明A的所有k阶子式均不为零,然而可以断 定一切高于k阶(如果存在的话)的子式必为零。

同济大学线性代数第四章PPT课件

同济大学线性代数第四章PPT课件
讨论它们的线性相关性.
解: Ee1,e2, ,en
结论: 线性无关
问题: n=3时, e1,e2,e3 分别是什么?
上述向量组又称基本向量组或单位坐标向量组.
一些结论:
(1) 一个零向量线性相关, 一个非零向量线性无关;
(2) 两个向量线性相关当且仅当 它们的对应分量成比例;
(3) 一个向量组线性无关,则增加其中每个向 量的分量所得新向量组仍线性无关。
例如: 2 1 1 0 a11 1,a212,a312,b33
则 b 能由 a1, a2, a3线性表示.
解方程组 x 1 a 1 x 2 a 2 x 3 a 3 b
既解方程组
2x1x12xx22
x3 x3
0 3
x1 x2 2x3 3

x1 1 1
x2 x3
c
1 1
线性表示
AXB有解,其中 A (1 ,2, ,m )
B (1,2, ,l)
R (A )R (A ,B )
定理3: 向量组 B :1,2, ,l能由 A :1,2, ,m
线性表示,则 R(B) ≤ R(A) 。
其中 A ( 1 ,2 ,,m ) , B ( 1 ,2 ,,l )
证:根据定理 2 有 R(A) = R(A, B) 而 R(B) ≤ R(A, B),因此 R(B) ≤ R(A)。
定义4:设向量组 A : 1 , 2 , , m , 若存在不全为零实数 1 , 2 , , m , 使得 11 2 2 m m 0
则称向量组 A线性相关. 否则称向量组A线性无关.
定理4: n 维向Ax 量 组0 1有 ,非 2, 零 ,解 m,线其 性相A 关 中 1 ,2 , ,m R(A)m

线性代数PPT课件第四章第四节 线性方程组解的结构.ppt

线性代数PPT课件第四章第四节 线性方程组解的结构.ppt

0 1 0
1 0 1
1 1 1
1
0 1

0 0 0
1 0 0
1 0 0
1
0 0
得 x1 1 0
x2 x3 x4
x
3
1
1 0
x
4
1 0 1
.
基础解系为
1 0
1 0
1
,
1 0 1
.
令 x3c1,x4c2,(c1,c2为任意常数),
得一般解为
c1r 1
c1r 2
c1n
c2r1
c2r2
c2n
1
crr 1 1
, 2
crr 2 0
, , nr
crn
0
.
0 1
0
0
0
1
1,2,,nr 为 AX0的基础解系.
任意两个基础解系等价, 故有相同个数解向量, 为 nr个.
第四章
第四节 线性方程组解的结构
问题: 当解有无穷多时, 全部解是否可由有 限多解表示出来 ?
一. 齐次线性方程组
a11x1 a12x2 a1nxn 0
a2 1x1
a22x2 a2nxn
0
(1)
am1x1 am2x2 amnxn 0
(1) 可用矩阵表示 AX0
a11 Aa21
的通解 (用基础解系与特解表示) 解
A ~1 3
1 1
2 2
1 7
1 2 3 2
1 5 103 1 6
1 0
0 1
0 2
2 1
1 0
1 1
0 0 0 0 0 0
同解方程组为
xx12

线性分解定理

线性分解定理

线性分解定理线性分解定理,又称为线性组合定理,是线性代数中的一个基本定理。

它将一个向量空间中的向量表示为一组基向量的线性组合,从而展示了向量空间的基本性质和结构。

线性分解定理可以用于表示任意一个向量在一组基向量下的坐标。

具体来说,设V是一个n维向量空间,B={v1,v2,...,vn}是V的一组基向量。

对于任意一个向量v∈V,存在唯一的一组标量c1,c2,...,cn,使得v=c1v1+c2v2+...+cnvn。

这就是线性分解定理的主要内容。

线性分解定理的证明可以通过数学归纳法来完成。

首先,当n=1时,线性分解定理显然成立。

假设对于任意n-1维的向量空间,线性分解定理都成立,即任意一个向量都可以表示为n-1个基向量的线性组合。

下面考虑n维向量空间的情况。

设v∈V是一个n维向量,B={v1,v2,...,vn}是V的一组基向量。

可以将B中的最后一个基向量vn表示为vn=b1v1+b2v2+...+bn-1vn-1,其中b1,b2,...,bn-1是标量。

然后,将vn代入到v的表达式中,可得v=c1v1+c2v2+...+cn-1vn-1+bnv1+bn-1v2+...+b1vn,其中c1,c2,...,cn-1,cn是待定的标量。

为了证明线性分解定理成立,需证明上述表达式中的cn=0。

假设cn≠0,则可以将上述表达式重新排列,得到v=c1v1+c2v2+...+cn-1vn-1+(bn+1)v1+bnv2+...+b1vn-1。

将它与已知条件v=c1v1+c2v2+...+cn-1vn-1+bnv1+bn-1v2+...+b1vn进行比较,可以发现这两个表达式表示的向量是相等的。

由于B是向量空间V的一组基向量,根据向量的唯一性原则,这说明了(v1,v2,...,vn-1,(bn+1))也是向量空间V的一组基向量。

然而,这与假设矛盾。

因为bn+1≠0,所以(bn+1)v1+bnv2+...+b1vn-1不等于零向量。

线性代数第四章

线性代数第四章

§3 向量组的秩
定义5 设有向量组 A, 如果在A中能选出 r个向量a1 , a 2 , , a r, 满足(1) 向量组A0 : a1 , a 2 , , a r 线性无关; ( 2) 向量组中 任意r 1个向量(如果A中有r 1个向量的话 )都线性相关 , 那么称向量组 A0 是向量组 A的一个最大线性无关向 量组(简 称最大无关组 ), 最大无关组所含向量个 数r称为向量组 A 的秩, 记为RA .
a T (a1 , a2 ,, an )
二、向量的运算
三、向量组
定义 由若干个同维数的列向 量(或同维数的行向量 )构成 的集合称为向量组 . a11 a12 a1n a21 a22 a 2 n A a a a m2 mn m1 A (1 , 2 , , n ) , 其中 j (a1 j , a 2 j , , a mj )T T T A ( , , , ) , 其中 1 2 m i ( a i 1 , a i 2 , , a in )
向量组B : b1 , b2 , , bl 能由向量组向量 A : a1 , a2 , , am 线性表示 R( A) R( A, B ) 有矩阵K, 使得B AK 矩阵方程 AX B有解
例( P 86例 3) 设n维 向 量 组 A : a1 , a 2 , , a m 构 成n m 矩 阵 A ( a1 , a 2 , , a m ),n阶 单 位 矩 阵 E (e1 , e 2 , , e n )的 列 向 量 称 为n维 单 位 坐 标 向 量 .证 明 : n 维 单 位 坐 标 向 量 e1 , e 2 , , e n能 由 向 量 组 A线 性 表 示 的 充 要 条 件 是 R( A) n.

数学-线性代数导论-#4矩阵分解之LU分解的意义、步骤和成立条件

数学-线性代数导论-#4矩阵分解之LU分解的意义、步骤和成立条件

数学-线性代数导论-#4矩阵分解之LU分解的意义、步骤和成⽴条件线性代数导论 - #4 矩阵分解之LU分解的意义、步骤和成⽴条件⽬前我们⽤于解线性⽅程组的⽅法依然是Gauss消元法。

在Gauss消元法中,我们将右侧向量b与A写在⼀起作为⼀个增⼴矩阵进⾏同步的操作,这就默认了对A与b的操作数是相等的且每换⼀个b就要重复⼀遍对A的操作。

然⽽,在实际情况中,右侧向量b经常发⽣变化。

⽽且,研究发现,Gauss消元法中,对n阶矩阵A的消元操作数正⽐于n3,⽽对右侧向量b的回代操作(包括⾏变换和恢复成代数⽅程的形式)数仅仅正⽐于n2。

(操作次数上的相对⼤⼩可以根据A与b元素数量的差距进⾏猜想)在b不变时,两种算法上的复杂度差距不明显,选择同步操作更为⽅便直观。

但是,当b变化时,如果我们将对A和对b的操作进⾏分隔的话,只需对A完成⼀次完整的消元操作,再对b进⾏回代操作。

这样可以⼤⼤减少操作的次数。

所以,在b变化时,我们先对A单独进⾏分解操作。

其中的⼀种分解⽅法是LU分解。

这种⽅法的优势在于分解结果中L(上三⾓矩阵)和U(下三⾓矩阵)都是三⾓形矩阵,后续运算⽐较简便。

⽽且⼆者恰好相配,使⽤计算机进⾏运算时可以存储在⼀个数组中,节约存储空间。

利⽤A的LU分解解线性⽅程组的过程为将Ax=b等价变形成(LU)x=b,根据结合律有L(Ux)=b,再解Ly=b中的y,最后解Ux=y得到线性⽅程组的解。

LU分解的步骤如下:1.求U留E:沿⽤Gauss消元法,将A化为U,不同的是,变换过程中左边乘上的每⼀个E都要记录下来;2.逆E为L:将⽤到的E各⾃求逆(取含变换操作的元素的相反数)再逆序相乘(将消元乘数按照原来的位置写到⼀起,再补齐左上-右下对⾓线上的1和对⾓线上⽅的0),乘积即为L:E求逆的简便⽅法和乘积求逆的运算法则在#3中已经提到。

逆序相乘等价于归置消元乘数于下三⾓矩阵中是⼀个常⽤结论,记忆使⽤可以简化运算。

乘积为L的依据是:假设E为所有E的乘积,EA=U可变形为E-1EA=E-1U=IA=A=LU,其中L=E-1。

线性代数 第四章 (1-2节)

线性代数 第四章  (1-2节)

第四章线性方程组§1 消元法在实际问题中,我们经常要研究一个线性方程组的解,解线性方程组最常用的方法就是消元法,其步骤是逐步消除变元的系数,把原方程组化为等价的三角形方程组,再用回代过程解此等价的方程组,从而得出原方程组的解.例1 解线性方程组解 将第一个方程加到第二个方程,再将第一个方程乘以(-2)加到第三个方程得在上式中交换第二个和第三个方程,然后把第二个方程乘以-2加到第三个方程得再回代,得.分析上述例子,我们可以得出两个结论:(1) 我们对方程施行了三种变换:① 交换两个方程的位置;② 用一个不等于0的数乘某个方程;③ 用一个数乘某一个方程加到另一个方程上.我们把这三种变换叫作线性方程组的初等变换.由初等代数可知,以下定理成立.定理1 初等变换把一个线性方程组变为一个与它同解的线性方程组.(2) 线性方程组有没有解,以及有些什么样的解完全决定于它的系数和常数项,因此我们在讨论线性方程组时,主要是研究它的系数和常数项.定义1 我们把线性方程组的系数所组成的矩阵叫做线性方程组的系数矩阵,把系数及常数所组成的矩阵叫做增广矩阵.设线性方程组则其系数矩阵是增广矩阵是显然,对一个方程组实行消元法求解,即对方程组实行了初等变换,相当于对它的增广矩阵实行了一个相应的初等变换.而化简线性方程组相当于用行初等变换化简它的增广矩阵,这样,不但讨论起来比较方便,而且能够给予我们一种方法,利用一个线性方程组的增广矩阵来解这个线性方程组,而不必每次把未知量写出.例2 解线性方程组解 增广矩阵是,交换矩阵第一行与第二行,再把第一行分别乘以和(-2)加到第二行和第三行,再把第二行乘以(-2)得,在中将第二行乘以2加到第三行得,相应的方程组变为三角形(阶梯形)方程组:回代得.§2 线性方程组有解判别定理上一节我们讨论了用消元法解方程组(4.1)这个方法在实际解线性方程组时比较方便,但是我们还有几个问题没有解决,就是方程组(4.1)在什么时候无解?在什么时候有解?有解时,又有多少解?这一节我们将对这些问题予以解答.首先,由第三章,我们有下述定理定理2 设A是一个m行n列矩阵,通过矩阵的初等变换能把A化为以下形式这里r≥0,r≤m,r≤n.注:以上形式为特殊标准情况,不过,适当交换变元位置,一般可化为以上形式.由定理2,我们可以把线性方程组(4.1)的增广矩阵进行初等变换化为:(4.2)与(4.2)相应的线性方程组为:(4.3)由定理1知:方程组(4.1)与方程组(4.3)是同解方程组,要研究方程组(4.1)的解,就变为研究方程组(4.3)的解.① 若dr+1,dr+2,…,dm中有一个不为0,方程组(4.3)无解,那么方程组(4.1)也无解.② 若dr+1,dr+2,…,dm全为0,则方程组(4.3)有解,那么方程组(4.1)也有解.对于情形①,表现为增广矩阵与系数矩阵的秩不相等,情形②表现为增广矩阵与系数矩阵的秩相等,由此我们可以得到如下定理.定理3 (线性方程组有解的判别定理)线性方程组(4.1)有解的充分必要条件是系数矩阵与增广矩阵有相同的秩r.① 当r等于方程组所含未知量个数n时,方程组有惟一的解;② 当r<n时,方程组有无穷多解.线性方程组(4.1)无解的充分必要条件是:系数矩阵A的秩与增广矩阵B的秩不相等.在方程组有无穷多解的情况下,方程组有n-r个自由未知量,其解如下:其中是自由未知量,若给一组数就得到方程组的一组解例3 研究线性方程组解 写出增广矩阵对进行初等行变换可化为由此断定系数矩阵的秩与增广矩阵的秩不相等,所以方程组无解.例4 在一次投料生产中,获得四种产品,每次测试总成本如下表:生产批次产品(公斤)总成本(元)ⅠⅡⅢⅣ12001001005029002500250200100705031004002013604400180160605500试求每种产品的单位成本.解 设Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品的单位成本分别为,由题意得方程组:化简,得写出增广矩阵对其进行初等行变换,化为由上面的矩阵可看出系数矩阵与增广矩阵的秩相等,并且等于未知数的个数,所以方程组有唯一解:例5 解线性方程组解 这里的增广矩阵是对其进行初等行变换,化为由上式可看出系数矩阵与增广矩阵的秩相等,所以方程组有解,对应的方程组是把移到右边,作为自由未知量,得原方程组的一般解为给自由未知量一组固定值:,我们就得到方程组的一个解.事实上,在例5中,也可作为自由未知量.我们同样可考察.。

《线性代数》第四章:线性方程组-PPT课件

《线性代数》第四章:线性方程组-PPT课件
三角形线性方程组要求方程组所含方程的个数等于未知量的个数且第个方程第个变量的系数三角形线性方程组是一类特殊的情形解法也简单由克莱姆法则可以判断其解惟一一般只需要从最后一个方程开始求解逐步回代就可求出方程组的全部解11定义416线性方程组中自上而下的各方程所含未知量个数依次减少这种形式的方程组称为n元阶梯形线性方程组
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn

《线性代数》课件第4章

《线性代数》课件第4章

此时A的第j列元素恰为αj表示成β1, β2,…, βt的线性组合时的
系数.
证明:若向量组a1,a2,…,as可由β1, β2,…, βt线性表示,即每个ai
均可由β1, β2,…, βt线性表示,则有
α1 = a11β1 + a21β2 + + at1βt = (β1, β2,
, βt )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝aaa12t111 ⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟,
我们有下面的定理: 定理 1.1 矩阵的秩数=行秩数=列秩数.
例1.3 设
α1 = (1, 2, 0,1)T , α2 = (0,1,1,1)T , α3 = (1, 3,1, 2)T , α4 = (1,1,−1, 0)T
求此向量组的秩数及一个极大无关组.
解 考虑向量组构成的矩阵
A=(α1,
α2,
我们有下面的命题:
命题1.
1. α1, α2,…, αs线性无关; 2.方程x1α1 + x2α2 + … + xxαs只有零解 3. 对于任意一组不全为零的数c1,c2,…,cs均有
c1α1 + c2α2 + + csαs ≠ 0, 4. 对于任意一组数c1,c2,…,cs, 若c1α1 + c2α2 +
定义1.4 两个可以互相表示的向量组称为等价向量组.
容易看出: 1. 向量组的等价是一个等价关系; 2. 等价向量组的秩数相同; 3. 任何向量组等价于其极大无关组; 4. 两个向量组等价当且仅当它们的极大无关组等价.
最后我们给出化简向量组的一种技巧 为此先给出一个定义
定义1.5 设α1, α2,…, αs和β1, β2,…, βs是两个向量组, 若对于任意一组数c1,c2,…,cs均有

线代第四章

线代第四章

定义 称对 k=1,2,…,m-1满足以下两个条件的 =1,2,…,m
m × n 矩阵为梯矩阵(echelon matrik): 矩阵为梯矩阵 梯矩阵(echelon 1.若第k行是零(即该行的元全为零),则第(k+1) 1.若第 行是零(即该行的元全为零) 则第(k+1) 若第k 行必为零. 行必为零. 2.若有第(k+1)行是非零行,则其行的首非零元 2.若有第 若有第( 行是非零行, 所在的列号,必大于第k行首非零元所在的列号. 所在的列号,必大于第k行首非零元所在的列号.
不能说明A的所有k阶子式均不为零, 不能说明A的所有k阶子式均不为零,
然而可以断定一切高于k阶(如果存在的话)的子式必 果存在的话)
为零
.
(3) 若A是 m × n矩阵,则必有 矩阵,
r ( A) ≤ min(m, n)
(4-1) (4(4-2) (4-
r ( A) = r ( AT )
(4) 若 A是n阶矩阵,则r(A)≤n, 当且仅当detA≠0 矩阵, )≤n, 当且仅当detA 时r(A)=n,故也将行列式不为零的矩阵 非退化阵 故也将行列式不为零的矩阵 非退化阵) 故也将行列式不为零的矩阵(非退化阵 称为满秩 满秩[ 并称退化阵为降秩 降秩[ 称为满秩[矩]阵,并称退化阵为降秩[矩]阵.
证明
证明
定理的结论(1) 定理的结论(1) 说明非齐次方程组的解集不是 向量空间;结论(2)、(3)则说明了当已知其某个 向量空间;结论(2)、(3)则说明了当已知其某个 中元素的通解) 解 xp时,方程组的通解 xp(即S中元素的通解)本质 表出, 上必能也只能通过 N(A)的通解 xh表出,为
定理
任一m 任一m × n矩阵A经过有限次行初等 矩阵A 任一m 任一m × n矩阵A经有限次列初等变换 矩阵A 设A是任一 m × n矩阵,而B是m(或)n阶 矩阵, (4-3) (4-

线性代数第四章复习小结

线性代数第四章复习小结

α 1 , α 2 ,⋯ , α m
可由
线性相关, 线性相关,则
α1 , α 2 ,⋯ , α m 线性表示,且表示的系数唯一。 线性表示,且表示的系数唯一。
3).若向量组 ) 若向量组 可由向量组 β 1 , β 2 , ⋯ , β
α
α1,α2 ,⋯,αr
线性表示, 线性表示,且
r>s
s

α1 , α 2 ,⋯ , α r 线性相关。 线性相关。
线性无关。
7)A为n阶方阵, ( A ) ) 为 阶方阵 r 阶方阵, ,又设
= n −1
η1 , η2
是非齐次线性方程组
AX = b
的两个不同的解, 的两个不同的解,证明
η1 + η2 X = k ( η1 − η2 ) + 2
为非齐次线性方程组 的通解。 的通解。其中
AX = b
K为任意常数。 为任意常数。 为任意常数

a, b
取何值时?( )有唯一解;( ;(2)无解; 取何值时?(1)有唯一解;( )无解; ?( (3)有无穷多个解,并求其解。 )有无穷多个解,
6.设 .
α1 , α 2 , α 3
线性无关, 线性无关,证明
β1 = α1 + α 2 , β 2 = α 2 + 2α3 ,
β 3 = α 3 + 3α1
T T
T
,3 ) ) α4 =(−1 ,2,1 ,α5 =(−2,6,4,1
T
T
3.设向量组 .
1 4 3 2 1 , α = 0 , α = −1 , α = 1 α1 = 2 2 4 3 2 4 −2 0 1 1 3

线性代数知识点总结(第4章)

线性代数知识点总结(第4章)

线性代数知识点总结(第4章)(一)方程组的表达形与解向量1、解的形式:(1)一般形式(2)矩阵形式:Ax=b;(3)向量形式:A=(α1,α2,…,αn)2、解的定义:若η=(c1,c2,…,c n)T满足方程组Ax=b,即Aη=b,称η是Ax=b的一个解(向量)(二)解的判定与性质3、齐次方程组:(1)只有零解←→r(A)=n(n为A的列数或是未知数x的个数)(2)有非零解←→r(A)<n4、非齐次方程组:(1)无解←→r(A)<r(A|b)←→r(A)=r(A)-1(2)唯一解←→r(A)=r(A|b)=n(3)无穷多解←→r(A)=r(A|b)<n5、解的性质:(1)若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解(2)若ξ是Ax=0的解,η是Ax=b的解,则ξ+η是Ax=b的解(3)若η1,η2是Ax=b的解,则η1-η2是Ax=0的解【推广】(1)设η1,η2,…,ηs是Ax=b的解,则k1η1+k2η2+…+k sηs为Ax=b的解(当Σk i=1)Ax=0的解(当Σk i=0)(2)设η1,η2,…,ηs是Ax=b的s个线性无关的解,则η2-η1,η3-η1,…,ηs-η1为Ax=0的s-1个线性无关的解。

变式:①η1-η2,η3-η2,…,ηs-η2②η2-η1,η3-η2,…,ηs-ηs-1(三)基础解系6、基础解系定义:(1)ξ1,ξ2,…,ξs是Ax=0的解(2)ξ1,ξ2,…,ξs线性无关(3)Ax=0的所有解均可由其线性表示→基础解系即所有解的极大无关组注:基础解系不唯一。

任意n-r(A)个线性无关的解均可作为基础解系。

★7、重要结论:(证明也很重要)设A施m×n阶矩阵,B是n×s阶矩阵,AB=O(1)B的列向量均为方程Ax=0的解(2)r(A)+r(B)≤n(第2章,秩)8、总结:基础解系的求法(1)A为抽象的:由定义或性质凑n-r(A)个线性无关的解(2)A为数字的:A→初等行变换→阶梯型自由未知量分别取1,0,0;0,1,0;0,0,1;代入解得非自由未知量得到基础解系(四)解的结构(通解)9、齐次线性方程组的通解(所有解)设r(A)=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,则Ax=0的通解为k1η1+k2η2+…+k n-rηn-r (其中k1,k2,…,k n-r为任意常数)10、非齐次线性方程组的通解设r(A)=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,η为Ax=b的特解,则Ax=b的通解为η+ k1η1+k2η2+…+k n-rηn-r (其中k1,k2,…,k n-r为任意常数)(五)公共解与同解11、公共解定义:如果α既是方程组Ax=0的解,又是方程组Bx=0的解,则称α为其公共解12、非零公共解的充要条件:方程组Ax=0与Bx=0有非零公共解←→有非零解←→13、重要结论(需要掌握证明)(1)设A是m×n阶矩阵,则齐次方程A T Ax=0与Ax=0同解,r(A T A)=r(A)(2)设A是m×n阶矩阵,r(A)=n,B是n×s阶矩阵,则齐次方程ABx=0与Bx=0同解,r(AB)=r(B)。

第4章_线性代数[2009]

第4章_线性代数[2009]

例14. 简单迁移模型:每年A镇的人口10%迁往B镇;B镇 的人口15%迁往A镇. 假设某年A、B两镇人口各有120 人和80人.问两年后两镇人口数量分布如何? 设两镇总人口不变,人口流动只限于两镇之间.引入变量: x1(k) 表示 A 镇第 k 年人口数量; x2(k) 表示 B 镇第 k 年人口数量. 由第 k 年到第 k+1 年两镇人口数量变化规律如下
y2 y3 y4
y5
2 y1 2 y2 2 y3 2 y4 2 y5
a1 1 a2 1 a 1 3 a4 1 1 a5
MATLAB 求解方程组方法:A\b 创建方程组系数矩阵方法:
= –1 = –1 = –1 = –1 = –1
Az = b
z A b
1
x 12 2 x2 x2 3 2 x4 x2 5
2 x1 y1 2 x2 y2 2 x3 y3 2 x4 y4 2 x5 y5
y1
2 2 2 2
2 x1 2 x2 2 x3 2 x4 2 x5
X(k+1) = A X(k)
X(2)
=AX(1)
=A(AX(0))
=
A2X(0)
X
(0)
120 80
A=[0.9,0.15;0.1,0.85]; X0=[120;80]; X2=A^2*X0
X2 =
120 80
D=
1.00 0.751
线性函数拟合:
m
(x) = a + bx
[( a bx j ) y j ] min
2
求 a, b,使
多项式拟合:

武汉大学《线性代数》04 第四章.ppt

武汉大学《线性代数》04 第四章.ppt

2 1
,
a3
1 2
,
b
3 3
则 b 能由 a1 , a2 , a3 线性表示.
解方程组 x1a1 x2a2 x3a3 b
即解方程组
2 x1 x1 2
x2 x2
x3 x3
0 3
x1 x2 2 x3 3
2020/10/15
10

x1 1 1
x2 x3
2020/10/15
14
定义3: 设向量组 A :1,2 , ,m 及 B : 1, 2 , , l
若 B 组中的每一个向量都能由向量组 A 线性表示, 则称向量组 B 能由向量组 A 线性表示。
若向量组 A 与向量组 B 能相互线性表示, 则称向量组 A 与向量组 B 等价。
2020/10/15
第四章 向量组的线性相关性
2020/10/15
1
§1 向量组及其线性组合
定义1:n 个数 a1 , a2 , , an 所组成的有序数组
称为一个 n 维向量,这 n 个数称为该向量 的 n 个分量,第 i 个数 ai 称为第 i 个分量。
这里定义的 n 维向量就是指行(或列)矩阵。
2020/10/15
2020/10/15
8
定义2:设向量组 A :1,2 , ,m , 和向量 b 若存在一组实数 1,2 , m , 使得 b 11 22 mm
则称向量 b 是向量组 A的一个线性组合, 或称向量 b 能由向量组 A 线性表示。
2020/10/15
9
例如: 2
1
1 0
a1
1 1
,
a2
称为 n 维Euclid空间 Rn 中的 n-1维超平面。

第四章 矩阵分解

第四章 矩阵分解

矩阵分析第四章 矩阵分解§4.1: 矩阵的满秩分解 §4.2: 矩阵的正交三角分解 §4.3: 矩阵的奇异值分解 §4.4: 矩阵的极分解 §4.5: 矩阵的谱分解矩阵分解前言矩阵分解定义: 将一个已知矩阵表示为另一些较为简单或 较为熟悉的矩阵的积(或和)的过程称为矩阵分解. 例:(1)对任意n阶正规矩阵A,存在酉阵U∈Un×n使 A=Udiag(λ1,…,λn)U*, 其中λ1,…,λn为A的所有特征值的任一排列. (2)对任意n阶正定矩阵A,存在可逆阵Q∈Cnn×n使A=Q*Q,或存 在唯一正定阵B使A=BB. 矩阵分解意义:有利于研究已知的矩阵. 例如,利用正定阵A的平方根B为正定阵可证: 对任意Hermite阵H,AH或HA都有实特征值.1( AH∼(A1/2)-1AHA1/2=A1/2HA1/2∈Hn×n )2初等变换与初等矩阵(p73)三类初等变换: (行(列)变换←→左(右)乘) (1)将矩阵A的两行互换等价于用第一类初等矩阵P(i,j)左 乘A; (2)将矩阵A的第i行乘以k≠0等价于用第二类初等矩阵 P(i(k))=diag(1,…,1,k,1,…,1)左乘A. (3)将矩阵A的第j行乘以k≠0后再加到第i行等价于左乘第 三类初等矩阵P(i,j(k)).P (i , j ) =⎛1 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 1 1 1 0 1 1初等变换与初等矩阵举例⎛1 ⎞⎛ 1 4 7 ⎞ ⎛ 1 4 7 ⎞ ⎜ 0 1 ⎟⎜ 2 5 8 ⎟ = ⎜ 3 6 9 ⎟ ; ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 1 0 ⎟⎜ 3 6 9 ⎟ ⎜ 2 5 8 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛1 4 7⎞⎛1 ⎞ ⎛ 1 7 4⎞ ⎜ 2 5 8⎟⎜ 0 1⎟ = ⎜ 2 8 5⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 3 6 9⎟⎜ 1 0⎟ ⎜ 3 9 6⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎛1 ⎞⎛1 4 7⎞ ⎛ 1 4 7 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ 0.2 ⎟ ⎜ 2 5 8 ⎟ = ⎜ 0.4 1 1.6 ⎟ ; ⎜ ⎜ 1⎟⎜ 3 6 9 ⎟ ⎜ 3 6 9 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎛1 4 7⎞⎛1 ⎞ ⎛ 1 4 7 / 9⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 2 5 8⎟⎜ 1 ⎟ = ⎜ 2 5 8/9⎟ ⎜ 3 6 9⎟⎜ 1/ 9 ⎟ ⎜ 3 6 1 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠---- i ---- j⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ 1⎠P (i , j ( k )) =⎛1 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝1k 1⎞ ⎟ ⎟ ⎟ ---⎟ ⎟ ⎟ ---⎟ ⎟ ⎟ 1⎠i j3⎛1 ⎞⎛ 1 2 3⎞ ⎛ 1 2 3 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ −4 1 ⎟ ⎜ 4 5 6 ⎟ = ⎜ 0 −3 −6 ⎟ ; ⎜ 1⎟⎜ 7 8 9⎟ ⎜ 7 8 9 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠−3 ⎞ ⎛ 1 2 0 ⎞ ⎛ 1 2 3⎞⎛1 ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 4 5 6⎟⎜ 1 ⎟ = ⎜ 4 5 −6 ⎟ ⎜7 8 9⎟⎜ 1 ⎟ ⎜ 7 8 −12 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠4初等变换与初等矩阵的性质3类初等矩阵都是可逆的(行列式不为0). 将A依次作初等矩阵P1,…,Pr对应的行(列)初等变换等价 于左(右)乘A以可逆矩阵Pr…P1(P1…Pr). 可适当选第一类初等矩阵的乘积P使PA(AP)的行(列)是A 的行(列)的任意排列; 可适当选第三类初等矩阵 P(i,j(k))中的k使P(i,j(k))A的(i,j)元变为0; 可适当选第二类初等矩阵P(i(k))中的k使P(i(k))A的非 零(i,i)元变为1. 存在初等矩阵的乘积P和Q,使PAQ= ,其中r=rankA.初等变换与初等矩阵的性质续命题:设A∈Crm×n前r列线性无关,则用初等行变换可把A变为⎛ Er ⎜ ⎝ 0 ⎛1 ⎜ ⎜ D⎞ ⎜ = ⎜ ⎟ 0 ⎠ ⎜ ⎜ ⎜ ⎜ ⎝ 1 1 * * * * *⎞ ⎟ *⎟ *⎟ ⎟ *⎟ ⎟ ⎟ ⎟ ⎠一般地,∀A∈Crm×n都存在m,n阶可逆阵P和Q使PAQ=5证:因前r列线性无关,故用第一类初等矩阵左乘可使A的 (1,1)元≠0. 再用第二类初等矩阵左乘可使a11=1; 最后用若干第三类初等矩阵左乘可使A的第一列=e1. 因前2列线性无关,故新的第2列与e1线性无关且≠0, 故用第一类行变换可使(2,2)元≠0,…可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元.安徽大学 章权兵1矩阵分析§4.1: 矩阵的满秩分解⎛ 1 ⎜ A = ⎜ −2 ⎜ 0 ⎝ 0 0 0 0⎞ ⎛1 ⎟ ⎜ 1 ⎟ , 没 有 P ∈ C 33 × 3 使 P A = ⎜ ⎟ ⎜ 0⎠ ⎝0 0 0 0⎞⎛1 ⎟⎜ 1⎟⎜0 0⎟⎜0 ⎠⎝ 0 0 1 0⎞ ⎛ 1 ⎟ ⎜ 1 ⎟ = ⎜ −2 0⎟ ⎜ 0 ⎠ ⎝ 0 1 0 0⎞ ⎟ 0⎟ 0⎟ ⎠1⎞ ⎟ ⎟. 0⎟ ⎠定义:对任意矩阵A∈Crm×n,A=BC 称为A的一个满秩分 解,如果B∈Crm×r,C∈Crr×n. 例:⎛1 ⎜ ⎜1 ⎜0 ⎝ 1 2 1 2 3 1 3 ⎞ ⎛1 ⎟ ⎜ 2 ⎟ = ⎜1 − 1⎟ ⎜ 0 ⎠ ⎝ 1⎞ ⎟⎛ 1 2 ⎟⎜ ⎜0 1 ⎟⎝ ⎠ ⎛1 4 ⎞ ⎜ ⎟ = ⎜1 ⎟ 1 1 − 1⎠ ⎜ ⎝0 0 1 2⎞ ⎟⎛ 1 3 ⎟⎜ ⎜0 1 ⎟⎝ ⎠ −1 0 1 1 5 ⎞ ⎟ − 1⎟ ⎠⎛ 1 ⎜ A P ( 2, 3) = ⎜ − 2 ⎜ 0 ⎝⎛ 1 0 0 ⎞ ⎛ 1 0 0 ⎞ ⎛ 1 0.5 0 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ PAQ = P (2,1(0.5)) AP (2, 3) = ⎜ 0.5 1 0 ⎟ ⎜ −2 1 0 ⎟ = ⎜ 0 1 0 ⎟ ⎜ 0 0 1⎟⎜ 0 0 0⎟ ⎜ 0 0 0⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠m=3,n=4,r=2. 注:可能存在不仅是常数差别的两个实质不同的满 秩分解.矩阵满秩分解的存在定理定理4.1.1:任意矩阵A∈Crm×n,都有满秩分解: A=BC,B∈Crm×r,C∈Crr×n. 证:由初等矩阵性质知: 存在可逆阵P∈Cmm×m和Q∈Cnn×n,使 PAQ= 从而 A⎛ Er ⎜ ⎜ 0 ⎝ 0 ⎞ ⎛ Er ⎟=⎜ 0⎟ ⎜ 0 ⎠ ⎝ ⎛ Er ⎞ -1 ⎜ ⎟ ( E r =P ⎝ 0 ⎠ ⎞ ⎟ ⎟ (E r ⎠ 0)存在定理中矩阵B,C的决定对于A的前r列线性无关的情形:⎛E PA = ⎜ r ⎝ 0 D ⎞ ⎛ Er ⎞ = (Er 0 ⎟ ⎜ 0 ⎟ ⎠ ⎝ ⎠ D)⎛E A = P −1 ⎜ r ⎝ 0D⎞ Er ⎞ −1 ⎛ ⎟= P ⎜ ⎟ (Er 0 ⎠ ⎝ 0 ⎠D ) = BC其中0)⎛E ⎞ B = P −1 ⎜ r ⎟ ; C = ( Er ⎝0⎠D)Q-10)= BC,⎛ 其中B=P-1 ⎜Er ⎞ ⎜ 0 ⎟ ,C= ⎟ ⎝ ⎠(ErQ-1满足所要求的条件.C是PA的前r行(即所有非0行)组成的矩阵, B和C的秩显然都是r.10矩阵B的进一步决定对于A的前r列线性无关的情形: 要求PA的前r列化为(Er,0)T,故有 B=P-1(Er,0)T ⇒ PB=(Er,0)T=PA1, 其中,A1为A前r列组成的子矩阵,由此推出B=A1. (参看P.183-184定理的证明及例4.1.1,例4.1.2) 对下例,A的第1,3两列也线性无关. 令A1为A第1,3两列组成的子矩阵,并将A的第1,3 两列化为(E2,0)T,C为所得矩阵的前2行. 则不难看出也有 A=BC和B=A1.求矩阵满秩分解的初等变换方法再以A= ⎜ 1 ⎜⎛1 1 2 3 ⎞ ⎟ 2 3 2 ⎟ 为例作说明如下: ⎜ 0 1 1 −1⎟ ⎝ ⎠①用初等行变换把A前两列变为(E2 0)T⎛1 1 2 3 ⎞ ⎛1 1 2 3 ⎞ ⎛1 0 1 4 ⎞ ⎛1 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛1 0 1 4 ⎞ ⎜ 1 2 3 2 ⎟ → ⎜ 0 1 1 −1 ⎟ → ⎜ 0 1 1 −1⎟ = ⎜ 1 2 ⎟ ⎜ 0 1 1 −1⎟ ⎠ ⎜ 0 1 1 −1 ⎟ ⎜ 0 1 1 −1 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ a1 a2 ②用初等行变换把A的1,3两列变为(E2 0)T ⎛1 1 2 3 ⎞ ⎛1 1 2 ⎜ ⎟ ⎜ ⎜1 2 3 2 ⎟ → ⎜0 1 1 ⎜ 0 1 1 −1 ⎟ ⎜ 0 1 1 ⎝ ⎠ ⎝ 3 ⎞ ⎛ 1 −1 0 5 ⎞ ⎛ 1 2 ⎞ ⎟ ⎜ ⎟ ⎜ ⎟ ⎛ 1 −1 0 5 ⎞ −1 ⎟ → ⎜ 0 1 1 − 1 ⎟ = ⎜ 1 3 ⎟ ⎜ ⎟ 0 1 1 −1 ⎠ −1 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠a1 a3安徽大学 章权兵2矩阵分析关于矩阵满秩分解的注矩阵满秩分解不唯一;但同一矩阵的两个满秩分 解的因式矩阵之间存在密切关系(见定理4.1.2). A∈Crm×n ⇒ r=rank A ≤ min{m,n} A的秩等于它的行秩,列秩或行列式秩. A的行(列)秩是它的行(列)最大线性无关组的行 (列)数;A的行列式秩是其非0子式的最大阶数. A=BC ⇒ rank A≤rank B 且 rank A≤rank C rank A=rank A*13引理4.3.1引理4.3.1:对任意矩阵A∈Crm×n有 rank(AA*)=rank(A*A)=rank A*=rank A=r. 证:因方程组Ax=0的解空间维数等于n-rank A, (*) 故为了证明 rank(A*A)=rank A 只须证明下列两个方程组有相同的解空间即可 Ax=0 ⑴ ⑵ A*Ax=0 显然,x满足⑴ ⇒ x满足⑵. x满足⑵ ⇒ x*A*Ax=0,即(Ax,Ax)=0 ⇒ Ax=0,即x满足⑴. 注:利用A的任意性以A*代A由(*)得 rank A=rank A*=rank((A*)*A*)=rank(AA*)同一矩阵两个满秩分解间的关系定理4.1.2:若A=BC=B1C1均为A∈Crm×n 的满秩分解, 则存在θ∈Crr×r,使得B=B1θ,C=θ-1C1. 证:若A=BC=B1C1,则BCC*=B1C1C*. 由p.190引理4.3.1知:rank(CC*)=rank C=r, 从而 CC*∈Crr×r为可逆矩阵,且满足B=B1C1C*(CC*)-1. 由上式推出r≥rank(C1C*)≥rank B=r,即rank(C1C*)=r. 进而 θ=C1C*(CC*)-1∈Crr×r,满足B=B1θ. 同理可证 C=(B*B)-1B*B1C1=θ′C1,θ′∈Crr×r. 因此,BC=B1C1 ⇒ B1θθ′C1=B1C1 ⇒ B1*B1θθ′C1C1* = B1*B1C1C1* 引理4.3.1 ⇒ θθ′=E ⇒ θ′=θ-1定理4.1.2的补充命题:设A=B1C1为A∈Crm×n的满秩分解, 则A=BC是A的满秩分解,当且仅当 ∃θ∈Crr×r, B=B1θ,C=θ-1C1. 证: 必要性由定理4.1.2给出. 充分性. 若存在θ使(*)成立,则B,C给出A的满秩分解: BC=B1C1=A. (*)§4.2: 矩阵的正交三角分解满秩矩阵的分解 行(列)满秩矩阵的分解 一般矩阵的分解满秩矩阵的正交三角分解定理4.2.1:∀A∈Cnn×n都可唯一地分解为A=UR(或A=LU),其中 U∈Un×n,R(L)为正线上(或下)三角矩阵. 证:(存在性)令A=(α1, … ,αn),则α1, … ,αn线性无关, 用Schmidt方法从α1, … ,αn得标准正交组ν1,…,νn满足⎧ ⎪ ⎪ ⎨ ⎪ ⎪α ⎩α 1 = C 11ν 11αn2= C 21ν1+ C 22 ν22∀i,Cii=‖βi‖>0n= C n 1ν+ Cn2ν+ ... + C nn νC 21 C 22于是其中,U=(ν1,…,νn)为酉矩阵,R为正线上三角矩阵.⎛ C 11 ⎜ A= (α 1 ,..., α n ) = (ν 1 ,..., ν n ) ⎜ ⎜ ⎜ ⎜ ⎝C n1 ⎞ ⎟ C n2 ⎟ ⎟ ⎟ C nn ⎟ ⎠=UR,安徽大学 章权兵3矩阵分析β1=α1 , β2=α2-((α2,β1)/(β1,β1))β1 , β3=α3-((α3,β1)/(β1,β1))β1-((α3,β2)/(β2,β2))β2 , . . . νi=(1/‖βi‖)βi, βi=‖βi‖νi, i=1,2,… α1=β1=‖β1‖ν1; C11=‖β1‖>0 α2=((α2,β1)/(β1,β1))β1+β2=C21ν1+‖β2‖ν2;C22=‖β2‖>0正交三角分解唯一性证明定理4.2.1:∀A∈Cnn×n都可唯一地分解为A=UR(或A=LU), 其中U∈Un×n,R(L)为正线上三角矩阵. (唯一性) 设还有U′∈Un×n和正线上三角矩阵R′使A=U′R′. 则有 UR=U′R′ ⇒ U′*U = R′R-1 = W 矩阵 W=U′*U∈Un×n,且W=R′R-1 仍然是正线上三角矩阵. (正线上三角阵的逆和积仍是正线上三角阵) 于是,由p.162的引理3.9.1知 W=E. 即 (U′)*U=R′R-1=E. 由此式立即推出:U=U′E=U′ & R′=ER=R. 得证唯一性.α3=C31ν1+C32ν2+‖β3‖ν3; . . .C33=‖β3‖>0正交三角分解下三角情形的证明定理4.2.1:∀A∈Cnn×n都可唯一地分解为A=LU,其中 U∈Un×n,L为正线下三角矩阵. 证: ∀A∈Cnn×n ⇒ AT∈Cnn×n. 存在唯一的U′∈Un×n和正线上三角矩阵R,使AT=U′R. 于是A=(AT)T=(U′R)T=RTU′T=LU, 其中,U=U′T∈Un×n,L=RT为正线下三角矩阵.列(行)满秩矩阵的正交三角分解定理4.2.2:∀A∈Crm×r(Crr×n)都可唯一地分解为A=UR (A=LU), 其中U∈Urm×r(Urr×n),R(L)为r阶正上线(下)三角矩阵. (定理4.2.1为m=n=r时的特例) 证:(存在性)令A=(α1, … ,αr),则α1, … ,αr线性无关, 用Schmidt方法求得标正组ν1,…,νr满足⎧ ⎪ ⎪ ⎨ ⎪ ⎪α ⎩αr2α 1 = C 1 1ν 1 = C 2 1ν 1 + C 2 2ν22∀i,Cii>0.r= C r 1ν 1 + C r 2ν+ . . . + C r rν因此A=UR,其中U=(ν1,…,νr)∈Urm×r, R=⎛ C 11 ⎜ ⎜ ⎜ ⎜ ⎝C 21 C 22C r1 ⎞ ⎟ Cr2 ⎟ ⎟ ⎟ C rr ⎠定理4.2.2唯一性证明定理4.2.2: ∀A∈Crm×r都可唯一地分解为A=UR,其中 U∈Urm×r,R为r阶正线上三角矩阵. (唯一性) 设还有U′∈Urm×r和正线上三角矩阵R′∈Cr×r 使A=U′R′. 则有 R*R=A*A=(R′)*R′, 于是由定理3.9.1⑹,A*A是正定Hermite矩阵. 故A*A可唯一地表示为乘积R*R,其中R为正线上三角阵. 因此必有R=R′. 进而,由UR=U′R′给出U=U′,得证唯一性.一般矩阵的正交三角分解定理4.2.3:∀A∈Crm×n可分解为A=U1R1L2U2,其中U1∈Urm×r, U2∈Urr×n,R1和L2分别为r阶正线上三角和下三角矩阵. 证:由矩阵的满秩分解知: 存在列满秩矩阵B和行满秩矩阵C使A=BC. 存在U1∈Urm×r和r阶正上线上三角矩阵R1使得B=U1R1. 存在r阶正线下三角矩阵L2和U2∈Urr×n使得C=L2U2. 从而A=U1R1L2U2满足条件.安徽大学 章权兵4矩阵分析用UR(LU)分解方法解方程组例4.2.1:用UR(LU)方法解方程组 Ax=b (*) − 2 ⎞ 1 ⎛ 1 ⎞ 其中 ⎛ − 3 ⎜ ⎟ ⎜ ⎟⎜ 1 A = ⎜ 1 ⎜ ⎜ 2 ⎝ 1 1 − 1 − 1 0 1 ⎟ ⎜ 0 ⎟, b = ⎜ 2 ⎟ ⎜ ⎟ ⎜ 1 ⎠ ⎝ ⎟ ⎟. ⎟ ⎟ ⎠§4.3: 矩阵的奇异值分解引理4.3.1:对任意矩阵A∈Crm×n有 rank(AA*)=rank(A*A)=rank A*=rank A=r. 引理4.3.2: ∀A∈Cm×n,AA*∈Cm×m 与 A*A∈Cn×n 均为 半正定Hermite矩阵. 证:由(A*A)*=A*A 和 ∀x∈Cn,x*A*Ax=(Ax,Ax)≥0 得证:A*A∈Cn×n 为半正定Hermite矩阵. 同理可证: AA*∈Cm×m 为半正定Hermite矩阵.解:令A=(α1,α2,α3),易见α1,α2,α3线性无关, 用Schmidt方法得标准正交组ν1,ν2,ν3如教本所示. 则A=UR,R为正线上三角矩阵,U=(ν1,ν2,ν3)∈U34×3 于是 R=U*A,代入(*)式得 URx=b ⇒ Rx=U*b ⇒ x=R-1U*b 最后求得 x=(-5/2,-1/2,3)T.AA*∈Cm×m与A*A∈Cn×n的特征值定理4.3.1: ∀A∈Cm×n, AA*∈Cm×m与A*A∈Cn×n的非零特 征值(正特征值)全同. 证法1:不难验证下列矩阵等式:⎛ AA* 0 ⎞⎛ Em A ⎞ ⎛ AA* ⎜ * ⎟⎜ ⎟=⎜ ⎜ A 0 ⎟⎜ En ⎟ ⎜ A* ⎠ ⎝ ⎝ ⎠⎝⎜ 因S= ⎜ ⎝ ⎛ Em定理4.3.1的另一证法证法2:设λ≠0是AA*的非零特征值: AA*x=λx, λ≠0,x≠0 则 A*x≠0, A*A(A*x)=λ(A*x) 所以λ也是A*A的非零特征值. 同理可证: A*A的任一非零特征值也是AA*的非零特征值.AA* A⎞ ⎛ Em A ⎞⎛ 0 ⎟=⎜ ⎟⎜ En ⎟⎜ A* A* A ⎟ ⎜ ⎠⎝ ⎠ ⎝0 ⎞ ⎟ A* A⎟ ⎠0 ⎞ −1 0 ⎞ ⎛ AA * 0 ⎞ A⎞ ⎛ 0 ⎛ 0 ⎟ = S⎜ * ⎜ ⎜ ⎟S ~ ⎜ * ⎜ ⎟ ⎟ * ⎟ * ⎟ En ⎟ 可逆,故 ⎜ A* 0 ⎟ ⎝ A A A⎠ ⎝ A A A⎠ ⎠ ⎠ ⎝ *)=0与det(λE-A*A)=0有相同非零解, 从而det(λE-AA得证AA*与A*A有相同的非零特征值.奇异值的概念定义4.3.1:∀A∈Crm×n,AA*∈Cm×m或A*A∈Cn×n 的正特征 值的算术平方根称为A的正奇异值(简称奇异值, 共有r个记为 α1,…,αr). 例:求A= ⎜ − 1 ⎜⎜ 0 ⎝ ⎛ 1 0⎞ ⎟ 1⎟∈ C 0⎟ ⎠3× 2 2正规矩阵的奇异值定理4.3.2:正规矩阵的奇异值是其非零特征值的模. 证:设A为正规矩阵,则有U∈Un×n使 A=Udiag(λ1, … ,λn)U* A*=Udiag(λ 1 ,..., λ n )U* 从而 AA*=Udiag(|λ1|2, … ,|λn|2)U* 得证A的正奇异值是A的非零特征值的模.的奇异值.解: A*A=⎜ −1 ⎜⎝⎛2−1⎞ ⎟ 1⎟ ⎠,det(λE-A)=λ2-3λ+1的两个根:(3±√5)/2 均为正, A的奇异值为:α1=((3+√5)/2)1/2;α2=((3-√5)/2)1/2. 例4.3.1:见P.191.安徽大学 章权兵5矩阵分析矩阵的酉等价关系定义:设A,B∈Cm×n,若有S∈Cmm×m,T∈Cnn×n 使B=SAT,则称B 与A等价;若有U∈Um×m,V∈Un×n使B=UAV,则称B与A酉等价. 不难证明Cm×n中的等价或酉等价关系R是等价关系. ∀A∈Cm×n,ARA:A=EmAEn (ARB⇒BRA): A=UBV⇒B=U*AV*,U*∈Um×m,V*∈Un×n (ARB & BRC⇒ARC):A=UBV & B=U′CV′⇒A=UU′CV′V 注1: A与B酉等价当且仅当它们有相同的奇异值. 注2: ∀A∈Cm×n的酉等价类中有一个最简单形状的矩阵 (见定理4.3.3). ( A∈Crm×n等价于diag(Er,0)=PAQ )奇异值分解定理1定理4.3.3:令α1,…,αr为A∈Crm×n的全部正奇异值; ∆=diag(α1,…,αr),则有U∈Um×m,V∈Un×n使 U*AV= ⎜ 0 ⎜⎛ ∆ 0⎞ ⎟ =D∈C m×n r 0⎟ ⎝ ⎠(*)U满足U*AA*U是对角矩阵,V满足V*A*AV是对角矩阵. ( A=UDV*称为A的奇异值分解式) 证: 因AA*为m阶半正定矩阵,故有U∈Um×m使⎛ ∆2 0⎞ ⎟ 0⎟ ⎝ ⎠ 分块U=(U1,U2),则U1∈Urm×r,U2∈Um-rm×(m-r)U*AA*U=diag(α12,…,αr2,0,…0)= ⎜ 0 ⎜对角阵 次酉阵奇异值分解定理1续⎛ ∆2 ⎜ ⎝ 0 ⎛ U1* ⎞ ⎛ U1* AA *U1 U1* AA *U 2 ⎞ 0 ⎞ ⎛ U1* ⎞ ⎟ ⎟ = ⎜ * ⎟ AA *(U1 , U 2 ) = ⎜ * ⎟ ( AA *U1 , AA *U 2 ) = ⎜ * * U2 ⎠ 0 ⎠ ⎝U 2 ⎠ ⎝ ⎝ U 2 AA *U1 U 2 AA *U 2 ⎠奇异值分解定理1续令 V1=(v1,…,vr),则v1,…,vr为标准正交组. 将此标正组扩大为Cn的标正基:v1,…,vr,vr+1,…,vn, 令V=(v1,…,vn)=(V1,V2)∈Un×n,其中V2=(vr+1,…,vn). 易见 0=V1*V2=∆-1U1*AV2 ⇒ U1*AV2=0 综合以上得⎛ U * AV U 1* AV2 ⎞ ⎛U * ⎞ ⎟ U * AV = ⎜ 1* ⎟ A(V1 , V2 ) = ⎜ 1* 1 ⎜ U AV U * AV ⎟ ⎜U ⎟ 2 2⎠ ⎝ 2 1 ⎝ 2⎠ ⎛ U * AA * U 1∆−1 =⎜ 1 ⎜ 0 ⎝ 0 ⎞ ⎛ ∆2 ∆−1 ⎟=⎜ 0⎟ ⎜ 0 ⎠ ⎝ 0⎞ ⎛ ∆ 0⎞ ⎟=⎜ ⎟ 0⎟ ⎜ 0 0⎟ ⎠ ⎠ ⎝比较(1,1)块得 ∆2=U1*AA*U1 比较(2,2)块得 0=U2*AA*U2=(U2*A)(U2*A)* ⇒ U2*A=0. ( ∀M∈Cm×n,MM*=0 ⇒ 0=tr(MM*)=Σ2 i,j|mij|⇒ ∀i,j,mij=0 ⇒ M=0 ) 令 V1=A*U1∆-1∈Cn×r 则 V1*V1=∆-1U1*AA*U1∆-1=∆-1∆2∆-1=E ⇒ V1∈Urn×r奇异值分解定理2定理4.3.4:令α1,…,αr为A∈Crm×n的全部正奇异值; ∆=diag(α1,…,αr),则有U1∈Urm×r,V1∈Urn×r 使 A=U1ΔV1 . 证:由定理4.3.3直接推出⎛∆ A = U ⎜ ⎜ 0 ⎝ 0 0 ⎞ ⎟V ⎟ ⎠*关于奇异值分解定理的注(1)定理4.3.3的证明同时给出了因子矩阵U,V的求法. (U(V)是使AA*(A*A)酉相似对角化的变换矩阵) (2)矩阵U,V的列分别是AA*,A*A的对应特征向量. 证: 只证U(类似可证V). U*AA*U=diag(λ1,…,λm),λi为AA*的特征值. 令 U=(u1,…,um), 则 (AA*u1,…,AA*um)=AA*(u1,…,um) =(u1,…,um)diag(λ1,…,λm) =(λ1u1,…,λmum) ⇒ ∀i,AA*ui=λiui A*A=VD*U*UDV*=Vdiag(λ1,…,λm)V* ⇒ ∀i,A*Avi=λivi= (U 1 , U2⎛∆ )⎜ ⎜ 0 ⎝0 0⎞ ⎛ V 1* ⎟⎜ * ⎟⎜ V ⎠⎝ 2⎞ ⎟ ⎟ ⎠⎛V * ⎞ = (U 1∆ , 0 )⎜ 1* ⎟ = U 1∆ V1* ⎜V ⎟ ⎝ 2⎠安徽大学 章权兵6矩阵分析奇异值分解例1例4.3.1: 求 A=⎛1 ⎜ ⎜0 ⎜0 ⎝ 2⎞ ⎟ 0⎟ 0⎟ ⎠奇异值分解例2例:求 A= 解: AA* =⎛1 ⎜ ⎜2 ⎝ 0 0 0⎞ ⎟ 0⎟ ⎠的奇异值分解式.的奇异值分解式.解: AA*=diag(5,0,0),σ(AA*)={5,0,0},Δ=(√5). U1∈U13×1是AA*对应于5的单位特征向量x=(1,0,0)T,U=E3. V1=A*U1∆-1= ⎜ ⎜⎛1 ⎝2 0 0 ⎛1⎞ 0 ⎞⎜ ⎟ ⎟⎜ 0 ⎟ ⎟ 0 ⎠⎜ ⎟ ⎝0⎠⎛1 ⎜ ⎜2 ⎝2⎞ * ⎟ 4 ⎟ ,σ(AA )={5,0},r=1,Δ=(√5). ⎠U1∈U12×1是AA*对应于5的单位特征向量x=(1/√5,2/√5)T V1=A*U1∆-1 = ⎜ 0⎜0 ⎝ ⎛1 ⎜ 2⎞ ⎟⎛ 0 ⎟⎜ ⎜ 0 ⎟⎝ ⎠1 5 2 5( )=1 51 5⎛1⎞ ⎜ ⎟ ⎜ 2⎟ ⎝ ⎠, V=1 5⎛1 ⎜ ⎜2 ⎝− 2⎞ ⎟ 1 ⎟ ⎠⎞ ⎟ ⎟ ⎠( )=1 51 5⎛1 ⎜ ⎜0 ⎜0 ⎝2⎞ ⎛1⎞ ⎟⎛ 1 ⎞ ⎜ ⎟ 0 ⎟⎜ ⎟ = ⎜ 0 ⎟ ⎜2⎟ 0 ⎟⎝ ⎠ ⎜ 0 ⎟ ⎠ ⎝ ⎠所以A的奇异值分解式是 A=UDV*= ⎜ 0 ⎜⎝0 ⎛1 ⎜ 0 1 0 0⎞⎛ 5 ⎜ 0⎟⎜ 0 ⎟ 1⎟⎜ 0 ⎠⎝ 0⎞ ⎟⎛ 0⎟⎜ 0⎟⎝ ⎠1 5 −2 5 1 2 5⎛1⎞ ⎞ ⎜ ⎟ ⎟ = ⎜0⎟ 5 ⎠ ⎜0⎟ ⎝ ⎠( 5 )(1 52 5)=U1∆ V 1*所以A的奇异值分解式是 ⎛ 15 * = ⎜ A = U1ΔV1 ⎜ 2 ⎝ 5⎞ ⎟( ⎟ ⎠5 ) (1, 0 , 0 )§4.4: 矩阵的极分解定义:令A∈Cn×n,A=HU或A=UH称为A的极分解式,如果 U∈Un×n,H∈Cn×n 是半正定Hermite矩阵. 特例: n=1时,由复数的指数表示式 a=ρeiθ 有 A=(a)=(ρ)(eiθ)=HU, H=(ρ)是半正定Hermite矩阵,U=(eiθ)是酉矩阵. 下面的定理证明: 矩阵的极分解式存在并且是唯一的.满秩方阵的极分解定理4.4.1: ∀A∈Cnn×n,存在U∈Un×n 和n阶正定Hermite矩阵 H1,H2 使 A=H1U (H12=AA*,即H1=√(AA*))或 A=UH2;并且这 样的分解式是唯一的. 证: 由定理3.9.1和定理3.9.4, 正定Hermite矩阵A*A存在唯一正定矩阵H2=(A*A)1/2. 令U=AH2-1, 则 U*U=(AH2-1)*AH2-1 =H2-1A*AH2-1=H2-1H22H2-1=E, 从而U∈Un×n使A=UH2;因H2可逆且唯一,故U也唯一. ( 另一半的证明: A=UH2=UH2U*U=H1U, H1=UH2U*为正定Hermite矩阵. AA*=H1UU*H1=H12 & H1为正定Hermite阵 ⇒ H1唯一. )非满秩方阵的极分解定理4.4.2: ∀A∈Crn×n,存在U∈Un×n和唯一n阶秩r半正定 Hermite矩阵H1,H2使A=H1U (H12=AA*,即H1=√(AA*)) 或 A=UH2 (即H2=√(A*A)). 证:存在性 由奇异值分解定理有U1,V∈Un×n使A=U1DV*, D=diag(α1,…,αr,0,…,0). 令H1=U1DU1*,H2=VDV*,U=U1V*,则H1,H2,U满足要求 A=U1DU1*U1V*=H1U; A=U1V*VDV*=UH2. 唯一性 若A=H1U,则AA*=H12 ⇒H1=(AA*)1/2唯一. 注:也可用上述方法证明定理4.4.1. 思考:定理4.4.2中U是否唯一? 不一定唯一! 没有U=AH2-1矩阵极分解的一个经典应用定理4.4.3: ∀A∈Cn×n 为正规矩阵当且仅当存在 U,U′∈Un×n和(同一个)n阶半正定Hermite矩阵H使 A=HU=U′H. 证:必要性 设A*A=AA*.由定理4.4.2,存在U∈Un×n和n 阶半正定Hermite矩阵H1,H′使A=H1U=UH′. 因此 H1=(AA*)1/2=(A*A)1/2 =H′. (AA*=H1UU*H1=(H1)2,A*A=H′U*UH′=(H′)2) 充分性 设A=HU=U′H. 则 AA*=HU(HU)*=H2 , A*A=(U′H)*U′H=H2 =AA*安徽大学 章权兵7。

线性代数第四章

线性代数第四章
为m个数, 称向
k11+k22+…+kmm
为向量组1, 2, …, m的一个线性组合.
15

定义4.2.2 设 1, 2, …, m, Rn, 如果存在数
l1, l2, …, lm 使得
=l11+l22+…+lmm
则称向量 可由向量组1, 2, …, m线性表出.
故1,2,3, 4线性相关.
31
例 2 设向量组, , 线性无关. 证明向量组
+, + , + 也线性无关.
32
小结:判定给定的一向量组1, 2, …, m是否线 性相关或线性无关,通常运用“待定系数法”,即 设待定系数 满足关系式
k11 k22 kmm O
11
二. 向量子空间
定义4.1.3 设W是的Rn一个非空子集. 如果
(i) 对任意的, ∈W,均有 + ∈W ;
(ii) 对任意的∈W 和任意的k∈R,有k∈W.
则称W是Rn的一个子空间. 子空间中向量加法和数乘向量满足向量空间定 义中的八条运算律. 从而 将向量空间和它的子空 间均称为向量空间.
中每一向量可由1, 2, …, m线性表出.
20
注. 若W=span(1, 2, …, m) , 则称1, 2, …, m
是子空间W的一组生成元, 并称W为1, 2, …, m
生成的子空间.
21
§4.3
线性相关与线性无关
一. 定义 线性相关与线性无关是线性代数中十分重要的概
利用行初等变换的方法解此方程组.
29
(1) 解. 因为
1 1 2 4 2 r1 r2 2 1 1 0 4 r1 r3 4 3 2 0

线性代数课后习题解答第四章习题详解

线性代数课后习题解答第四章习题详解

第四章 向量组的线性相关性1.设TT T v v v )0,4,3(,)1,1,0(,)0,1,1(321===, 求21v v -及32123v v v -+. 解 21v v -TT)1,1,0()0,1,1(-=T)10,11,01(---=T)1,0,1(-=32123v v v -+T T T )0,4,3()1,1,0(2)0,1,1(3-+=T )01203,41213,30213(-⨯+⨯-⨯+⨯-⨯+⨯= T )2,1,0(=2.设)(5)(2)(3321a a a a a a +=++-其中T a )3,1,5,2(1=, Ta )10,5,1,10(2=,T a )1,1,1,4(3-=,求a . 解由)(5)(2)(3321a a a a a a +=++-整理得)523(61321a a a a -+=])1,1,1,4(5)10,5,1,10(2)3,1,5,2(3[61T T T --+=T )4,3,2,1(=3. 已知向量组A :a 1=(0,1,2,3)T ,a 2=(3,0,1,2)T , a 3=(2,3,0,1)T ;B :b 1=(2,1,1,2)T ,b 2=(0,-2,1,1)T , b 3=(4,4,1,3)T ,证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫ ⎝⎛------531400251552000751610421301~r ⎪⎪⎪⎭⎫⎝⎛-----000000531400751610421301~r 知R (A )=R (A ,B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B ,A ), 所以A 组不能由B 组线性表示.4. 已知向量组A :a 1=(0, 1, 1)T ,a 2=(1, 1, 0)T ;B :b 1=(-1, 0, 1)T ,b 2=(1, 2, 1)T , b 3=(3, 2,-1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B ,A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B ,A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A ,B ). 因此A 组与B 组等价.5. 已知R (a 1,a 2,a 3)=2,R (a 2,a 3,a 4)=3, 证明 (1) a 1能由a 2,a 3线性表示; (2) a 4不能由a 1,a 2,a 3线性表示.证明 (1)由R (a 2,a 3,a 4)=3知a 2,a 3,a 4线性无关, 故a 2,a 3也线性无关. 又由R (a 1,a 2,a 3)=2知a 1,a 2,a 3线性相关, 故a 1能由a 2,a 3线性表示.(2)假如a 4能由a 1,a 2,a 3线性表示, 则因为a 1能由a 2,a 3线性表示, 故a 4能由a 2,a 3线性表示, 从而a 2,a 3,a 4线性相关, 矛盾. 因此a 4不能由a 1,a 2,a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T ,(2, 1, 0)T ,(1, 4, 1)T ; (2) (2, 3, 0)T ,(-1, 4, 0)T ,(0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A , 所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a ,1,1)T ,a 2=(1,a ,-1)T , a 3=(1,-1,a )T .解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时,R (A )<3, 此时向量组线性相关.8. 设a 1,a 2线性无关,a 1+b ,a 2+b 线性相关, 求向量b 用a 1,a 2线性表示的表示式.解 因为a 1+b ,a 2+b 线性相关, 故存在不全为零的数λ1,λ2使λ1(a 1+b )+λ2(a 2+b )=0,由此得 2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=,设211λλλ+-=c , 则b =c a 1-(1+c )a 2,c ∈R .9.设a 1,a 2线性相关,b 1,b 2也线性相关, 问a 1+b 1,a 2+b 2是否一定线性相关?试举例说明之. 解 不一定.例如, 当a 1=(1,2)T ,a 2=(2,4)T , b 1=(-1,-1)T ,b 2=(0,0)T 时, 有 a 1+b 1=(1,2)T +b 1=(0,1)T ,a 2+b 2=(2,4)T +(0,0)T =(2,4)T , 而a 1+b 1,a 2+b 2的对应分量不成比例, 是线性无关的.10.举例说明下列各命题是错误的:(1) 若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.(2) 若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ 成立, 则m a a ,,1线性相关, m b b ,,1 亦线性相关.(3) 若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ 才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.(4) 若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数, m λλλ,,,21 使.0 ,01111=++=++m m m m b b a a λλλλ 同时成立.解 (1) 设)0,,0,0,1(11 ==e a , 032====m a a a 满足m a a a ,,,21 线性相关, 但1a 不能由,,,2m a a 线性表示.(2) 有不全为零的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111 . 其中m e e ,,1 为单位向量,则上式成立,而m a a ,,1 ,m b b ,,1 均线性相关.(3) 由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )m m b a b a b a +++⇒,,,2211 线性无关取021====m ααα , 取m b b ,,1 为线性无关组. 满足以上条件,但不能说是m ααα,,,21 线性无关的. (4)Ta )0,1(1=Ta )0,2(2=Tb )3,0(1=Tb )4,0(2=⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾.11.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关. 证明设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=; 212x x k +=; 323x x k +=; 434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关, 则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解. 则4321,,,b b b b 线性相关. 综合得证.12.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故⎪⎩⎪⎨⎧==++=+++000221r r r k k k k k k ⇔⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛0001001101121 r k k k 因为0110011011≠= 故方程组只有零解. 则021====r k k k . 所以r b b b ,,,21 线性无关13.求下列向量组的秩,并求一个最大无关组:(1) ⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2) )3,1,2,1(1=T a ,)6,5,1,4(2---=Ta ,)7,4,3,1(3---=T a .解(1)3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛--000032198204121~秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛------10550189903121~⎪⎪⎪⎭⎫⎝⎛---0000189903121~ 秩为2,最大线性无关组为TT a a 21,.14.利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示:(1) ⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2)⎪⎪⎪⎪⎭⎫ ⎝⎛---14011313021512012211.解(1)⎪⎪⎪⎪⎭⎫⎝⎛482032251345494751325394754317312514131233~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛531053103210431731252334~r r r r --⎪⎪⎪⎪⎭⎫⎝⎛00003100321043173125所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r r r --⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~rr r r ↔+⎪⎪⎪⎪⎭⎫⎝⎛---00000222001512012211,所以第1、2、3列构成一个最大无关组.15. 设向量组(a ,3,1)T ,(2,b ,3)T ,(1,2,1)T ,(2,3,1)T的秩为2, 求a ,b .解 设a 1=(a ,3,1)T ,a 2=(2,b ,3)T ,a 3=(1,2,1)T ,a 4=(2,3,1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1,a 2,a 3,a 4)=2, 所以a =2,b =5.16.设n a a a ,,,21 是一组n 维向量,已知n 维单位坐标向量n e e e ,,,21 能由它们线性表示,证明n a a a ,,,21 线性无关.证明 n 维单位向量n e e e ,,,21 线性无关. 不妨设:nnn n n n nn n n a k a k a k e a k a k a k e a k a k a k e +++=+++=+++= 22112222121212121111所以⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛T n T Tnn n n n n T n T T a a a k k k k k k k k k e ee2121222211121121两边取行列式,得T n T T nn n n n n TnTTa a a k k k k k k k k k e e e2121222211121121=由002121≠⇒≠T nT TT n T T a a a e e e 即n 维向量组n a a a ,,,21 所构成矩阵的秩为n . 故n a a a ,,,21 线性无关.17.设n a a a ,,,21 是一组n 维向量,证明它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表示.证明 设n εεε,,,21 为一组n 维单位向量,对于任意n 维向量T n k k k a ),,,(21 =则有n n k k k a εεε+++= 2211即任一n 维向量都可由单位向量线性表示.必要性⇒n a a a ,,,21 线性无关,且n a a a ,,,21 能由单位向量线性表示,即nnn n n n nn n n k k k k k k k k k εεεαεεεαεεεα+++=+++=+++= 22112222121212121111故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛n T T T nn n n n n T n T Tk k k k k k k k k a a a εεε 2121222211121121 两边取行列式,得Tn TT nn n n n n T nT Tk k k k k k k k k a a a εεε 212122*********1=由0021222211121121≠⇒≠nnn n nn T nT T k k k k k k k k k a a a令⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯nn n n n n n n k k k k k k k k k A212222111211 . 由⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫⎝⎛-T n T T T n T TT n T T T n T Ta a a A A a aa εεεεεε 212112121即n εεε,,,21 都能由n a a a ,,,21 线性表示,因为任一n 维向量能由单位向量线性表示,故任一 n 维向量都可以由n a a a ,,,21 线性表示.充分性⇐已知任一n 维向量都可由n a a a ,,,21 线性表示,则单位向量组:n εεε,,,21 可由n a a a ,,,21 线性表示,由16题知n a a a ,,,21 线性无关.18. 设向量组a 1,a 2,⋅⋅⋅,a m 线性相关, 且a 1≠0, 证明存在某个向量a k (2≤k ≤m ), 使a k 能由a 1,a 2,⋅⋅⋅,a k -1线性表示.证明 因为a 1,a 2,⋅⋅⋅,a m 线性相关, 所以存在不全为零的数λ1,λ2,⋅⋅⋅,λm ,使λ1a 1+λ2a 2+⋅⋅⋅+λm a m =0,而且λ2,λ3,⋅⋅⋅,λm 不全为零. 这是因为, 如若不然, 则λ1a 1=0,由a 1≠0知λ1=0, 矛盾. 因此存在k (2≤k ≤m ), 使λk ≠0,λk +1=λk +2=⋅⋅⋅=λm =0,于是λ1a 1+λ2a 2+⋅⋅⋅+λk a k =0,a k =-(1/λk )(λ1a 1+λ2a 2+⋅⋅⋅+λk -1a k -1),即a k 能由a 1,a 2,⋅⋅⋅,a k -1线性表示.19.设向量组:B r b b ,,1 能由向量组:A s a a ,,1 线性表示为K a a b b s r ),,(),,(11 =,其中K 为r s ⨯矩阵,且A 组线性无关。

线性代数第四章

线性代数第四章
线性代数
第4章 线性方程组
4.1 线性方程组的消元法 4.2 线性方程组解的判定 4.3 齐次线性方程组的解 4.4 非齐次性方程组解的结构 4.5 应用实例
4.1 线性方程组的消元法
4.1.1 消元法
例题
例1
2x1 x2 5x3 2
解线性方程组
x1
x2 2x3 2
x1 2x2 x3 4
4.3.1 齐次线性方程组解的结构
定义
1 0 0
0
1
0
(1)因为 0 , 0 ,
, 0
线性无关,所以
1
,2

,nr 是线性无关的.
0 0 1
(2)齐次线性方程组 Amn X 0 任意一组解
k1 b1,r1kr1
k2
b2 k ,r1 r1
ξ kr br ,r1kr1
0
3 1
0
0

1
当 0 时, r( A) 2 3,方程组有非零解.
4.3 齐次线性方程组的解
4.3.1 齐次线性方程组解的结构
定义
设齐次线性方程组为
a1 1x 1 a x1 2 2
a2
1x
1 a
x2 2 2
am1x 1 am x2 2
a n xn 1 0 , a n xn2 0 ,
amn xn 0 ,
(4-9)
为了叙述方便,将方程组(4-9)记为 AX 0 ,其解为 x1 k1 ,x2 k2 , ,xn kn ,记为 x (k1 ,k2 , ,kn ) , x 称为解向量.
4.3.1 齐次线性方程组解的结构
定义
性质 1 如果1 ,2 是齐次线性方程组 AX 0 的解,则1 2 也是 AX 0 的解. 性质 2 如果 1 是齐次线性方程组 AX 0 的解,k 是任意常数,则 k1 也是 AX 0 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 向量间的线性关系与线 性方程组空间
考虑所有的n维行(或列)向量形成的集合, 由于 这些行(列)向量均可看成1n(n1)的矩阵, 可以进 行加法运算和数乘运算, 并且运算的结果仍然是n 维行(列)向量. 即该集合关于加法运算和数乘运算 是封闭的,在数学上我们称该集合关于这两个运 算构成了一个运算系统,这个系统就是我们本章 要定义的向量空间.
数乘向量:设=(a1, a2,…, an ),k是任一实数,
则数 k与向量的积为
k =k(a1, a2,…, an) =(ka1, ka2,…, kan)
向量的差:设=(a1, a2,…, an), =(b1, b2,…, bn),
则与的差为
=(a1 b1, a2 b2 ,…, an bn)
12
例1 证明: 如果W是Rn的一个子空间, 则必有OW.
例2
设S为R2中所有形如
量的集合, 验证S是R2的一个子空间.
a 3a (a为任意实数) 的向
例3 验证下述集合是Rn(n2)的一个子空间.
S (a1, a2 , , an1, 0) | a1, a2 , , an1 R
3. +O=
(加法结合律)
4. +(-)=O
5. 1=
7. 8. k( + )=k+k (k+l)= k+l
6. k(l)=(kl)
其中, , , 是任意向量, k, l是任意的实数.
10
特别地我们有:设, 是Rn中任意两个向量,则 (i) 0 =O,kO=O;k为任意实数; (ii) 如k=O,那么k=0 或者=O; (iii) 如+ =O,那么 = ; (iv) (1) =
为m个数, 称向
k11+k22+…+kmm
为向量组1, 2, …, m的一个线性组合.
15

定义4.2.2 设 1, 2, …, m, Rn, 如果存在数 l1, l2, …, lm 使得
=l11+l22+…+lmm
则称向量 可由向量组1, 2, …, m线性表出.
O=(0, 0, …, 0) 负向量:任一向量=(a1, a2,…, an)的各分量反号得 到的向量称为 的负向量,记为 =(a1, a2,…, an)
7
向量的和:设=(a1, a2,…, an), =(b1, b2,…, bn),
则与的和为
Hale Waihona Puke + =(a1+ b1, a2+ b2 ,…, an+ bn)
能够更深入地了解线性方程组解的结构.
2
§4.1 向量空间和子空间的定义 §4.2 线性组合与线性表出 §4.3 线性相关与线性无关 §4.4 向量空间的基和维数
§4.5 极大无关组和向量组的秩
§4.6 矩阵的秩
§4.7 线性方程组解的结构
§4.8 基变换和坐标变换*
3
§4.1 定义及性质
一、 向量空间的定义 定义4.1.1 任意n个(实)数a1, a2,…, an 构成的如
8
显然, 关于向量的加法和数乘, 定理2.1.1中运
算律成立. 我们现在定义:
9
定义4.1.2 所有n维实向量的集合Rn中定义了如上 的向量加法和数乘向量两种运算, (并满足如下的8 条运算律)称为n维实向量空间. 1. + = + (加法交换律)
2. +(+)=(+)+
11
二. 向量子空间
定义4.1.3 设W是的Rn一个非空子集. 如果
(i) 对任意的, ∈W,均有 + ∈W ;
(ii) 对任意的∈W 和任意的k∈R,有k∈W.
则称W是Rn的一个子空间. 子空间中向量加法和数乘向量满足向量空间定 义中的八条运算律. 从而 将向量空间和它的子空 间均称为向量空间.
1
向量之间关于这两个运算的关系, 即所谓的线 性关系则是线性代数所要研究的核心内容. 利用 这些理论去解释线性方程组求解过程, 将会发现 对线性方程组的系数矩阵施行初等行变换并将其 化为行阶梯型时, 这些阶梯型矩阵中其元素不全
为零的行的数目其实是该矩阵行向量间和列向量
间所共有的一个十分重要的数字特征, 从而我们
13
例4 验证如下形式的向量的全体构成的集合 不是 的子空间.
(a1, a2 , 1),
a1 , a2 R
明显地, Rn是Rn自身的子空间; 另外, 只含零 向量的子集 ={O }也是Rn 的一个子空间.
14

§4.2 线性组合与线性表出
一、 线性组合与线性表出 定义4.2.1 设 1, 2, …, mRn, k1, k2, …, km
注. 显然, 一向量 可由向量组1, 2, …, m 线性 表出当且仅当 也是向量组1, 2, …, m 的一个 线性组合.
16
例4.2.1 线性方程组的向量形式: 给定一线性方 程组
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 a x a x a x b m2 2 mn n m m1 1
向量的集合或所有n维列向量的集合. 现考虑为所
有n维行向量的集合的情形(同理可讨论为所有n
维列向量的集合的情形).
6
向量的相等: 两个向量=(a1, a2,…, an) 和
=(b1, b2,…, bn) 相等,当且仅当 ai= bi, i=1, 2, …, n, 并记为= .
零向量:分量全为零的向量称为零向量,记为
令系数矩阵 [aij]mn的列向量组为1, 2, …, n, 而 且令向量 =(b1, b2, …, bm)T,则该线性方程组可以 表示为以下向量形式: x11+ x22+…+xnn = 从而, 线性方程组(4.2.1)是否有解当且仅当该方程 组的常数项向量是否可由其系数矩阵的列向量组 1, 1, …, n线性表出.
下的n元有序组
(a1, a2,…, an)
称为n维(实)向量, 每一ai称为此向量的第i个分量.
如上定义的n维向量也称为n维行向量. n维向 量也可以用列的形式写出, 称为列向量:
4
其中,b1, b2,…, bn 为任意(实)数. 如无特别申
明,n维向量均为实向量.
5
通常, 记为R所有实数的集合, 并记Rn为所有n维行
相关文档
最新文档