高中数学破题致胜方法构造齐次方程求双曲线的离心率
高中数学破题致胜微方法双曲线进阶性质:双曲线的通径
先看例题: 例:设双曲线22221(0,0)x y a b a b -=>>的右焦点为F ,,过点F 且与x 轴垂直的直线被双曲线截得的线段长为83.求双曲线的方程. 解:由题意,得2823c a b a ⎧=⎪⎪⎨⎪=⎪⎩从而3,2.a b =⎧⎨=⎩ 如图:因此,所求的双曲线方程为22194x y -=. 整理:22b a通径是过双曲线的一个焦点垂直于实轴的弦,长为 请同学们根据上面的例题,自己完成证明。
轴。
再看一个例题,加深印象例:已知F 1(-5,0),F 2(5,0)是双曲线C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=92,则C 的方程为()。
解:由题意, 设双曲线22221(0,0)x y a b a b-=>> 得222+25922a b b a ⎧=⎪⎨=⎪⎩从而4,3.a b =⎧⎨=⎩ 因此,所求的双曲线方程为221169x y -=.练习:1.过双曲线的一个焦点且与双曲线的实轴垂直的弦叫做双曲线的通径,则双曲线191622=-x y 的通径长是( )。
(A) 49 (B) 29 (C) 9 (D) 10 2.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为()B. C.2 D.33. 已知F1,F2是双曲线2214yx-=的两个焦点,过F1作垂直于x轴的直线与双曲线相交,其中一个交点为P,则|PF2|=________.4. 在给定双曲线中,焦点到相应准线的距离为12,则该双曲线的离心率为( ) 答案1. 解:双曲线的通径长2992242ba==,正确答案为B.。
关于高中数学离心率题型解法的有效解决技巧
关于高中数学离心率题型解法的有效解决技巧离心率是椭圆形几何图形较为重要的一个参数,它代表着椭圆的扁平程度。
在高中数学中,离心率一般作为重要内容涉及到椭圆、双曲线和抛物线的相关题型。
下面,我们将介绍一些高效的解决离心率题型的有效技巧。
一、离心率的定义和特点椭圆的离心率是一个非常重要的物理量,它代表着椭圆的扁平程度。
在椭圆的定义中,其离心率的定义是:离心率等于椭圆长轴和短轴的差值与它们的和的比值。
它的数值在0~1之间。
双曲线的离心率是大于1的,它代表着双曲线的扁平程度。
它的数值大于1。
抛物线没有离心率的概念,因为抛物线是一个具有对称性的几何图形。
二、椭圆题型的解法在椭圆的题型中,很多问题都涉及到了离心率,因此我们需要通过不同的方法求解。
(1)已知椭圆的方程,求椭圆长轴和短轴长度以及离心率。
一般来说,已知椭圆的方程为$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$,其中a和b分别表示长轴和短轴长度,离心率为$e=\sqrt{1-\dfrac{b^2}{a^2}}$。
根据椭圆的定义式,可以知道:$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$$其中a,b分别表示椭圆的长轴和短轴长度。
可以通过已知的a和b来确定椭圆的方程。
(3)已知椭圆上两点的坐标,求离心率。
根据椭圆的性质,椭圆上任意两点到椭圆中心的距离之和是定值。
因此,可以利用椭圆焦点的性质求解该问题:设点$A(x_1,y_1)$和点$B(x_2,y_2)$在椭圆上,焦点为点$F_1$和$F_2$,椭圆中心为点$O$,则有:$AF_1+BF_1=AF_2+BF_2=2a$ $(a>$离心率为$e=\dfrac{c}{a}$,其中c表示椭圆两个焦点之间的距离。
其中$c=\sqrt{a^2+b^2}$为双曲线的焦点之间的距离。
(1)了解椭圆、双曲线和抛物线的定义、性质和方程式,能够熟练计算离心率。
高中数学破题致胜微方法(直线与双曲线的位置关系)1.直线与双曲线相交 含解析
今天我们研究直线与双曲线相交,即直线与双曲线有一个或两个交点。
直线方程与双曲线方程联立,消去y 或x 得到关于x 或y 的一元二次方程或一元一次方程,则(1)一元一次方程情形,直线与双曲线有一个交点等价于直线与双曲线的渐近线平行;(2)一元二次方程情形,直线与双曲线有一个有两个交点等价于直线与双曲线方程联立后方程有两个不同的解,其判别式大于0。
先看例题:例:若直线y =kx +2与双曲线x 2-y 2=6相交,求k 的取值范围。
解:由22=+26y kx x y ⎧⎨-=⎩得22410)0(1k x kx ---=, (1)直线与双曲线有两个公共点,即:()()222101641100k k k ⎧-≠⎪⎨∆=--⨯->⎪⎩, 解得1515(1)(1,1))k ∈-⋃-⋃ (2)直线与双曲线有一个公共点,21=0k-,解得1k =± 综上有1515k << 整理: 设直线l :y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得 02)(222222222=----b a m a mkx a x k a b(1)若0222=-k a b 即a bk ±=,且0m ≠时,直线与双曲线渐近线平行,直线与双曲线相交于一点;(2)若0222≠-k a b 即a b k ±≠,))((4)2(222222222b a m a k a b mk a -----=∆0>∆⇒直线与双曲线相交,有两个交点。
注意:一解不一定相切,相交不一定两解,两解不一定同支。
再看一个例题,加深印象例:若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是 ( )A.⎛ ⎝⎭B.⎛ ⎝⎭C.⎛⎫ ⎪ ⎪⎝⎭ D。
13⎛⎫-- ⎪ ⎪⎝⎭解:由22=+26y kx x y ⎧⎨-=⎩得22410)0(1k x kx ---=, ∴()()222121210164110000k k k x x x x ⎧-≠⎪∆=--⨯->⎪⎨+>⎪⎪>⎩,解得13k -<<-,正确答案D 。
必须掌握的高中数学《圆锥曲线:离心率》五大类型解题技巧
必须掌握的高中数学《圆锥曲线:离心率》五大类型
解题技巧
一、题干解读
首先,要从题干中获取所要解决的问题,对题目中出现的任何重要信息进行精准的解读,例如:圆锥曲线的类型、焦距、曲率半径和离心率等。
二、思路构建
根据题干要求,充分分析问题,查找并熟悉相关知识点,结合已有知识建立正确的思路,来求解其中的离心率。
三、公式应用
根据解题思路,确定正确的运算方法,用公式解决问题,计算出离心率的值。
四、注意事项
计算时要注意使用正确的公式,检查结果是否符合要求,将所求答案放于题干中进行校验等。
五、解答总结
最后,要对解题过程进行归纳总结,总结本次解答的关键思想,把握解题技巧,为预防后续出现相似问题而做好准备。
关于高中数学离心率题型解法的有效解决技巧
关于高中数学离心率题型解法的有效解决技巧【摘要】高中数学中,离心率题型是一个常见但也容易出错的题目。
本文将介绍关于高中数学离心率题型的解法技巧。
在我们将介绍离心率的定义和背景知识。
在我们将详细讲解离心率的性质、解题步骤,并举例说明常见的题型。
我们会提醒大家在解题时需要注意的事项,并进行实战演练。
在我们将总结本文的内容,并探讨离心率在实际生活中的拓展应用,以及如何进一步提升解题能力。
通过本文的学习,读者将能够更加熟练地解决高中数学中关于离心率的题目。
【关键词】高中数学、离心率、题型、解法、有效技巧、引言、定义与性质、解题步骤、常见题型举例、注意事项、实战演练、结论、总结、拓展应用、思考提升。
1. 引言1.1 介绍高中数学中的离心率题型是一种常见而重要的题型,涉及到椭圆、双曲线和抛物线等几何图形的特性和性质。
理解和掌握离心率的计算方法对于解题十分重要,而有效的解决技巧可以帮助学生提高解题效率,提升数学成绩。
在本文中,我们将介绍关于高中数学离心率题型的解题技巧,希望能够为学生们在学习和应试过程中提供指导和帮助。
在接下来的我们将详细介绍离心率的定义和性质,解题步骤以及常见题型举例,同时给出一些注意事项和实战演练,希望能够帮助学生们全面深入地理解和掌握离心率这一重要的数学知识。
通过不断的学习和练习,我们相信每位学生都能够在离心率题型上取得更好的成绩。
1.2 背景知识高中数学中,离心率是一个重要且常见的概念。
在几何学和代数学中,离心率通常用来描述椭圆、双曲线和抛物线等二次曲线的形状。
理解离心率的概念对于解决与二次曲线相关的数学问题非常重要。
离心率的定义是一个数值,用来衡量一个二次曲线的“扁平”程度。
在椭圆和双曲线中,离心率的取值范围是0到1,越接近1表示曲线越扁平;在抛物线中,离心率为1,表示曲线为对称。
在解决与离心率相关的数学题目时,首先要掌握离心率的定义及其性质。
需要了解解题的基本步骤,包括求解离心率、判断曲线类型、求解焦点、导线等。
关于高中数学离心率题型解法的有效解决技巧
关于高中数学离心率题型解法的有效解决技巧离心率是描述椭圆或者双曲线形状的一个重要参数,在高中数学中是一个常见的题型。
解决离心率题型需要掌握一些有效的解决技巧,以下是一些常用的解题方法:1. 确定椭圆或双曲线的方程类型:首先要根据题目中的给定信息确定椭圆或双曲线的方程类型,例如椭圆的方程一般形式为\dfrac{x^2}{a^2}+ \dfrac{y^2}{b^2} = 1,双曲线的方程一般形式为\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1。
2. 求取离心率:当已知椭圆或双曲线的方程时,可以利用离心率的定义求取离心率。
椭圆的离心率为e = \sqrt{1 - \dfrac{b^2}{a^2}},双曲线的离心率为e =\sqrt{\dfrac{b^2}{a^2} + 1}。
3. 利用离心率性质解题:离心率有许多有用的性质可以用来解决题目。
椭圆的离心率e满足0 < e < 1,即离心率是大于0小于1的实数。
双曲线的离心率e满足e > 1,即离心率是大于1的实数。
4. 求取椭圆或双曲线的焦点:椭圆的焦点可以通过离心率来求取,焦点的坐标为(\pm ae, 0)。
双曲线的焦点的坐标为(\pm ae, 0)和(0, \pm b)。
5. 利用焦点和离心率的性质求取题目所需要的信息:有时候题目会给出椭圆或双曲线的焦点和离心率,需要求取其他相关信息。
可以根据离心率和焦点的坐标来求取椭圆的长轴、短轴长度,以及双曲线的极限。
6. 综合运用多种方法解题:有些题目可能需要综合运用离心率的性质、椭圆、双曲线的方程以及焦点、长轴、短轴等信息来解决。
在解决离心率题型时,需要熟练掌握椭圆和双曲线的基本概念和公式,同时运用离心率的性质来推导和求解。
多做一些题目,加深对离心率和椭圆、双曲线的理解,掌握常见的解决技巧,就能够更有效地解决高中数学离心率题型。
关于高中数学离心率题型解法的有效解决技巧
关于高中数学离心率题型解法的有效解决技巧高中数学中,离心率题型通常为解析几何的内容,主要涉及圆、椭圆、双曲线等几何图形的离心率。
解决这类题目需要掌握相关的几何知识和计算技巧。
下面将介绍一些有效的解决技巧。
1. 理解离心率的定义离心率是描述一个椭圆或双曲线形状的一个重要参数,它是焦点到几何图形上任意一点的距离与该点到几何图形上一个确定的点的距离的比值。
椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1。
理解离心率的定义对于解决离心率题型至关重要。
2. 利用离心率的性质离心率与椭圆或双曲线的几何特性有着密切的关系,掌握离心率的性质有助于解决相关的题目。
对于椭圆,离心率越接近于1,椭圆的形状就越接近于圆;对于双曲线,离心率越大,双曲线的形状就越尖锐。
利用这些性质可以帮助我们更好地理解和解答题目。
3. 掌握椭圆和双曲线的标准方程椭圆和双曲线有各自的标准方程,掌握这些方程可以帮助我们快速判断出题目中所涉及的几何图形,并利用这些方程进行计算。
椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1或y^2/b^2 - x^2/a^2 = 1。
4. 结合焦点和直角坐标系椭圆和双曲线的焦点是离心率的重要概念,理解焦点与几何图形形状的关系对于解决离心率题型非常重要。
将焦点与直角坐标系结合起来,可以更加直观地理解离心率的定义和特性,从而更好地解答题目。
5. 利用离心率的计算方法根据离心率的定义,可以利用焦点到几何图形上任意一点的距离与该点到几何图形上一个确定的点的距离的比值来计算离心率。
在解决离心率题型时,需要善于利用距离公式和直线方程来进行计算,灵活运用代数计算的方法,从而求得题目中所涉及的离心率。
解决高中数学中离心率题型的有效技巧主要包括理解离心率的定义,掌握相关几何图形的特性和标准方程,结合焦点和直角坐标系进行分析,以及善于利用计算方法进行求解。
关于高中数学离心率题型解法的有效解决技巧
关于高中数学离心率题型解法的有效解决技巧高中数学中,离心率是一个重要的知识点,也是一个容易出现的考试题型。
在解离心率题时,需要掌握一些有效的解决技巧,下面,将从概念、公式、图形和实例四个方面进行分析和讲解。
一、概念离心率是描述椭圆形和双曲线形质量分布集中程度的参数,也是描述椭圆形、双曲线形轨道形状的一个重要参数。
离心率的定义为$$e=\frac{c}{a}$$其中,$a$代表椭圆长轴的一半,$c$代表椭圆中心到焦点的距离。
二、公式离心率有一些常用的公式,包括离心率的计算公式、椭圆周长公式、椭圆面积公式、双曲线面积公式等,理解和记忆这些公式是解决各类离心率题的关键。
1、离心率的计算公式已知椭圆的长轴和短轴的长度$a,b$,离心率的计算公式为$$e=\sqrt{1-\frac{b^2}{a^2}}$$2、椭圆周长公式椭圆的面积公式为$$S=\pi ab$$4、双曲线面积公式由双曲线的定义可以知道,它分为两部分,两部分的面积是无限的。
因此,计算双曲线面积时,需要指定一定区域。
如果指定双曲线距离焦点距离$r_0$和双曲线上一点到直线$x=a$的距离$x$之间的区域,双曲线的面积为$$S=\pi b\cdot r_0-\frac{b}{2}\cdot x\sqrt{x^2+a^2}+\frac{b^2}{2a}\ln(x+\sqrt{x^2+a^2})$$三、图形图形是解离心率题的直观工具,掌握常见椭圆和双曲线的图像特点,可以帮助我们更好地理解和解决问题。
1、椭圆的图像特点椭圆沿长轴对称,焦点在长轴上,且距离轴心的距离为$\sqrt{a^2-b^2}$,长轴和短轴之间有如下关系:$$a>b$$双曲线的焦点在直线$x=\pm a$上,因此,双曲线的左右两侧没有交点,也称为渐近线。
双曲线的顶点在$x$轴上,曲线下半部分与$x$轴相交,上半部分不交。
四、实例以下是一道常见的离心率的实例:【例题】椭圆的长轴为$16$,短轴为$6$,离心率为$\dfrac{5}{8}$,求椭圆的面积。
求解离心率的四种方法技巧
离心率四种考法及其方法技巧1.方程思想:齐次方程、不等式(1)若给定椭圆(双曲线)的方程,则根据椭圆方程确定2a ,2b ,进而求出a ,c 的值,从而利用公式ce a =直接求解;(2)若椭圆(双曲线)方程未知,则根据条件及几何图形建立关于a ,b ,c 的齐次等式(或不等式),化为关于a ,c 的齐次方程(或不等式),进而化为关于离心率e 的方程(或不等式)进行求解.椭圆经典例题铺垫:(1)设椭圆2222:1x y C a b +=(0a b >>)的焦点为1F ,2F ,过右焦点2F 的直线l 与C相交于P 、Q 两点,若1PQF ∆的周长为短轴长的倍.则C 的离心率e =________.(2)椭圆22221x y a b +=(0a b >>)的焦点为1F ,2F ,直线2a x c =-与直线2a x c =和轴的交点分别为M ,,若122MN F F ≤,则该椭圆离心率的取值范围是__________.例1(1)若一个椭圆的长轴长、短轴长和焦距成等比数列,则该椭圆的离心率是_________.(2)若一个椭圆的长轴长、短轴长和焦距成等差数列,则该椭圆的离心率是_________.几何条件 例2(1)设椭圆的两个焦点分别为1F ,2F ,过点2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是____________.(2)椭圆2222:1x y C a b +=(0a b >>)的右顶点为A ,经过原点的直线交椭圆C 于P 、Q 两点,若PQ a =,AP PQ ⊥,则椭圆C 的离心率为__________.(3)如图,12,F F 分别是椭圆()222210x y a b a b +=>>的左、右焦点,A 和B 是以O (O 为坐标原点)为圆心,以1OF 为半径的圆与该椭圆的两个交点,且2F AB △是等边三角形,则椭圆的离心率为_________.双曲线经典例题 例1(1)若一个椭圆的焦距、实轴长和虚轴长成等比数列,则该椭圆的离心率是_________. (2)若一个椭圆的焦距、实轴长和虚轴长成等差数列,则该椭圆的离心率是_________. 例2(1)设12,F F 分别是双曲线:C ()222210,0x y a b a b -=>>的左右焦点,点(),M a b .若1230MF F ∠=︒,则双曲线的离心率为_________.(2)已知1F 、2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线右支上存在一点P ,使()220OP OF PF +⋅=(O 为坐标原点),且1223PF PF =,则双曲线的离心率为________.(3)(文讲义例8(3))已知点12,F F 分别是双曲线()222210,0x y a b a b -=>>的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于,A B 两点,若2ABF △是锐角三角形,则该双曲线离心率的取值范围是_________.方法2:焦点三角形中的角知识点1:椭圆()222210x y a b a b+=>>中,设12F F 、是椭圆的两个焦点,P 为椭圆上任一点.若1221,,PF F PF F αβ∠=∠=则cossin 2;sin sin cos 2e αβθαβαβ+==-+双曲线中的结论为:sinsin 2=.sin sin sin 2e αβθαβαβ+=--经典例题 椭圆例题 例12013-2014学年吉林省吉林市实验中学高二(上)模块检测数学试卷(二)(理科 椭圆()222210x y a b a b +=>>,左右焦点分别是焦距为2c,若直线)y x c +与椭圆交于M 点,满足12212MF F MF F ∠=∠,则离心率是( )A.211275F =︒,2115PF F ∠=︒,则椭圆的离心率为( )例3(讲义例7(3)) ABC △中,1tan 3A =,π4B =,若椭圆E 以AB 为焦距,且过点C ,则椭圆E 的离心率是________.例4(讲义例9(2))已知椭圆22221x y a b +=(0a b >>)的左、右焦点分别为1F 、2F ,P 是椭圆上一点,12PF F △是以1PF 为底边的等腰三角形,若12060PF F ︒<∠<︒,则该椭圆的离心率的取值范围是________.练习双曲线例题 例5双曲线()222210,0x y a b a b -=>>的左、右焦点分别是12,F F ,过1F 作倾斜角为30︒的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )例62016-2017学年湖北省襄阳市枣阳一中高三(上)开学数学试卷(理科) 已知12,F F 是双曲线()222210,0x y a b a b -=>>的两个焦点,M 为双曲线上的点,若1221,60,MF MF MF F ⊥∠=︒则双曲线的离心率为( )1 1例7设A 是双曲线22221x y a b-=(0a >,0b >)在第一象限内的点,F 为其右焦点,点A 关于原点O 的对称点为B ,若AF BF ⊥,设ABF α∠=,且ππ,126α⎡⎤∈⎢⎥⎣⎦,则双曲线离心率的取值范围是________.结论2:椭圆最大顶角与离心率 最大顶角 椭圆:sin2e θ≥,2cos 12e θ≥-例12016-2017学年辽宁省盘锦高中高二(上)期中数学试卷(文科)设椭圆22221x y a b +=(0a b >>)的左、右焦点分别是12,F F ,如果在椭圆上存在一点P ,使12F PF ∠为钝角,则椭圆离心率的取值范围是_________.例2已知椭圆22221x y a b+=(0a b >>),1F ,2F 为两焦点,若椭圆上存在P ,使得110PF PF ⋅<.则椭圆离心率的取值范围是________.拓展 长轴三角形最大顶角设12A PA θ∠=,12,A A 为左右顶点e ≥设椭圆22221x y a b+=(0a b >>)的左、右端点分别是,A B ,如果在椭圆上存在一点P ,使120APB ∠=︒则椭圆离心率的取值范围是_________.方法3:焦半径知识点1.焦半径公式与范围(1)椭圆公式:焦半径10PF a ex =+,20PF a ex =-; 焦半径范围:[],a c a c -+;12PF PF 的范围:222,a c a ⎡⎤-⎣⎦12PF PF ⋅的范围:22222,a c a c ⎡⎤--⎣⎦(2)双曲线:焦半径10PF a ex =+,20PF a ex =-;范围:短焦半径[),a c -+∞,长焦半径[),a c ++∞,其中一个成立,另一个自然成立12PF PF ⋅范围:2,b ⎡⎤+∞⎣⎦ 双曲12PF PF ⋅范围:2,b ⎡⎤-+∞⎣⎦例题:铺垫 已知椭圆22221x y a b+=(0a b >>)的右焦点为2F ,直线2a x c =与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点2F ,则椭圆的离心率的取值范围____________.重点题型1:12PF PF λ=例1 已知椭圆22221x y a b+=(0a b >>)的左右焦点分别为12,F F ,离心率为e ,若椭圆上存在点P ,使得12PF ePF =,求椭圆离心率e 的范围.例2 已知椭圆22221x y a b+=(0a b >>)的两个焦点是()1,0F c -,()2,0F c ,若椭圆上存在一点P ,使1221sin sin PF F aPF F c∠=∠,则该椭圆的离心率的取值范围是___________.例3 已知点P 在双曲线22221x y a b-=(0a >,0b >)的右支上,双曲线的两焦点为1F ,2F ,若212PF PF 的最小值是8a ,则双曲线离心率的取值范围为____________;例4 设点P 在双曲线22221x y a b-=(0a >,0b >)的右支上,双曲线的两焦点为1F ,2F ,124PF PF =,则双曲线离心率的取值范围为____________.例5 已知双曲线22221x y a b-=(0a >,0b >)的两个焦点是()1,0F c -,()2,0F c ,若双曲线上存在一点P ,使1221sin sin PF F aPF F c∠=∠,则该双曲线的离心率的取值范围是___________.经典题型2:已知12PF PF ⋅的范围椭圆12PF PF ⋅范围:22222,a c a c ⎡⎤--⎣⎦ 双曲12PF PF ⋅范围:2,b ⎡⎤-+∞⎣⎦例题例6(讲义例9(3))已知()1,0F c -,()2,0F c 为椭圆22221x y a b +=(0a b >>)的两个焦点,P 为椭圆上一点,且212PF PF c ⋅=,则此椭圆离心率的取值范围是________.(强化班讲义例9(1))例7 设点()1,0F c -、()2,0F c 是双曲线22221x y a b-=(0a >,0b >)的左右焦点,P 为双曲线上的一点,且21223c PF PF ⋅=-,则其离心率的取值范围是________.知识点2:设点F 是离心率为e ,焦点x 轴上的圆锥曲线的一个焦点,过F 的线AB 与x 轴的夹角为α,F 分AB 所成的比为λ,则1cos 1e λαλ-=+ 若焦点在y 轴上,1sin 1e λαλ-=+ 重点题型3:()0AF FB λλ=>或1cos 1AF BF e λλαλ-=⇒=+经典例题例1 经过椭圆22221(0)x y a b a b +=>>的左焦点1F 作倾斜角为60︒的直线和椭圆相交于A ,B两点,若112AF BF =,求椭圆的离心率.例2 已知椭圆22221x y a b+=(0a b >>)的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线交椭圆于A 、B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S =△△,则椭圆的离心率为( )A B C D例3 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2BF FD =,则C 的离心率为多少?例4已知双曲线C :22221x y a b-=(00a b >>,)的右焦点为F ,过F 直线交C 于A ,B 两点,若4AF FB =,则C 的离心率为 ( ) A .65B .75C .85D .95例5 (2008全国卷)过抛物线24y x =的焦点且斜率为1的直线与抛物线交于,A B 两点,设FA FB >,则FA FB的值为_________.1cos 31FAe FBλαλλ-===++方法4:以b a求离心率e主要包括:(1)椭圆垂径定理(由点差法推导),(2)第三定义(类比圆); (3)渐近线与双曲线关系(1)点差法与中点弦(椭圆中的垂径定理)AB 是椭圆()222210x y a b a b +=>>的任意一条弦,O 为椭圆的中心,M 为AB 的中点,则.222 1.AB OMb k k e a⋅=-=-.AB 是双曲线22221x y a b -=的任意一条弦,O 为双曲线的中心,M 为AB 的中点,则222 1.AB OMb k k e a⋅==-(2)第三定义AB 是椭圆()222210x y a b a b +=>>上过原点的弦,P 是椭圆上异于A B 、的任意一点,则222 1.PA PBb k k e a⋅=-=-AB 是双曲线22221x y a b -=上过原点的弦,P 是双曲线上异于A B 、的任意一点,则222 1.PA PBb k k e a⋅==-(3)双曲渐进线经典例题椭圆垂径定理 例12016-2017湖北省宜昌市夷陵中学高三期末练习试卷(1)已知椭圆()222210x y a b a b +=>>,直线:240l x y +-=与椭圆相交于,A B 两点,且AB中点M 坐标为()2,1,则椭圆的离心率为___________.(2)过点()1,1作斜率为12-的直线与椭圆()2222:10x y C a b a b +=>>相交于,A B 两点,若M是线段AB 中点,求椭圆离心率.第三定义 例2(1)2016-2017学年河北省唐山市开滦一中高二(上)期中数学试卷(文科)已知P 是椭圆()222210x y a b a b+=>>上的一个动点,且点P 与椭圆长轴两顶点连线的斜率之积为14-,则椭圆的离心率为( )C.12(2)已知12,A A 分别椭圆()2222:10x y C a b a b+=>>的左右顶点,点P 为椭圆C 上一点(点P 与12,A A 不重合),点M 为P 点关于x 轴对称点,若直线1PA 与2MA 的斜率乘积是34,则椭圆的离心率为( )A.14D.12例32016-2017学年江苏省泰州中学高三(上)期中数学试卷已知椭圆的离心率e A B =、分别是椭圆的左、右顶点,点P 是椭圆上的一点,直线PA PB 、的倾斜角分别为αβ、满足tan tan 1αβ+=,则直线PA 的斜率为_________.例42015年全国统一高考数学试卷(理科)(新课标Ⅱ)已知A B ,为双曲线E 的左,右顶点,点M 在E 上,ABM 为等腰三角形,顶角为120︒,则E 的离心率为( )B.2离心率与渐近线 铺垫:已知双曲线()222210,0x y a b a b -=>>的渐近线方程为2y x =±,则其离心率为( )A .5B C D例5(1)已知双曲线22221x y a b -=(0a >,0b >(c为双曲线的半焦距),则双曲线的离心率为________. (2)已知双曲线2222:1x y C a b-=(0a >,0b >)的右焦点为F ,以F 为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M ,且MF 与双曲线的实轴垂直,则双曲线的离心率为____________. 例6(1)已知斜率为2的直线l 过双曲线22221x y a b-=(0a >,0b >)的右焦点且与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是_________.(2)已知斜率为2的直线l 过双曲线22221x y a b-=(0a >,0b >)的右焦点且与双曲线的右支交于不同的两点,则双曲线离心率的取值范围是_________.(3)已知斜率为2的直线l 过双曲线22221x y a b-=(0a >,0b >)的右焦点且与双曲线的左右两支分别相交,则双曲线离心率的取值范围是_________. 例7设双曲线C 的中心为点,若有且只有一对相交于点O ,所成的角为60︒的直线11A B 和22A B ,使1122A B A B =,其中1A ,1B 和2A ,2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是 ( )A.⎤⎥⎝⎦B.⎫⎪⎪⎣⎭C.⎫+∞⎪⎪⎝⎭D.⎫+∞⎪⎪⎣⎭。
巧用定义和性质妙解双曲线的离心率问题
巧用定义和性质妙解双曲线的离心率问题《2017年浙江省普通高考考试说明》对双曲线的考试要求是了解双曲线的定义、标准方程、几何图形及简单几何性质,了解直线与双曲线的位置关系。
双曲线中基本知识的考查中常常涉及到双曲线基本量(a、b、c之间)的关系以及双曲线的渐近线,特别是双曲线的离心率。
双曲线的离心率解题关键是挖掘出题中的隐含条件,巧用定义和性质,从而避开大量计算,达到化繁为简、化难为易的目的。
一、利用定义和比例性质求双曲线的离心率双曲线的离心率是焦距与实轴长的比,解题时可根据已知条件找到e=的关系,从而利用定义来求出双曲线的离心率。
例1.已知F1、F2分别是双曲线-=1(a>0,b>0)的左右焦点,点P是双曲线右支上一点,O为坐标原点。
若|PF2|∶|PO|∶|PF1|=1∶2∶4,则双曲线的离心率为()。
A.2B.3C.2D.5解析:依条件有:|PF1|-|PF2|=2a,|PF1|=4|PF2|,得|PF2|=,|PF1|=,从而有|PO|=2|PF2|=。
又2PO=PF1+PF2,且F1F2=PF2-PF1,两式分别平方并相加得4PO+F1F2=2PF2+2PF1,即2×+2c2=+,得c2=2a2,故离心率e=2。
例2.设F1、F2分别是双曲线-=1(a>0,b>0)的左右焦点,双曲线上存在一点P,使得|PF1|+|PF2|=3b,|PF1|·|PF2|=ab,则该双曲线的离心率为()。
A. B. C. D.3解析:不妨设P是双曲线右支上一点,根据双曲线的定义|PF1|-|PF2|=2a,又|PF1|+|PF2|=3b,可得|PF1|=,|PF2|=,代入|PF1|·|PF2|=ab可计算得9b2-9ab-4a2=0,即3b=4a,故离心率e=。
点评:本题是2014年重庆高考题,主要考查学生对双曲线定义的理解,结合定义可以快速求出|PF1|、|PF2|。
从整体上来讲本题属于中等难度。
高中数学破题致胜微方法(双曲线的参数方程及应用)一双曲线的参数方程(2021学年)
高中数学破题致胜微方法(双曲线的参数方程及应用)一双曲线的参数方程编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学破题致胜微方法(双曲线的参数方程及应用)一双曲线的参数方程)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学破题致胜微方法(双曲线的参数方程及应用)一双曲线的参数方程的全部内容。
一双曲线的参数方程今天我们研究双曲线的参数方程。
已知双曲线的标准方程,则可以将双曲线的方程改写成参数方程,反之,也可以将双曲线的参数方程消参改写成普通方程,双曲线的参数方程形式不是唯一的.通过例题来看.∴上式减下式得:22221sin136cosyxθθ--==。
∴普通方程为22136yx-=.总结:1。
中心在原点,坐标轴为对称轴的双曲线的参数方程有以下两种情况:焦点在x轴上的双曲线22221(0,0)x ya ba b-=>>:sectanx ay bθθ=⎧⎨=⎩(θ为参数)。
焦点在y轴上的双曲线22221(0,0)y xa ba b-=>>:tansecx by aθθ=⎧⎨=⎩(θ为参数)。
以上的[)0,2θπ∈,且3,22ππθθ≠≠。
2。
θ称为双曲线的离心角,注意离心角的几何意义.3。
双曲线22221x y a b -=上任意点M 的坐标可设为(sec ,tan )a b θθ.4.注意:222221sin sec tan 1cos cos θθθθθ-=-=.例2:双曲线()2tan 4sec x y θθθ=⎧⎨=⎩为参数的离心率是( )A .32 B.2 C.52 D.2下式减上式:221164y x -=.22216,4,20,a b c ∴===25542ce a ∴===选C 。
关于高中数学离心率题型解法的有效解决技巧
关于高中数学离心率题型解法的有效解决技巧高中数学中,离心率是一个重要概念,在解题过程中经常会遇到相关的题型。
下面给出一些有效的解决技巧,帮助学生在做离心率题目时更快、更准确地解答。
1. 理解离心率的含义离心率是描述椭圆形状的一个参数,它是由长轴和短轴之间的差异程度决定的。
当离心率为0时,椭圆变成了一个圆;当离心率为1时,椭圆变成了一个抛物线;当离心率大于1时,椭圆变成了一个双曲线。
离心率越接近于0,椭圆越接近于圆形;离心率越接近于1,椭圆越扁平;离心率越大于1,椭圆越细长。
2. 利用长轴和短轴求解离心率离心率可以通过长轴和短轴的长度求解。
对于一个椭圆来说,设长轴的长度为2a,短轴的长度为2b,则离心率的公式可以表示为e = √(a^2 - b^2) / a。
通过这个公式,可以根据已知的长轴和短轴的长度求解离心率。
3. 确定椭圆的方程在解题过程中,通常会给出椭圆的焦点坐标、顶点坐标等条件,要求求解椭圆的离心率。
这时,可以利用已知的信息构建椭圆的方程,再通过方程求解离心率。
一般来说,椭圆的方程可以表示为(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1,其中(h, k)为椭圆的中心坐标,a和b分别为长轴和短轴的长度。
4. 利用角平分线公式有时,离心率的题目会给出椭圆的两个顶点和一个焦点的坐标,要求求解椭圆的离心率。
这时,可以利用角平分线的性质来求解。
根据已知的顶点和焦点的坐标,可以求出来心的坐标。
然后,利用心和顶点的连线来求出两条角平分线的斜率,再利用角平分线的性质,可以得到长轴和短轴的长度,从而求解离心率。
5. 利用离心率的几何特性离心率具有一些几何特性,利用这些特性可以推导出一些有用的定理,进而用于解题。
离心率e等于焦点到准线和焦点到椭圆上一点的距离之比;离心率e等于焦点到顶点的距离和焦点到椭圆上一点的距离之比;离心率e等于焦点到每一条法线的交点与准线之间的距离之比等等。
高中数学双曲线离心率求法专题
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中数学双曲线离心率求法专题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容双曲线离心率求法一、双曲线离心率的求解1、直接求出或求出a与b的比值,以求解。
在双曲线中,>1,1.已知双曲线 EQ \f(x\S(2),a\S(2))-\f(y\S(2),b\S(2))=1 的一条渐近线方程为y= EQ \f(4,3) x,则双曲线的离心率为2.在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为3.已知双曲线 eq \f(x2,a2) - eq \f(y2,2) =1(a> eq\r(2) )的两条渐近线的夹角为 eq \f(π,3) ,则双曲线的离心率为4.已知双曲线的一条准线为,则该双曲线的离心率为__________5.已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1 的中点在双曲线上,则双曲线的离心率是__________6.设双曲线的右焦点为,右准线与两条渐近线交于P、两点,如果是直角三角形,则双曲线的离心率________.7.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是8.设,则双曲线的离心率的取值范围是__________.9.已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为________10.已知双曲线的渐近线方程为,则双曲线的离心率为_________2、构造的齐次式,解出。
1.已知双曲线的左、右焦点分别为F1、F2,P是准线上一点,且P F1⊥P F2,|P F1||P F2 |=4ab,则双曲线的离心率是_______2.过双曲线(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.3.设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为_________4.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为_______3、寻找特殊图形中的不等关系或解三角形。
巧解双曲线的离心率
巧解双曲线的离心率离心率是双曲线的重要性质,也是高考的热点。
经常考查:求离心率的值,求离心率的取值范围,或由离心率求参数的值等。
下面就介绍一下常见题型和巧解方法。
1、求离心率的值(1)利用离心率公式ace =,先求出c a ,,再求出e 值。
(2)利用双曲线离心率公式的变形: 2)(1a b a c e +==,先整体求出ab,再求出e 值。
例1 已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线方程为x y 34=,则双曲线的离心率为__________.分析:双曲线)0,0(12222>>=-b a b y a x 的渐近线方程为x a b y ±=,由已知可得34=a b解答:由已知可得34=a b ,再由2)(1a b a c e +==,可得35=e .(3)构造关于c a ,的齐次式,再转化成关于e 的一元二次方程,最后求出e 值,即“齐次化e ”。
例如:010222=-+⇒=-+e e a ac c例2 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为____________. 分析:利用两条直线垂直建立等式,然后求解。
解答:因为两条直线垂直,011)(2222=--⇒-=⋅=⇒-=-⋅e e a c c a b c ba b所以215+=e (负舍) 2、求离心率的取值范围求离心率的取值范围关键是建立不等关系。
(1)直接根据题意建立c b a ,,的不等关系求解e 的取值范围。
例3 若双曲线22221x y a b-=(0>>b a ),则双曲线离心率的取值范围是_________.分析:注意到0>>b a 的条件 解答:),(21)(10102∈+=⇒>>⇒>>ab e a b b a(2)利用平面几何性质建立c a ,不等关系求解e 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
今天我们研究构造齐次方程求双曲线的离心率。
双曲线的几何性质中,离心率问题是重点。
根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
先看例题:
例:已知1F 、2F 是双曲线12222=-b y a x (0,0>>b a )的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( )
A. 324+
B. 13-
C. 213+
D. 13+ 解:如图,设1MF 的中点为P ,则P 的横坐标为2
c -,由焦半径公式a ex PF p --=1, 即a c a c c -⎪⎭⎫ ⎝⎛-⨯-=2,得0222=-⎪⎭
⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a c a c ,解得 31+==a
c e (31-舍去),故选D
整理:
用齐次方程的方法求双曲线的离心率:
列出关于a ,b ,c 的方程,
222b c a -=消去b
转化成关于e 的齐次方程求解.
再看一个例题,加深印象: 例:设双曲线122
22=-b
y a x (b a <<0)的半焦距为c ,直线L 过()0,a ,()b ,0两点.已知原点到直线的距离为c 4
3,则双曲线的离心率为( ) A. 2 B. 3 C. 2 D. 332 解:由已知,直线L 的方程为0=-+ab ay bx ,由点到直线的距离公式,得
c b a ab
432
2=+, 又222b a c +=, ∴234c ab =,两边平方,得()
4222316c a c a =-,整理得 01616324=+-e e ,
得42=e 或342
=e ,又b a <<0 ,∴2122222222>+=+==a b a b a a c e ,∴42=e ,∴2=e ,故选A
总结:
1.根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系.
2.在a 、c 的关系式中除以a 的合适次数,得到关于e 的齐次方程,解得离心率e .
练习:
1.双曲线虚轴的一个端点为M ,两个焦点为1F 、2F ,021120=∠MF F ,则双曲线的离心率为( )
A
3 B 26 C 36 D 3
3
2.已知F 1,F 2分别是双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的左、右焦点,过F 1作垂直于x 轴的直线交双曲线于A ,B 两点.若△ABF 2为直角三角形,则双曲线的离心率为( )
A .1+ 2
B .1±2 C. 2
D.2±1
答案:
1.
即()()
()222
22222421b c c b c b c +-+++=-,∴212222-=+-c b c b ,
∵222a c b -=,∴212222-=--a c a ,∴2223c a =,∴232=e ,∴2
6=e ,故选B
2.
解析:∵△ABF 2是直角三角形, ∴∠AF 2F 1=45°,
|AF 1|=|F 1F 2|,b 2a =2c .
∴b 2=2ac ,∴c 2-a 2=2ac ,∴e 2-2e -1=0. 解得e =1±2.又e >1,
∴e =1+ 2.
所以选A。