最新人教版七年级数学下册 第六章 《实数》教案(第2课时)
人教版数学七年级下册6.3《实数》教案2
人教版数学七年级下册6.3《实数》教案2一. 教材分析本节课是人教版数学七年级下册第六章第三节《实数》的教学内容。
在这一节中,学生将学习实数的概念、性质以及实数的运算。
实数是数学中的基础概念,包括有理数和无理数。
学生需要掌握实数的分类、实数的性质以及实数的运算方法。
这一节内容是学生进一步学习数学的基础,也是培养学生逻辑思维能力的重要环节。
二. 学情分析学生在七年级上学期已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但学生对无理数的概念和性质可能还比较陌生,需要通过本节课的学习来掌握。
同时,学生可能对实数的运算方法还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,学会实数的运算方法。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和问题解决能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受到数学的美。
四. 教学重难点1.重点:实数的概念、性质和运算方法。
2.难点:无理数的概念和性质,实数的运算方法。
五. 教学方法采用问题驱动法、自主探究法和合作交流法进行教学。
通过设置问题引导学生思考,激发学生的学习兴趣;给予学生足够的自主探究时间,培养学生的独立思考能力;学生进行合作交流,提高学生的团队协作能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实数的概念、性质和运算方法。
2.练习题:准备一些关于实数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。
提问:同学们,我们已经学习了有理数和无理数,那么实数是什么呢?2.呈现(15分钟)利用PPT展示实数的概念和性质,让学生初步了解实数。
同时,介绍实数的运算方法,如加法、减法、乘法和除法。
3.操练(15分钟)让学生进行实数的运算练习,巩固所学知识。
可以让学生独立完成练习题,也可以进行小组合作,共同解决问题。
人教版七年级数学下册 (平方根)实数课件教学(第2课时)
(2)因为6>4,所以 6 > 2,所以
61 >
21 =1.5.
2
2
归纳 比较数的大小,先估计其算术平方根的近似值
例3 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积 为300cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正 在发愁.你能帮小丽算出她能用这块纸片裁出符合要求的纸片吗?
能否用两个面积为 1 dm2 的小正方形拼成一个面积为 2 dm2 的 大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的 4 个直角 三角形拼在一起,就得到一个面积为 2 dm2 的大正方形.
你知道这个大正方形的边长是多少吗?
解:设大正方形的边长为 x dm,则 x2 = 2.
由算术平方根的意义可知
直线平行.
3.互如相果平两行 条直线都与第三条直线平行,那么这两 条直线也
.
[检测]
1.在同一平面内,不是重合( 的两)条直线的位置关C系
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
2.下列说法正确D的是 ( ) A.不相交的两条线段是平行线
B.不相交的两条直线是平行线
C.不相交的两条射线是平行线
按键顺序:
a=
注意:不同的计算器的按键方式可能有所差别
例4 用计算器求下列各式的值: 3136=
2=
利用计算器计算下表中的算术平方根,并将计算结果填在表中,你 发现了什么规律?你能说出其中的道理吗?
… 0.062 5 0.625 6.25
62.5
… 0.25 0 6 2.5
7.906
625
第 五
相交线与平行线
人教版数学七年级下册第6章实数《实数数学活动》教学设计
-鼓励学生分享探究成果,培养表达能力和团队合作精神。
2.情境教学:结合生活实际,创设情境,让学生在实际问题中感受实数的作用。
-利用实际问题引入实数概念,如通过测量长度、温度等引入无理数。
-通过解决具体问题,让学生体验数学知识在实际生活中的应用。
-讲解要点:强调实数的定义及其包含的范围,重点讲解无理数的概念和特点。
2.实数运算及其性质:通过实例演示和讲解,让学生掌握实数的四则运算规则,以及实数的性质。
-讲解重点:实数运算的顺序、法则,以及实数的性质(如交换律、结合律等)。
(三)学生小组讨论
1.分组讨论:将学生分成小组,针对实数的相关问题进行讨论,如实数的分类、实数的性质等。
-效果跟踪:定期检查学生的学习进度,调整教学策略,确保每个学生都能跟上教学进度。
3.实践性教学:将实数知识与学生的生活实际相结合,设计具有实践性的数学活动,让学生在实际操作中运用实数知识。
-设想实践:组织学生进行户外测量活动,如测量树的高度、操场的长度等,将实数知识应用于实际问题。
-效果评价:通过学生完成实践作业的质量,评估学生对实数知识的实际应用能力。
-目标定位:培养学生的逻辑思维能力和问题解决能力,提高实数知识的运用水平。
3.实践应用题:结合生活实际,设计一些需要运用实数知识解决的实际问题,如测量、计算等。
-实践意义:让学生在实际情境中感受实数的作用,提高数学知识在实际生活中的应用能力。
4.小组讨论题:布置一道小组讨论题,要求学生在小组内共同探究、解决问题。
为了巩固学生对实数知识的掌握,培养其运用实数解决实际问题的能力,特布置以下作业:
1.基础巩固题:完成课本第6章实数部分的基础练习题,重点关注实数的概念、分类及简单运算。
新人教版七年级下册第六章实数教案 (2)
第六章实数单元(章)教学计划1、地位与作用:本章<实数>是人教版七年级数学下册第六章内容。
学习算术平方根,平方根,立方根之后,为学习实数打下基础;由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。
运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。
因此,本章是今后学习根式运算、方程、函数等知识的重要基础。
2、目标与要求:知识与技能通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;会用计算器求算术平方根;使学生理解平方根的概念,了解平方与开平方的关系。
学会平方根的表示法和求非负数的平方根;进一步认识实数和数轴上的点一一对应蕴含着数形结合的思想,通过学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯过程与方法通过了解平方与开平方的关系,培养学生逆向思维能力;能对具体情景中的数学信息作出合理的解释和推断、解决问题,能由实际问题抽象成数学问题,让学生讨论、类比提出自己的见解,并在探索的同时较好的获得新知;经历在具体例子中抽象出概念的过程,培养学习的主动性,提高数学运算能力。
情感态度与价值观通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
3、重点与难点:重点:算术平方根、平方根、立方根的概念和运算;实数的认识。
难点:算术平方根与平方根联系与区别;有理数与无理数的区别。
4、教法与学法:教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法.5、活动步骤:一、创设导入;二、探索归纳;三、应用;四、练习;五、课堂总结;六、布置作业;6、时间安排:6.1平方根 3课时6.2立方根 1课时6.3实数 2课时复习与小结 2课时6.1.1平方根第一课时【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
新人教版七年级下册数学第六章实数教案
实数(一)教学目标:一、认知目标:1、了解无理数和实数的概念,会对实数进行分类;2、了解实数与数轴上点的一一对应关系。
二、过程目标:1、经历在实际情境中产生,并通过逼近的方法探究是怎样的一个数的过程,体验无理数;三、情感目标:经历探索数系从有理数到实数的扩充过程,培养探索精神,激发求知热情;通过实数的分类培养分类思想,发展分类意识。
四、重点:无理数、实数的概念及实数的分类五、难点:无理数概念及实数与数轴上点的一一对应关系教学过程:一、温故知新1.有理数:整数和分数统称为有理数.2.有理数的分类:按定义分类:有理数可分成两类:整数和分数.按符号分类:有理数可分成三类:正有理数、负有理数和零.3.我们知道,不是有理数,那么是一个怎样的数呢?本节内容将扩大数系的范围,研究类似这样的数的分类问题.二、创设情境,引入新课问题:请学生阅读P11“思考”及图6-5,然后回答:1、有面积分别是1、4、9的格点正方形吗?2、有面积是2的格点正方形吗?把它画出来。
设边长为x ,则x =2 ,因为x>0 ,所以x= .三、讲授新课1、问题:探究是怎样的一个数?引导学生用课本P12的逐步逼近的方法,经过探究得出:=1.4142135……,以上可以根据我们的需要,算到小数点后的任何一位, 是一个无限不循环小数.2、无理数的概念无限不循环小数叫做无理数如,=1.732050508……;=1.44224957……;π=3.14159265……,等。
3、实数的概念及分类(1)有理数和无理数统称为实数。
(2)实数的分类:(两种方法)实数分类一:实数分类2:4、探索实数与数轴的一一对应关系问题:能用数轴上的点表示吗?(1)讲解课本P14图6-7 ,引导学生说明其意义。
(2)归纳:与有理数一样,每个无理数也都可以用数轴上的点来表示;反过来,数轴上的点不是表示有理数就是表示无理数。
实数与数轴上点的一一对应。
巩固练习:P14练习1、2补充练习:1、求下列各式中的x的值:(1)x2-4=0 ; (2) (x+1) =2 ;(3)3x =8 ;(4)(x+1) +8=0 .已知实数 x、y满足,求x-8y的平方根和立方根。
新人教版2019版七年级数学下册第六章实数6.3实数第2课时教案新版
6.3 实数第2课时【教学目标】知识技能目标1.掌握实数的相反数和绝对值.2.掌握实数的运算律和运算性质.过程性目标通过复习有理数的相反数、绝对值、运算律、运算性质,引出实数的相反数、绝对值、运算律、运算性质,并通过例题和练习题加以巩固,适当加深对它们的认识.情感态度目标通过建立有理数的一些概念和运算在实数范围里也成立的意识.让学生了解在这种数的扩充中所体现的一致性,让学生充分感受数的不断发展;利用类比思想得到有理数的运算律及运算法则在实数范围内仍然成立.【重点难点】重点:会求实数的相反数和绝对值,会进行实数的加减法运算,会进行实数的近似计算.难点:认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充.【教学过程】一、创设情境复习导入:1.用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.2.用字母表示有理数的加法交换律和结合律.3.平方差公式、完全平方公式.4.有理数的混合运算顺序.数集扩充到实数以后,以前有理数的性质及其运算的法则等是否仍然成立,本节课就研究这些问题.二、新知探究探究点1:实数的性质问题1:完成教材P54【思考】要点归纳:有理数关于相反数和绝对值的意义同样适合于实数.(1)实数a的相反数是-a(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.例题讲解例1 (教材P55例1)探究点2:实数的运算例2 (教材P56例2)例3 (教材P56例3)要点归纳:1.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算.而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.2.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.三、检测反馈1.下列各数中,互为相反数的是( )A.3与B.2与(-2)2C.与D.5与|-5|2.|-3|-|2-|的值是( )A.5B.-1C.5-2D.2-53.在数轴上距离表示到-2的点有个单位长度的数是_______.4.-是_______的相反数;3.14-π的绝对值是_______.5.计算:(1)2-3;(2)|-|+2.6.已知:a,b是实数,且满足+|b-|=0.解关于x的方程:a2x+b2=0.四、本课小结实数的一些概念和运算性质运算律:1.相反数:实数a的相反数是-a.2.绝对值:当a≥0时,|a|=a,当a<0时,|a|=-a.3.运算律和运算性质:实数之间可以进行加、减、乘、除(除数不为0)、乘方、非负数的开平方、任意数的开立方运算,有理数的运算中还有交换律、结合律、分配律.五、布置作业课堂作业:课本第56页练习第57页习题6.3第3,4,5题课后作业:课本第57页习题6.3第6,7,8题六、板书设计七、教学反思本节课的设计思路是从有理数的绝对值、相反数、倒数的题目出发,引导学生积极探索,对比总结,合作提高,从而总结实数绝对值、相反数、倒数的概念及运算律和有理数的绝对值、相反数、倒数的概念及运算律是一样的.本节课的设计合理,从学生原有的知识出发,让学生从原有的知识对比得出实数的有关概念,这样概念得出合情合理,对比学习,学生容易理解,也理解了数学概念之间的联系,增强学生学习数学的积极性.教学中放手让学生去自学,去探讨,带着问题,带着思考,教师组织学生去总结.让学生在自学、探讨、合作中解决问题,再通过教师的总结归纳,学生的认知得到升华.在教学的过程中,教师不断的提出问题,明确要达到的目的,并在学生遇到困难的时候给出指导,学生则围绕确定的问题,在教师的指导下,有目的的通过自己的思考、对比和交流去学习,达到预定的目标.当然在教学过程中,要注意,学习的主体是学生,教师是主导.不同的学生,学习是有差异的,教师在给学生指明学习的方向后,对于问题的提出,讲解等,要通俗易懂,要照顾不同层次的学生,在此基础上,合作交流是针对不同学生的一个好的学习方法.。
人教版七年级数学下册 教学设计6.3 第2课时《实数》
人教版七年级数学下册教学设计6.3 第2课时《实数》一. 教材分析人教版七年级数学下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统的认识。
本节内容主要介绍实数的定义、性质以及实数与数轴的关系。
通过本节课的学习,使学生掌握实数的概念,了解实数的性质,能够利用实数和数轴解决一些实际问题。
二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数的运算也有一定的了解。
但学生在理解实数与数轴的关系方面可能存在一定的困难。
因此,在教学过程中,要注重引导学生利用数轴理解实数的概念和性质。
三. 教学目标1.知识与技能:理解实数的定义,掌握实数的性质,能够运用实数和数轴解决一些实际问题。
2.过程与方法:通过数轴引导学生直观地理解实数的概念和性质。
3.情感态度价值观:培养学生的逻辑思维能力,激发学生学习数学的兴趣。
四. 教学重难点1.重点:实数的定义和性质。
2.难点:实数与数轴的关系。
五. 教学方法1.情境教学法:通过数轴引导学生直观地理解实数的概念和性质。
2.启发式教学法:在教学过程中,引导学生积极思考,提高学生的逻辑思维能力。
3.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队合作意识。
六. 教学准备1.教师准备:准备好数轴的图片和相关实数的例子。
2.学生准备:预习实数的相关内容,了解实数的概念和性质。
七. 教学过程1.导入(5分钟)利用数轴引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。
2.呈现(10分钟)介绍实数的定义和性质,让学生初步认识实数。
实数包括有理数和无理数,它们都可以用数轴上的点表示。
实数具有以下性质:–实数是数轴上的点,每个实数对应数轴上的一个唯一点。
–实数具有大小和方向,可以进行加、减、乘、除等运算。
–实数按照大小顺序排列,相邻两个实数之间存在无数个实数。
3.操练(10分钟)让学生在数轴上表示实数,并进行实数的运算。
例1:在数轴上表示-2、3、√2等实数。
最新人教版七年级下册数学 第六章 实数 教案
6.1 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根; 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入在我校举行的绘画比赛中,欢欢同学准备了一些正方形的画布,若知道画布的边长,你能计算出它们的面积吗?若知道画布的面积,你能求出它们的边长吗?表 一 正方形的边长 1 2 0.5 23 正方形的面积140.2549表一:已知一个正数,求这个正数的平方.表 二 正方形的面积 1 4 0.36 49 正方形的边长120.67表二:已知一个正数的平方,求这个正数. 表一和表二中的两种运算有什么关系? 二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8; (2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又∵92=81,∴81=9.而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑;(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值 3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a .解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题. 探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3. 方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -13(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方都具有非负性,即a ≥0,|a |≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a ≥0a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化第1课时 算术平方根【教学目标】1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。
人教版七年级下册数学第六章 实数 教案
人教版七年级下册数学第六章实数教案课题名称:6.1.1平方根一、教学目标1.经历算术平方根概念的形成过程,了解算术平方根的概念.2.会求某些正数(完全平方数)的算术平方根并会用符号表示.二、教学重点和难点1.重点:算术平方根的概念.2.难点:算术平方根的概念.(本节课需要的各种图表要提前画好)三、教学过程(一)创设情境,导入新课师:从本节课开始我们将学习新的一章:实数(板书:第六章实数).什么是实数?这还得从算术平方根说起(板书课题:算术平方根),本节课我们就来学习算术平方根.那什么是算术平方根呢?请看下面的例子.(二)尝试指导,讲授新课(师出示下面的实例)学校要举行美术作品比赛,扎西很高兴.他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?(师边读题边演示一张面积为25平方分米的纸)师:谁来说这块正方形画布的边长应取多少分米?生:5分米.(多让几位同学回答)师:你是怎么算出来的?生:……师:因为52=25(板书:因为52=25),所以这个正方形画布的边长应取5分米(板书:所以边长=5分米).师:分米?生:3分米.(多让几位同学回答,要从较差学生逐渐喊到较好学生,最后师在边长栏中填3)(以下师逐个在面积栏中填16、36、1、425,教学过程同上)师:(指实例和表格)这个实例中的问题、填表中的问题实际上是一个问题,什么问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,(指准课题)我们就有了算术平方根的概念.师:(指准表格)正数3的平方等于9,我们把正数3叫做9的算术平方根.师:(指准表格)正数4的平方等于16,我们把正数4叫做16的算术平方根. 师:(指准表格)哪位同学会按老师刚才的说法,说说6和36这两个数?生:……(多让几位同学说,学生说得不正确的地方教师随即纠正)师:(指准表格)谁来说说1和1这两个数?生:……(多让几位同学说)师:(指52=25)同桌之间互相说一说5和25这两个数.(同桌互相说)师:说了这么多,同学们大概已经知道了算术平方根的意思.那么什么是算术平方根呢?(稍停)还是先在小组里讨论讨论,说说自己的看法.(生小组讨论,师巡视倾听)师:谁来说说什么是算术平方根?生:……(多让几位同学说,教师要注意倾听,肯定学生回答中合理的部分)师:什么是算术平方根呢?(揭开板书:如果一个正数的平方等于a,那么这个正数叫做a的算术平方根)如果一个正数的平方等于a,那么这个正数叫做a 的算术平方根.师:请大家把算术平方根概念默读两遍.(生默读)(师提前准备好这样的10张卡片,一面写1-10,另一面写1-10的平方.师任意抽一张卡片,譬如是7、49这一张)师:(边演示卡片边问)7的平方是什么?生:49.师:(边演示卡片边问)49的算术平方根是什么?生:7.(按以上过程抽完所有卡片)师:现在我们知道了什么是算术平方根.(指准板书)如果一个正数的平方等于a,那么这个正数叫做a的算术平方根.为了书写方便,我们把a的算术平方根a).(师出示右图)师:(指准上图)看到没有?这根钓鱼杆似的符号叫做根号,a表示a的算术平方根.(师出示下面的例题)例求下列各数的算术平方根:(1)4964; (2)0.0001.(要注意解题格式,解题格式要与课本第40页上的相同)(三)试探练习,回授调节1.填空:(1)因为_____2=64,所以64的算术平方根是______=______;(2)因为_____2=0.25,所以0.25的算术平方根是______,______;根号被开方数a(3)因为_____2=1649,所以1649的算术平方根是____________.2.求下列各式的值:=______;=______;=______;______;______;______.3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:_______,_______,=_______,=_______,_______,_______,_______,_______,_______.(学生记住没有,教师可以利用卡片进行检查,并要求学生课后记熟)4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?(四)归纳小结,布置作业师:本节课我们学习了什么?你能用一个词来概括吗?生:算术平方根.师:什么叫做算术平方根?生:如果一个正数的平方等于a,那么这个正数叫做a的算术平方根.师:(指准板书)a,像钓鱼杆似的东西叫做根号,a叫做被开方数.(作业:P47习题1.要求学生按课本例题的格式做)课题名称:6.1.2平方根【教学目标】知识与技能:会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。
喜德县第一中学七年级数学下册第六章实数6.3实数第2课时实数的运算法则教案新版新人教版7
第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.典型例题:平行线的特征例1 两条直线被第三条直线所截,则( )A .同位角必相等B .内错角必相等C .同旁内角必互补D .同位角不一定相等例2 解答下列问题:①如果一个角的两边分别平行于另一角的两边,则这两个角( )A .相等B .互补C .相等或互补D .这两个角无数量关系②已知:(如图所示),则不正确的是:( )A .21∠=∠ ,∴43∠=∠B .52∠=∠ ,∴76∠=∠C .︒=∠+∠18085 ,∴21∠=∠D .︒=∠+∠18043 ,∴21∠=∠例3 如图,︒=∠︒=∠70,60,//BAE C CD AB ,求x ∠的度数.例4 如图:︒=∠651,//,//3221l l l l ,求2∠的度数.例5 如图,已知直线b a //,直线︒=∠1051,//d c ,求32∠∠、的度数.例6 试说明平行于同一条直线的两条直线平行.例7 如图,AD ABC ADC ,18021,︒=∠+∠∠=∠为FDB ∠的平分线,试说明BC 为DBE ∠的平分线.例8 潜望镜中的两个镜子MN 和PQ 是互相平行(如图)放置的,光线AB 经镜面反射时,43,21∠=∠∠=∠,试说明,进入的光线AB 与射出的光线CD 平行吗?为什么?参考答案例1 分析:这题是考查学生审题是否仔细,概念是否清楚,可举例说明.如图,直线A.b 被直线c 所截,显然同位角21∠≠∠,内错角32∠≠∠,同旁内角︒≠∠+∠18042,故A.B.C 均不正确.只有两平行直线被第三条直线所截,才有同位角必相等,内错角必相等,同旁内角必互补.故选D .例2 解析:①应选C (如图所示)②选D .A .21∠=∠ ,∴b a //,∴43∠=∠正确B .52∠=∠ ,∴b a //,∴76∠=∠正确C .︒=∠+∠18085 ,∴b a //,∴21∠=∠D .不正确,不能推出21∠=∠例3 分析:由CD AB //,可得︒=∠+∠180BAC C ,从而求出x ∠的度数.解:因为CD AB //,所以︒=∠+∠180BAC C ,即1806070=++x所以50=x ,答:x ∠等于50°.说明:平行线的特征必须是在两条直线平行的前提下,才存在后面的结论,所以在应用两条直线平行的特征时,必须先找到平行这个条件.例4 分析:由21//l l ,可得32∠=∠,由32//l l 可得31∠=∠,所以有21∠=∠,故求出2∠.解:因为21//l l ,所以32∠=∠;又因为32//l l ,所以13∠=∠;所以︒=∠=∠=∠65132.答:2∠是65°.说明:这是应用两条直线平行,内错角相等这一结论,在应用时应注意找出结论存在的条件.例5 分析:这里要利用平行线的条件弄清321∠∠∠、、与直线d 之间的关系才能解决问题.解:b a // (已知),∴12∠=∠(两直线平行,内错角相等).︒=∠1051 (已知),∴︒=∠1052(等量代换).d c // (已知),∴23∠=∠(两直线平行,同位角相等).∴︒=∠1053(等量代换).例6 分析:如图,3231//,//l l l l ,画直线a 截321,,l l l ,得3,2,1∠∠∠,则有32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .解:作3231//,//l l l l ,直线a 截321,,l l l ,得3,2,1∠∠∠. 因为3231//,//l l l l ,所以32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .即平行于同一直线的两条直线平行.说明:(1)这类通过单纯文字给出的题,我们在说明时应先根据题意画出图形;(2)该题既用到了平行线的特征,也用到了两直线平行的条件;在应用时我们要注意二者的区别.例7 解:︒=∠+∠18021 (已知),而︒=∠+∠18032(补角意义),∴31∠=∠(同角的补角相等).∴CF AE //(同位角相等,两直线平行).∴︒=∠+∠180C ABC (两直线平行,同旁内角互补).又ABC ADC ∠=∠(已知),∴︒=∠+∠180C ADC (等量代换).∴BC AD //(同旁内角互补,两直线平行).∴65,4∠=∠∠=∠A (两直线平行,同位角、内错角相等).又CF AE // (已证),∴7∠=∠A (两直线平行,内错角相等).∴74∠=∠(等量代换).又AD 为FDB ∠的平分线(已知),∴76∠=∠(角平分线的意义).∴54∠=∠(等量代换).∴BC 为DBE ∠的平分线.例8 解析:光线CD AB //,PQ MN // (已知)∴32∠=∠(两直线平行,内错角相等)又43,21∠=∠∠=∠ (已知)∴4321∠+∠=∠+∠∴65∠=∠(平角定义)∴CD AB //(内错角相等,两直线平行)【知识与技能】1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.【过程与方法】1.渗透“化归”的思想.2.培养学生观察、分析、概括及逻辑思维能力.【情感态度】培养言必有据的思维能力和良好的思维品质.【教学重点】理解和应用等式的性质.【教学难点】应用等式的性质把简单的一元一次方程化成“x=a”.一、情境导入,初步认识用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.【教学说明】第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、思考探究,获取新知1.实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按教科书第81页图3.1-1的方法演示实验.教师可以进行两次不同物体的实验.2.归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.3.表示:问题1你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?在学生观察图3.1-2时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.问题3你能再举几个运用等式性质的例子吗?如:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔.相当于:“5元=买1支钢笔的钱;2元=买1本笔记本的钱.5元+2元=买1支钢笔的钱+买1本笔记本的钱.3×5元=3×买1支钢笔的钱.”问题4方程是含有未知数的等式,我们怎样运用上面等式的性质来解方程呢?我们来看一下教科书第82页例2中的第(1)、(2)题.通过分析,我们知道所谓“解方程”,就是要求出方程的解“x=?”因此我们需要把方程转化为“x=a(a为常数)”的形式.设问1:怎样才能把方程x+7=26转化为x=a的形式?学生回答,教师板书:解:两边减7,得:x+7-7=26-7,x=19.设问2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?用同样的方法给出方程的解.小结:请你归纳一下解一元一次方程的依据和步骤.【归纳结论】由上面的问题我们可以看出,利用等式的性质解简单的一元一次方程的步骤一般分为两步:一是在方程两边同时加或减同一个数或式子,使一元一次方程左边是未知项,右边是常数;二是方程左右两边同时乘未知数的系数的倒数,使未知项系数化为1,从而求出方程的解.如:(1)x+a=b,解法:方程两边同时减去a,得x=b-a. (2)ax=b(a≠0),解法:方程两边同时除以a,得x=b/a.(3)ax+b=c(a≠0),解法:方程两边同时减去b,再同时除以a,得x=c ba.【教学说明】归纳结论过程中,教师可向学生阐述以下两点:(1)方程是含有未知数的等式,故可利用等式的性质求解,求解过程实质是等式变形为x=a的过程.(2)通过将所求结果代入方程的左右两边的方法,可以检验所求结果是否正确,这一点在下面的例题中我们会讲到.三、典例精析,掌握新知例1利用等式的性质,在括号内填上适当的数或式子,并说明等号成立的依据:【分析】根据等式的性质1或性质2,在方程两边同时加上或减去相同的数或式子;或同乘一个数,或除以同一个不为0的数,结果仍相等.解:(1)根据等式的性质1,等式两边都减去3,得x=1.(2)根据等式的性质2,等式两边都乘2,得x=6.(3)根据等式的性质1,等式两边都减去2a,得5a=-3.再根据等式的性质2,等式两边都除以5,得a=-3/5.(4)根据等式的性质1,等式两边都减去73y,得-2y=-4.再根据等式的性质2,等式两边都除以-2,得y=2.例2小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.解:设标价是x元,则售价就是80%x元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元. 例3利用等式的性质解方程:(1)0.5-x=3.4(2)-13x-5=4【教学说明】先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.5-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?然后给出解答:解:两边减0.5,得0.5-x-0.5=3.4-0.5化简,得-x=2.9,两边同乘-1,得:x=-2.9.教师提醒学生注意:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗?在学生解答后再点评.教师向学生提问:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.试一试教材第83页练习.在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,你能列出方程吗?解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,得80×3.5+1.5x=355.化简,得280+1.5x=355,两边减280,得280+1.5x-280=355-280,化简,得1.5x=75,两边同除以1.5,得x=50.答:用余下的布还可以做50套儿童服装.【教学说明】对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解,也就是把实际问题转化为数学问题.问题:我们如何才能判断求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x=50是方程的解.试一试你能检验一下x=-27是不是方程-13x-5=4的解吗?四、运用新知,深化理解3.七年级(3)班有18名男生,占全班人数的45%,求七年级(3)班的学生人数.【教学说明】这些题目较简单,教师让学生口答上述题目,并给予评讲.五、师生互动,课堂小结让学生进行小结,主要从以下几个方面去归纳:1.等式的性质有哪几条?用字母怎样表示?字母代表什么?2.解方程的依据是什么?最终必须化为什么形式?3.在字母与数字的乘积中,数字因数又叫做这个式子的系数.1.布置作业::从教材习题3.1中选取.2.完成练习册中本课时的练习.本课时教学要重视学生思维的多角度培养,教师对教材中的实际问题要直观演示,指导学生观察图形,从实验中归纳结论,并用实验验证.对发现的结论用文字、数学语言分别表达出来.突出对等式性质的理解和应用,在解方程时,要求说明每一步变形的依据,解题后及时小结.扎实做到这些,可为后面教与学打下坚实基础.。
人教版七年级下册第六章实数课程设计
人教版七年级下册第六章实数课程设计一、课程目标1.认识实数概念及其性质;2.熟练掌握实数的加、减、乘、除运算;3.了解实数的大小关系及其应用。
二、教学重点和难点1.重点:实数的概念及运算;2.难点:实数间大小关系的比较及其应用。
三、教学内容及安排1. 实数的概念与性质(1课时)教学内容1.实数的概念;2.实数的分类;3.实数的性质:稠密性、有理数密度性等。
教学安排1.介绍实数的概念和定义;2.引导学生了解实数的分类;3.讲解实数的性质,提醒学生要注意其中的细节。
2. 实数的加减运算(2课时)教学内容1.实数的加减法定义;2.实数的加减法规则;3.实数加减法的性质。
教学安排1.给学生讲解实数的加减法定义和规则;2.引导学生练习实数的加减运算;3.强调实数加减法的性质,引导学生从运算中寻找规律。
3. 实数的乘除运算(2课时)教学内容1.实数的乘法定义;2.实数的除法定义;3.实数乘除法的性质。
教学安排1.讲解实数的乘除法定义;2.以例题为例,引导学生掌握实数的乘除法运算;3.强调实数乘除法的性质,让学生掌握实数运算的灵活运用。
4. 实数的大小关系与应用(2课时)教学内容1.实数大小关系的比较;2.已知某一实数时,如何求另一实数。
教学安排1.讲解实数的大小关系及其比较方法;2.引导学生从实际问题中找到应用实数知识的方法;3.以例题为例,让学生掌握已知某一实数时,如何求另一实数的方法。
四、教学方法1.合作探究法:通过情境模拟、角色扮演等方式激发学生的学习兴趣;2.课堂讲解法:重点内容采用讲解、演示等方式进行教学;3.练习提高法:加强练习和巩固,提高学生学科素养。
五、评价方法1.检测学生实数概念、运算方法、大小关系及应用的掌握情况;2.通过小组合作、课堂讨论、思考题等方式,检测学生的思维能力;3.常规检测和期末考试,全面评价学生的学业水平。
六、教学资源准备1.幻灯片及投影仪等课堂教学设备;2.针对不同知识点的练习题目、案例问题及习题解答;3.优秀教学视频及教材参考资料等。
新人教版七年级下册第六章6.3《实数》教案
《实数》教学设计一、学习目标1、了解无理数、实数的概念和分类,知道实数和数轴上的点一一对应,能估算无理数的大小。
2、了解实数的运算法则及运算律,准确地进行实数范围内的运算。
二、新课导入1的平方根是 __,算术平方根是 .2、一个数的立方根等于它本身,这个数是 .3、 2.078=0.2708=,则y =( )A.0.8966 B.0.008966C.89.66 D.0.00008966三、自主学习认真阅读课本第53页至第54页的内容。
Ⅰ、完成下面练习,并体验知识点的形成过程。
1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3=______,25=______,35-=______, 427=______,119 =______,911=______。
我们发现,上面的有理数都可以写成________ 或者 的形式。
归纳 事实上,任何一个 都可以写成有限小数或无限循环小数的形式。
反过来, 任何__________________________也都是有理数。
观察 我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫做 _ __。
例如 , , , 等都是 ____ 。
3.14159265π=也是 。
结论 有理数和无理数统称为 。
试一试 我们学过的数可以这样分类:{实数像有理数一样,无理数也有正负之分。
,π是,,π-是。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:{四、合作探究从课本图6.3-1中可以看出OO'的长是,所以O'对应的数是.总结(1)每个有理数都可以用数轴上的点来表示。
事实上,每一个也都可以用数轴上的表示出来。
这就是说,数轴上的点有些表示数,有些表示数。
(2)当从有理数扩充到实数以后,实数与数轴上的点就是___ 的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的每一个点都是表示一个。
(3)与有理数一样,对于数轴上的任意两个点,边的点所表示的实数总比_ 边的点表示的实数。
人教版七年级下册数学第6章《实数》优秀教学案例(教案)
1.生活情境的引入:通过购物小票的实际例子,让学生感受实数在生活中的应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向的教学策略:设计一系列递进式的问题,引导学生逐步深入理解实数的相关知识,培养学生的批判性思维和问题意识。
3.小组合作的学习方式:通过小组讨论和合作任务,培养学生的团队合作精神,提高学生的沟通能力和协作能力。
2.理解实数与数轴的关系,能够利用数轴表示和解释实数。
3.掌握实数的运算方法,包括加法、减法、乘法、除法等,并能进行实数的混合运算。
4.能够运用实数的概念和运算方法解决实际问题,提高学生的应用能力。
(二)过程与方法
1.通过观察、思考、讨论等方式,引导学生主动探索实数的概念和性质。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
3.通过实际例子,让学生体会实数在生活中的应用,提高学生解决实际问题的能力。
4.注重个体差异,给予每个学生充分的思考和表达机会,鼓励学生提出不同观点,培养学生的创新思维。
在教学过程中,我还将注重以下几点:
1.关注学生的学习兴趣,创设有趣的教学情境,激发学生的学习热情。
(四)反思与评价
1.个人反思:在教学过程中,鼓励学生进行个人反思,思考自己在学习实数知识过程中的理解、困惑和收获,如“你觉得自己在实数学习中有哪些收获?还有哪些需要改进的地方?”
2.同伴评价:引导学生相互评价,互相借鉴学习方法和解题思路,如“你觉得他的解题方法怎么样?有没有更好的解决办法?”
3.教师评价:教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维过程和团队合作能力等方面的表现,如“你在这次小组合作中表现得很出色,不仅积极参与讨论,还能够提出有深度的观点。”
最新版人教版七年级数学下册第六章实数 教案教学设计
第六章实数6.1 平方根 (1)课时1 算术平方根 (1)课时2 用计算器求一个正数的算术平方根 (5)课时3 平方根 (8)6.2 立方根 (12)6.3 实数 (16)课时1 实数及其分类 (16)课时2 实数的运算 (19)6.1 平方根课时1 算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】教师归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.规定:0的算术平方根是0.例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a =0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a 结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时2 用计算器求一个正数的算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm 2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】 教师归纳出新定义:一般地,如果一个正数x 的平方等于a,即x2=a,那么这个正数x 叫做a 的算术平方根,记作a ,读作“根号a”,a 叫作被开方数.规定:0的算术平方根是0. 例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a=0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时3 平方根【教学目标】1. 掌握平方根的概念,明确平方根与算术平方根之间的联系与区别.2. 能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.3. 通过对平方根的学习,培养学生从多方面,多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯.【教学重点】平方根的概念和求一个数的平方根.【教学难点】平方根和算术平方根的联系与区别.【新课导入】问题已知一个数的平方等于16,这个数是多少?如何表示这个数呢?【教学分析】由于42=16,(-4)2=16,故平方等于16的数有两个:4和-4,把4和-4叫做16的平方根,记为4=16,则-4=-16,把4和-4称为16的平方根.提出平方根定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根,即若x 2=a ,则x 为a 的平方根,记为x=±a .【教学过程】把求一个数a 的平方根的运算,叫做开平方,而平方运算与开平方运算互为逆运算,根据这种关系,可以求一个数的平方根.例1 求下列各数的平方根和算术平方根.分析:一个正数的平方根有两个,且互为相反数,其中正的平方根为算术平方根.可根据平方与开平方的互逆关系,通过平方运算求一个数的平方根.【教学说明】一个正数的平方根有两个,不要丢掉其中负的平方根,算术平方根是其中的一个正平方根,不要弄错了符号.求平方根时一定要把所求的数化成x 2的形式,同时注意正数有两个平方根.例2计算下列各题.分析:(1)484就是求484的算术平方根;(2)是求4112的平方根,可把带分数化成假分数;(4)应先求出被开方数的大小.【教学说明】提醒学生注意分清每个算式的符号(包括性质符号).例3 求下列各式的值.分析:先要弄清每个符号表示的意义,并注意运算顺序.【教学说明】(1)混合运算的运算顺序是先算开平方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学时可根据平方根,算术平方根的意义和表示方2(a>0)来解.法来解,熟练后直接根据aa例4 求下列各式中的x.(1)x2-361=0;(2)(x+1)2=289;(3)9(3x+2)2-64=0.分析:表面上本题是求方程的解,但实质上可理解为求平方根,用开平方求出x值;(2)中(x+1)、(3)中(3x+2)看作一个整体,求出它们后,再求x.例5 某建筑工地,用一根钢筋围成一个面积是25m2的正方形后还剩下7m,你能求出这根钢筋的长度吗?分析:先求出面积是25m2的正方形需用的钢筋长度,然后再求出这根钢筋的总长度.解:正方形的边长为5m,钢筋的长度为27m.【教学说明】在实际问题中要注意正方形的面积与边长的关系即一个正数与它的算术平方根的关系.【例题展示】【教学说明】学生自主完成,教师巡视,然后集体订正.【课堂小结】根据下列问题梳理所学知识,学生交流.问题:1.什么叫一个数的平方根?2.正数,0,负数的平方根有什么规律?3.怎样求出一个数的平方根?数a的平方根怎样表示?【课后作业】从教材“习题6.1”中选取.6.2 立方根【教学目标】1. 了解立方根的概念,初步学会用根号表示一个数的立方根.2. 了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3. 能用类比平方根的方法学习立方根及开立方运算.【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.【新课导入】问题填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:若x 3=a,则x 为a 的立方根,记为3a . 根据上述定义,请学生口述下列问题的结果,并推广到一般规律.【教学总结】由教师汇总得出下列结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.33a a -=-. 【教学过程】例1 求下列各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数. 例2 求下列各式的值.分析:先要分清符号的实际意义,如3512表示求-512的立方根,而-3512表示求512的立方根的相反数.解:(1)-8;(2)29;(3)-0.2;(4)6.【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求下列各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.【教学说明】本题实质是解关于x 的三次方程,两边同时开立方是解题的基本思路.例 4 在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱烧杯中,并用一量筒量得被铁块排开的水的体积为40.5cm 3,小华又将铁块从水中提起,量得水杯中的水位下降了0.62cm,请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器求结果,结果精确到0.1cm).分析:铁块排出的40.5cm 3的水的体积,是铁块的体积,也是高为0.62cm 烧杯的体积.【答案】烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.【教学说明】引导学生完成上述问题后,指导学生用计算器求立方根,并用实际训练形成应用能力.【例题展示】例1.计算下列各题例2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.例3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.例4.若3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.【课堂小结】按下列问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.【课后作业】从教材“习题6.2”中选取.6.3 实数课时1 实数及其分类【教学目标】1. 了解无理数和实数的概念,会将实数按一定的标准进行分类.2. 知道实数与数轴上的点一一对应.3. 从分类、集合的思想中领悟数学的内涵,激发兴趣.【教学重点】正确理解实数的概念.【教学难点】对“实数与数轴上的点一一对应关系”的理解.【新课导入】问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.【教学过程】例1 (1)试着写出几个无理数.(2)判断下列各数中,哪些是有理数?哪些是无理数?由学生共同完成上述问题后,要求学生思考:1.如何把实数分类?2.用根号形式表示的数一定是无理数吗?出示实数分类表:【教学说明】指导学生认识两种分类方式的异同,并特别强调“0”在表中的位置,考虑问题时不能忘记特殊数——0.例2 将例1(2)中各数填入相应括号内.整数集合{ ……}正数集合{ ……}有理数集合{ ……}负数集合{ ……}无理数集合{ ……}由学生完成填空后探究:每个有理数都可以用数轴上的点表示,无理数是否也可以用数轴上的点表示呢?例3 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′表示的数是什么?由这个图示你能想到什么?解:由图可知,OO′的长是这个圆的周长π,所以O′点表示的数是π,由此可知,数轴上的点可以表示无理数.结合教材内容,让学生找到数轴上表示2,3,…等的点.【教学说明】每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数.实数与数轴上的点是一一对应的.例4下列说法错误的是( ).A.16的平方根是±2B.2是无理数是有理数C.327D.22是分数 分析:16的平方根即4的平方根±2, 327-=-3是有理数,而22是无理数,不属于有理数范围,故其不可能是分数.故选D.【教学说明】判断一个数是不是无理数,不能只看最初形式,而要看化简后的最后结果.【例题展示】例1.下列说法中正确的是( ) A.4是一个无理数 B.在1-x 中x≥1 C.8的立方根是±2D.若点P (2,a )和点Q (b,-3)关于y 轴对称,则a+b 的值是5 例2.下列各数中,不是无理数的是( )例3.下列各数中:其中无理数有 . 有理数有 . 例4.判断正误.(1)有理数包括整数、分数和零. (2)不带根号的数是有理数. (3)带根号的数是无理数. (4)无理数都是无限小数. (5)无限小数都是无理数.【教学说明】学生自主完成,教师巡视,然后集体订正. 【答案】1.B 2.D【课堂小结】通过这节课的学习,你掌握了哪些新知识?你还有哪些问题,与同伴交流.【课后作业】从教材“习题6.3”中选取.课时2 实数的运算【教学目标】1. 了解实数范围内的相反数和绝对值的意义,会求一个实数的相反数和绝对值.2. 学会比较两个实数的大小.3. 了解在有理数范围内的运算及运算法则\,运算性质等在实数范围内仍然成立,能熟练地进行实数运算.【教学重点】有理数的大小比较和运算.【教学难点】带有绝对值的有理数的运算.【新课导入】同学们,我们在七年级的时候学习了有理数相反数,绝对值的概念,那么,这一法则能否推广到实数呢?答案是肯定的,数a的相反数是-a(a表示任意一个实数,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0)教师讲解课本例1【教学说明】教师可让同学们先计算-6,5.8,2111 有理数的绝对值与相反数,从而导出实数相反数和绝对值的法则.【教学过程】【教学导语】在数拓展到实数后,有理数范围内的法则、规律、公式仍然适用于实数范围,请同学们共同回忆,归纳在实数范围内适用的公式,法则.1.在数轴上表示的数,右边的数总比左边的大.2.两个正实数,绝对值较大的值也大;两个负实数,绝对值大的值反而小;正数大于0,负数小于0,正数大于负数.3.运算律:(1)加法交换律:a+b=b+a. (2)加法结合律:(a+b)+c=a+(b+c). (3)乘法交换律:ab=ba. (4)乘法结合律:(ab)c=a(bc). (5)分配律:a(b+c)=ab+ac. 例1比较下列各实数的大小:【教学说明】实数比较大小常用以下方法:(1)两个负数比较,绝对值大的反而小;(2)被开方数大,它的算术平方根也大;(3)立方数大原数也大.例2计算下列各题:分析:先逐个化简后,再按照计算法则计算.【教学说明】实数的运算同有理数的运算律和运算性质、运算顺序一样.【教学说明】教师指导学生归纳得到下列结论:(1)非负数的和等于零的条件是当且仅当每个非负数的值都等于0.(2)任何实数的绝对值是一个非负数,任何一个非负数的算术平方根也是一个非负数.【例题展示】例1.(1)绝对值等于3的实数是 ,绝对值是22的实数是 . (2)257 的相反数是 ,绝对值是 . 例2.比较2010-1与1949+1的大小.例3.由于水资源缺乏,B,C 两地不得不从河上的抽水站A 处引水,这就需要在A,B,C 之间铺设地下管道.有人设计了三种方案:如图甲,图中实线表示管道铺设线路,在图乙中,AD ⊥BC 于D,在图丙中,OA=OB=OC,为减少渗漏\,节约水资源,并降低工程造价,铺设线路尽量缩短.已知△ABC 是一个边长为a 的等边三角形,请你通过计算.判断哪个铺设方案好.【教学说明】第1题较易,2、3题稍难,教师可引导学生完成.【课堂小结】让学生回顾本节知识,思考整个学习过程,看看知道了什么,还有什么疑惑? 【课后作业】从教材“习题6.3”中选取.。
人教版七年级数学下册第六章实数(教案)
1.培养学生运用数学语言进行表达和交流的能力,提高逻辑思维和推理能力。
-通过实数的学习,使学生能够准确地使用数学语言描述实数的概念和性质,以及实数运算的规律。
2.培养学生的数感和符号意识,增强对实数及其运算的直观理解。
-通过数轴和实数的联系,使学生建立起实数的直观图像,理解实数与数轴之间的对应关系。
3.培养学生的运算能力和数据分析能力,提高解决实际问题的能力。
-通过实数的四则运算练习,使学生掌握运算技巧,并能应用于解决实际问题,培养数据分析与解决问题的能力。
4.培养学生的创新意识和应用意识,激发对数学知识探索的兴趣。
-通过实数在实际生活中的应用,激发学生探索数学知识的兴趣,鼓励学生将所学知识创造性地应用于实际问题中。
人教版七年级数学下册第六章实数(教案)
一、教学内容
人教版七年级数学下册第六章实数:
1.第六章实数的基本概念与性质:理解实数的定义,掌握实数的分类,了解实数与数轴的关系。
- 6.1实数的定义与分类
- 6.2实数与数轴
2.实数的四则运算:熟练掌握实数的加减乘除运算,了解运算规律,提高运算速度和准确性。
- 6.3实数的加减法
-实数的大小比较:对于一些特殊的实数,如负数、分数的大小比较,学生可能会感到困惑。需要通过具体的例子和图形辅助,帮助学生建立清晰的大小比较规则。
-实数在实际问题中的应用:将实数知识应用于解决实际问题,如计算面积、速度等,学生可能会在将问题转化为数学表达式时遇到困难,需要指导学生如何提取信息,建立数学模型。
-运算精度和估算:在进行实数运算时,学生可能会因为计算精度的问题而出错,需要教授学生如何进行合理的估算和精确的计算。
四、教学流程
(一)导入新课(用时5分钟)
七年级数学下册第六章实数6.3实数第2课时实数的性质及运算教案2新人教版
第2课时实数的性质及运算【教学目标】1、知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;2、学会比较两个实数的大小;了解在有理数范围内的运算及运算法则、运算性质等在实数范围内仍然成立,能熟练地进行实数运算;在实数运算时,根据问题的要求取其近似值,转化为有理数进行计算;3、通过学习“实数与数轴上的点的一一对应关系”,渗透“数学结合”的数学思想。
【学难点与重点】1、难点:对“实数与数轴上的点一一对应关系”的理解2、重点:实数与数轴上的点一一对应关系【教学过程】一、创设情境我们知道有理数都可以用数轴上的点来表示,但是数轴上的点是否都表示有理数?无理数可以用数轴上的点来表示吗?1、课件演示课本第175页探究题;学生动手操作,利用课前准备好的硬纸板的圆片在自己画好的数轴上实践体会.2、你能在数轴上画出坐标是2的点吗?画一画,说说你的方法.教师启发学生得出结论:每一个无理数都可以用数轴上的一个点表示出来.练习:学生自己完成课本第178页练习第1题.在此基础上,教师引导学生进一步得出结论:在数从有理数扩充到实数后,实数与数轴上的点是一一对应的.即:每一个实数都可以用数轴上的点来表示;数轴上的每一个点都表示一个实数.类比在有理数范围内相反数、绝对值的几何意义,结合数轴,在实数范围内理解相反数、绝对值的几何意义.3、深入探讨:平面直角坐标系中的点与有序实数对之间也存在着一一对应关系吗?二、比一比1、问:利用数轴,我们怎样比较两个有理数的大小?在数轴上表示的数,右边的数总比左边的大.这个结论在实数范围内也成立。
2、我们还有什么方法可以比较两个实数的大小吗?两个正实数的绝对值较大的值也较大;两个负实数的绝对值大的值反而小;正数大于零,负数小于零,正数大于负数。
例1比较下列各组数里两个数的大小,-6;(3)-2,33(1)2,1.4;(2)5.1的大小比较;分析:像例1(1),即可以将2,1.4的大小比较转化为2,96也可以先求出2的近似值,再通过比较它们近似值(取近似值时,注意精确度要相同)的大小,从而比较它们的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时
整体设计
教学目标
1.掌握实数的分类.
2.掌握实数的各种运算,包括加减、乘除、开方、倒数、相反数、绝对值等运算,并且能在运算过程中选取简单的方法. 教学重难点
教学重点:
(1)正确地区分有理数和无理数.
(2)正确理解实数与数轴上的点的一一对应关系. (3)实数的大小比较和实数的运算. 教学难点:
(1)正确地区分有理数和无理数.
(2)正确理解实数与数轴上的点的一一对应关系. (3)实数的大小比较和实数的运算. 教学过程
知识点一:实数的分类 设计说明
实数的分类中因为名称杂乱,学生极易将数据分错,如无理数与正数,自然数与整数,小数与分数等,将名称的概念范围分析清楚,再加以训练是一种有效的方法.
例1 把下列各数分别填入适当的集合里:
-3.415,0.013 813 813 8…,36,π5,-381,3
-1,1-3,0,2400,
25121
,-
32,-3514
,0.323 223 222 3…,-32. 自然数集合{ };整数集合{ };分数集合{ }; 正数集合{ };无理数集合{ };实数集合{ }. 解:自然数集合{36,0,2400,…}; 整数集合{36,0,2400,3
-1,…}; 分数集合⎩⎪⎨⎪
⎧⎭
⎪⎬⎪⎫-3.415,0.013 813 813 8…,
25121,-35
14,…; 正数集
合
⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫0.013 813 813 8…,36,π
5,2400,
25
121,0.323 223 222 3…,…; 无理数集合⎩⎨⎧⎭
⎬⎫π5,-3
81,1-3,-32,0.323 223 222 3…;
实数集合
⎩
⎨⎧
-3.415,0.013 813 813 8…,36,π5,-381,3-1,1-3,0,2400,
⎭
⎪⎬⎪⎫25121,-32,-35
14,0.323 223 222 3… 点评:-3.415是有限小数,是分数;0.013 813 813 8…是无限循环小数,是分数;
0.323 223 222 3…每两个连续3之间依次增加一个2,虽然按一定规律排列,但它是无限不循环小数,是无理数.2400=40,
25121=511
,36=6,3
-1=-1,它们不是无理
数.-32没有意义,不是实数.
例2有一个数值转换器,原理如图所示,当输入的x为64时,输出的y的值是( ).A.8 B.2 2 C.4 D. 2
图1
解析:本题主要考查无理数的定义,当x为64时,x=64=8是有理数,再次取算术平方根.8=22,22是一个无理数,所以输出的y的值是2 2.
答案:B
例3 大家知道5是一个无理数,那么5-1在哪两个整数之间( ).
A.1与2 B.2与3 C.3与4 D.4与5
解析:本题考查了用估算法求无理数的值,它是新课标所要求的.
因为4<5<9,所以4<5<9,即2<5<3.
所以2-1<5-1<3-1,即1<5-1<2.
设计说明
实数与数轴是典型的数形结合关系,因此这部分题目围绕着距离、相反数、绝对值、范围等问题展开,只要引导好学生树立数形结合的观念,“形”帮助理解“数”,“数”更细致地刻画“形”,问题大多可获解决.
例4 判断正误.
(1)带根号的数是无理数.( )
(2)有理数和数轴上的点是一一对应关系.( )
分析:(1)主要在于未能明确无理数的意义.开方开不尽的数才是无理数,带根号的数
不一定是无理数,如9,3
8等都是有理数,看一个数是不是无理数,要看结果而不是看形
式.
(2)未能正确理解一一对应的含义,数轴上有的点是不对应着有理数的,如:数轴上表示2的点就对应的是无理数 2.
解:(1)×(2)×
例5 如图2所示,数轴上表示数3的点是________.
图2
解析:我们知道,数轴上的点对应的可以是有理数,也可以是无理数,即实数和数轴上的点是一一对应的关系.
由于1<3<4,所以1<3<4,即1<3<2.
这样的点是在1与2之间的数.
答案:C
图3
设计说明
实数的相反数、倒数、绝对值等概念应用比较广泛,在众多题型中,字母表示数的题型难度较大,有较多的不确定因素在里面,除正确理解相关概念外,对“字母表示数”的一般特性要有清醒地认识.
例6 求下列各数的相反数、倒数、绝对值.
(1)-15;(2)327
8;(3)3-π.
解:(1)-15的相反数是15,倒数是-
115
,绝对值是|-15|=15.
(2)3278⎝ ⎛⎭⎪⎫=3
2的相反数是-32,倒数是23,绝对值是32
.
(3)3-π的相反数是-(3-π)=π-3,倒数是1
3-π
,绝对值是|3-π|=π-3.
点评:根据相反数、倒数、绝对值的意义求解,并注意将结果适当化简.
例7 已知a ,b ,c 是△ABC 的三边长,a ,b 满足a -1+b 2
-4b +4=0,求c 的取值范围.
解:将a -1+b 2-4b +4=0变形,得a -1+(b -2)2
=0,
因为a -1≥0,(b -2)2
≥0,所以a -1=0,b -2=0,即a =1,b =2. 由三角形的三边关系,知2-1<c <2+1,即1<c <3.
点评:本题考查的是非负数性质的应用.由条件可知a -1+(b -2)2
=0,这里a -1和(b -2)2都为非负数,显然只有a -1和(b -2)2
都为0,即a =1,b =2时原等式才成立,则此时三角形的第三边c 的范围可由三角形三边关系来确定.
拓展探究
已知a 是19的整数部分,b 是19的小数部分,求2a +b 的值. 解:∵16<19<25,
∴16<19<25,即4<19<5, ∴a =4,b =19-4,
∴2a +b =8+19-4=4+19. 课堂练习
1.在4,-1
2
,0,3,3.145,π这6个数中,无理数共有( ).
A .1个
B .2个
C .3个
D .4个 2.和数轴上的点一一对应的是( ).
A .整数
B .非正实数
C .有理数
D .实数 3.负数a 与它的相反数的差是( ).
A .2a
B .0
C .-2a
D .a -1
a
4.已知a =2-1,b =22-6,c =6-2,则a ,b ,c 的大小关系为( ). A .a <b <c B .b <a <c C .c <b <a D .c <a <b 5.化简:|3.14-π|=________;|2-1.414|=________.
6.比较大小:5+2
2________2(填“>”或“<”).
7.写出大于-17的所有负整数:________.
8.81的平方根与-27的立方根之和是________. 9.化简:-(-5)=________,-3的绝对值是________,1-2的相反数是________. 10.若实数x ,y 满足y =-(x +1)2
+2,求y
x +y 的值.
11.已知a ,b 分别是6-13的整数部分和小数部分,求2a +b 的值. 12.计算:
(1)25-15+π
2
;(用计算器计算,保留4个有效数字)
(2)(53+42)-(53-42).
13.同学们知道,边长为5 cm,6 cm,7 cm 的三角形是存在的,那么边长为 5 cm , 6 cm ,7 cm 的三角形存在吗?你能借助计算器通过计算后作出判断吗?试试看.
参考答案:1.B 2.D 3.A 4.B
5.π-3.14 2-1.414 6.> 7.-4、-3、-2、-1 8.0或-6 9. 5 3 2-1 10.1. 11.8-13. 12.(1)2.170;(2)8 2.
13.因为5+6>7,所以边长为 5 cm , 6 cm ,7 cm 的三角形存在. 小结与作业
本节复习了实数的有关知识. 作业
整理易错题.
评价与反思 实数的分类与计算是整个数的运算的基础,引导学生扎扎实实的打好基础是教学的关键,因此本节中给学生安排了较多的题目类型,围绕着一个主题,这样便于学生全面地了解和把握知识点,学的深、学的透,对一些较综合性的问题,可视学生的实际水平有选择的加以安排,相信通过这些问题的解决,学生的学识会有较大的进步.
(设计者:孙长智)。