1.4集合的基本运算与充分必要条件

合集下载

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。

1.4充分条件与必要条件(两个课时)高一数学(人教A版2019必修第一册)

1.4充分条件与必要条件(两个课时)高一数学(人教A版2019必修第一册)
么”等形式.其中称为命题的条件,称为命题的结论.
本节主要讨论这种形式的命题.
下面我们将进一步考察“若,则”形式的命题中和的关系,学习数
学中的三个常用的逻辑用语——充分条件、必要条件和充要条件.
2.理解充分条件、必要条件、充要条件的意义
情景一:
观察下列“若,则”形式的命题
(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形;
(5)由于(−1) × 0 = 1 × 0,但−1 ≠ 1, ⇏ ,所以,不是的必要条件
.
(6)由于1 × 2 = 2为无理数,但1, 2不全是无理数, ⇏ ,所以,
不是的必要条件.
判断是否有“ ⇒ ”,即“若,则”是否是真命题
情景三:
例2中命题(1)给出了“四边形是平行四边形”的一个必要条件,
(6)若��为无理数,则,为无理数。
解:(1)这是平行四边形的一条性质定理, ⇒ ,所以,是的必要条
件.
(2)这是三角形相似的一条性质定理, ⇒ ,所以,是的必要条件.
(3)四边形的对角线互相垂直,但它不是菱形, ⇏ ,所以,不
是的必要条件.
(4)显然, ⇒ ,所以,是的必要条件.
(2)若两个三角形的周长相等,则这两个三角形全等;
(3)若 2 − 4 + 3 = 0,则 = 1;
(4)若平面内两条直线和均垂直于直线,则 ∥ .
问题1 上述的4个例子,哪些是真命题?哪些是假命题?为什么?
在命题(1)(4)中,由条件通过推理可以得出结论,所以它们是真命题.
在命题(2)(3)中,由条件不能得出结论,所以它们是假命题.
要条件.
3.能够利用命题之间的关系判定充要关系或进行充要条件
的证明.

1.4 充分条件与必要条件知识梳理

1.4 充分条件与必要条件知识梳理

1.4充分条件与必要条件知识梳理一.命题1.命题的定义:可判断真假的陈述句叫作命题。

2.命题的条件和结论:数学中,许多命题可表示为“如果p,那么q”或“若p,则q”的形式,其中p叫作命题的条件,q叫作命题的结论。

二.充分条件与必要条件“若p,则q”为真命题“若p,则q”为假命题推出关系p⇒q p⇏q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件【注意】(1)前提p⇒q,有方向,条件在前,结论在后;(2)p是q的充分条件或q是p的必要条件;(3)改变说法:“p是q的充分条件”还可以换成q的一个充分条件是p;“q是p的必要条件”还可以换成“p的一个必要条件是q”。

三.充要条件一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q。

此时,我们说p是q的充分必要条件,简称充要条件。

显然,如果p是q的充要条件,那么q也是p的充要条件,即如果p⇔q,那么p与q互为充要条件。

概括地说,(1)如果p⇔q,那么p与q互为充要条件;(2)若p⇒q,但q⇒/p,则称p是q的充分不必要条件;(3)若q⇒p,但p⇒/q,则称p是q的必要不充分条件;(4)若p⇒/q,且q⇒/p,则称p是q的既不充分也不必要条件。

四.充分必要条件与集合的关系若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件;①若A B,则p是q的充分不必要条件;②若A⊇B,则p是q的必要条件;③若A B,则p是q的必要不充分条件;④若A=B,则p是q的充要条件;⑤若A⊈B且A⊉B,则p是q的既不充分也不必要条件。

从集合的角度判断充分必要条件精髓:小集合推出大集合,小集合是大集合的充分不必要条件,大集合是小集合的必要不充分条件;若两个集合范围一样,就是充要条件的关系;五.充分必要条件判断方法1.定义法2.集合法。

1.4充分条件与必要条件-【新教材】人教A版(2019)高中数学必修第一册讲义

1.4充分条件与必要条件-【新教材】人教A版(2019)高中数学必修第一册讲义

新教材必修第一册1.4:充分条件与必要条件课标解读:1.必要条件的概念(理解)2.充分条件的概念(理解)3.充要条件.(理解)学习指导:1.学习本节内容的关键在于通过对典型数学命题的梳理,理解“充分条件、必要条件、充要条件”的概念,并熟练掌握判定方法.2.学习重点是对充分条件、必要条件和从要条件的意义的理解和辨析,判断“若p,则q”形式的命题的真假.知识导图:教材全解知识点1:充分条件与必要条件1.命题:一般地,我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题.判断为真的语句是真命题,判断为假的语句是假命题.中学数学中的许多命题可以写成“若p,则q”、“如果p,那么q”等形式.其中p称为命题的条件,q称为命题的结论.2.充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q,这时,我们就说,由p可以推出q,记作qp⇒,并且说,p是q的充分条件,q是p的必要条件.如果“若p,则q”为假命题,那么由条件p不能推出结论q,记作qp⇒.此时,我们就说p不是q的充分条件,q不是p的必要条件.说明:一般地(1)数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件;(2)数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.3.充要条件的概念一般地,“若p,则q”和它的逆命题“若q,则p”均是正命题,即既有qq⇒,p⇒,又有p 记作qp⇔.此时,p既是q的充分条件,q也是p的必要条件,我们就说p是q的充分必要条件,简称为充要条件.显然,如概括地说,如果qp⇔,那么q与p互为充要条件. 知识剖析:4.充分条件与必要条件的传递性充分、必要、充要条件都具有传递性,具体如下:(1)若p 是q 的充分条件,q 是s 的充分条件,即s q q p ⇒⇒,,则有s p ⇒,即p 是s 的充分条件;(2)若p 是q 的必要条件,q 是s 的必要条件,即q s p q ⇒⇒,,则有p s ⇒,即p 是s 的必要条件;(3)若p 是q 的充要条件,q 是s 的充要条件,即s q q p ⇔⇔,,则有s p ⇔,即p 是s 的充要条件;例1-1:用符号“⇒”与“⇒”填空.(1)12>x 1>x ; (2)b a ,都是偶数 b a +是偶数.例1-2:下列说法是否正确?请说明理由.(1)1=x 是)2)(1(--x x =0的充分条件;(2)1>x 是2>x 的充分条件;(3)2>+y x 是1,1>>y x 的必要条件.答案:(1)正确,因为0)1)(1(1=+-⇒=x x x ;(3)正确,因为21,1>+⇒>>y x y x .例1-3:(浙江高考题)设b a ,是实数,则“0>+b a ”是“0>ab ”的()A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:D例1-4:已知q p ,都是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,那么:(1)s 是q 的什么条件?(2)r 是q 的什么条件?(3)p 是q 的什么条件?答案:(1)s 是q 的充要条件.(2)r 是q 的充要条件;(3)(3)p 是q 的充分条件.重难拓展知识点2:从集合角度看充分、必要条件1.依据设集合)}(|{)},(|{x q x B x p x A ==.若x 具有性质p ,则A x ∈;若x 具有性质q ,则.B x ∈ 若B A ⊆,就是说x 具有性质p ,则x 必有性质q ,即.q p ⇒类似地,A B ⊆与p q ⇒等价。

1.4充分条件与必要条件 教学设计

1.4充分条件与必要条件 教学设计

1.4充分条件与必要条件教学设计教材分析本节内容比较抽象,首先从命题出发,分清命题的条件和结论,看条件能否推出结论,从而判断命题的真假;然后从命题出发结合实例引出充分条件、必要条件、充要条件这三个概念,再详细讲述概念,最后再应用概念进行论证.教学目标与核心素养课程目标1.理解充分条件、必要条件与充要条件的意义.2.结合具体命题掌握判断充分条件、必要条件、充要条件的方法.3.能够利用命题之间的关系判定充要关系或进行充要性的证明.数学学科素养1.数学抽象:充分条件、必要条件与充要条件含义的理解;2.逻辑推理:通过命题的判定得出充分条件、必要条件的含义,通过定义或集合关系进行充分条件、必要条件、充要条件的判断;3.数学运算:利用充分、必要条件求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:充要条件的探求与证明:将原命题进行等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程;5.数学建模:通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力。

教学重难点重点:充分条件、必要条件、充要条件的概念..难点:能够利用命题之间的关系判定充要关系.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程一、问题导入:写出下列两个命题的条件和结论,并判断是真命题还是假命题?(1)若x > a2 + b2,则x > 2ab, (2)若ab = 0,则a = 0.学生容易得出结论;命题(1)为真命题,命题(2)为假命题.提问:对于命题“若p,则q”,有时是真命题,有时是假命题.如何判断其真假的?结论:看p能不能推出q,如果p能推出q,则原命题是真命题,否则就是假命题.要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本17-22页,思考并完成以下问题1. 什么是充分条件?2. 什么是必要条件?3. 什么是充要条件?5. 什么是充分不必要条件?6. 什么是必要不充分条件?7. 什么是既不充分也不必要条件?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题,教师巡视指导,解答学生在自主学习中遇到的困惑过程。

1.4充分条件、必要条件、充分必要条件(ppt文档)

1.4充分条件、必要条件、充分必要条件(ppt文档)

初中知识回顾
1.什么叫命题?什么意思?
1.命题:可以判断真假的陈述句叫做命题, 命题都是由条件和结论两部分组成,通常 用小写字母p、q、r、s等表示。可写成 “若p,则q”或“如果p,那么q”或“只要 p,就有q”的形式。
真命题:判断为真的语句。
的充分条件?

(1)若x 1,则x2 4x 3 0
(2)若x为无理数,则x2为无理数
解: 命题 (1)是真命题,命题 (2) 是假命题。 所以,命题 (1) 中的p是q的充分条件。
如果“若p,则q”为假命题,那么由p推不出q,记作 p q。此时,我们就说p不是q的充分条件,q不是p的必 要条件。
思考
问题1:当某一天你和你的妈妈在街上遇 到老师的时候,你向老师介绍你的妈妈 说:“这是我的妈妈.”那么,大家想 一想这个时候你的妈妈还会不会补充说: “你是她的孩子”呢?为什么?
【因为前面你所介绍的她是你的妈妈就足 于说明你是她的孩子】
问题2:这在数学中是一层什么样的关系 呢?【充分条件与必要条件】
例题
例2 :下列“若p,则q”形式的命题中,哪些命 题中的 q是p的必要条件?
pq (1)若x y,则x2 y2; (2)若两个三角形全等,则这两个三角形 的面积相等;
(3) 若a b,则ac bc.
例题解析
例2:下列“若p,则q”形式的命题中,哪些命题中的 q是p的必要条件?
必要条件的特征是:“没它不行,有它未必 行”;
充要条件的特征是:“有它就行,没它不 行”.
由此可看出,充分条件、必要条件都不 是唯一的,而充要条件是唯一的,是互逆 的。
1、定义:
课堂小结
若p q,则p是q的充分条件,q的一个充分条件是p

高中数学新教材必修第一册第一章1.4充分条件与必要条件

高中数学新教材必修第一册第一章1.4充分条件与必要条件

第29页
第一章 1.4 1.4.1
[针对训练] 4.已知条件 p:x2+x-6=0,条件 q:mx+1=0(m≠0),且 q 是 p 的充分条件,求 m 的值.
[解] 解 x2+x-6=0 得 x=2 或 x=-3, 令 A={2,-3},B=-m1 , ∵q 是 p 的充分条件,∴B⊆A. 当-m1 =2 时,m=-12;当-m1 =-3 时,m=13. 所以 m=-12或 m=13.
(3)二次函数 y=ax2+bx+c,当 Δ>0 时,其图象与 x 轴有交 点,因此 p 是 q 的充分条件;反之若函数的图象与 x 轴有交点, 则 Δ≥0,不一定是 Δ>0,因此 p 不是 q 的必要条件.
第19页
第一章 1.4 1.4.1
充分、必要条件的判断方法 (1)定义法:首先分清条件和结论,然后判断 p⇒q 和 q⇒p 是 否成立,最后得出结论. (2)命题判断法: ①如果命题:“若 p,则 q”为真命题,那么 p 是 q 的充分 条件,同时 q 是 p 的必要条件; ②如果命题:“若 p,则 q”为假命题,那么 p 不是 q 的充 分条件,同时 q 也不是 p 的必要条件. 显然,p 是 q 的充分条件与 q 是 p 的必要条件表述的是同一 个逻辑关系,即 p⇒q,只是说法不同而已.


集合与常用逻辑用语

1.4
充分条件与必要条件
第2页
第一章 1.4 1.4.1
1.4.1
充分条件与必要条件
第3页
第一章 1.4 1.4.1
课前自主预习
第4页
第一章 1.4 1.4.1
1.理解充分、必要条件的概念. 2.会根据命题的条件和结论的关系判断是否为充分条件、 必要条件.

第1章+集合与简单逻辑知识点汇总

第1章+集合与简单逻辑知识点汇总

《人教A版必修一知识点汇总》第1章《集合与常用逻辑用语》知识点汇总1.1 《集合的概念》1.集合的概念一般地,由某些确定的对象组成的整体就称为集合,简称为集.组成这个集合的对象称为这个集合的元素。

注:集合通常用大写字母表示,如A,B,C…元素通常用小写字母表示,如a,b,c…2.集合与元素之间的关系(1)如果a是集合A的元素,就说a属于A,记作a ∈ A,读作“a属于A”;(2)如果a不是集合A的元素,就说a不属于A,记作a∉A,读作“a不属于A”;3.集合中元素的三种特性(1)确定性:给定的集合,它的元素必须是确定的,也就是说给定一个集合,那么任何一个元素在不在这个集合中就确定了(即x∈A与x∉A必居其一.)(2)互异性:一个给定的集合中的元素是互不相同的,即集合中的元素不能相同.(3)无序性:集合中的元素是无先后顺序的,即集合里的任何两个元素可以交换位置.4.集合的分类根据集合所含有元素的个数,将集合分为:(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合;(3)空集:特别的,把不含有任何元素的集合叫做空集,记作∅.5.常用的数集例如1∈N,−5∈Z,π∉ Q6. 用列举法表示集合当集合中元素的个数为有限个(或无限个但呈现出某种规律)时,可以把集合中所有的元素一一列举出来,中间用逗号隔开,并用大括号“{}”把它们括起来,这种表示集合的方法就称为列举法。

例1小于6的所有正整数组成的集合A用列举法可以表示为A={1,2,3,4,5}.7.用描述法表示集合当集合的元素是无穷多个时,我们可以利用元素的特征性质来表示集合,这种表示集合的方法就叫做描述法.注:用描述法表示集合时,在大括号{}中画一条竖线(分隔符),竖线的左侧表示的是组成集合的元素,竖线的右侧是元素所具有的特征性质(或元素满足的条件).解:小于1的所有整数组成的集合A用描述法表示为A={x ∣ x<1,且 x∈Z }1.2集合间的基本关系1.子集与包含关系(1)定义像上面这样,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,并称集合A为B的子集.记作:A⊆B(或者B⊇A),读作:A包含于B(或B包含A).规定:空集是任何集合的子集,即 ∅⊆A.(2)用Venn图表示集合与集合之间的关系例如集合A={1,2,3}与B={1,2,3,4,5}的关系为A⊆B,用Venn图表示为(3)非子集与不包含关系如果集合A不是集合B的子集,记作A⊈B或B⊉A,读作“A不包含于B“(或B不包含A).例如:集合C={2,3},集合D={2,4,5},则集合C不是集合D的子集,即C⊈D.2.集合与集合相等若集合A和集合B的元素完全相同:即A的每个元素都是B的元素,而B的每个元素也都是A的元素,那么就说A和B相等,记作“A=B”例如A={1,2,3} 与B={3 , 1 , 2},则A=B.3.真子集与真包含于一般的,若集合A是集合B的子集,且B中至少有一个元素不属于A,则A叫做B的真子集,记作A⫋B(或B⫌A),读作A真包含于B(或B真包含A)注:空集是任何非空集合的真子集例如A={1,3}与B={1, 3,5},则A⫋B(即A是B的真子集).1.3《集合的基本运算》1.交集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由既属于集合A又属于集合B的所有元素组成的集合,称为集合A与集合B的交集,记作A∩B.读作“A交B”.即 A∩B={ x | x∈A 且 x∈B }.(2)实例运用例1设集合A={2,4,6}, 集合B={0,1,2},则A∩B={2}.例2 设集合A={x | −2<x≤1},集合B ={x|−1≤x < 3},则A∩B={x |−1≤x ≤1}.2.并集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由集合A与集合B的所有元素组成的集合称为集合A与集合B的并集,记作A∪B.读作“A并B”.即A∪B={x|x∈A或x∈B}.(2)实例运用例1 设集合A={1,3,5,7}, 集合B={0,2,3,4,6},则A∪B={0,1,2,3,4,5,6,7}.例2 设集合A={x |−1<x≤2}, 集合B={x |0<x≤3},则 A∪B={x |−1<x≤3}.3.补集的概念及其运算(1)定义一般地,如果集合A是全集U的一个子集,则由集合U中不属于集合A的所有元素组成的集合称为集合A在全集U中的补集,记作C U A,即C U A={ x | x∈U且x∉A }(2)实例运用例1设全集U={x∈N|x<7},集合A={1,2,4,6},则C U A={0,3,5}.例2设全集U= R,集合A={x|−2≤x<1},则CA={ x | x<−2或 x≥1 }.U1.4充分条件与必要条件1.充分条件与必要条件(1)定义一般地,“若p, 则q”为真命题,即由“条件p 可以推出条件 q ”,记作:p⇒ q那么就称:“p 是 q 的充分条件, q 是p的必要条件”注:如果“若p, 则 q ”为假命题,即由“条件p不能推出条件 q ”,记作: p⇏ q那么就称:“p不是 q 的充分条件, q 不是p的必要条件”(2)实例运用例1若四边形的两组对角分别相等,则这个四边形是平行四边形;解析:设题设“四边形的两组对角分别相等”为p,结论“这个四边形是平行四边形”为 q∵ p ⇒ q∴p是 q的充分条件, q是p的必要条件例2若x2=1,则x = 1;解:设题设“x2=1”为 p ,结论“x = 1”为 q∵由x2=1可得x=1或x=−1∴p ⇏ q故p不是q的充分条件,q不是p的必要条件2.充要条件(1)定义一般地,如果 p ⇔ q (即情况1:原真逆真)我们就称 p 是 q 的充分必要条件,简称为“ 充要条件”.注1(情况2:原真逆假)如果 p ⇒ q ,且 q ⇏p , 我们就称 p是 q 的充分而不必要条件;注2(情况3:原假逆真)如果 p ⇏ q ,且 q ⇒p , 我们就称 p是 q 的必要而不充分条件;注3(情况4:原假逆假)如果 p ⇏ q ,且 q ⇏p , 我们就称 p是 q 的既不充分也不必要条件;(2)实例运用例1 p:两个三角形相似,q:两个三角形三边成比例;解:①原命题:“若p,则q”∵ 已知两个三角形相似∴ 两个三角形三边成比例即 p ⇒ q (相似三角形的性质)∴ p是q的充分条件②逆命题:“若 q ,则 p ”∵ 已知两个三角形三边成比例∴ 两个三角形相似即 q ⇒ p (三边定理)∴ p 是 q 的必要条件.综上所述,∵ p ⇔ q,即原真逆真,∴ p 是 q 的充要条件例2 p:四边形是正方形,q:四边形的对角线互相垂直且平分;解:①原命题:“若 p ,则 q ”∵ 已知四边形是正方形∴ 四边形的对角线互相垂直且平分即 p ⇒ q∴ p 是 q 的充分条件②逆命题:“若 q ,则 p ”∵ 已知四边形的对角线互相垂直且平分∴ 四边形是菱形,即 q ⇏ p∴ p 不是 q 的必要条件综上所述,∵ 原真逆假,∴ p 是 q 的充分而不必要条件1.5 全称量词与存在量词1.全称量词与全称量词命题一变:∀ (任意)变 ∃(存在) 二变:结论 p(x) 变 它的反面 ¬p(x) 像上面这样,短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示;含有全称量词的命题,叫做全称量词命题.例如,命题“对任意的n ∈Z,2n +1 是奇数”;“所有的正方形都是矩形” 等都是全称量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,全称量词命题“对 M 中任意一个 x , p(x)成立”可用符号简记为:∀x ∈M ,p(x)2.存在量词与存在量词命题像上面这样,短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“ ∃ ”表示;含有存在量词的命题,叫做存在量词命题.例如,命题“有的平行四边形是菱形”;“有一个素数不是奇数” 等都是存在量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,存在量词命题“存在M 中的元素 x , p(x)成立”可用符号简记为:∃ x ∈M ,p(x)3. 全称量词的否定(1)概念一般地,对于全称量词命题:∀x ∈M , p(x)它的否定为:∃x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ”注2:全称量词命题的否定是存在量词命题(2)实例运用例1所有能被3整除的整数都是奇数;解:原全称量词命题的否定为:“存在一个能被 3 整除的整数不是奇数”一变:∃ (存在)变 ∀(任意) 例2对 ∀ x ∈R , x 2≥0 ;解:原全称量词命题的否定为:“ ∃ x ∈R ,x 2<0 ”4.存在量词命题的否定(1)概念一般地,对于存在量词命题:∃ x ∈M , p(x)它的否定为:∀x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ” 注2:存在量词命题的否定是全称量词命题(2)实例运用例1 ∃x ∈R,x +2 ≤ 0 ;解:原存在量词命题的否定为“ ∀x ∈R,x +2 > 0” 例2 有的三角形是等边三角形;解:原存在量词命题的否定为“ 所有的三角形都不是等边三角形 ”二变:结论 p(x) 变它的反面 ¬p(x)。

1.4 充分条件与必要条件(重难点突破)解析版 2023-2024学年高一数学重难点突破

1.4 充分条件与必要条件(重难点突破)解析版 2023-2024学年高一数学重难点突破

1.4 充分条件与必要条件1、 充分条件与必要条件(1)一般地,“若p,则q”为真命题,是指由p通过推理可以得出q,这时,我们就说,由p可以推出q,记作p⇒q,并且说,p是q的充分条件,q是p的必要条件.(2)几点说明①一般来说,对给定结论q,使得q成立的条件p是不唯一的;给定条件p,由p可以推出的结论q是不唯一的.②一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.每一条性质定理都给出了相应数学结论成立的一个必要条件.③一般地,要判断“若p,则q”形式的命题中q是否为p的必要条件,只需判断是否有“p⇒q”,即“若p,则q”是否为真命题.2、 充要条件(1)如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,就记作p⇔q,此时,p既是q的充分条件,也是q的必要条件,我们就说p是q的充分必要条件,简称为充要条件.(2)如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p⇔q,那么p与q互为充要条件.3、 充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【特别提醒】若条件p ,q 以集合的形式出现,即A ={x |p (x )},B ={x |q (x )},则由A ⊆B 可得,p 是q 的充分条件,请写出集合A ,B 的其他关系对应的条件p ,q 的关系.①若A B ,则p 是q 的充分不必要条件;②若A ⊇B ,则p 是q 的必要条件;③若A B ,则p 是q 的必要不充分条件;④若A =B ,则p 是q 的充要条件;⑤若A ⊈B 且A ⊉B ,则p 是q 的既不充分也不必要条件.重难点1 充分条件、必要条件的判断【规律方法总结】定义法判断充分条件、必要条件(1)确定谁是条件,谁是结论(2)尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件(3)尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.例1.(1)、(2023·全国·高三专题练习)“1x =”是“()()120x x -+=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】解方程可求得()()120x x -+=的解,根据充分必要条件定义可得结论.【变式训练1-1】、(2021·贵州·六盘水市外国语学校高二期中)“1x =”是“2320x x -+=”的___________条件(填充分不必要,必要不充分,充要,既不充分也不必要其中一个)【答案】充分不必要【解析】【分析】解不等式2320x x -+=,可知1x =或2x =,再根据充分条件和必要条件的定义,进行判断,即可得到结果.【详解】因为2320x x -+=,所以1x =或2x =,所以“1x =”是“2320x x -+=”的充分不必要条件.故答案为:充分不必要.【变式训练1-2】、(2023秋·广西桂林·高一统考期末)“2x =”是“240x -=”的_________条件(填“充分不必要”,“必要不充分”或者“充要”).【答案】充分不必要【分析】解方程,得到240x -=的解,从而做出判断.【详解】240x -=的解为2x =-或2,所以224x x =⇒=,但24x =不能推出x =2,故“2x =”是“240x -=”的充分不必要条件.故答案为:充分不必要重难点2 充分条件、必要条件与充要条件的应用【规律方法总结】利用充分、必要、充要条件的关系求参数范围(1)化简p ,q 两命题;(2)根据p 与q 的关系(充分、必要、充要条件)转化为集合间的关系;(3)利用集合间的关系建立不等式;(4)求解参数范围.重难点3 综合应用例3.(2023·高一单元测试)已知全集R U =,集合{}|11A x m x m =-<<+,{}|4B x x =<.(1)当4m =时,求A B ⋃和()R A B ⋂ð;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.【答案】(1){}|5x x <,{}|45x x ≤<(2)3m ≤【分析】(1)根据集合并集、交集、补集运算求解即可;(2)根据充分不必要条件转化为集合的包含关系求解即可【详解】(1)当4m =时,集合{}||35A x x x =<<,因为{}|4B x x =<,所以{}R |4B x x =≥ð.所以{}|5A B x x =< ,{}R |45A B x x ⋂=≤<ð(2)因为“x A ∈”是“x B ∈”成立的充分不必要条件,所以A 是B 的真子集,而A 不为空集,所以14m +≤,因此3m ≤.例4.(2022·江苏·高一)已知命题:R P x ∃∈,使240x x m -+=为假命题.(1)求实数m 的取值集合B ;(2)设{}34A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值围.【答案】(1)(4,)B =+∞(2)423a ≤<【解析】【分析】(1)由命题的真假转化为方程无实根,再利用判别式进行求解;(2)先根据A 为非空集合求出2a <,再将充分不必要条件转化为集合间的包含关系进行求解.(1)解:由题意,得关于x 的方程240x x m -+=无实数根,所以1640∆=-<m ,解得4m >,即(4,)B =+∞;(2)解:因为{}34A x a x a =<<+为非空集合,所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,则34a ≥,即43a ≥,所以423a ≤<,。

新教材必修第一册《1.4充分条件与必要条件》

新教材必修第一册《1.4充分条件与必要条件》

(2)集合法 对于集合 A={x|x 满足条件 p},B={x|x 满足条件 q},具体情 况如下: 若 A⊆B,则 p 是 q 的充分条件; 若 A⊇B,则 p 是 q 的必要条件; 若 A=B,则 p 是 q 的充要条件; 若 A B,则 p 是 q 的充分不必要条件;
若 A B,则 p 是 q 的必要不充分条件.
由条件关系求参数的值(范围)的步骤 (1)根据条件关系建立条件构成的集合之间的关系. (2)根据集合端点或数形结合列方程或不等式(组)求解.
1.已知 p:-4<x-a<4,q:(x-2)(x-3)<0,若 q 是 p 的充 分条件,则 a 的取值范围为________. 解析:化简 p:a-4<x<a+4,q:2<x<3, 由于 q 是 p 的充分条件, 故有aa-+44≤≥23,,解得-1≤a≤6. 答案:-1≤a≤6
“x>a”是“x>|a|”的必要不充分条件,故选 B.
3.“x<2”是“x-1 2<0”的(
)
A.充要条件 C.充分不必要条件
B.必要不充分条件 D.既不充分也不必要条件
解析:选 A.由x-1 2<0 得 x-2<0 得 x<2,即“x<2”是“x-1 2<0”
的充要条件,故选 A.
充分条件、必要条件、充要条件的应用 已知 p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若 p 是 q 的必要不充分条件,求实数 m 的取值范围.
■名师点拨 (1)p 是 q 的充要条件意味着“p 成立,则 q 一定成立;p 不成立, 则 q 一定不成立”. (2)要判断 p 是不是 q 的充要条件,需要进行两次判断:一是看 p 能否推出 q,二是看 q 能否推出 p.若 p 能推出 q,q 也能推出 p,就可以说 p 是 q 的充要条件,否则,就不能说 p 是 q 的充要 条件.

河北省2020级新高一数学教材第一章 集合与常用逻辑用语 知识点总结

河北省2020级新高一数学教材第一章 集合与常用逻辑用语 知识点总结

2020届新高一数学知识点总结第一章集合与常用逻辑用语1.1集合的概念1.我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称集。

2.集合中的元素具有确定性、互异性、无序性。

3.通常用大写拉丁字母A、B、C……表示集合,用小写字母a、b、c……表示集合中的元素。

5.元素与集合间关系只有两种:①属于,符号为“∈”;②不属于,符号为“∉”。

6.(1)非负整数集(自然数集)符号表示为N。

(2)正整数集符号表示为*N或N。

(3)整数集符号表示为Z。

(4)有理数集符号表示为Q。

(5)实数集符号+表示为R。

7.质数(素数):质数又称素数,指的是一个大于1的自然数,除了1和它自身外,不能被其他自然数整除(无正因数)的数。

最小的质数为2.合数:合数又名合成数,是指在大于1的整数中除了能被1和本身整除外,还能被0除外的其他数整除的数,最小的合数是4。

1既不是质数也不是素数。

1.2集合间的基本关系1.子集:A是B的子集,记作BA⊆或CB⊇。

2.数学中常用平面上封闭曲线的内部代表集合,这种图称为Venn图。

3.集合相等(1)定义:如果集合A的任何一个元素都是集合B中的元素,同时集合B中的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作BA=. (2)集合相等的证明:若BA=。

B⊆,则BA⊆,且A4.真子集(1)定义:如果B A ⊆,但存在元素B x ∈且A x ∉,就称集合A 是集合B 的真子集,记作B A ≠⊂(或A B ≠⊃)。

(2)A 是B 真子集的判定: B A ⊆ 且 B A ≠ ,则A 是B 的真子集。

5.空集(1)定义:我们把不含任何元素的集合叫做空集,记作∅。

并规定:空集是任何集合的子集。

(2)补充:空集是任何非空集合的真子集。

(3)n 元集合共有n 2个子集,共有12-n 个真子集,共有12-n 个非空子集,共有22-n 个非空真子集。

(4)空集只有子集,就是空集本身,空集没有真子集也没有非空子集。

1.4 充分条件与必要条件 课件(21张)

1.4 充分条件与必要条件 课件(21张)
导师点睛 (1)判断p是q的什么条件,主要是判断p⇒q及q⇒p两命题的正确性,若p ⇒q为真,则p是q的充分条件,若q⇒p为真,则p是q的必要条件. (2)当条件和结论是不等式时,可以利用集合间的关系判断充分性和必要性.
充分条件、必要条件的证明与探究
已知命题p:y=ax2-2x-1恒为负值.
问题
1.命题p的充要条件可以是
充分必要条件 ,简称为 充要条件 .显然,如果p是q的充要条件,那么q也 是p的充要条件.概括地说,如果p⇔q,那么p与q 互为充要条件 .
四种条件与命题真假的关系
如果原命题为“若p,则q”,逆命题为“若q,则p”,那么p与q的关系有以下四种 情形:
原命题
逆命题
p与q的关系
q与p的关系


p是q的充要条件
5.若p是q的充要条件,q是r的充要条件,则p是r的充要条件. ( √ ) 提示:若p是q的充要条件,q是r的充要条件,则p⇔q,且q⇔r,因此p⇔r,故p是r的充要 条件. 6.“A∩B是空集”是“A与B均是空集”的充要条件.( ✕ )
充分条件、必要条件和充要条件的判断 观察下面4个电路图.
问题 1.①中开关A闭合是灯泡B亮的什么条件? 提示:充分不必要. 2.②中开关A闭合是灯泡B亮的什么条件? 提示:必要不充分. 3.③中开关A闭合是灯泡B亮的什么条件? 提示:充要. 4.④中开关A闭合是灯泡B亮的什么条件? 提示:既不充分也不必要. 5.将①中开关A与灯泡B位置互换,开关C始终是断开状态,结论变吗? 提示:变为充要.
q是p的充要条件


p是q的充分不必要条 q是p的必要不充分条




p是q的必要不充分条 q是p的充分不必要条

1.4 充分条件、必要条件、充要条件

1.4 充分条件、必要条件、充要条件
【答案】A
)
B.必要条件
D.既非充分也非必要条件
二、填空题(填充分条件、必要条件、充要条件)
9.p:x是6的倍数,q:x是2的倍数;则p是q的 充分条件
.
10.如果甲是乙的必要条件,丙是乙的充要条件,则丙是甲
的 充分条件 .
11.p:b=0,q:y=kx+b的图象过原点;则p是q的 充要条件
12.p:a>2,q:|a|>2;则p是q的充分条件
(5)若p是q的充分条件,又是r的必要条件,则r是q的
( A )
A.充分条件 B.必要条件
C.充要条件 D.既非充分也非必要条件
【同步训练】
一、选择题
1.a>b是a2>b2的
(
A.充分条件
C.充要条件
【答案】D
)
B.必要条件
D.既非充分也非必要条件
2.x=y是|x|=|y|的
(
A.充分条件
C.充要条件
q的充分条件;或者说q是p的必要条件.
【说明】 (1)①p⇒q;②p是q的充分条件;③q是p的必要条
件.这三个语句表达的是同一逻辑关系,只是说法不同.
(2)在应用充分条件与必要条件的形式叙述命题时,要同时
考虑命题“如果p,那么q”和“如果q,那么p”是否真命题.
4.“充分且必要条件”(简称:充要条件):如果p⇒q且q⇒p,那
【答案】A
)
B.必要条件
D.既非充分也非必要条件
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/172021/9/17Friday, September 17, 2021
•10、阅读一切好书如同和过去最杰出的人谈话。2021/9/172021/9/172021/9/179/17/2021 10:22:23 AM

新教材人教A版1.4充分条件与必要条件课件(25张)

新教材人教A版1.4充分条件与必要条件课件(25张)
()

【解析】 (1)由x=y可以推出x2=y2,则“x=y”是“x2=y2”的充 分条件. (2)当ab=0时,不一定有b=0,但b=0时,一定有ab=0,所 以“ab=0”是“b=0”的必要条件. (3)当x2>1时,x>1不一定成立,如(-2)2>1,但-2<1;当x>1 时,可得x2>1.所以“x2>1”是“x>1”的必要条件. (4)当x2-3x+2=0时,可得x=1或x=2;当x=1或x=2时,可 推出x2-3x+2=0,所以“x=1或x=2”是“x2-3x+2=0”的充 要条件.
1.下列四个命题中,真命题是C( ) A.两个无理数的和还是无理数 B.若a2=b2,则a=b C.正方形的四边相等 D.菱形的对角线相等
【解析】 两个无理数的和不一定是无理数,
如(1- 2 )+ 2 =1; 若 a2=b2,则 a=±b;正方形的四边相等; 菱形的对角线互相垂直.
2.若a,b∈R,则a>b>0是a2>b2的A( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【解析】 由a>b>0可推出a2>b2; 但由a2>b2无法推出a>b>0, 如a=-2,b=1,即a>b>0是a2>b2的充分不必要条件.
例3 已知p:-3≤x≤1,q:1-a≤x≤1+a,且q是p的必要不充
分条件,则a的取值范围是( C )
A.{a|a>4}
B.{a|a≤0}
C.{a|a≥4}
D.{a|a<0}
【解析】 因为 q 是 p 的必要不充分条件, 1-a≤-3, 1-a<-3,
即 p⇒q,但 q p,所以1+a>1, 或1+a≥1, 解得 a≥4.故选 C.

人教A版(2019)高中数学教材目录

人教A版(2019)高中数学教材目录

人教A版(2019)高中数学教材目录第一册:第一章集合与常用逻辑用语1.1集合的概念1.2集合间的基本关系1.3集合的基本运算1.4充分条件与必要条件1.5全称量词与存在量词第二章一元二次函数、方程和不等式2.1等式性质与不等式性质2.2基本不等式2.3二次函数与一元二次方程第三章函数的概念及其表示3.1函数的概念及其表示3.2函数的基本性质3.3幂函数3.4函数的应用(一)第四章指数函数与对数函数4.1指数4.2指数函数4.3对数4.4对数函数4.5函数的应用(二)第五章三角函数5.1任意角和弧度制5.2三角函数的概念5.3诱导公式5.4三角函数的图像与性质5.5三角恒等变换5.6函数y=Asin(wx+a)5.7三角函数的应用第二册:第六章平面向量及其应用6.1平面向量的概念6.2平面向量的运算6.3平面向量的基本定理及坐标运算6.4平面向量的应用第七章复数7.1复数的概念7.2复数的四则运算第八章立体几何初步8.1基本立体图形8.2立体图形的直观图8.3简单几何体的表面积与体积8.4空间点、直线、平面的位置关系8.5空间直线、平面的平行8.6空间直线、平面的垂直第九章统计9.1随机抽样9.2用样本估计总体第十章概率10.1随机事件与概率10.2事件的相互独立型10.3频率与概率选择性必修第一册第一章空间向量与立体几何1.1空间向量及其运算1.2空间向量基本定理1.3空间向量及其运算的坐标表示1.4空间向量的应用第二章直线与圆的方程2.1直线的倾斜角与斜率2.2直线方程2.3直线的交点坐标与距离公式2.4圆的方程2.5直线与圆、圆与圆的位置关系第三章圆锥曲线的方程3.1椭圆3.2双曲线3.3抛物线选择性必修第二册第四章数列4.1数列的概念4.2等差数列4.3等比数列第五章一元函数的导数及其应用5.1导数的概念及其意义5.2导数的运算5.3导数在研究函数中的应用选择性必修第三册第六章计数原理6.1分类加法计数原理与分步乘法计算原理6.2排列与组合6.3二项式定理第七章随机变量及其分布7.1条件概率与全概率公式7.2离散型随机变量及其分布7.3离散型随机变量的数字特征7.4二项分布与超几何分布7.5正态分布第八章成对数据的统计分析8.1成对数据的统计相关性8.2一元线性回归模型及其应用8.3列联表与独立检验。

高中数学2019人教A版教材目录

高中数学2019人教A版教材目录

人教A版必修第一册第一章集合与常用逻辑用语1.1 集合的概念1.2 集合间的基本关系1.3 集合的基本运算阅读与思考集合中元素的个数1.4 充分条件与必要条件1.5 全称量词与存在量词阅读与思考几何命题与充分条件、必要条件小结复习参考题1第二章一元二次函数、方程和不等式2.1 等式性质与不等式性质2.2 基本不等式2.3 二次函数与一元二次方程、不等式小结复习参考题2第三章函数的概念与性质3.1 函数的概念及其表示阅读与思考函数概念的发展历程3.2 函数的基本性质信息技术应用用计算机绘制函数图象3.3 幂函数的图象与性质探究与发现探究函数y=x+1x3.4 函数的应用(一)文献阅读与数学写作函数的形成与发展小结复习参考题3第四章指数函数与对数函数4.1 指数4.2 指数函数阅读与思考放射性物质的衰减信息技术应用探究指数函数的性质4.3 对数阅读与思考对数的发明4.4 对数函数探究与发现互为反函数的两个函数图象间的关4.5 函数的应用(二)阅读与思考中外历史上的方程求解文献阅读与数学写作对数概念的形成与发展小结复习参考题4数学建模建立函数模型解决实际问第五章三角函数5.1 任意角和弧度制5.2 三角函数的概念阅读与思考三角学与天文学5.3 诱导公式5.4 三角函数的图像与性质探究与发现函数y=A sin(ωx+φ)及函数y=A cos(ωx+φ)的周期探究与发现利用单位圆的性质研究正弦函数、余弦函数的性质5.5 三角恒等变换信息技术应用利用信息技术制作三角函数表5.6 函数y=Asin(ωx+φ)5.7 三角函数的应用阅读与思考振幅、周期、频率、相位小结复习参考题5人教A版必修第二册第六章平面向量及其应用6.1 平面向量的概念阅读与思考向量及向量符号的由来6.2 平面向量的运算6.3 平面向量基本定理及坐标表示6.4 平面向量的应用阅读与思考海伦和秦九昭小结复习参考题6第七章复数7.1 复数的概念7.2 复数的四则运算阅读与思考代数基本定理7.3 *复数的三角表示探究与发现1的n次方根小结复习参考题7第八章立体几何初步8.1 基本立体图形8.2 立体图形的直观图阅读与思考画法几何与蒙日8.3 简单几何体的表面积与体积探究与发现祖暅原理与柱体、锥体的体积8.4 空间点、直线、平面之间的位置关系8.5 空间直线、平面的平行8.6 空间直线、平面的垂直阅读与思考欧几里得《原本》与公理化方法文献阅读与数学写作*几何学的发展小结复习参考题8第九章统计9.1 随机抽样阅读与思考如何得到敏感性问题的诚实反应9.2 用样本估计总体阅读与思考统计学在军事中的应用――二战时德国坦克总量的估计问题阅读与思考大数据9.3 统计案例公司员工的肥胖情况调查分析小结复习参考题9第十章概率10.1 随机事件与概率10.2 事件的相互独立性10.3 频率与概率阅读与思考孟德尔遗传规律小结复习参考题人教A版选择性必修第一册第一章空间向量与立体几何1.1 空间向量及其运算1.2 空间向量基本定理1.3 空间向量及其运算的坐标表示阅读与思考向量概念的推广与应用1.4 空间向量的应用小结复习参考题1第二章直线与圆的方程2.1 直线的倾斜角与斜率2.2 直线方程探究与发现方向向量与直线的参数方程2.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何2.4 圆的方程阅读与思考坐标法与数学机械化2.5 直线与圆、圆与圆的位置关系小结复习参考题2第三章圆锥曲线的方程3.1 椭圆信息技术应用用信息技术探究点的轨迹:椭圆3.2 双曲线探究与发现为什么y=±ba x是双曲线x2a2−y2b2=1的渐近线3.3 抛物线探究与发现为什么二次函数y=ax2+bx+c的图象是抛物线阅读与思考圆锥曲线的光学性质及其应用文献阅读与数学写作解析几何的行成与发展小结复习参考题3人教A版选择性必修第二册第四章数列4.1 数列的概念阅读与思考斐波那契数列4.2 等差数列4.3 等比数列阅读与思考中国古代数学家求数列和的方法4.4 *数学归纳法小结复习参考题4第五章一元函数的导数及其应用5.1 导数的概念及其意义5.2 导数的运算探究与发现牛顿法――用导数的方法求方程的近似解5.3 导数在研究函数中的应用信息技术应用图形技术与函数性质文献阅读与数学写作*微积分的创立于发展选择性必修第三册第六章计数原理6.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少6.2 排列与组合探究与发现组合数的两个性质6.3 二项式定理小结复习参考题6数学探究杨辉三角的性质与应用第七章随机变量及其分布7.1 条件概率与全概率公式阅读与思考贝叶斯公式与人工智能7.2 离散型随机变量及其分布列7.3 离散型随机变量的数字特征7.4 二项分布与超几何分布探究与发现二项分布的性质7.5 正态分布信息技术应用概率分布图及概率统计小结复习参考题7第八章成对数据的统计分析8.1 成对数据的统计相关性8.2 一元线性回归模型及其应用阅读与思考回归于相关8.3 列联表与独立性检验小结复习参考8数学建模建立统计模型进行预测。

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的基本运算及充分与必要条件
一、交集、并集、全集、补集的概念(注意补集的前提条件)
单一运算、混合运算、求参数等常用数形结合思想解答这一类题目
二、命题:指一个判断句的语义(实际表达的概念),真假命题的判断
原命题、否命题、逆命题、逆否命题之间的关系
三、条件概念:充分条件、必要条件、充要条件
注意推理方向,可用集合思想判断。

常见题型有条件的判断、求条件成立的条件、参数范围 例题:1、设集合A ={1,2,6},B ={2,4},C ={x∈R|-1≤x≤5},则(A∪B)∩C= ( )
2、设全集为R ,A ={x|3≤x<7},B ={x|2<x<10},则∁R (A∪B)=________,(∁R A)∩B =________.
3、已知集合A 、B 均为全集U ={1,2,3,4}的子集,且∁U (A∪B)={4},B ={1,2},则A∩∁U B 等于________.
4、已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )
5、设集合S ={x|x >-2},T ={x|-4≤x≤1},则(∁R S)∪T 等于( )
6、已知M ={1,2,},N ={-1,a,3},M∩N={3},求实数a 的值.
7、设集合A ={x|-1<x <a},B ={x|1<x <3}且A∪B={x|-1<x <3},求a 的取值范围.
8、已知集合A ={x|-3<x≤4},集合B ={x|k +1≤x≤2k-1},且A∪B=A ,试求k 的取值范围.(改)
9、已知集合A={x|0≤x≤4},集合B={x|m+1≤x≤1-m},且A∪B=A,求实数m 的取值范围.
10、已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.
11、设a ,b 是实数,则“a >b ”是“a 2>b 2”的( )
12、“x 2-4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <4
13、不等式x (x -2)<0成立的一个必要不充分条件是( )
A .x ∈(0,2)
B .x ∈[-1,+∞)
C .x ∈(0,1) D.x ∈(1,3)
14、已知p :x 2-8x -20≤0,q :x 2-2x +1-m 2≤0(m >0),且p 是q 的充分不必要条件,则实数m 的取值范围为____(改)
15、已知集合A ={x ∈R|12
<2x <8},B ={x ∈R|-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是 ( )
16、设集合{|||2}A x R x a =∈-<,21{|1}2
x B x x -=<+,若A B ⊆,求实数a 的取值范围。

(改条件) 17、已知2{|(2)10}A x R x m x =∈+++=,{|}B x x =是正实数,若A B φ=,求实数m 的取值范围。

18、已知集合2{|560},{|10},A x x x B x mx =-+==+=且,A B A =求实数m 的值组成的集合。

19、已知00,:,:11100.
x P q m x x +⎧-+⎨-⎩≥≤≤≤m,若P 是q 的必要不充分条件,求实数m 的取值范围.
20、已知221:{||1|2},:210(0)3x p x q x x m m --
≤-+-≤>,若p ⌝是q ⌝成立的必要非充分条件,求实数m 的取值范围。

相关文档
最新文档