高斯(Gauss)求积公式汇总.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算物理
计算物理
(1) 用待定系数法构造高斯求积公式 例:选择系数与节点,使求积公式(1)
1
1
f ( x )dx c1 f ( x1 ) c2 f ( x2 )
(1)
成为Gauss公式。 解:n=1, 由定义,若求积公式具有3次代数精度,则 其是Gauss公式。 为此,分别取 f(x)=1, x,x2,x3 代入公式,并让 其成为等式,得 c1 c2 1, 求解得: c1 + c2=2 3 3 x1 , x2 c1 x1+ c2 x2=0 3 3 所求Gauss公式为: c1 x12+ c2 x22 =2/3 1 3 3 c1 x13+ c2 x23 =0 1 f ( x )dx f ( 3 ) f ( 3 ) 计算物理
计算物理
(2)利用正交多项式构造高斯求积公式
设Pn(x),n=0,1,2,…,为正交多项式序列, Pn(x) 具有如下性质: 1)对每一个n ,Pn(x)是 n 次多项式。 n=0,1,… b 2) (正交性) ( x ) P ( x ) P ( x )dx 0,(i j )
a
i
j
3)对任意一个次数≤n-1的多项式P(x),有
b
a
( x ) f ( x )dx ( x )q( x ) Pn1 ( x )dx ( x )r ( x )dx
a a
计算物理
b
b
计算物理
由于n+1个节点的插值型求积公式的代数精确度不低 于n,故有
b a
b
a
( x )r ( x )dx Ak r ( xk ) Ak f ( xk ) (4)
上式共有 r +1个 等式,2n+2个待定系数(变元),要想如
上方程组有唯一解,应有方程的个数等于变元的个数,
即 r+1=2n+2, 这样导出求积公式的代数精度至少是
2 n+1,下面证明代数精度只能是2n+1.
事实上,取 2n+2次多项式g(x)=(x-x0)2(x-x1)2….(xxn)2 代入求积公式,这里 x0, x1…,xn是节点,有
A0 + A1 + …… + An =∫a 1dx.= b-a b x0 A0 + x1 A1+ …… +xn An =∫a xdx.= (b2-a 2)/2
......
b
x0 rA0 + x1 rA1+ …… +xn rAn =∫a xr dxr =(br+1-a r+1) (r+1)
计算物理
b
计算物理
计算物理
计算物理
定理1:设节点x0, x1…,xn∈[a,b],则求积公式
b
a
( x ) f ( x )dx Ak f ( xk )
k 0
nபைடு நூலகம்
的代数精度最高为2n+1次。 证明:取特殊情形 ( x ) 1, 分别取 f(x)=1, x,x2,...xr 代入公式,并让其成为
等式,得:
左 ( x ) g( x )dx 0,
a
b
右 Ak g( xk ) 0
k 0
n
左右,故等式不成立,求积公式的代数精度最高为 2n+1次。 证毕.
计算物理
计算物理
定义: 使求积公式
b
a
( x ) f ( x )dx Ak f ( xk )
k 0
n
达到最高代数精度2n+1的求积公式称为Guass求积公式。 Guass求积公式的节点xk称为Guass点,系数Ak称为 Guass系数. 因为Guass求积公式也是插值型求积公式,故有 结论: n+1个节点的插值型求积公式的代数精度 d 满足: n d 2n+1。
b
a
( x ) P ( x ) Pn ( x )dx 0, n 1
4)Pn(x)在(a,b)内有n个互异零点。
计算物理
计算物理
定理2 设x0,x1, …,xn 是n+1次正交多项式Pn+1(x)的n+1 个零点,则插值型求积公式
b
a
( x ) f ( x )dx Ak f ( xk ), Ak
计算物理
一、构造高斯型求积公式的基本原理和方法
考虑更一般形式的数值积分问题
I ( f ) ( x ) f ( x )dx Ak f ( xk )
b a k 0
n
n
定义:若求积公式
b
a
( x ) f ( x )dx Ak f ( xk ) 对一切
k 0
不高于m次的多项式p(x)都等号成立,即R(p)=0;而对 于某个m+1次多项式等号不成立,则称此求积公式的 代数精度为m.
k 0
n
b
a
x xi ( x ) dx i 0 xk xi
n ik
是Guass型求积公式。
证明:只要证明求积公式的代数精确度为2n+1,即对 任意一个次数≤2n+1的多项式求积公式都精确成立。 设 f(x)为任意一个次数≤2n+1的多项式,则有 f(x)=q(x)Pn+1(x)+r(x),满足 f(xk)=r(xk) 这里, Pn+1(x)是 n+1次正交多项式, q(x)、r(x)均是 次数≤n的多项式。
第四节 高斯(Gauss)求积公式
前面介绍的 n+1个节点的 Newton -Cotes求积公式, 其特征是节点是等距的。这种特点使得求积公式便于 构造,复化求积公式易于形成。但同时也限制了公式 的精度。 n是偶数时,代数精度为n+1, n是奇数时, 代数精度为n 。 我们知道 n+1个节点的插值型求积公式的代数精 确度不低于n 。设想:能不能在区间[a,b]上适当选择 n+1个节点 x 0x1,x2,……,xn ,使插值求积公式的代数精 度高于n? 答案是肯定的,适当选择节点,可使公式的精度 最高达到2n+1,这就是本节所要介绍的高斯求积公式。
计算物理
k 0 k 0
b b
n
n
由性质3)及(4)式,有
( x ) f ( x )dx ( x )q( x ) Pn1 ( x )dx ( x )r ( x )dx
a a
0 ( x )r ( x )dx Ak f ( xk )
b a k 1
n
即对 f(x)为任意一个次数≤2n+1的多项式求积公式都 精确成立。 证毕