用matlab编BP神经网络预测程序
MATLAB程序代码--bp神经网络通用代码
MATLAB程序代码--bp神经网络通用代码matlab通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下, 希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。
P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T);%描绘输入点图像net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc(net.iw{1},net.b{1});net.adaptparam.passes=3;for a=1:25%训练次数[net,Y,E]=adapt(net,P,T);linehandle=plotpc(net.iw{1},net.b{1},linehandle);drawnow;end%通用newlin程序%通用线性网络进行预测time=0:0.025:5;T=sin(time*4*pi);Q=length(T);P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。
P(1,2:Q)=T(1,1:(Q-1));P(2,3:Q)=T(1,1:(Q-2));P(3,4:Q)=T(1,1:(Q-3));P(4,5:Q)=T(1,1:(Q-4));P(5,6:Q)=T(1,1:(Q-5));plot(time,T)%绘制信号T曲线xlabel('时间');ylabel('目标信号');title('待预测信号');net=newlind(P,T);%根据输入和期望输出直接生成线性网络a=sim(net,P);%网络测试figure(2)plot(time,a,time,T,'+')xlabel('时间');ylabel('输出-目标+');title('输出信号和目标信号');e=T-a;figure(3)plot(time,e)hold onplot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold offxlabel('时间');ylabel('误差');title('误差信号');%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为0.9)%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为1.05;% lr_dec(学习率下降比,缺省为0.7);max_perf_inc(表现函数增加最大比,缺省为1.04)%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数: % delt_inc(权值变化增加量,缺省为1.2);delt_dec(权值变化减小量,缺省为0.5);% delta0(初始权值变化,缺省为0.07);deltamax(权值变化最大值,缺省为50.0)% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法;%训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr%训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为5.0e-5);% lambda(Hessian阵不确定性调节参数,缺省为5.0e-7)% 缺少1个训练参数:lr%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);net.trainparam.epochs=300; %最大训练次数(前缺省为10,自trainrp后,缺省为100)net.trainparam.lr=0.05; %学习率(缺省为0.01)net.trainparam.show=50; %限时训练迭代过程(NaN表示不显示,缺省为25)net.trainparam.goal=1e-5; %训练要求精度(缺省为0)%net.trainparam.max_fail 最大失败次数(缺省为5)%net.trainparam.min_grad 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6) %net.trainparam.time 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,P) %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[1.5 3.6 6.7];net=newgrnn(P,T);%仿真验证p=4.5;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1:0.1:1;T=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609...0.1336 -0.2013 -0.4344 -0.500 -0.3930 -0.1647 -0.0988...0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas(p-1.5);a3=radbas(p+2);a4=a+a2*1.5+a3*0.5;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sc eg=0.02;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);%网络测试plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=0.7;net=newgrnn(P,T,spread);%网络测试A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Tc(i)))endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Ac(i)))endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')P=[13, 0, 1.119, 1, 26.3;22, 0, 1.135, 1, 26.3;-15, 0, 0.9017, 1, 20.4;-30, 0, 0.9172, 1, 26.7;24, 0, 1.238,0.9704,28.2;3,24,1.119,1,26.3;0,52,1.089,1,26.3;0,-73,1.0889,1,26.3;1,28, 0.8748,1,26.3;-1,-39,1.1168,1,26.7;-2, 0, 1.495, 1, 26.3;0, -1, 1.438, 1, 26.3;4, 1,0.4964, 0.9021, 26.3;3, -1, 0.5533, 1.2357, 26.7;-5, 0, 1.7368, 1, 26.7;1, 0, 1.1045, 0.0202, 26.3;-2, 0, 1.1168, 1.3764, 26.7;-3, -1, 1.1655, 1.4418,27.5;3, 2, 1.0875, 0.748, 27.5;-3, 0, 1.1068, 2.2092, 26.3;4, 1, 0.9017, 1, 13.7;3, 2, 0.9017, 1, 14.9;-3, 1, 0.9172, 1, 13.7;-2, 0, 1.0198, 1.0809, 16.1;0, 1, 0.9172, 1, 13.7] T=[1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0; 0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ; 0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1 ];%期望输出plotpv(P,T);%描绘输入点图像。
(完整版)BP神经网络matlab实例(简单而经典)
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
基于MATLAB的BP神经网络人群流量预测的实现
基于MATLAB的BP神经网络人群流量预测的实现BP神经网络是一种常用的人工神经网络,常被应用于预测和分类问题。
基于MATLAB的BP神经网络人群流量预测的实现,可以帮助我们准确预测未来的人流量变化,对于交通管理、城市规划等领域具有重大意义。
BP神经网络是一种有向无环图的前馈神经网络,通过输入层、隐含层和输出层构成。
首先,我们需要搜集历史人流量数据,为了提高预测准确度,我们可以收集多个时间段的人流量数据,如每天的不同时间段、每周的不同工作日等。
然后,我们需要将数据进行归一化处理,将数据值映射到[0,1]之间,以解决输入变量之间的量纲差异。
接下来,我们使用MATLAB来构建BP神经网络模型。
首先,我们需要定义神经网络的输入层、隐含层和输出层的节点个数。
在模型中,输入层的节点个数等于输入数据的特征个数,隐含层的节点个数可以根据经验或者试验进行设定,输出层的节点个数等于需要预测的目标数量。
然后,我们可以使用MATLAB中的nntrain函数或者train函数来训练模型。
在训练模型之前,我们需要将数据集分为训练集和测试集。
训练集用来训练模型的参数,测试集用来评估模型的性能。
我们可以使用MATLAB 中的crossvalind函数进行数据集的随机分割。
接下来,我们可以使用MATLAB中的train函数对模型进行训练。
在训练过程中,我们需要设定训练的最大迭代次数和收敛阈值等参数。
训练过程中,模型会通过不断调整参数来减小预测值与实际值之间的误差。
训练完成之后,我们可以使用模型对未来的人流量进行预测。
我们可以将预测结果与实际数据进行对比,评估模型的预测准确度。
如果模型的预测准确度较低,我们可以通过调整模型的参数、改进神经网络的结构以提高模型的预测性能。
以上就是基于MATLAB的BP神经网络人群流量预测的实现方法。
通过搜集历史人流量数据、归一化处理、构建BP神经网络模型、分割数据集、训练模型和评估模型等步骤,我们可以得到准确的人群流量预测结果。
用matlab编程实现的基于BP神经网络的预测仿真
0.7753
网络训练过程中的误差记录:
网络实际输出与期望输出的模拟对比:
y(i,j)=1/(1+exp(-net)); %隐含层输出
end
Y(i,:)=[y(i,:),1]; %带阈值隐含层输出
for j=1:outputNums
net=Y(i,:)*W2(:,j); %输出层神经元的输入
legend('T1 is desired output ','O1 is Network real output');
程序运行结果:
网络调整后的权值和阈值:
w1 =
-1.8970 -0.3536 -0.7324 -0.2796 -0.8915 -2.5360
zl(k)=z(k+2); %给样本矩阵ZL赋值
end
HL=(hl-min(min(hl)))/(max(max(hl))-min(min(hl))); %数据归一化
ZL=(zl-min(zl))/(max(zl)-min(zl)); %数据归一化
xlabel('k');ylabel('error');
figure(2);
k=1:H;
plot(k,T1,k,O1,'*'); %期望输出值和BP网络实际输出值
xlabel('k');ylabel('T1andO1');title('BP simulation');
W1(m,n)=W1(m,n)+lc*DW1(m,n)*P(i,m); %隐含层权值阈值的调整
end
BP神经网络预测的matlab代码
BP神经网络预测的matlab代码附录5:BP神经网络预测的matlab代码: P=[ 00.13860.21970.27730.32190.35840.38920.41590.43940.46050.47960.49700.52780.55450.59910.60890.61820.62710.63560.64380.65160.65920.66640.67350.72220.72750.73270.73780.74270.74750.75220.75680.76130.76570.7700]T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.48930.2357 0.4866 0.22490.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.18480.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.24030.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ]threshold=[0 1]net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');net.trainParam.epochs=6000net.trainParam.goal=0.01LP.lr=0.1;net=train(net,P',T')P_test=[ 0.77420.77840.78240.78640.79020.7941 ] out=sim(net,P_test')友情提示:以上面0.7742为例0.7742=ln(47+1)/5因为网络输入有一个元素,对应的是测试时间,所以P只有一列,Pi=log(t+1)/10,这样做的目的是使得这些数据的范围处在[0 1]区间之内,但是事实上对于logsin命令而言输入参数是正负区间的任意值,而将输出值限定于0到1之间。
BP神经网络预测的MATLAB实现
> > net. trainParam. show = 500; > > net = train ( net, P, T)
显示的数据与所设计的网络模型相符 ,且如图显见网 络学习迭代到 411次时 ,就达到了学习精度 0. 004 996 74, 其学习速度较快 。
(六 )测试 BP神经网络 将测试的输出数据还原 ,与实际人数比较 (见表 1) ,说 明 BP神经网络预测的 MATLAB实现是可行的 。
matlab神经网络预测程序(自己编的可用)
Matlab自身带有神经网络的工具包,这个程序是我在实战中运行通过的,通过对原始数据的学习,预测未来一段时间的数据。
大家只要修改一下原始数据,预测时间即可。
下面是源程序:clcclear all%原始数据%p=load('shuru.txt');%p=p';p=[1994:2010];%t=load('shuchu.txt');%t=t';t=[124.175 117.0666667 108.3333333 102.8083333 99.225 98.6 100.35 100.725 99.41666667 101.1666667 103.9 101.8166667 101.4666667104.7666667 105.9 99.29166667 103.32255];% plot(p,t)%数据归一化[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);dx=[-1,1];%BP网络训练net=newff(dx,[5,1],{'tansig','tansig','purelin'},'traingdx'); net.trainParam.show=1000; %每1000轮回显示一次结果net.trainParam.Lr=0.05; %学习速率为0.05net.trainParam.epochs=3000; %循环10000次net.trainParam.goal=1e-5; %均方误差net=train(net,pn,tn);%对原数据进行仿真an=sim(net,pn);a=postmnmx(an,mint,maxt); %还原仿真得到的数据%与实际数据对比x=1994:2010;newk=a(1,:);figure;plot(x,newk,'r-o',x,t,'b--+');legend('预测值','实际值');xlabel('时间');ylabel('cpi的值');%对新数据进行预测pnew=[2012:2025];%预测2012年到2015年数据pnewn=tramnmx(pnew,minp,maxp);%新数据归一化anewn=sim(net,pnewn);anew=postmnmx(anewn,mint,maxt)%还原得到预测值。
BP神经网络实验详解(MATLAB实现)
BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
求用matlab编BP神经网络预测程序
求用编神经网络预测程序求一用编的程序[。
];输入[。
];输出创建一个新的前向神经网络((),[],{'',''},'')当前输入层权值和阈值{}{}当前网络层权值和阈值{}{}设置训练参数;;;;;调用算法训练网络[]();对网络进行仿真();计算仿真误差;()[。
]'测试()不可能啊我对初学神经网络者的小提示第二步:掌握如下算法:.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第章的第十节:“最小二乘法”。
.在第步的基础上看学习算法、和近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社, . 等著,中英文都有)、《神经网络设计》(机械工业出版社, . 等著,中英文都有)。
(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社, . 等著,中英文都有)的第和章。
若看理论分析较费劲可直接编程实现一下节的算法小节中的算法.算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社, . 著,中英文都有)的第章和《神经网络设计》(机械工业出版社, . 等著,中英文都有)的第章。
神经网络实例()分类:实例采用工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考帮助文档。
例采用动量梯度下降算法训练网络。
训练样本定义如下:输入矢量为[]目标矢量为[ ]——生成一个新的前向神经网络,函数格式:(,[ ],{ }) ,(对于维输入,是一个的矩阵,每一行是相应输入的边界值)第层的维数第层的传递函数, ''反向传播网络的训练函数, ''反向传播网络的权值阈值学习函数, ''性能函数, ''——对神经网络进行训练,函数格式:(),输入参数:所建立的网络网络的输入网络的目标值,初始输入延迟,初始网络层延迟,验证向量的结构, []测试向量的结构, []返回值:训练之后的网络训练记录(训练次数及每次训练的误差)网络输出网络误差最终输入延迟最终网络层延迟——对神经网络进行仿真,函数格式:[] ()参数与前同。
基于MATLAB的BP神经网络预测系统的设计
第25卷第4期 计算机应用与软件Vo l 125No .42008年4月 Co m puter Applicati o ns and Soft w are Apr .2008基于MATLAB 的BP 神经网络预测系统的设计李 萍 曾令可 税安泽 金雪莉 刘艳春 王 慧(华南理工大学 广东广州510640)收稿日期:2006-04-25。
李萍,博士,主研领域:材料技术装备及计算机在材料中的应用。
摘 要 利用MAT LAB 设计了BP 神经网络预测系统。
介绍了MATLAB 的BP 神经网络工具箱函数和图形用户界面,详细介绍了BP 神经网络预测系统的设计,并对所设计的预测系统进行了性能评价。
系统具有良好的性能,在很多领域可以发挥较大的作用。
关键词 MATLAB BP 神经网络 预测DESI GN OF FORECAST S YSTEM OF BACK PROPAGATI ON NEURALNET WORK BASED ON MATLABL i Ping Zeng L i n gke ShuiAnze Ji n Xueli Liu Y anchun W ang H u i(S ou t h Ch i na Un i versit y of T e chnolo gy,G uangzhou 510640,G uangd ong,Ch i na )Abstrac t Forecast syste m of Back P ropaga tion neural ne t w ork is developed by MATLAB .The functions i n the too l box o f Back P ropagati on neura l net wo rk and the g raph ica l use r i nter f aces o fMATLAB are i ntroduced .T he desi gn o f forecast system o f Back P ropagati on neura l net wo rk is ana l yzed i n deta i,l and t he perfo r m ance o f the f o recast syste m is ev al uated .T he resu lt i nd i cates tha t the sy stem has good pe rf o r m ance ,and it is use f u l in m any fi e l ds .K eywords MATLAB Back propaga ti on neura l net w ork F orecast0 前 言在系统辨识和预测中,需要建立性能好的、稳定的模型对系统进行准确地辨识和预测。
BP神经网络MATLAB编程代码
BP神经网络的设计MATLAB编程例1 采用动量梯度下降算法训练 BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为 t = [-1 -1 1 1]解:本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对 BP 神经网络进行训练% SIM——对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用 TRAINGDM 算法训练 BP 网络[net,tr]=train(net,P,T);pauseclc% 对 BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。
基于MATLAB的BP人工神经网络设计
基于MATLAB的BP人工神经网络设计目录
一、介绍1
1.1研究背景1
1.2BP神经网络1
二、BP神经网络的设计3
2.1BP神经网络模型原理3
2.2BP神经网络模型参数5
2.3权重偏置矩阵更新方法6
三、MATLAB实现BP神经网络8
3.1MATLAB软件环境8
3.2代码实现8
3.3实验结果10
四、结论及展望12
一、介绍
1.1研究背景
人工神经网络(ANNs)被归类为一种模拟生物神经网络的模型,具有高度学习能力和自适应性,用于解决有关模式识别、拟合曲线、识别图像、辨识声音、推理、预测等问题。
在这些任务中,Backpropagation (BP)神
经网络是应用最广泛的神经网络结构。
BP神经网络是一种反向传播的多
层前馈神经网络,它的结构简单、计算方法有效,可以学习训练集的特征,在测试集上取得较好的精度。
1.2BP神经网络
BP神经网络(或叫反向传播网络,BP网络)是一种多层前馈神经网络,它是由对神经网络训练的单步算法“反向传播算法”δ开发的。
BP神经
网络由输入层、隐层和输出层构成,它将被调节的参数及权值分配给每个
网络层,以调整网络性能的训练过程。
bp神经网络matlab实例(bp神经网络matlab实例)
bp神经网络matlab实例(bp神经网络matlab实例)Case 1 training BP network by momentum gradient descent algorithm.Training samples are defined as follows:Input vector asP =[-1 -2 31-1 15 -3]The target vector is t = [-1 -1 1 1]Solution: the MATLAB program of this example is as follows:Close allClearEcho onCLC% NEWFF - generating a new feedforward neural network% TRAIN -- training BP neural network% SIM -- Simulation of BP neural networkPauseStart by hitting any keyCLCPercent defines training samples% P as input vectorP=[-1, -2, 3, 1; -1, 1, 5, -3];% T is the target vectorT=[-1, -1, 1, 1];Pause;CLC% create a new feedforward neural networkNet=newff (minmax (P), [3,1],{'tansig','purelin'},'traingdm')The current input layer weights and thresholds InputWeights=net.IW{1,1}Inputbias=net.b{1}The current network layer weights and thresholdsLayerWeights=net.LW{2,1}Layerbias=net.b{2}PauseCLC% set training parametersNet.trainParam.show = 50;Net.trainParam.lr = 0.05;Net.trainParam.mc = 0.9;Net.trainParam.epochs = 1000;Net.trainParam.goal = 1e-3;PauseCLC% call TRAINGDM algorithm to train BP network [net, tr]=train (net, P, T);PauseCLCSimulation of BP network by%A = sim (net, P)Calculate the simulation errorE = T - AMSE=mse (E)PauseCLCEcho offExample 2 adopts Bayesian regularization algorithm to improve the generalization ability of BP network. In this case, we used two kinds of training methods, namely L-M algorithm (trainlm) and the Bias regularization algorithm (trainbr), is used to train the BP network, so that it can fit attached to a white noise sine sample data. Among them, the sample data can be generated as follows MATLAB statements:Input vector: P = [-1:0.05:1];Target vector: randn ('seed', 78341223);T = sin (2*pi*P) +0.1*randn (size (P));Solution: the MATLAB program of this example is as follows: Close allClearEcho onCLC% NEWFF - generating a new feedforward neural network% TRAIN -- training BP neural network% SIM -- Simulation of BP neural networkPauseStart by hitting any keyCLC% define training sample vector% P as input vectorP = [-1:0.05:1];% T is the target vectorRandn ('seed', 78341223); T = sin (2*pi*P) +0.1*randn (size (P));Draw the sample data pointsPlot (P, T, +);Echo offHold on;Plot (P, sin (2*pi*P), ':');Draw sine curves without noiseEcho onCLCPauseCLC% create a new feedforward neural networkNet=newff (minmax (P), [20,1], {'tansig','purelin'});PauseCLCEcho offCLCDisp ('1. L-M optimization algorithm TRAINLM'); disp ('2. Bayesian regularization algorithm TRAINBR');Choice=input (\ "please select training algorithm (1,2): ');Figure (GCF);If (choice==1)Echo onCLC% using L-M optimization algorithm TRAINLMNet.trainFcn='trainlm';PauseCLC% set training parametersnet.trainparam.epochs = 500;net.trainparam.goal = 1e-6;NET(.NET);%重新初始化暂停中图分类号“(选择= = 2)回声中图分类号%采用贝叶斯正则化算法trainbr trainfcn = 'trainbr”网;暂停中图分类号%设置训练参数net.trainparam.epochs = 500;randn(“种子”,192736547);NET(.NET);%重新初始化暂停中图分类号结束调用相应算法训练BP网络% [净额],列车=(净额,P,T);暂停中图分类号对BP网络进行仿真%a = sim(NET,p);%计算仿真误差e = a;MSE=MSE(e)暂停中图分类号%绘制匹配结果曲线关闭所有;图(p,a,p,t,+,p,p,p(2),“,”;暂停;中图分类号回音通过采用两种不同的训练算法,我们可以得到如图1和图2所示的两种拟合结果。
MATLAB程序代码BP神经网络的设计实例
MATLAB 程序代码--BP 神经网络的设计实例例 1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MA TLAB 程序如下:close allclearecho on clc% NEWFF ——生成一个新的前向神经网络% TRAIN ——对BP 神经网络进行训练% SIM ——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5,-3];% T 为目标矢量T=[-1, -1, 1, 1];pause; clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net.IW{1,1} inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc% 设置训练参数net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9;n et.tra in Param.epochs = 1000;n et.tra in Param.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP网络[n et,tr]=trai n(n et,P,T);pauseclc% 对BP网络进行仿真A = sim( net,P)% 计算仿真误差E = T - AMSE=mse(E) pause clc echo off例2采用贝叶斯正则化算法提高BP网络的推广能力。
用matlab编BP神经网络预测程序
求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。
];输入T=[。
];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights={1,1}inputbias={1}% 当前网络层权值和阈值layerWeights={2,1}layerbias={2}% 设置训练参数= 50;= ;= ;= 10000;= 1e-3;% 调用 TRAINGDM 算法训练 BP 网络[net_1,tr]=train(net_1,P,T);% 对 BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。
]';%测试sim(net_1,x)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。
3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。
(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第15和16章。
用matlab编BP神经网络预测程序加一个优秀程序
求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。
];输入T=[。
];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net_1.IW{1,1}inputbias=net_1.b{1}% 当前网络层权值和阈值layerWeights=net_1.LW{2,1}layerbias=net_1.b{2}% 设置训练参数net_1.trainParam.show = 50;net_1.trainParam.lr = 0.05;net_1.trainParam.mc = 0.9;net_1.trainParam.epochs = 10000;net_1.trainParam.goal = 1e-3;% 调用TRAINGDM 算法训练BP 网络[net_1,tr]=train(net_1,P,T);% 对BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。
]';%测试sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。
3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。
MATLAB程序代码BP神经网络的设计实例
MATLAB程序代码--BP神经网络的设计实例例1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MA TLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。
在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。
];输入T=[。
];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net_1.IW{1,1}inputbias=net_1.b{1}% 当前网络层权值和阈值layerWeights=net_1.LW{2,1}layerbias=net_1.b{2}% 设置训练参数net_1.trainParam.show = 50;net_1.trainParam.lr = 0.05;net_1.trainParam.mc = 0.9;net_1.trainParam.epochs = 10000;net_1.trainParam.goal = 1e-3;% 调用 TRAINGDM 算法训练 BP 网络[net_1,tr]=train(net_1,P,T);% 对 BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。
]';%测试sim(net_1,x)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。
3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。
4.ART(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第15和16章。
若看理论分析较费劲可直接编程实现一下16.2.7节的ART1算法小节中的算法.4.BP算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社,Tom M. Mitchell著,中英文都有)的第4章和《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第11章。
BP神经网络Matlab实例(1)分类:Matlab实例采用Matlab工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考Matlab帮助文档。
% 例1 采用动量梯度下降算法训练 BP 网络。
% 训练样本定义如下:% 输入矢量为% p =[-1 -2 3 1% -1 1 5 -3]% 目标矢量为 t = [-1 -1 1 1]close allclearclc---------------------------------------------------------------% NEWFF——生成一个新的前向神经网络,函数格式:% net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,% PR -- R x 2 matrix of min and max values for R input elements % (对于R维输入,PR是一个R x 2 的矩阵,每一行是相应输入的边界值)% Si -- 第i层的维数% TFi -- 第i层的传递函数, default = 'tansig'% BTF -- 反向传播网络的训练函数, default = 'traingdx'% BLF -- 反向传播网络的权值/阈值学习函数, default = 'learngdm' % PF -- 性能函数, default = 'mse'%---------------------------------------------------------------% TRAIN——对 BP 神经网络进行训练,函数格式:% train(NET,P,T,Pi,Ai,VV,TV),输入参数:% net -- 所建立的网络% P -- 网络的输入% T -- 网络的目标值, default = zeros% Pi -- 初始输入延迟, default = zeros% Ai -- 初始网络层延迟, default = zeros% VV -- 验证向量的结构, default = []% TV -- 测试向量的结构, default = []% 返回值:% net -- 训练之后的网络% TR -- 训练记录(训练次数及每次训练的误差)% Y -- 网络输出% E -- 网络误差% Pf -- 最终输入延迟% Af -- 最终网络层延迟%---------------------------------------------------------------% SIM——对 BP 神经网络进行仿真,函数格式:% [Y,Pf,Af,E,perf] = sim(net,P,PiAi,T)% 参数与前同。
%---------------------------------------------------------------%% 定义训练样本P=[-1, -2, 3, 1;-1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') %---------------------------------------------------------------% 训练函数:traingdm,功能:以动量BP算法修正神经网络的权值和阈值。
% 它的相关特性包括:% epochs:训练的次数,默认:100% goal:误差性能目标值,默认:0% lr:学习率,默认:0.01% max_fail:确认样本进行仿真时,最大的失败次数,默认:5% mc:动量因子,默认:0.9% min_grad:最小梯度值,默认:1e-10% show:显示的间隔次数,默认:25% time:训练的最长时间,默认:inf%---------------------------------------------------------------% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}% 设置网络的训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;% 调用 TRAINGDM 算法训练 BP 网络[net,tr]=train(net,P,T);% 对 BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)plot((1:4),T,'-*',(1:4),A,'-o')1 B P神经网络的原理及算法的基本步骤理论上已证明 ,一个3层的 B P网络能够实现任意的连续映射 ,可以任意精度逼近任何给定的连续函数。
1. 1 B P神经网络的原理B P (B ack P rop aga tion)神经网络通常由具有多个节点的输入层( inp u t laye r) 、隐含层( h idden laye r) 和多个或一个输出节点的输出层( ou tp u t laye r)组成 ,其学习过程分为信息的正向传播过程和误差的反向传播过程两个阶段。
外部输入的信号经输入层、隐含层为止。
的神经元逐层处理 ,向前传播到输出层 ,给出结果。
如果在输出层得不到期望输出 ,则转入逆向传播过程 ,将实际值与网络输出之间的误差沿原连接通路返回 ,通过修改各层神经元的连接权重 ,减少误差 ,然后再转入正向传播过程 ,反复迭代 ,直到误差小于给定的值人口129437 130405 131340 132244 133116 133958 年份2009 2010 2015 2020 2025 2030 人口134770 135552 139049 141921 144257 146144 年份2035 2040 2045 2050 2060 2070 人口147659 148869 149832 150596 151678 152352 年份2080 2090 2100 2105 2110 2120 人口152769 153026 153185 153240 153283 153344年份2011 2012 2013 2014 2015 全国总人口134668 135478 136325 137185 138036 年份2016 2017 2018 2019 2020 全国总人口138862 139652 140402 141106 1417602.1 利用Matlab Script节点实现在此以对一个非线性函数的逼近作为例子来说明实现流程,其中输入矢量p=[-1∶0.05∶1];目标矢量t=sin(2*pi*p)+0.1randn(size(p))。
利用Mat- lab Script节点实现BP算法的过程如下:(1)新建一个LabVIEW vi,在框图程序中添加Matlab Script节点。
(2)在节点内添加Matlab的动量BP算法实现代码,并分别在节点左右边框分别添加对应的输入/输出参数,如图1所示。
(3)在vi的前面板添加相应的控件,设置输入参数,连接输出控件。
执行程序,结果如图2、图3所示。