带电粒子在复合场中运动题型方法
高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动
(2)电场的电场强度大小E以及磁场的磁感应强度大小B;
答案
mv2 6qL
2 3mv 3qL
1234
对粒子从Q点运动到P点的过程,根据动能
定理有 -qEL=12mv2-12mv02 解得 E=6mqvL2
设粒子从Q点运动到P点的时间为t1,有
0+v0sin 2
θ·t1=L
1234
解得
t1=2
3mv02 3qE
⑤
竖直方向的位移 y=0+2 vyt=m6qvE02
⑥
则粒子发射位置到P点的距离为
d=
x2+y2=
13mv02 6qE
⑦
(2)求磁感应强度大小的取值范围; 答案 3-3q3lmv0<B<2mqlv0
设粒子在磁场中运动的速度为 v,结合题意及几何
关系可知,v=sinv60 0°=233v0
垂直于纸面向外的匀强磁场.OM上方存在电场强度大小为E的匀强电场,
方向竖直向上.在OM上距离O点3L处有一点A,在电场中距离A为d的位置
由静止释放一个质量为m、电荷量为q的带负电的粒子,经电场加速后该
粒子以一定速度从A点射入磁场后,第一次恰好不从ON边界射出.不计粒
子的重力.求:
(1)粒子运动到A点时的速率v0;
d.N边界右侧区域Ⅱ中存在磁感应强度大小为B、方向垂直于纸面向里的匀
强磁场.M边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M
上的O点处有一离子源,水平向右发射同种正离子.已知初速度为v0的离子 第一次回到边界M时恰好到达O点,电场及两磁场区域
足够大,不考虑离子的重力和离子间的相互作用.
(1)求离子的比荷;
迹如图乙所示,设此时的轨迹圆圆心为O2,半
带电粒子在复合场中的运动大题专题(详细解答)
专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
带电粒子在复合场中的运动解题技巧
带电粒子在复合场中的运动解题技巧带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。
带电粒子在复合场中的运动是高考的重点考点,那么掌握答题技巧是关键。
接下来店铺为你整理了带电粒子在复合场中的运动解题技巧,一起来看看吧。
带电粒子在复合场中的运动解题技巧:分离的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。
对于带电粒子在电场中的偏转,要利用类平抛运动的规律,根据运动的合成与分解,结合牛顿定律和能量关系,求出粒子进入下一个场的速度大小,再结合速度合成与分解之间的关系,速度偏转角正切值与位移偏转角正切值的关系求出速度方向。
带电粒子垂直进入匀强磁场,其运动情况一般是匀速圆周运动的一部分,解决粒子在磁场中的运动情况,关键是确定粒子飞入点和飞出点的位置以及速度方向,再利用几何关系确定圆心和半径。
值得注意的是,若带电粒子从磁场中某个位置飞出后,再经电场的作用在同一个位置以相同的速度大小再次飞入磁场中时,由于飞出和飞入速度方向相反,洛伦兹力的方向相反,粒子两次在磁场中的运动轨迹并不重合!需要强调的是,带电粒子从一个场进入另外一个场,两场之间的连接点是这类问题的中枢,其速度是粒子在前一个场的某速度,是后一个场的初速度,再解决问题时要充分利用这个位置信息。
带电粒子在复合场中的运动解题技巧:多场并存的无约束运动多场并存的无约束运动在解决复合场问题时应首先弄清楚是哪些场共存,注意电场和磁场的方向以及强弱,以便确定带电粒子在场中的受力情况。
带电粒子在复合场中运动时如果没有受到绳子,杆,环等的约束,则带电粒子在空间中可以自由移动,只受场力的作用。
根据空间存在的场的不同,一般带电粒子的运动规律不同,通常可以分为以下几类:1、静止或匀速直线运动如果是重力场与电场共存,说明电场力等于重力。
如果是重力场与磁场共存,说明重力与洛伦兹力平衡。
专题拓展课二 带电粒子在复合场中的运动
专题拓展课二带电粒子在复合场中的运动[学习目标要求] 1.知道复合场的概念。
2.能够运用运动组合的理念分析带电粒子在组合场中的运动。
3.能分析带电粒子在叠加场中的受力情况和运动情况,能够正确选择物理规律解答问题。
拓展点1带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现。
2.四种常见的运动模型(1)带电粒子先在电场中做匀加速直线运动,然后垂直进入磁场做圆周运动,如图所示。
(2)带电粒子先在电场中做类平抛运动,然后垂直进入磁场做圆周运动,如图所示。
(3)带电粒子先在磁场中做圆周运动,然后垂直进入电场做类平抛运动,如图所示。
(4)带电粒子先在磁场Ⅰ中做圆周运动,然后垂直进入磁场Ⅱ做圆周运动,如图所示。
3.三种常用的解题方法(1)带电粒子在电场中做加速运动,根据动能定理求速度。
(2)带电粒子在电场中做类平抛运动,需要用运动的合成和分解处理。
(3)带电粒子在磁场中的圆周运动,可以根据磁场边界条件,画出粒子轨迹,用几何知识确定半径,然后用洛伦兹力提供向心力和圆周运动知识求解。
4.要正确进行受力分析,确定带电粒子的运动状态。
(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动。
(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动。
5.分析带电粒子的运动过程,画出运动轨迹是解题的关键。
特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重。
【例1】(2021·广东深圳市高二期末)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速到具有较高的能量,然后被引向轰击肿瘤,杀死细胞,如图甲。
图乙为某“质子疗法”仪器部分结构的简化图,Ⅰ是质子发生器,质子的质量m=1.6×10-27 kg,电量e=1.6×10-19 C,质子从A点进入Ⅱ;Ⅱ是加速装置,内有匀强电场,加速长度d1=4.0 cm;Ⅲ装置由平行金属板构成,板间有正交的匀强电场和匀强磁场,板间距d2=2.0 cm,上下极板电势差U2=1000 V;Ⅳ是偏转装置,以O为圆心、半径R=0.1 m的圆形区域内有垂直纸面向外的匀强磁场,质子从M进入、从N射出,A、M、O三点共线,通过磁场的强弱可以控制质子射出时的方向。
带电粒子在复合场中的运动问题剖析
GUANG DONG JIAO YU GAO ZHONG带电粒子在复合场中的运动问题剖析■甘肃省院南市武都实验中学田长军带电粒子在复合场中的运动问题综合了洛伦兹力、牛顿运动定律、匀速圆周运动、能量观点等重点知识,同时对数学运算能力、空间想象能力、作图能力都有较高要求,是高考命题的热点和重点。
近年来,高考对带电粒子在复合场中的运动问题考查比较频繁,一般为计算题和选择题,难度较大,综合性较强,预计该考点仍为今后高考考查的热点。
笔者对近年来全国卷高考真题进行了研究,总结了带电粒子在复合场中运动问题的命题规律,并给出了典型预测题及相应的备考策略,希望对同学们备考有所帮助。
―、近年全国卷真题命题规律年份试卷题号题型考向难度2020全国卷n17单选题电场与磁场的组合中2019全国卷I24计算题电场与磁场的组合中全国卷m18单选题磁场与磁场的组合中全国卷皿24计算题重力场和电场的叠加中2018全国卷I25计算题电场与磁场的组合难全国卷n25计算题电场与磁场的组合难全国卷in24计算题电场与磁场的组合中2017全国卷I16单选题重力场、电场和磁场的叠加易全国卷n25计算题重力场和电场的叠加难全国卷in24计算题磁场与磁场的组合中2016全国卷I15单选题电场与磁场的组合易根据上表分析,近年来全国卷对此类问题命题有以下规律:1. 考查题型:考查题型有单选题和压轴计算题,预计今 后仍然以电场和磁场的组合为高频考点,出现压轴多选题的可能性也较大。
2. 考向:非常热的考向是带电粒子在组合场中的运动,电场与磁场的组合是高频考点;较热的考向是带电粒子在叠加场中的运动。
预计今后仍以考查组合场和叠加场为主,不排除考査交变场的可能。
还有可能将复合场问题与图像问题、临界问题、最值问题与现代科技综合考査。
3. 难度:因本考点与力学知识的综合,使考题的难度较 大,常以中等题或难题形式出现。
4. 考查的物理核心素养主要为:物理观念和科学思维。
带电粒子在复合场中的运动(经典题例)
带电粒子在复合场中的运动一、带电粒子在复合场中运动的轨迹欣赏例1、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。
在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。
一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。
如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)例2、如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x 轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记)例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=√33m,外半径为R2=1.0m,区域内有垂直纸面向外的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的比荷qm=4×107C/kg。
(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度V0.(2)若中空区域中的带电粒子以(1)中的最大速度V0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。
例4、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(2√2−1)a,环形区域内有垂直纸面向外的匀强磁场,磁感应强度为B。
带电粒子在复合场中的运动典型例题解析
带电粒子在复合场中的运动·典型例题解析【例1】一带电量为+q、质量为m的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B的匀强磁场中,磁场方向如图16-83所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【例2】空气电离后形成正负离子数相等、电性相反、呈现中性状态的等离子体,现有如图16-84所示的装置:P和Q为一对平行金属板,两板距离为d,内有磁感应强度为B的匀强磁场.此装置叫磁流体发电机.设等离子体垂直进入磁场,速度为v,电量为q,气体通过的横截面积(即PQ两板正对空间的横截面积)为S,等效内阻为r,负载电阻为R,求(1)磁流体发电机的电动势ε;(2)磁流体发电机的总功率P.【例3】如图16-85所示,在x轴上方有水平向左的匀强电场,电场强度为E,在x轴下方有垂直纸面向里的匀强磁场,磁感应强度为B.正离子从M 点垂直磁场方向,以速度v射入磁场区域,从N点以垂直于x轴的方向进入电场区域,然后到达y轴上P点,若OP=ON,则入射速度应多大?若正离子在磁场中运动时间为t1,在电场中运动时间为t2,则t1∶t2多大?【例4】如图16-86所示,套在很长的绝缘直棒上的小球,其质量为m、带电量是+q,小球可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E,磁感强度是B,小球与棒的摩擦系数为μ,求小球由静止沿棒下落的最大加速度和最大速度.(设小球带电量不变)跟踪反馈1.如图16-87所示,一质量为m的带电液滴在相互垂直的匀强电场和匀强磁场中(电场竖直向下,磁场在水平方向)的竖直平面内作半径为R的匀速圆周运动,则这个液滴[ ] A.一定带正电,而且沿逆时针方向运动B.一定带负电,而且沿顺时针方向运动C.一定带负电,但绕行方向不能确定D.不能确定带电性质,也不能确定绕行方向2.图16-88中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方P点处以v水平射入的电子,穿过此区域未发生偏转,设重力可忽略不计,则在这区域中的E和B的方向可能是[ ] A.E和B都沿水平方向,并与v方向相同B.E和B都沿水平方向,并与v方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里3.如图16-89所示,光滑的半圆形绝缘曲面半径为R,有一质量为m,带电量为q的带正电小球从与圆心等高的A位置由静止沿曲面下滑,整个装置处于匀强电场和匀强磁场中,磁场的磁感应强度为B,电场强度为E=mg/q.则小球第二次经过最低点时对曲面的压力为多大?4.如图16-90所示,相互垂直的匀强电场和匀强磁场,其电场强度和磁感应强度分别为E 和B ,一个质量为m ,带正电量为q 的油滴,以水平速度v 0从a 点射入,经一段时间后运动到b ,试计算(1)油滴刚进入叠加场a 点时的加速度.(2)若到达b 点时,偏离入射方向的距离为d ,此时速度大小为多大?参考答案[]1 B 2ABC 36mg 2Bq Rg 4跟踪反馈...-.①-+②+a Bqv mg Eq m v v Eq mg dm==+00202()()。
重难点08 带电粒子在复合场中的运动(解析版)
2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。
设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。
下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。
带电粒子在复合场中的运动
带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。
常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。
2021届高考物理一轮复习方略关键能力·题型突破: 9.3 带电粒子在复合场中的运动
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
关键能力·题型突破考点一带电粒子在组合场中的运动电场+磁场【典例1】(2020·长沙模拟)如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U1和U2的变化情况为(不计重力,不考虑边缘效应) ( )A.d随U1变化,d与U2无关B.d与U1无关,d随U2变化C.d随U1变化,d随U2变化D.d与U1无关,d与U2无关【解析】选A。
带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v分解成初速度方向与加速度方向,设出射速度与水平方向夹角为θ,则有:=cos θ,而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R,由几何关系得,半径与直线MN夹角正好等于θ,则有:=cos θ,所以d=,又因为半径公式R=,则有d==。
故d随U1变化,d与U2无关,故A正确;B、C、D错误。
【多维训练】(2018·全国卷Ⅱ)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行。
一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出。
不计重力。
(1)定性画出该粒子在电磁场中运动的轨迹。
(2)求该粒子从M点射入时速度的大小。
(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间。
带电粒子在复合场中的运动例题
带电粒子在复合场中的运动例题摘要:I.带电粒子在复合场中的运动概述A.复合场的概念B.带电粒子在复合场中的运动类型II.例题解析A.例题一:带电粒子在电场和磁场中的运动1.问题描述2.受力分析3.运动方程4.结论B.例题二:带电粒子在复合场中的匀速圆周运动1.问题描述2.受力分析3.运动方程4.结论C.例题三:带电粒子在复合场中的匀速直线运动1.问题描述2.受力分析3.运动方程4.结论III.结论A.带电粒子在复合场中的运动规律B.解决类似问题的方法正文:带电粒子在复合场中的运动例题在物理学中,带电粒子在复合场中的运动是一个复杂的问题。
复合场是由电场和磁场组成的,带电粒子在其中受到多种力的作用。
为了更好地理解带电粒子在复合场中的运动规律,我们可以通过一些例题来加深理解。
例题一:带电粒子在电场和磁场中的运动问题描述:设一带电粒子在电场E 和磁场B 中运动,粒子质量为m,电荷为q,运动速度为v。
受力分析:带电粒子在电场中受到电场力Fe = qE,在磁场中受到磁场力Fm = qvB。
运动方程:由于粒子在复合场中运动,所以需要分别考虑在电场和磁场中的运动方程。
在电场中,粒子受到的电场力使其加速,运动方程为:Fe = qE = ma1;在磁场中,粒子受到的磁场力使其偏转,运动方程为:Fm = qvB = 0。
结论:由于粒子在磁场中受到的力为零,所以粒子的运动轨迹将呈直线。
例题二:带电粒子在复合场中的匀速圆周运动问题描述:设一带电粒子在复合场中作匀速圆周运动,运动半径为R,运动速度为v。
受力分析:带电粒子在复合场中受到的力有电场力和磁场力。
由于粒子作匀速圆周运动,所以电场力和磁场力必须平衡。
运动方程:电场力为Fe = qE,磁场力为Fm = qvB。
由于粒子作匀速圆周运动,所以有:Fe = Fm;即:qE = qvB。
结论:带电粒子在复合场中作匀速圆周运动时,其运动速度v 与电场E 和磁场B 的关系为v = E/B。
带电粒子(带电体)在复合场中的运动问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。
2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。
针对性的专题训练,可以提高同学们解决难题、压轴题的信心。
3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。
物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。
带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。
解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。
其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。
涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。
问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。
二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。
带电粒子在电场和重力场复合场中的运动
R
得 T=6F=6(mg-qE)
B
解:若qE﹥mg,则重力与电场力的合力等效重力 竖直向上,最低点B速度最小,重力提供向心力。 由牛顿第二定律: F=qE-mg F)A点速度最大,合力提供向心力
由牛顿第二定律: T-F=mv22/R 由动能定理: 2FR=mv22/2-mv12/2
解:若qE﹤mg,则重力与电场力的合力等效重力 竖直向下,最高点A速度最小,重力提供向心力。
由牛顿第二定律: F=mg-qE F=mv12/R
得 v1=((mg-qE)R/m)1/2 (2)B点速度最大,合力提供向心力
A
E
由牛顿第二定律: T-F=mv22/R
由动能定理: 2FR=mv22/2-mv12/2
设此题中等效重力加速度为 g′ 由题意可知等效重力mg′=mg/cosα
将g′代入周期公式得: T周=2π l cosa/g
[拓展2] 若将原题中电场E突然反向,求细线 偏离竖直方向的最大偏角?(α小于45o)
解:电场E反向,由受力可知摆动的等效最 低点在竖直偏左α角处,等效摆的摆角为2 α,再由对称性可知,小球偏离竖直方向的 最大夹角为3 α。
等效:
题中电场力为恒力,且与重力同向 可将两者合力 F=qE+mg
等效成重力 G‵ =mg ‵ 即 g‵ =g+qE/m
用g‵替换结论中的g就可快速得到 [例2]的结果:
最高点有最小速度v= R(gqE/m)
小球运动到最低点时有最大拉力 T=6mg‵ =6(mg+qE)
思考1:如果粒子带负电,大小为q, 则结果如何?
由动能定理: 2mgR=mv22/2-mv2/2
B
得 T=6mg
例2:用长为R的绝缘细线栓一带正电 q的小球,质量为m,在竖直向下的场 强为E匀强电场中,刚好能在竖直平
高考物理带电粒子在复合场中的运动试题类型及其解题技巧及解析
一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷均已知,且,两板间距。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值(2)粒子在极板间做圆周运动的最大半径(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s1①②又已知联立解得:(2)解法一粒子在t0~2t0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v1,轨道半径为R1,周期为T,则联立解得:又即粒子在t0~2t0时间内恰好完成一个周期的圆周运动。
在2t0~3t0时间内,粒子做初速度为v1的匀加速直线运动,设位移大小为s2解得:由于s1+s2<h,所以粒子在3t0~4t0时间内继续做匀速圆周运动,设速度大小为v2,半径为R2,有:解得由于s1+s2+R2<h,粒子恰好又完成一个周期的圆周运动。
在4t0~5t0时间内,粒子运动到正极板(如图所示):因此粒子运动的最大半径。
解法二由题意可知,电磁场的周期为2t0,前半周期粒子受电场作用做匀加速直线运动,加速度大小为:方向向上。
后半周期粒子受磁场作用做匀速圆周运动,周期为T粒子恰好完成一次匀速圆周运动。
至第n 个周期末,粒子位移大小为s n201()2n sa nt =又已知20210mE h qB π= 由以上各式得:25n n s h =粒子速度大小为:0n v ant = 粒子做圆周运动的半径为:0nn mv R qB = 解得:5nnh R π=显然223s R h s +<< 因此粒子运动的最大半径225h R π=。
带电粒子在复合场中的运动例题
带电粒子在复合场中的运动例题引言本文将围绕带电粒子在复合场中的运动进行详细的探讨和解析。
我们将通过一个具体的运动例题,展示带电粒子在电磁场和重力场共同作用下的运动规律,帮助读者更好地理解这一过程。
问题描述考虑一个带电质量为m的粒子,在匀强电场和重力作用下,其运动方程如下:$$F=qE+m g$$其中,F表示粒子所受的合外力,q表示粒子的电荷量,E表示电场强度,g表示重力加速度。
在给定初速度v0的情况下,我们的目标是确定带电粒子在复合场中的运动轨迹。
解析为了解决这个问题,我们将采取以下步骤:步骤一:分析受力情况带电粒子所受的合外力由电场力和重力构成,因此可以将合外力表示为:$$F=qE+m g$$步骤二:列出运动方程根据牛顿第二定律,粒子的加速度与合外力成正比,因此可以得到运动方程为:$$a=\f ra c{F}{m}=\f ra c{qE}{m}+g$$将加速度与速度的关系带入上式,得到:$$\f ra c{dv}{dt}=\f ra c{qE}{m}+g$$步骤三:解微分方程对上式进行积分,可以得到粒子的速度与时间的关系:$$v=\f ra c{qE}{m}t+gt+v_0$$其中,v0为初始速度。
步骤四:求解轨迹方程将速度与时间的关系带入运动方程中,即可得到带电粒子在复合场中的运动轨迹:$$x=\f ra c{1}{2}\l e ft(\fr ac{q E}{m}t^2+g t^2+v_0t\ri g ht)+x _0$$其中,x0为初始位置。
结论通过以上的推导和计算,我们得到了带电粒子在复合场中的运动轨迹方程。
这个运动方程将帮助我们更好地理解带电粒子在电场和重力场中的相互作用情况,并能够准确地描述其运动过程。
希望读者通过本文的学习,能够加深对带电粒子在复合场中运动的理解,并能够应用相关原理解决类似的问题。
*注意:本文所使用的公式和推导过程纯属示例,实际问题中需要根据具体情况进行适当的调整。
高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)
微专题8 带电粒子在组合场和复合场中的运动一带电粒子在组合场中的运动组合场是指电场与磁场同时存在或者磁场与磁场同时存在,但各位于一定的区域内,并不重叠的情况。
所以弄清带电粒子在电场及磁场中的运动形式、规律和研究方法是解决此类问题的基础。
1.基本类型运动类型带电粒子在匀强电场中加速(v0与电场线平行或为零)带电粒子在匀强电场中偏转(v0⊥E)带电粒子在匀强磁场中匀速运动(v0与磁感线平行)带电粒子在匀强磁场中偏转(v0与磁感线垂直)受力特点受到恒定的电场力;电场力做功不受磁场力作用受磁场力作用;但磁场力不做功运动特征匀变速直线运动类平抛运动匀速直线运动匀速圆周运动研究方法牛顿运动定律匀变速运动学规律牛顿运动定律匀变速运动学公式正交分解法匀速直线运动公式牛顿运动定律向心力公式圆的几何知识表达方式如何求运动时间、速度和位移如何求飞行时间、偏移量和偏转角-如何求时间和偏转角用匀变速直线运动的基本公式、导出公式和推论求解飞出电场时间:t=打在极板上t=偏移量:y=偏转角:tan-时间t=T(θ是圆心角,T是周期)偏转角sin θ=(l是磁场宽度,R是粒子轨道半径)α=运动情境2.解题思路题型1电场与磁场的组合例1如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。
初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。
已知OA=OC=d。
则磁感应强度B和电场强度E分别为多少?解析设带电粒子经电压为U的电场加速后速度为v,则qU=mv2带电粒子进入磁场后,由洛伦兹力提供向心力qBv=依题意可知r=d,联立解得B=带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=t2联立解得E=。
2022年高三物理二轮专题复习:带电粒子在复合场中的运动
带电粒子在复合场中的运动一、复合场的特点和分类1.特点:在题目中同时出现重力场、电场以及磁场中两个及以上的场力。
其中,重力和电场力一般为恒力,洛伦兹力一般为变力。
粒子在复合场中运动形式多样,可以是直线运动,亦可是曲线运动(包括抛体运动、匀速圆周运动等,不一而足)。
二、解题方法和步骤step 1.对带电粒子在复合场中进行正确的受力分析;step 2.根据动力学特点确定运动轨迹和运动规律;step 3.灵活列出动力学方程或者能量方程解题。
三、典例追踪例1.在竖直平面内存在水平向右的匀强电场、场强大小为E ,垂直纸面方向的匀强磁场,若要使带电小球沿着AB直线作匀速直线运动。
求:(1)匀强磁场的方向是垂直纸面向里、还是垂直纸面向外?(2)小球的电性应如何?例2.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅰ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。
一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M 点以速度v0 垂直于y轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示。
不计粒子重力,求(1)M、N两点间的电势差UMN ;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t。
例3 .如图,在水平地面上方有一范围足够大的互相正交的匀强电场和运强磁场区域,磁场的磁感应强度为B,方向水平并垂直纸面向里。
一质量为m,带电荷量为q的带正电微粒在此区域内沿竖直平面(垂直于磁场方向的平面)做速度大小为v的匀速圆周运动,重力加速度为g.求:(1)此区域内电场强度的大小和方向;(2)若某时刻微粒在电场中运动到p点时,速度与水平方向夹角为60度,且已知p点与水平地面之间的距离等于其做圆周运动的半径。
求该微粒运动到最高点时与水平地面之间的距离。
四、课后练习1.如图所示,从正离子源发射的正离子经加速电压U加速后进入相互垂直的匀强电场E(方向竖直向上)和匀强磁场B(方向垂直于纸面向外)中,发现离子向上偏转,要使此离子沿直线穿过电场,应当()A.增大电场强度E,减小磁感强度BB.减小加速电压U ,增大电场强度EC.适当地加大加速电压UD.适当地减小电场强度E2.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)。
一道高考题带来的思考——一种带电粒子在复合场中轨迹的处理方法
得的 蕞大速率v。
在教学 巾有 以下 的疑 问 ( )为 何在 最低 点 的曲 1 率半 径是该 点到 x 距离 的两倍 ( )此 曲线是何 种 轴 2
类 型 的 曲线 。
qv B
× × × × × × × ×
X
虽然 带电粒子 在复合场 中的受力 比较 简单 ,只受 到竖 直方向 的重力 和洛伦兹力 的作 用。但直接用 牛顿 定律结合运动学 方程来求解 ,比较 困难 。我们可 以转 换 思路 ,从: 外一个 角度来分析 。如果重力可 以被某
顿 中 万
( 中国科学院高能物理研 究所 10 4 ) 0 9 0
随着 物理新课 程改革 的推进 ,合作学 习在 课堂教 生 的创新 意识和实践 能力 ;有利于 学会尊重不 同的价 学 中得到 了』‘ 的推, 、 泛 与实施 , 但是仍存在流于形式 , 值观 ,有利 于形成积极健康 的人格 。
合作学 习: 0 是2 世纪后期在 美国教育 领域f 现并逐 地将合 作学 习运川 到课堂教学 中去 ,在一定程度一 活 { j k
步兴 起的一种全新 教学模式 ,它是构建主义学 习理论 跃 了教学气氛并提高 了教学效率 , 但仍存在很 多问题 。 学 习模式 的典 型代 表 ,是 目前世 界上许多 国家都普遍 采用 的一种 富有创意和实效 的教学理论 与策 略体系 。 1 流于形式 ,未 能发挥合作学 习的实际效用 有 些老师教 育观念 落后 ,角色 转变意识低 ,不注
分组不科学 ,责任不 明确 ,评价不全面等方面 的 题 。 二
针对 以上问题 ,需要 在课堂合作 学习的不 同阶段 从合
新课程下高 中物理课 堂合作学 习存在 的问题
对 于合作学 习方式 ,教师 和学生必将 经历一个从 从模仿其形式 到掌握其要领 的探索过程 。 作学 习理念 、合作 学习 目标 、合 作分组 、教学方 法及 陌生到熟悉 、 评价机制 等方 面进 行优 化。 在教学 实践 中,越来越 多的老师 和学生接纳并有 意识
带电粒子在复合场中运动专题分类
带电粒子在复合场中运动专题分类一、无约束匀速直线运动例:如图1所示,水平放置的两块带电金属板a 、b 平行正对。
极板长度为l ,板间距也为l ,板间存在着方向竖直向下的匀强电场和垂直于纸面向里磁感强度为B 的匀强磁场。
假设电场、磁场只存在于两板间的空间区域。
一质量为m 的带电荷量为q 的粒子(不计重力及空气阻力),以水平速度v 0从两极板的左端中间射入场区,恰好做匀速直线运动。
求:(1)金属板a 、b 间电压U 的大小;(2)若仅将匀强磁场的磁感应强度变为原来的2倍,粒子将击中上极板,求粒子运动到达上极板时的动能大小;(3)若撤去电场,粒子能飞出场区,求m 、v 0、q 、B 、l 满足的关系;(4)若满足(3)中条件,粒子在场区运动的最长时间。
练习:8、在平行金属板间,有如图2所示的相互正交的匀强电场的匀强磁场.α粒子以速度v 0从两板的正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的答案有:A .不偏转B .向上偏转C .向下偏转D .向纸内或纸外偏转⑴若质子以速度v 0从两板的正中央垂直于电场方向和磁场方向 射入时,将 ( ) ⑵若电子以速度v 0从两板的正中央垂直于电场方向和磁场方向射入时,将 ( )⑶若质子以大于的v 0速度,沿垂直于匀强电场和匀强磁场的方向从两板正中央射入,将( )⑷若增大匀强磁场的磁感应强度,其它条件不变,电子以速度v0沿垂直于电场和磁场的方向,从两板正中央射入时,将( )二、有约束匀速直线运动例:如图3所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量m ,带电量q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中,设小球电荷量不变,小球由静止下滑的过程中 A :小球速度一直增大,直到最后匀速 B :小球加速度一直增大C :小球对杆的弹力一直减小D :小球所受的洛伦兹力一直增大,直到最后不变练习:如图4所示,质量为m ,电量为Q 的金属滑块以某一初速度沿水平放置的木板进入电磁场空间,匀强磁场的方向垂直纸面向里,匀强电场的方向水平且平行纸面;滑块和木板间的动摩擦因数为 ,已知滑块由A 点至B 点是匀速的,且在B 点与提供电场的电路的控制开关K 相碰,使电场立即消失,滑块也由于碰撞动能减为碰前的1/4,其返回A 点的运动恰好也是匀速的,若往返总时间为T ,AB 长为L ,求:1、 滑块带什么电?场强E 的大小和方向?2、 磁感应强度的大小为多少?3、 摩擦力做多少功?三、无约束匀速圆周运动当带电粒子所受的重力与电场力平衡时,带电粒子可以在洛伦兹力的作用下,在垂直于磁场的平面内做匀速圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在复合场中运动题型方法一、带电粒子在复合场中做直线运动1.带电粒子在复合场中做匀速直线运动【方法攻略】粒子所受合外力为零时,所处状态一定静止或匀速直线运动。
类型一:粒子运动方向与磁场平行时(洛伦兹力为零),电场力与重力平衡,做匀速直线运动。
类型二:粒子运动方向与磁场垂直时,洛伦兹力、电场力与重力平衡,做匀速直线运动。
正确画出受力分析图是解题的关键。
【例1.】设在地面上方的真空中,存在的匀强电场和匀强磁场,已知电场强度和磁感应强度的方向相同,电场强度的大小E=4.0V/m,磁感应强度的大小B=0.15T,今有一个带负电的质点以v=20m/s的速度在此区域内沿垂直于场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m以及磁场所有可能的方向(角度可以用反三角函数表示)。
解析:(1)根据带电粒子做匀速直线运动的条件,可知带电粒子所受的电场力,重力、磁场力一定在同一竖直平面内,合力为零,如图所示,质点的速度方向一定垂直于纸面向外。
由共点力平衡的条件可知:,则(2)设磁场力方向与重力方向的夹角为θ,将电场力和洛仑兹力方向垂直于重力方向分解,则有:,解得,θ=arctan0.75 即磁场方向是沿着与重力方向夹角θ=arctan0.75,且斜向下方的一切方向。
点评:该题没有给出图示,需要学生自己在空间建立电场、磁场的方向以及三个共点力平衡的物理情景,对学生的知识和能力要求比较高。
2.带电粒子在复合场中做变速直线运动类型一:如果粒子在复合场中受轨道、支撑面、轻绳或轻杆等有形的约束时,可做变速直线运动。
解题时只要从受力分析入手,明确变力、恒力及做功等情况,就可用动能定理、牛顿运动定律、运动学相关知识进行求解。
【例2.】质量为m带电量为q的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数为μ。
匀强电场和匀强磁场的方向如图所示,电场强度为E,磁感应强度为B。
小球由静止释放后沿杆下滑。
设杆足够长,电场和磁场也足够大,求运动过程中小球的最大加速度和最大速度。
解析:设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)受力分析如图。
当洛伦兹力和电场力大小相等时,即qBv=Eq,在竖直方向上只受重力,合力最大,加速度最大,即a m=g。
当摩擦力和重力大小相等时,竖直方向上合力为零,速度达到最大值。
则竖直方向上:;水平方向上:。
联立解得:类型二:在无有形约束条件下,粒子受洛伦兹力、电场力、重力作用下,使与速度平行的方向上合力不等于零,与速度垂直的方向上合力等于零,粒子将做匀变速直线运动。
明确这一条件是解题的突破口。
【例3.】质量为m,电量为+q的小球以初速度v0以与水平方向成θ角射出,如图所示,如果在空间加上一定大小的匀强电场和匀强磁场后,能保证小球沿v0方向做匀减速直线运动,试求所加匀强电场的最小值和匀强磁场的方向,加了这个二个场后,经多长时间速度变为零?解析:由题知小球在重力和电场力作用下沿v0方向做匀减速直线运动,可知垂直v0方向上合外力为零,根据力的分解得,重力与电场力的合力沿v0所在直线.,磁场方向平行于v0所在直线。
建如图所示坐标系,设场强E与v0成φ角,则受力如图:由牛顿第二定律可得①②由①式得:③由③式得:φ=90°时,E最小为:,其方向与v0垂直斜向上,将φ=90°代入②式可得a=-g sinθ。
即在场强最小时,小球沿v0做加速度为a=-g sinθ的匀减速直线运动,设运动时间为t时速度为0,则:0=v0-g sinθt。
可得:点评:本题重在挖掘隐含条件:据“保证小球仍沿v0方向做匀减速直线运动”的条件,推测重力和电场力在垂直于v0方向合力为零,磁场方向平行于v0所在直线,考查学生分析综合能力及思维发散能力。
二、带电粒子在复合场中的曲线运动1.带电粒子在复合场中做圆周运动类型一:匀速圆周运动带电粒子在复合场中做匀速圆周运动时,必定有其它力与恒定的重力相抵消,以确保合力大小不变,方向时刻指向圆心。
一般情况下侧重考查重力恰好与电场力平衡,洛伦兹力充当向心力,粒子在竖直平面内做圆周运动这类题,它的隐含条件就是重力恰好与电场力平衡。
【例4.】场强为E的匀强电场和磁感强度为B的匀强磁场正交,如图所示,一质量为m的带电粒子,在垂直于磁场方向的平面内做半径为R的匀速圆周运动,设重力加速度为g,则下列说法正确的是()A.粒子带负电,且q=m/E B.粒子顺时针方向转动C.粒子速度大小为V=BRg/E D.粒子的机械能守恒解析:粒子做匀速圆周运动,受力分析如图7所示:所以粒子必需带负电。
由于粒子做匀速圆周运动,则有,解得:。
洛伦兹力提供向心力,则。
联立解得。
除重力做功之外,还有电场力做功,因此粒子的机械能不守恒。
故答案为ABC【变式训练1:】在如图所示的直角坐标系中,坐标原点O处固定有正点电荷,另有平行于y轴的匀强磁场.一个质量为m、带电量+q的微粒,恰能以y轴上点为圆心作匀速圆周运动,其轨迹平面与x O z平面平行,角速度为,旋转方向如图中箭头所示。
试求匀强磁场的磁感应强度大小和方向?类型二:若带电粒子运动的空间存在轨道、支撑面、轻绳、轻杆等有形的约束时,带电粒子在复合场中做匀变速圆周运动,一般应用牛顿运动定律和动能定理求解。
【例5.】如图所示,在水平正交的匀强电场和匀强磁场中,半径为R的光滑绝缘竖直圆环上,套有一个带正电的小球,已知小球所受电场力与重力相等,小球在环顶端A点由静止释放,则小球所能获得最大动能为多少?解析:小球下滑的过程中,要使动能最大,则需要速度最大,设在C点,重力和电场力的切向等大反向,速度最大,即,又因为。
解得:。
当小球从A到C的运动过程由动能定理可得:.联立解得最大动能:。
点评:图中从A到C,洛伦兹力始终不做功,重力和电场力的合力有切向分量,且与速度同向,因此做正功,小球动能增加;在C点时,该合力为径向,没有切向分力,此后切向分力与线速度反向,动能将减小,故在C点时速度最大。
2.带电粒子在复合场中做一般曲线运动【方法攻略】若带电粒子所受的合外力的大小、方向均是不断变化的,则带电粒子在复合场中将做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线。
处理此类问题,一般应用动能定理和能量守恒定律求解。
【例6.】设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示。
已知一离子在电场力和洛仑兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零。
C点是运动的最低点。
忽略重力,以下说法中正确的是:A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点后,将沿原曲线返回A点解析:因平行板间的电场方向向下,依题意离子由A点无初速度释放后向下运动,此时离子不受洛仑兹力,仅受电场力,则电场力方向向下,所以离子必须带正电,故A项正确。
离子到达B点时速度为零,由动能定理知,离子从A到B的运动过程中,外力对离子做功的代数和为零,但由于洛仑兹力不做功,故离子从A到B的运动过程中电场力做功为零,因此离子在A、B两点的电势能相等。
A、B两点的电势相等,即 A、B两点应在同一个高度,故B项正确。
由于C点是在运动的最低点,离子由A运动到C点电场力做功最多,由动能定理知,离子在C点的速度应最大,故C项正确。
离子运动到B点时,所处的运动状态与在A点时相同,离子达到B点后将要开始的运动也将向右偏,不可能回到A,故D错误。
点评:本例关键在于粒子的运动过程分析,对于做变加速曲线运动的粒子,受力分析和能量分析,是研究粒子在复合场中运动问题的两种基本方法。
三、带电粒子在组合式复合场中的分阶段运动【方法攻略】这类问题往往是粒子依次通过几个并列的场,如电场与磁场并列;其运动性质随区域场的变化而变化,解题的关键在于分析清楚在各个不同场中的受力及运动时的速度的关系,画出运动的草图。
【例7.】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。
一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图11所示。
不计粒子重力,求(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t 。
解析:根据粒子在不同区域内的运动特点和受力特点画出轨迹,分别利用类平抛和圆周运动的分析方法列方程求解。
(1) 设粒子过N 点时的速度为v ,有:=cos θ。
解得:v =2v 0。
粒子从M 点运动到N 点的过程,有:。
解得:U MN =(2) 粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,qvB = 解得:r =(3)由几何关系得ON =r sin θ。
设粒子在电场中运动的时间为t 1,有:ON =v 0t 1。
联立解得:t 1=。
粒子在磁场中做匀速圆周运动的周期T =,设粒子在磁场中运动的时间为t 2,有t 2=T ,t 2=。
t =t 1+t 2。
联立解得t =。
点评:组合场中电场和磁场是各自独立的,计算时可以单独使用带电粒子在电场或磁场中的运动公式来列式处理.电场中常有两种运动方式:加速或偏转;而匀强磁场中,带电粒子常做匀速圆周运动。
【变式训练2:】如图所示,X 轴上方有匀强磁场B ,下方有竖直向下匀强电场E 。
电量为q 、质量为m (重力不计),粒子静止在y 轴上。
X 轴上有一点N(L.0),要使粒子在y 轴上由静止释放而能到达N 点,问:(1)粒子应带何种电荷? 释放点M 应满足什么条件?(2)粒子从M 点运动到N 点经历多长的时间?1.解析:带电微粒受重力、库仑力、洛仑兹力的作用,这三个力的合力为向心力. 如图13所示,设圆轨迹半径为R .,圆周上一点和坐标原点连线与y 轴夹角为θ. 带电微粒动力学方程为:(1) (2)而 (3) (4)由各式消去和得: ,方向沿y 负方向。
2.解析:(1)设释放点M的坐标为(0,-y O),在电场中由静止加速,则:qEy O =mv2①在匀强磁场中粒子以速率V做匀速圆周运动,有:qBV=mV2/R ②设n为粒子做匀速圆周运动的次数(正整数)则:L=n2R,所以R=L/2n ③(2)粒子由M运动到N在电场中的加速运动和减速运动的次数为(2n-1)次,每次加速或减速的时间都相等,设为t1,则y O = at1 2=qEt12/m所以t1=粒子在磁场中做匀速圆周运动的半周期为t2,共n次,t2=πm/qB粒子从M点运动到N点共经历的时间为:t=(2n-1)t1+nt2=(2n-1)BL/2nE+nπm/qB (n=1、2、3……)。