水箱液位串级控制系统实验报告

合集下载

实验三 水箱液位串级控制系统实验

实验三 水箱液位串级控制系统实验

(实验三)水箱液位串级控制系统实验报告班级测控四班学号0800201428 姓名王常玥一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统采用不同控制方案的实现过程。

二、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主调节器,控制对象为锅炉汽包,其液位为系统的主控制量。

副控回路中的调节器称副调节器,控制对象为上水箱,又称副对象,其液位为系统的副控制量。

主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。

副调节器的的输出直接驱动电动调节阀,从而达到控制液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI 或PID控制。

由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P 调节器。

本实验系统结构图和方框图如图4-2所示。

图4-2 水箱液位串级控制系统(a)结构图(b)方框图三、实验设备DDD-Z05-I实验对象及DDD-Z05-IK控制屏、DDD-Z05-III 电源控制柜一台、SA-12挂件一个、SA-13A挂件一个、计算机一台、万用表一个、实验连接线若干。

四、实验内容与步骤本实验选择上水箱和锅炉汽包,实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-6、F2-14全开,F1-9 、F2-15开适当开度(F1-9﹥F2-15),其余阀门均关闭。

1.按照第一章1-6用网线和交换机连接操作员站和服务器,以及服务器和主控单元,“SA31 FM148现场总线远程I/O模块”、“SA31 FWM158现场总线远程I/O模块”挂件挂到屏幕上,并将挂件的通讯线街头插入屏内Profibus-DP总线接口上,将控制屏左侧Profibus-DP总线连接到主控单元DP口,并按照下面的控制屏接线图连接实验系统。

液位串级控制系统实习报告

液位串级控制系统实习报告

液位串级控制系统实习报告一、实习目的1. 掌握液位串级控制系统的原理及组成;2. 学习使用调节器、传感器、执行器等仪器设备;3. 培养动手能力、观察能力及问题解决能力;4. 理解并实践自动控制系统在实际工程中的应用。

二、实习内容1. 液位串级控制系统原理及组成液位串级控制系统由两个控制器级联组成,上级控制器控制下级控制器,下级控制器控制被控对象。

本实习采用的液位串级控制系统主要由液位控制器、流量控制器、调节器、传感器、执行器等组成。

2. 系统设备及参数(1)调节器:采用电动调节阀,可用于控制液位和流量。

(2)传感器:采用液位变送器,用于测量液位。

(3)执行器:采用气动执行器,用于控制阀门的开关。

(4)被控对象:水箱,用于实现液位的控制。

3. 实习过程(1)设备调试:首先对液位变送器、电动调节阀、气动执行器等设备进行调试,确保设备正常工作。

(2)系统连接:将液位变送器、调节器、执行器等设备按照原理图连接起来,形成液位串级控制系统。

(3)参数设置:根据系统要求,设置调节器的控制参数,包括比例、积分、微分等。

(4)系统投运:启动系统,观察并调整参数,使系统达到稳定运行状态。

4. 问题及解决(1)问题一:系统启动过程中,液位波动较大。

解决:调整调节器参数,减小比例系数,提高系统稳定性。

(2)问题二:液位达到设定值后,系统出现超调。

解决:增加积分时间,减小超调现象。

(3)问题三:流量控制器工作不稳定,导致液位波动。

解决:检查流量控制器设备,清理阀门及管道,确保流量稳定。

三、实习收获1. 掌握了液位串级控制系统的原理及组成;2. 学会了使用调节器、传感器、执行器等设备;3. 培养了动手能力、观察能力及问题解决能力;4. 理解了自动控制系统在实际工程中的应用。

四、实习总结通过本次实习,我对液位串级控制系统有了更深入的了解,掌握了系统的原理、组成及调试方法。

在实际操作过程中,我学会了使用调节器、传感器、执行器等设备,并培养了动手能力、观察能力及问题解决能力。

实验四 下水箱液位和进口流量串级控制实验

实验四 下水箱液位和进口流量串级控制实验

实验四下水箱液位和进口流量串级控制实验一、实验目的1、学习闭环串级控制的原理。

2、了解闭环串级控制的特点。

3、掌握闭环串级控制的设计。

4、初步掌握闭环串级控制器参数调整。

二、实验设备A3000-FBS现场系统,百特控制系统。

三、实验要求1、设计串级控制器。

2、经过参数调整,获得最佳的控制效果,并通过干扰来验证。

四、实验内容与步骤1、在现场系统A3000-FBS,将回路2手动调节阀JV201、JV206完全打开,使下水箱闸板具有一定开度,其余阀门关闭。

2、在控制系统A3000-CS上,将百特内给定仪表4~20mA输出端连到百特外给定仪表4~20mA外给定端,百特外给定仪表4~20mA输出端连到调节阀输入端,下水箱液位输出端连到百特内给定仪表4~20mA输入端,支路2流量计输出端连到百特外给定仪表4~20mA输入端。

3、打开A3000-CS电源,百特仪表通电。

打开A3000-FBS电源,调节阀通电。

4、启动计算机组态王软件,运行百特仪表组态程序,登陆进入下水箱液位和进口流量串级控制试验。

首先进行副回路比例调节。

主回路设为手动,副回路设为自动。

SP设为60%,主回路调节器输出设为40%,I为1800,调节P值,使调节阀控制量输出即PV1输出平衡。

获得P值。

5、在A3000-FBS上,启动右边水泵2#开关,给下水箱注水。

6、切换至单主回路控制即把手动改为自动,调节主回路的P、I值待系统稳定后,对系统加扰动信号。

通过反复对副调节器和主调节器参数的调节,使系统具有较满意的动态响应和较高的控制精度。

画下最终的曲线。

7、实验结束后,关闭阀门,关闭水泵。

关闭全部电源设备,拆下实验连接线。

六、实验结果提交1、画出液位流量串级控制实验系统的框图和最终获得的满意响应曲线,以及最佳串级控制参数。

2、阐述实现液位流量串级控制的原理。

实验三上水箱下水箱液位串级控制实验

实验三上水箱下水箱液位串级控制实验

实验三上水箱下水箱液位串级控制实验一.实验目的1.掌握串级控制系统的基本概念和组成。

2.掌握串级控制系统的投运与参数整定方法。

3.研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。

二.实验原理上水箱液位作为副调节器调节对象,下水箱液位做为主调节器调节对象。

控制框图如图3-1所示:3-1、上水箱下水箱液位串级控制框图三.实验设备AE2000A型过程控制实验装置:上位机软件、计算机、RS232-485转换器1只、串口线1根、万用表一只四.实验内容和步骤1、设备的连接和检查:(1)、关闭阀1、阀22将AE2000A 实验对象的储水箱灌满水(至最高高度)。

(2)、打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至上水箱的出水阀门:阀1、阀4、阀6,关闭动力支路上通往其他对象的切换阀门:阀2、阀10、阀17、阀20。

(3)、打开上水箱的出水阀:阀8至适当开度。

(4)、检查电源开关是否关闭2、系统连线图:图3-2、实验接线1)、如图5-2所示:将I/O信号接口板上的下水箱液位的钮子开关打到OFF位置,上水箱液位的钮子开关打到ON位置。

2)、将下水箱液位+(正极)接到任意一个智能调节仪的1端(即RSV的+极),下水箱液位-(负端)接到智能调节仪的2端(即RSV的-极)。

智能仪表的地址设为1,软件定义调节仪地址为1的调节器为主调节器,调节仪地址为2的调节器为副调节器。

3)、将主调节仪的4~20mA输出接至I/O信号面板的温度变送器转换电阻上转换成1~5V 电压信号,再将此转换信号接至另一调节仪(副调节器)的1端和2端作为外部给定,上水箱液位信号转换为0.2~1V的信号后接入副调节器的3、2两端。

调节器输出的4~20mA接电动调节阀的4~20mA控制信号两端。

4)、电源控制板上的三相电源、单相Ⅰ的空气开关、单相泵电源开关打在关的位置。

5)、电动调节阀的~220V电源开关打在关的位置。

6)、智能调节仪的~220V电源开关打在关的位置。

实验方案:水箱液位串级控制系统

实验方案:水箱液位串级控制系统

过程控制综合实验报告实验名称:水箱液位串级控制系统专业:班级:姓名:学号:实验方案一、实验名称:水箱液位串级控制系统二、串级控制系统的概述1、图5-1是串级控制系统的方框图。

该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的给定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。

图5-1 串级控制系统方框图R-主参数的给定值;C1-被控的主参数;C2-副参数;f1(t)-作用在主对象上的扰动;f2(t)-作用在副对象上的扰动。

2、串级控制系统的特点串级控制系统及其副回路对系统控制质量的影响已在有关课程中介绍,在此将有关结论再简单归纳一下。

(1).改善了过程的动态特性;(2).能及时克服进入副回路的各种二次扰动,提高了系统抗扰动能力;(3).提高了系统的鲁棒性;(4).具有一定的自适应能力。

3、主、副调节器控制规律的选择在串级控制系统中,主、副调节器所起的作用是不同的。

主调节器起定值控制作用,它的控制任务是使主参数等于给定值(无余差),故一般宜采用PI或PID调节器。

由于副回路是一个随动系统,它的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P或PI调节器。

4、主、副调节器正、反作用方式的选择正如单回路控制系统设计中所述,要使一个过程控制系统能正常工作,系统必须采用负反馈。

对于串级控制系统来说,主、副调节器的正、反作用方式的选择原则是使整个系统构成负反馈系统,即其主通道各环节放大系数极性乘积必须为正值。

各环节的放大系数极性是这样规定的:当测量值增加,调节器的输出也增加,则调节器的放大系数K c为负(即正作用调节器),反之,K c为正(即反作用调节器);本装置所用电动调节阀的放大系数K v恒为正;当过程的输入增大时,即调节器开大,其输出也增大,则过程的放大系数K0为正,反之K0为负。

CS4000双容水箱液位串级PID控制实验(1~6号实验装置)

CS4000双容水箱液位串级PID控制实验(1~6号实验装置)

双容水箱液位串级PID控制实验一、实验目的1、进一步熟悉PID调节规律2、学习串级PID控制系统的组成和原理3、学习串级PID控制系统投运和参数整定二、实验设备1、四水箱实验系统DDC实验软件2、PC机(Window 2000 Professional 操作系统)三、实验原理1、控制系统的组成及原理一个控制器的输出用来改变另一个控制器的设定值,这样连接起来的两个控制器称为“串级”控制器。

两个控制器都有各自的测量输入,但只有主控制器具有自己独立的设定值,只有副控制器的输出信号送给被控对象,这样组成的系统称为串级控制系统。

本仿真系统的双容水箱串级控制系统如下图所示:图17-1 本仿真系统的双容水箱串级控制系统框图串级控制器术语说明主变量:y1称主变量。

使它保持平稳使控制的主要目的副变量:y2称副变量。

它是被控制过程中引出的中间变量副对象:上水箱主对象:下水箱主控制器:PID控制器1,它接受的是主变量的偏差e1,其输出是去改变副控制器的设定值副控制器:PID控制器2,它接受的是副变量的偏差e2,其输出去控制阀门副回路:处于串级控制系统内部的,由PID控制器2和上水箱组成的回路主回路:若将副回路看成一个以主控制器输出r2为输入,以副变量y2为输出的等效环节,则串级系统转化为一个单回路,即主回路。

串级控制系统从总体上看,仍然是一个定值控制系统,因此,主变量在干扰作用下的过渡过程和单回路定值控制系统的过渡过程具有相同的品质指标。

但是串级控制系统和单回路系统相比,在结构上从对象中引入一个中间变量(副变量)构成了一个回路,因此具有一系列的特点。

串级控制系统的主要优点有:1)副回路的干扰抑制作用发生在副回路的干扰,在影响主回路之前即可由副控制器加以校正2)主回路响应速度的改善副回路的存在,使副对象的相位滞后对控制系统的影响减小,从而改善了主回路的相应速度3)鲁棒性的增强串级系统对副对象及控制阀特性的变化具有较好的鲁棒性4)副回路控制的作用副回路可以按照主回路的需要对于质量流和能量流实施精确的控制由此可见,串级控制是改善调节过程极为有效的方法,因此得到了广泛的应用。

上水箱液位与进水口流量串级控制实验实验报告

上水箱液位与进水口流量串级控制实验实验报告

《控制工程实验》实验报告实验题目:上水箱液位与进水口流量串级控制实验课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.18实验三上水箱液位与进水口流量串级控制实验一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统的实现过程。

二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。

副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。

主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。

副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。

由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。

本实验系统结构图和方框图如图1所示。

四、实验内容与步骤本实验选择选择上水箱和中水箱串联作为被控对象。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7全开,将中水箱出水阀门F1-10开度开到70%左右、下水箱出水阀门F1-11开度50%左右(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

图1 双容水箱液位串级控制系统(a)结构图 (b)方框图1.用 MPI 通讯电缆线将 S7-300PLC 连接到计算机 CP5621 专用网卡,并按照控制柜接线图连接实验系统。

双容水箱液位串级控制DCS实训报告

双容水箱液位串级控制DCS实训报告

DCS实训报告一、实训目的(1)熟悉集散控制系统(DCS)的组成。

(2)掌握MACS组态软件的使用方法。

(3)培养灵活组态的能力。

(4)掌握系统组态与装置调试的技能。

二、实训内容以双容水箱为对象设计液位串级控制系统,并用MACS组态软件完成组态包括:(1)数据库组态。

(2)设备组态。

(3)算法组态。

(4)画面组态。

(5)系统组态。

三、实训设备和器材(1)THSA-1型生产过程自动化技术综合实训装置。

(2)和利时DCS控制系统。

四、实训步骤1、工程分析双容水箱液位串级控制系统需要两个输入测量信号,一个输出控制信号。

因此需要一个模拟输出模块FM148A和一个模拟输出模块FM151.采集下水箱液位信号(LT1)控制电动控制发的开度。

2、工程建立1)打开:开始→程序→macsv组态软件→数据库总控。

2)点击按钮或选择工程|新建工程,新建工程,输入工程名字:wenzhao。

工程名必须为12个以内的非中文字符,只包括字母、数字。

3)点击“确定”按钮,然后在空白处选择这个工程,此时会显示当前域号为65535等信息。

4)选择“编辑>域组号组态”,选择组号为1,将刚创建的工程从“未分组的域”移动到右边“该组所包括的域”里,点“确定”按钮。

出现当前域号:0等信息。

5)在数据库总控组态中添加变量。

选择菜单栏,编辑→编辑数据库,弹出窗口,输入用户名和口令bjhc/3dlcz。

点击“确定”按钮。

6)选择系统→数据操作,出现下面对话框,点击“确定”。

7)因为双容水箱定制控制系统用到一个模块,两个通道,所以需要编辑两个点号。

点击“AI模拟量输入”选项出现下图。

8)点击“全选A”按钮。

将右侧的选择项名选中,点击“确定”按钮。

9)选择后确定进入编辑数据界面。

10)数据库编辑,注意:设置它的参数,根据实际情况,设置设备好(即设备地址),通道号(输入通道为2,对应FM148,对应FM143),量程上限下限,点名(注意:点名不能重复使用)。

新编[工学]过程控制实验报告5上水箱液位和流量串级系统

新编[工学]过程控制实验报告5上水箱液位和流量串级系统

班级:082班座号:姓名成绩:
课程名称:过程控制工程实验项目:上水箱液位和流量串级系统
一、实验目的:
通过实验掌握串级控制系统的基本概念,掌握串级控制系统的组成结构,即主被控参数、
三、实验步骤:
1、打开计算机组态王软件的工程管理器,选中“串级实验”,点击运行,进入串级实验界面。

2、点击“自动/手动”按钮,使系统在自动状态,点击“PID设定按钮”,调出PID设定界面。

PID设定1框图是副回路流量参数,PID设定2框图是主回路液位参数。

3、投入参数,观察液位和流量的曲线,调整参数观察计算机控制的效果。

待系统稳定后,给定加个阶跃信号,观察其液位的变化曲线。

4、再等系统稳定后,给系统下水箱加干扰信号,观察下水箱液位变化的曲线。

四、计算机控制的参数设置:
五、实验报告:
1、根据试验结果编写实验报告。

2、按5-2衰减曲线调节器参数计算表填写表格中的数据
3、整理并附上记录仪的下列过渡过程曲线:
(1)整定副调节器时得到的4:1衰减曲线。

(2)整定主调节器时得到的4:1衰减曲线。

(3)主副调节器参数整定后,干扰作用于上水箱中,主变量H1的过渡过程曲线。

(4)主副调节器参数整定后,干扰作用于流量中,主变量H1的过渡过程曲线。

4、列表比较控制质量:。

液位串级控制实验报告

液位串级控制实验报告

液位串级控制实验报告液位串级控制是对压力变送器技术的延伸和发展,根据不同比重的液体在不同高度所产生压力成线性关系的原理,实现对水、油及糊状物的体积、液高、重量的准确测量和传送。

实验报告:1、工作原理液位变送器工作原理是当被测介质的两种压力通入高、低两压力室,作用在δ元件(即敏感元件)的两侧隔离膜片上,通过隔离片和元件内的填充液传送到测量膜片两侧。

液位变送器是由测量膜片与两侧绝缘片上的电极各组成一个电容器。

当两侧压力不一致时,致使测量膜片产生位移,其位移量和压力差成正比,故两侧电容量就不等,通过振荡和解调环节,转换成与压力成正比的信号。

压力变送器和绝对压力变送器的工作原理和差压变送器相同,所不同的是低压室压力是大气压或真空。

A/D转换器将解调器的电流转换成数字信号,其值被微处理器用来判定输入压力值。

微处理器控制变送器的工作。

另外,它进行传感器线性化。

重置测量范围。

工程单位换算、阻尼、开方,传感器微调等运算,以及诊断和数字通信。

本微处理器中有16字节程序的RAM,并有三个16位计数器,其中之一执行A/D转换。

D/A转换器把微处理器来的并经校正过的数字信号微调数据,这些数据可用变送器软件修改。

数据贮存在EEPROM内,即使断电也保存完整。

数字通信线路为变送器提供一个与外部设备(如205型智能通信器或采用HART协议的控制系统)的连接接口。

此线路检测叠加在4-20mA信号的数字信号,并通过回路传送所需信息。

通信的类型为移频键控FSK技术并依据BeII202标准。

2、使用方法一、最好选择稳压电源单独供电。

电源的稳定性影响着变送器的性能指标,最好将其误差控制在变送器允许误差五分之一以下。

对于有特殊供电要求的产品,必须接特殊电源。

二、液位变送器信号线要采取带屏蔽的电缆,防止电磁波干扰。

三、按照正确的接线方法连接变送器,其通电时间要在十五到三十分钟。

四、如果液位变送器安装在水池、水塔等场合,可以将它的探头沉于水底,远离水流速过快的位置。

上、中水箱液位串级PID控制实验

上、中水箱液位串级PID控制实验

上、中水箱液位串级PID控制实验一、实验目的1、掌握串级控制系统的基本概念和组成。

2、掌握串级控制系统的投运与参数整定方法。

3、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。

二、实验设备AE2000型过程控制实验装置、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、实验原理上水箱液位作为副调节器调节对象,中水箱液位做为主调节器调节对象。

控制框图如图9-1所示:图9-1上水箱下水箱液位串级控制框图四、实验内容和步骤1、设备的连接和检查1).打开以丹麦泵为动力的支路至上水箱的所有阀门,关闭动力支路上通往其它对象的切换阀门。

2).打开上水箱出水阀和中水箱的出水阀开至适当的开度。

3).检查电源开关是否关闭2、系统连线图图9-2实验接线图1).将上水箱液位信号接至8017的AI0通道,将中水箱液位信号接至8017的AO0通道。

2).将8024的AO1通道接至气动调节阀的控制信号输入端。

3).电源控制板上的三相电源空气开关、丹麦泵电源开关打在关的位置。

3、启动实验装置:1).打开电源带漏电保护空气开关。

打开电源总开关,电源指示灯点亮,即可开启电源。

打开单相泵电源。

2).启动计算机DDC组态软件,进入实验系统相应的实验3).建立工作点将副回路的PID控制器设成手动单击实验界面中的副回路PID控制器标签打开副回路PID控制器界面,然后单击副回路PID控制器的“手动”按钮a、设定工作点单击副回路PID控制器界面中MV柱体旁的增/减键,设置MV(U1)的值c、进行对象动态特性测试(参见已做过的实验)给MV一个阶跃,将1号和3号水箱的液位变化数据记录在表1中:根据实验数据用两点法建立3号和1号水箱的传递函数,作为PID初始参数计算的依据。

4)调节串级的后级a、设置PID参数根据对象特性,查表计算PID初始参数,P=I=D=,并将参数输入到控制器中,并进行微调,使内回路控制效果达到最佳。

水箱液位串级控制实验【范本模板】

水箱液位串级控制实验【范本模板】

第六节水箱液位串级控制实验一、实验目的1。

熟悉串级控制系统的结构与特点2. 掌握串级控制系统的投运与参数的整定方法3。

研究阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响二、实验设备1. THJ-2型高级过程控制系统实验装置2. 计算机、上位机MCGS组态软件、RS232—485转换器1只、串口线1根3. 万用表 1只三、实验原理图6-1 液位串级控制系统的结构图图6—2 液位串级控制系统的方框图本实验为水箱液位的串级控制系统,它是由主、副两个回路组成.每一个回路中都有一个属于自己的调节器和控制对象,即主回路中的调节器称主调节器,控制对象为下水箱,作为系统的被控对象,下水箱的液位为系统的主控制量.副回路中的调节器称副调节器,控制对象为中水箱,又称副对象,它的输出是一个辅助的控制变量。

本系统控制的目的不仅使系统的输出响应具有良好的动态性能,且在稳态时,系统的被控制量等于给定值,实现无差调节。

当有扰动出现于副回路时,由于主对象的时间常数大于副对象的时间常数,因而当被控制量(下水箱的液位)未作出反映时,副回路已作出快速响应,及时地消除了扰动对被控制量的影响.此外,如果扰动作用于主对象,由于副回路的存在,使副对象的时间常数大大减小,从而加快了系统的响应速度,改善了动态性能。

图6—1为实验系统的结构图,图6-2为相应控制系统的方框图.四、实验内容与步骤1.按图6—1要求,完成实验系统的接线.2。

接通总电源和相关仪表的电源。

3。

打开阀F1-1、F1—2、F1—7、F1-10、F1-11,且使阀F1-10的开度略大于F1—11。

4.按经验数据预先设置好副调节器的比例度。

5.调节主调节器的比例度,使系统的输出响应出现4:1的衰减度,记下此时的比例度δS和周期TS。

据此,按经验表查得PI的参数对主调节器进行参数整定。

6.手动操作主调节器的输出,以控制电动调节阀支路给中水箱送水的大小,等中、下水箱的液位相对稳定,且下水箱的液位趋于给定值时,把主调节器切换为自动。

水箱液位串级控制系统

水箱液位串级控制系统

水箱液位串级控制系统一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统采用不同控制方案的实现过程。

二、实验设备三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。

副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。

主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。

副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。

由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。

本实验系统结构图和方框图如图2所示。

图2 水箱液位串级控制系统(a)结构图 (b)方框图四、实验内容与步骤本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。

将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。

实验四 水箱液位串级控制系统

实验四  水箱液位串级控制系统

实验四水箱液位串级控制系统一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.研究阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统采用不同控制方案的实现过程。

二、实验设备1、THJ-2 型高级过程控制系统实验装置2、计算机、上位机MCGS 组态软件、RS232-485 转换器1 只、串口线1 根3、万用表1 只三、实验原理本实验为水箱液位的串级控制系统,它是由主、副两个回路组成。

每一个回路中都有一个属于自己的调节器和控制对象,即主回路中的调节器称主调节器,控制对象为下水箱,作为系统的被控对象,下水箱的液位为系统的主控制量。

副回路中的调节器称副调节器,控制对象为中水箱,又称副对象,它的输出是一个辅助的控制变量。

本系统控制的目的不仅使系统的输出响应具有良好的动态性能,且在稳态时,系统的被控制量等于给定值,实现无差调节。

当有扰动出现于副回路时,由于主对象的时间常数大于副对象的时间常数,因而当被控制量(下水箱的液位)未作出反映时,副回路已作出快速响应,及时地消除了扰动对被控制量的影响。

此外,如果扰动作用于主对象,由于副回路的存在,使副对象的时间常数大大减小,从而加快了系统的响应速度,改善了动态性能。

本实验系统结构图和方框图如图所示。

图1 水箱液位串级控制系统(a)结构图 (b)方框图四、实验内容与步骤1、本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

2、按照实验图接线,将主、副控仪表设置为自动,主控制器Sn=33,addrss=1,CF=0 ,DF=0;副控制器Sn=32,addrss=2,CF=8,DF=0;合上三相电源空气开关,磁力驱动泵上电打水,上位机的主控制器,下水箱的液位设定值8—15cm。

实验三上中水箱液位串级控制系统实验

实验三上中水箱液位串级控制系统实验

实验三上中水箱液位串级控制系统实验一、实验目的1、了解复杂过程控制系统的构成。

2、掌握复杂过程控制一—串级控制方法。

3.掌握串级控制参数整定方法。

二、实验类型综合型三、实验装置1、过程控制实验装置见图3-1,其中使用:电磁阀、上下水箱及液位变送器、水泵系统等。

2、控制仪表一套,以及通信线路。

3、计算机一台。

图3-1 系统示意图四、实验原理上下水箱双容液位串级控制的方块原理图如图3-2,本实验将下水箱液位控制在设定高度。

串级回路是由内反馈组成的双环控制系统,属于复杂控制范畴。

在实验中使用了两个调节器作为主副调节器。

将上水箱的液位信号输出作为主调节器输入,主调节器的输出作为副调节器的输入,在串级控制系统中,两个调节器任务不同,因此要选择调节器的不同调节规律进行控制,副调节器主要任务是快速动作,迅速抵制进入副回路的扰动,至于副回路的调节不要求一定是无静差。

主调节器的任务是准确保持下水箱液位在设定值,因此,主调节器采用PI 调节器也可考虑采用PID 调节器。

图3-2 串级控制框图PID 算法的两种类型①、位置型控制[]00)1()()()()(u n e n e T T i e T Tn e K n u ni DI P +⎭⎬⎫⎩⎨⎧--++=∑= ②、增量型控制[][])2()1(2)()()1()()1()()(-+--++--=--=∆n e n e n e TT K n e T TK n e n e K n u n u n u D P I PP串级控制系统的参数整定 ①、两步整定法第一步整定副回路的副控制器;第二步整定主回路的主控制器。

a. 在系统工作状况稳定,主、副回路主控制器在纯比例作用的条件下,将主控制器的比例带δ取100%,再逐渐降低副控制器的比例带,用整定单回路的方法来整定副回路。

如用4:1衰减法来整定副回路,则求出副参数在4:1衰减时的副控制器比例带δ2S 和操作周期T2S。

b.使副控制比例带置于δ1S 的数值上,逐渐降低主控制器的比例带δ1S,求出同样衰减比时主回路的过渡过程曲线,记录此时主控制器的比例带δ1S和操作周期T1S。

实验3上、中水箱液位串级控制系统实验

实验3上、中水箱液位串级控制系统实验

实验3 上、中水箱液位串级控制系统实验一、实验目的1、掌握串级控制系统的基本概念和组成;2、掌握串级控制系统的投运与参数整定方法;3、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。

二、实验设备AE2000B型过程控制实验装置、万用表一只三、实验原理上水箱液位作为副调节器调节对象,中水箱液位作为主调节器调节对象。

控制框图如图1所示:图1 上水箱中水箱液位串级控制框图四、实验内容与步骤1、设备的连接和检查:1)将AE2000B 实验对象的储水箱灌满水(至最高高度);2)打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至上水箱的出水阀,关闭动力支路上通往其他对象的切换阀;3)打开上水箱和下水箱的出水阀至适当开度;4)检查电源开关是否关闭。

2、系统连线图:1)将I/O信号接口板上的下水箱液位的钮子开关打到OFF位置,上水箱液位的钮子开关打到ON位置;2)按图2所示连线;3)将主调节仪的4~20mA输出接至I/O信号面板的温度变送器转换电阻上转换成1~5V 电压信号,再将此转换信号接至另一调节仪(副调节器)的1端和2端作为外部给定,上水箱液位信号转换为1~5V的信号后接入副调节器的1~5V和地两端。

调节器输出的4~20mA接电动调节阀的4~20mA控制信号两端。

3、启动实验装置:1)将实验装置电源插头接到220V的单相电源上;2)打开电源单带漏电保护空气开关,电压表指示220V;3)打开总电源开关,即可开启电源。

4、实验步骤1)开启电动调节阀电源、24V电源、智能调节仪电源,调整好仪表各项参数;图2、实验接线2)设定主控参数和副控参数。

主调节器的参数与单回路闭环控制设定方法一样;3)启动动力支路,待系统稳定后,在上水箱给一个阶跃信号,观察实时曲线的变化,并记录此曲线;4)系统稳定后,在副回路上加干扰信号,观察主回路和副回路上的实时曲线的变化。

记录并保存曲线。

五、实验报告要求分析串级控制和单回路PID控制不同之处?六、注意事项1、实验线路接好后,必须经指导老师检查认可后方可接通电源;2、系统连接好以后,在老师的指导下,运行串级控制实验;3、为保护仪表及用电设备的使用寿命实验完毕,先关闭所有电源开关,再关电源总开关。

基于MCGS的水箱液位串级控制实验

基于MCGS的水箱液位串级控制实验

综合实验报告综合实验名称自动控制系统综合实验题目基于MCGS的水箱液位串级控制实验指导教师设计起止日期 2011年12月22日~12月31日系别自动化学院控制工程系专业自动化学生姓名班级 学号成绩目录一、综合实验的目的 (2)二、实验前的准备及安全操作规程 (2)三、综合实验内容要求 (2)四、自选项目介绍: (3)(一)、实验目的 (3)(二)、实验设备 (3)(三)、实验原理 (3)(四)、实验内容与步骤 (4)五、实验装置介绍 (5)(一)、被控对象 (5)(二)、检测装置 (6)(三)、执行机构 (7)(四)、实验控制台 (7)(五)、实验挂件 (8)(六)、常规仪表侧控制对象总貌图: (10)(7)调节器参数的整定方法 (10)(一)经验法 (11)(二)临界比例度法 (11)(三)衰减曲线法(阻尼振荡法 (12)六、软件介绍 (13)一、MCGS组态软件 (13)二、R EMO DAQ8000-9000软件 (13)三、A DV ANTECH D EVICE M ANAGER软件 (13)四、应用MCGS组态软件做的实验工程 (14)五、智能调节仪的认识 (14)(一)、智能调节仪的功能及作用: (14)(二)、智能调节仪的参数和使用: (14)(三)、智能调节仪的常用功能: (14)七、系统模块设计 (15)(一)、系统硬件设计框图与元器件选择 (15)(二)、系统软件功能模块设计图 (17)1、控制系统的设计 (17)2、系统的组态设置 (18)3、修改通讯串口号和通讯地址并设置相关属性 (19)(2)实时数据库设置 (21)(3)组态策略设置 (22)4、工程整定 (23)八、思考题 (23)九、课设总结 (24)十、参考文献 (24)一、综合实验的目的自动控制系统综合实验是在完成了自控理论,检测技术与仪表,过程控制系统等课程后的一次综合训练。

要求同学在给定的时间内利用前期学过的知识和技术在过程控制实验室的现有设备上,基于mcgs组态软件或wincc组态软件设计一个监控系统,完成相应参数的控制。

实验三 (上下水箱串级液位控制实验)实验报告电子版2014

实验三 (上下水箱串级液位控制实验)实验报告电子版2014

电子科技大学中山学院学生实验报告
系别:机电工程学院专业:自动化课程名称:过程控制与自动化仪表在设计串级控制系统时,要求系统副对象的时间常数要远小于主对象。

图2、液位串级控制系统结构图
1、用RS232通讯线连接计算机与GK-03串行通讯口,并打开上位机监控软件进入数据采集状态。

2、对象系统:打开进水口阀
3、阀9,出水口阀6、阀7打到一定开度并且使得阀6的开度大于
的开度。

打开磁力泵1使系统运行。

系统稳定后再打开磁力泵2作为扰动,此扰动可以加到上水箱,也可以加到下水箱。

实验参考参数:上水箱出水阀的开度约为80%左右,下水箱出水阀的开度约为70%左右。

水箱液位串级控制系统实训报告

水箱液位串级控制系统实训报告

实训指导教师:李红萍、王银锁系别:电子电气工程系专业:生产过程自动化班级:053 班姓名:郁万彬实训地点:兰州石化学院第二工业中心6F 实训时间:2007.12.17~2008.1.39.2.2 水箱液位串级控制系统1.实训目的(1)熟悉集散控制系统的组成(见附录B )。

(2)学习MACS 组态软件的使用方法。

(3)培养学生灵活组态的能力。

(4)掌握系统组态与装置调试的技能。

(5)掌握串级控制系统的组态方法。

2.实训内容(1)水箱液位串级控制系统数据库组态。

(2)水箱液位串级控制系统设备组态。

(3)水箱液位串级控制系统算法组态。

(4)水箱液位串级控制系统画面组态。

(5)水箱液位串级控制系统调试。

3.实训设备和器材(1)THSA-1型生产过程自动化技术综合实训装置。

(2)万用表一个、PC/PPI 通信电缆一根。

4.实训接线参照图9.82完成系统接线。

5.实训步骤(1)工程分析 水箱液位串级控制系统需要两个输入信号端子和一个输出端子,因此选用一个模拟量输入模块(FM148A )和一个模拟量输出模块(FM151)。

FM148A 的通道2采集上水箱液位数据,FM148A 的通道3采集中水箱液位数据,控制输出信号由模拟量输出模块(FM151)的通道1送出,去操纵电动控制阀的开度。

(2)建立工程。

图9.82 水箱液位串级控制系统接线图①参照图9.83和图9.84,打开数据库组态工具,进入数据库组态界面。

②在数据库总控组态界面中工具栏下单击新建工程按钮,弹出如图9.85所示添加工程的对话框,添入工程名称,单击确定。

③工程建立之后可以在c :\hs2000macs 组态软件下看到新建的工程名称。

(3)编辑数据库。

①选择编辑→编辑数据库,在弹出的对话框如图9.86所示,输入用户名Bjhc 和密码3dlcz ,单击确定,进入数据库编辑界面。

图9.83 数据库组态工具打开步骤图9.84 数据库组态界面图9.85 添加工程②参照图9.87(a)选择系统→数据操作,单击确定,弹出如图9.87(b)所示窗口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXX科技大学
电子信息工程学院
专业硕士学位研究生综合实验报告
实验名称:水箱液位串级控制系统
专业:控制工程
姓名:XXX
学号:******
指导教师:***
完成时间:20**年6月*日
实验名称:水箱液位串级控制系统
实验目的:
1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统采用不同控制方案的实现过程。

实验仪器设备:
1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;
2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;
3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;
4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;
5.SA-41挂件一个、CP5611专用网卡及网线;
6.SA-42挂件一个、PC/PPI通讯电缆一根。

实验原理:
本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。

副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。

主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。

副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。

由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。

本实验系统结构图和方框图如图所示。

水箱液位串级控制系统
(a)结构图(b)方框图
方案设计及参数计算:
串级控制系统有主、副两个控制回路,主、副调节器相串联工作,其中主调
节器有自己独立的给定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。

串级控制系统方框图
R-主参数的给定值;C1-被控的主参数;C2-副参数;
f1(t)-作用在主对象上的扰动;f2(t)-作用在副对象上的扰动。

系统参数整定步骤为:
1.在工况稳定,系统为纯比例作用的情况下,根据K02/δ2=0.5这一关系式,通过副过程放大系数K02,求取副调节器的比例放大系数δ2或按经验选取,并将其设置在副调节器上。

2.按照单回路控制系统的任一种参数整定方法来整定主调节器的参数。

3.改变给定值,观察被控制量的响应曲线。

根据主调节器放大系数K1 和副调节器放大系数K2的匹配原理,适当调整调节器的参数,使主参数品质指标最佳。

4.如果出现较大的振荡现象,只要加大主调节器的比例度δ或增大积分时间常数TI,即可得到改善。

实验内容及操作步骤:
本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

1.将挂件SA-22远程数据采集模拟量输出模块、SA-23远程数据采集模拟量输入模块挂到屏上,并将挂件上的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。

将“LT2中水箱液位”、“LT3下水箱液位”钮子开关均拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给智能采集模块及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开上位机MCGS组态环境,打开“远程数据采集系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验十、水箱液位串级控制”,进入实验十的监控界面。

实验数据及结果:
实验中,首先下水箱定值控制的给定为30,由实验数据可知系统表现出比较好的跟总特性。

待系统稳定后将给定突变为40,系统依旧可以快速稳定的跟踪给定,表现出很好的动态特性和稳态特性。

结果分析:
主调节器采用PID控制器可以使下水箱液位等于给定值,并且没有误差。

由于副回路是一个随动系统,它的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用比例控制就可以满足要求。

由实验数据可知,使用串级控制可以获得比传统的PID控制器获得更好的动态特性和稳态特性,对副回路的扰动有很强的抵抗作用,对于有迟滞环节的系统有很好的控制效果。

实验心得:
1.通过实验,我们了解到串级控制和单回路控制相比的优越性。

2.对实验的观察使我们对主副回路不同的作用和功能有了深刻的了解。

3.做实验时对实验出现的问题,积极思考。

4.处理数据时要保持严肃认真的态度。

实验成绩:。

相关文档
最新文档