中考数学专题复习16矩形折叠问题(最新整理)

合集下载

初三数学中考专题复习课件:矩形中的折叠问题

初三数学中考专题复习课件:矩形中的折叠问题

折叠后面积的求解
折叠后,矩形的面积可能 发生变化,需要求解新的 面积。
折叠问题的解题思路与技巧
分析图形特点
分析题目中给出的图形特点,确定折叠轴和 关键点。
利用勾股定理和三角函数
在解题过程中,可以利用勾股定理和三角函 数等数学知识进行计算。
建立数学模型
根据题目要求,建立相应的数学模型,如角 度、边长、面积等。
矩形的性质
对角都是直角
矩形的每个角都是直角,即90度。
对边平行且相等
矩形的两组对边平行且长度相等。
矩形的判定方法
01
02
03
定义法
根据矩形的定义,有一个 角是直角的平行四边形是 矩形。
对角线判定法
如果平行四边形的对角线 相等且互相平分,则它是 矩形。
技巧。
THANKS
感谢观看
GH的长为 _______.
02
答案
$frac{5}{2}$
03
练习题二
在矩形ABCD中,AB=4, BC=5,将矩形折叠,使点A 与点C重合,折痕为EF,则
△DEF的面积为 _______.
04
答案
$10$
05
总结与反思
本节课的重点与难点
重点
掌握矩形折叠问题的基本解题思路和方法,理解折叠前后图形的对应关系。
模拟试题解析
模拟题一
在矩形ABCD中,AB=4,BC=6,将 矩形折叠,使点B与点D重合,折痕 为EF,则△DEF的面积为 _______.
模拟题二
在矩形ABCD中,AB=3,BC=4,将 矩形折叠,使点A与点C重合,折痕为 EF,则△DEF的周长为 _______.
练习题与答案
01

中考数学专题复习矩形折叠问题完整版

中考数学专题复习矩形折叠问题完整版

中考数学专题复习矩形折叠问题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】中考数学专题复习16——矩形折叠问来源:【相信自己,掌握未来,家学网值得信赖!】 2012年05月18日2012中考数学专题复习16矩形折叠问题一.知识要点折叠问题实质是轴对称问题,其主要特征有:1.图形的全等性:重合部分是全等图形,对应边、对应角相等。

2.点的对称性:对称点连线被对称轴(折痕)垂直平分。

问题化归:1.直角三角形的三边关系(勾股定理)2.图形(三角形或四边形)的面积3.相似三角形的对应边成比例。

由以上等量关系得出方程解决问题。

二.例题精选例1.在长方形ABCD中,AB=8,BC=10,将图形沿着AE对折,使得D点落在BC边上的F处,试求EC的长.思路分析:找到由折叠产生的所有等量关系,其中也需要用到方程思想(设未知数,并表示出其他线段长度)例2.在长方形ABCD中,AB=4,BC=8,将图形沿着AC对折,如图所示:(1)请说明△ABF△CFF (2)求思路分析:在多问设置的证明题中,前几问往往是为后面的问题服务的;所以得到全等之后,也就是得到了多组等量关系,此时我们再来设未知数,自然可以表示出其他线段了.例3. 在长方形ABCD中,AB=3,BC=5,将图形沿着EF对折,使得B点与D点重合。

(1)说明DE=DF(2)求(3)求EF的长度思路分析:(1)要说明DE=DF,有两种思路:①可说明全等;②可说明△DEF是等腰三角形,DE、DF是两腰所以这个题目既要有能力说明全等也要有能力说明等腰例4 如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B 落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.(1)如图②,若M为AD边的中点,①,△AEM的周长=_____cm;②求证:EP=AE+DP;(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.思路分析:(1)①设AE=x,由折叠的性质可知EM=BE=12-x,在Rt△AEM中,运用勾股定理求AE;②过点F作FG⊥AB,垂足为G,连接BM,根据折叠的性质得点B和点M关于EF对称,即BM⊥EF,又AB=FG,∠A=∠EGF=90°,可证△ABM≌△GFE,把求EF的问题转化为求BM;(2)设AE=x,AM=y,则BE=EM=12-x,MD=12-y,在Rt△AEM中,由勾股定理得出x、y的关系式,可证Rt△AEM∽Rt△DMP,根据相似三角形的周长比等于相似比求△DMP的周长.三.能力训练1.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是().A.2+ B.2+2 C.12 D.182. 如图,已知矩形纸片ABCD,点E 是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为( ) A.4 B.3 C.2 D.13.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于()(A)144° (B)126° (C)108° (D)72°4.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,记与点A重合点为A',则△A'BG的面积与该矩形的面积比为()A. B. C. D.第4题图第5题图5.如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的处,点A对应点为,且=3,则AM的长是()A. B.2 C. D.6. 如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A’,D’处,则整个阴影部分图形的周长为()A.18cm B.36cm C.40cm D.72cm7. 如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm8. 小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为.9.如图矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是____________cm.10.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.思维拓展:1. 如图,折叠矩形的一边AD,折痕为AE,点E在边CD上,折叠后点D落在BC边的点F处,已知AB=8cm,AD=10cm,求AE的长.2.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折痕,且,求直线CE与x轴交点P的坐标;3.已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数的图象与AC边交于点E.请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点F的坐标;若不存在,请说明理由.4.如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原。

+2025年苏科版九年级中考数学专题复习课件+++矩形的折叠问题++

+2025年苏科版九年级中考数学专题复习课件+++矩形的折叠问题++

使点D落在BC边的一点F处,已知折
痕AE=55
cm,且tanEFC=
4 3
.
(1)
求证:AFB∽FEC;
(2)
求矩形ABCD的周长。
B
D E
FC
练习5 如图,将矩形纸片ABCD
E
沿一对角线BD折叠一次(折痕 A
与折叠后得到的图形用虚线表
F
示),将得到的所有的全等三角
形(包括实线、虚线在内)用符 号写出来。
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x.
(1)用x表示△AMN的面积SΔAMN。
(2)ΔAMN沿MN折叠,设点A关于ΔAMN对称的点为A¹, ΔA¹MN与四边形BCMN重叠部分的面积为y.①试求出 y与x的函数关系式,并写出自变量X的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多 少?
练习7 如图,把一张边长为a的正 A E
方形的纸进行折叠,使B点落在AD 上,问B点落在AD的什么位置时,
M
折起的面积最小,并求出这最小值。
B
解: 如图,设MN为折痕,折起部
分为梯形EGNM,B、E关于MN对
AE
称,所以BE⊥MN,且BO3 =EO,设
8
AE=x,则BE= 。
MO
由Rt△MOB∽
,得:
C
E
你能求出线段BE及折痕EF的
长吗?
3、在平面直角坐标系中,矩形OABC的两边OA、 OC分别落在x轴,y轴上,且OA=4,0C=3。
(1)求对角线OB所在直线的解析式;
y
B C

初三数学中考专题复习课件:矩形中的折叠问题

初三数学中考专题复习课件:矩形中的折叠问题

实际应用和拓展
矩形中的折叠问题在生 活中的应用
我们将探索矩形中的折叠问 题在实际生活中的应用场景, 例如纸艺折纸。
探索更复杂的折叠问题
我们将挑战和探索更复杂的 矩形中的折叠问题,提升解 题能如何将所学的解 题方法和策略应用于其他几 何形的折叠问题。
初三数学中考专题复习课 件:矩形中的折叠问题
通过本课件,我们将深入研究矩形中的折叠问题,探索其基本概念、解题方 法和实际应用,为中考备考提供全面指导。
问题的引入
在这一部分,我们将了解矩形中的折叠问题的定义,并探讨为什么我们需要学习和掌握这个问题。
基本概念和定义
折叠问题
矩形中的折叠问题是指如何将一个矩形纸张通过折叠变换成其他形状的问题。
术语和概念
我们将学习和理解与矩形中的折叠问题相关的基本术语和概念。
解题方法和策略
1
理解题目要求和条件
准确理解题目中给出的要求和条件是解决矩形中的折叠问题的第一步。
2
演算法解决问题
我们将学习和使用特定的演算法来解决各种类型的矩形中的折叠问题。
3
实例演练和练习题解析
通过实例演练和练习题的解析,我们将巩固和应用所学的解题方法和策略。

2023中考数学专题复习-矩形折叠问题(课件)

2023中考数学专题复习-矩形折叠问题(课件)

课外作业
1、如图,矩形纸片ABCD中,AB=3厘米,BC=4厘米,现
将A、C重合,再将纸片折叠压平,
(1)找出图中的一对全等三角形,并证明;
(2)△AEF是何种形状的三角形?说明你的理由;
(3)求AE的长.
G
(4)试确定重叠部分△AEF的面积.
A
FD
B E
C
2.(连云港中考)在矩形ABCD中,将点A翻折到对角线 BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD 上的点N处,折痕DF交BC于点F.
“折边”直角三角形
方程思想
勾股定理
拓展应用
1、如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点
处,如果∠BAF=60°,那么∠DAE等于
y
AD
B
E
O
x C
2、如图,将一矩形纸片OABC放在直角坐标系中,O为原 点,C在x轴上,OA=6,OC=10.在OA上取一点E,将△EOC沿 EC折叠,使O落在AB边上的D点,求E点的坐标.
数等于_5__6_°.
观察再思考
【问题2 】如图,矩形纸片ABCD中,AB=6cm,AD=8cm,
在BC上找一点F,沿DF折叠矩形ABCD,使C点落在对角线 BD上的点E处,此时折痕DF的长是多少?
A
D
6
4x
6
B 8-x
xC
结论:求线段长时,找到相应的“折边”直角三角形, 用勾股定理建立方程,利用方程思想解决问题.
(一)折叠后求角度
1.如图,将矩形纸片 ABCD 沿 BD 折叠,得到△BC′D,
C′D 与 AB 交于点 E.若∠1=35°,则∠2 的度数为
( A)
A.20°

矩形的折叠问题举例

矩形的折叠问题举例

矩形的折叠问题折叠的规律:1、重叠部分的线段、角相等。

2、对应点的连线段被折痕垂直平分。

例1、将一长方形纸片按如图的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( ).(A)60° (B)75° (C)90° (D)95°分析:在这个问题中是利用折叠矩形的两个角给大家提供条件的,那么折痕BC 和折痕BD 就充当了角平分线的角色,即∠ABC=∠A /BC,∠EBD=∠E /BD 。

例2、如图,把一张矩形纸片ABCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O 。

(1)由折叠可得△BCD ≌△BED ,除此之外,图中还存在其他的全等三角形,请你找出来 。

(2)图中有等腰三角形吗?请你找出来 。

(3)若AB=6,BC=8,则O 点到BD 的距离是 。

分析:在这一折叠的过程中,因为是与全等有关的,所以除了像例1一样提供了角的等量关系之外,边的相等是更重要的。

问题(1)好解决,进而由全等三角形的对应边相等可以说明(2)的结论是等腰△OBD 。

另外,还可以从另一个角度分析。

由折痕BD 可以找到∠OBD=∠CBD ,由于在矩形中,AD ∥BC ,∠ODB=∠CBD ,经过等量代换∠OBD =∠ODB ,然后等角对等边OB=OD 。

这是在矩形中折叠比较常见的“角平分线和平行线同时并存”的条件,结论就会出现“等角对等边”的等腰三角形。

问题(3)跟计算线段长度有关,这也是勾股定理在折叠中要发挥作用的一类题目。

因为AD =BC ,BC =BE ,因此在△ABO 中可以设AO =x ,则BO =OD =8-x ,因为AB =6,即可以列勾股定理的等式:AB 2+AO 2=BO 2进行计算了。

下面的这个题目就是用这个思路解决的。

例3、已知:如图,矩形AOBC ,以O 为坐标原点,OB ,OA 分别在x 轴、y 轴上,点A 坐标为(0,3),∠OAB =60°,以AB 为轴对折后,使C 点落在D 点处,求D点的坐标.OA CB E D例4、一个矩形纸片如图折叠,使顶点B 和D 重合,折痕为EF 。

初三数学中考专题复习课件:矩形中的折叠问题

初三数学中考专题复习课件:矩形中的折叠问题

是 1≤ A’B≤3 .
C
B (E)
A' 图1
D (F)
A
E
C
B
图5 A'
中考改编
在平面直角坐标系中,O为原点,矩形OABC的顶点A 在x轴的正半轴上,点C在y轴的正半轴上, OA=4,OC=2, 点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点 B1是点B关于PQ的对称点。
(1) 如图1,①求点B的坐标;
初三数学专题复习——
矩形中的折叠问题
动手折一折
如图矩形ABCD,在边BC上找一点E ,边 AD上找一点F , 将矩形沿着直线EF折叠,使 点A对应点A′落在BC边上.
D
A
C
B
动手折一折
如图矩形ABCD,在边BC上找一点E ,边 AD上找一点F , 将矩形沿着直线EF折叠,使 点A对应点A′落在BC边上.
B'
合作探究二
F
D
A
矩形ABCD中,AD=5,AB=3,
若点E,点F分别是边AB,边AD
上的点,将⊿AEF沿EF对折,使
C
点A落在边BC上,记为A′.观察
图形,请回答下列问题:
D
E
B
图4 A'
F
A
(1)如图1,BA’ = 3 .
(2)如图5,BA’ = 1 ,
5
AE= 3
.
(3)如图4,A’B的范围
D
F
A
C A'
EB B'
合作探究一
若矩形ABCD中,AD=5,AB=3.
(1)如图2, BA’= 3 。
(2)如图3, BA’= 5 。
(3)设BA’=x,当x的取值范围

矩形的折叠问题(专题)PPT课件

矩形的折叠问题(专题)PPT课件

感谢你的到来与聆听
学习并没有结束,希望继续 努力
Thanks for listening, this course is expected to bring you value and help
E
D
C
B →x
C
B →x
在直角三角形AED中,ED= ,AE= ,故OE= 。
故点D的坐标为(3/2√3 ,- 3/2)。
练习8 如图,在直角三角形ABC中, ∠C=90º,沿着B点的一条直线BE折
C E
叠这个三角形,使C点与AB边上的
一点D重合。当∠A满足什么条件时,
点D恰好是AB的中点?写出一个你 BDA
B
C
答案:△ABD≌△CDB, △CDB≌△EDB, △EDB≌△ABD, △ABF≌△EDF.
练习6 如图,矩形纸片ABCD, D F
C
若把ABE沿折痕BE上翻,使 A点恰好落在CD上,此时,
E
AE:ED=5:3,BE=55,求矩形
的长和宽。
A
B
答案:矩形的长为10,宽为8。
4、求线段与面积间的变化关系
线段的长,角的度数,图形的周长与面积的变化关 系等问题。
1、求线段与线段的大小关系
例1 如图,AD是ABC的中线,
ADC=45º,把ADC沿AD对
折,点C落在点C'的位置,求
BC'与BC之间的数量关系。
B
C' A
D
C
解 由轴对称可知 ADC ≌ ADC' , ADC'=ADC=45º, C'D=CD=BD BC´D为Rt BC’=2 BD= 2 BC
矩形的折叠问题
(复习课)

矩形中的折叠问题

矩形中的折叠问题

矩形中的折叠问题山东省枣庄市峄城区第二十八中学 潘歌 邮编:277300折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。

对于折叠问题(翻折变换)实质上就是轴对称变换.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。

一、求角度例1 如图 把一张矩形纸片ABCD 沿EF 折叠后,点C D ,分别落在C D '',的位置上,EC '交AD 于点G .已知58EFG ∠=°,那么BEG ∠= °.【解析】在矩形折叠问题中,折叠前后的对应角相等来解决。

解:根据矩形的性质AD ∥BC ,有∠EFG =∠FEC =58°,再由折叠可知,∠FEC =∠C ′EF =58°,由此得∠BEG =64°例2 将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD = 度.【解析】折叠前后的对应角相等.解:BC 、BD 是折痕,所以有∠ABC = ∠GBC ,∠EBD = ∠HBD 则∠CBD = 90°.例4 如图 四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )(A )34 (B )33 (C )24 (D )8【解析】在矩形折叠问题中,求折痕等线段长度时,往往利用轴对称性转化相等的线段,再借助勾股定理构造方程来解决.解:由折叠可知,AE =AB =DC =6,在Rt △ADE 中AD =6,DE =3由勾股定理,得AD =33,设EF =x ,则FC =x -33,在Rt △EFC 中由勾股定理求得x =32,则EF =32,在Rt △AEF 中,由勾股定理得AF =A .A B CDEFA B E C D F G C 'D 'C三、求图形面积例5如图3-1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图3-2所示的图形并在其一面着色,则着色部分的面积为( )A .234cmB .236cmC .238cmD .240cm解析:折叠后重合部分为直角三角形. 解:重合部分其面积为22122=⨯⨯,因此着色部分的面积=长方形纸条面积 - 两个重合部分三角形的面积,即20×2-2×2=36(2cm ).故选B .∴62 + (8 - x )2 = x2解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754 cm2四、数量及位置关系例7 如图 将矩形纸片ABCD 沿对角线BD 折叠,点C 落在点E处,BE 交AD 于点F ,连结AE .证明:(1)BF DF =. (2)AE BD ∥ 【解析】(1)欲证明BF =DF ,只需证∠FBD =∠FDB ; (2)欲证明AE BD ∥,则需证AEB DBE ∠=∠。

2023年河南省中考热点-矩形折叠专题

2023年河南省中考热点-矩形折叠专题

矩形中的折叠问题一、折叠问题常见的类型有:二、与折叠有关的计算常用性质:(1)折叠问题的本质是全等变换,折叠前的部分与折叠后的部分是全等图形;①线段相等:ED′=_____,EG=_____,FD′=____;②角度相等:∠D′=_____,∠D′EG=________;③全等关系:四边形FD′EG≌________________.(2)折痕可看作垂直平分线:GF⊥____,AO=_____(折痕垂直平分连接两个对应点的连线).(3)折痕可看作角平分线:∠EGF=________(对应线段所在的直线与折痕的夹角相等).类型一沿矩形对角线折叠1、如图,在矩形ABCD中,AB=12,AD=18,将△ADC沿AC折叠至△AD′C(点D的对应点为D′),AD′交BC于点E.(1)BE的长为_____;(2)△ACE的面积为_____.类型二折痕过矩形的一个顶点2、将一张矩形纸片ABCD按如图所示操作:图①图②(1)如图①,将DA沿DP向内折叠,使点A落在点A1处.(2)如图②,将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于点M.若P1M⊥AB,则∠DP1M的大小是( )A.135°B. 120°C. 112.5°D. 115°3、在矩形ABCD中,AB=4,BC=6,点E为BC边上的一点,将△ABE沿AE折叠至△AB′E(点B的对应点为点B′).(1)如图①,当点B′落在AD边上时,则CE的长为_____;(2)如图②,当B′C∥AE时,则BE的长为_____;4、如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平,E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN 上.若CD=5,则BE的长是________.5、如图,在矩形ABCD 中,AD=5,AB=a,点E在DC上,且DE=59a,把△ADE沿AE折叠,点D的对应点为点D′,若D′落在线段BC的垂直平分线上,则a的值为_______.图①图②6、如图,矩形ABCD中,点P为AD上一个动点,以PB 为对称轴将△APB折叠得到△EPB,点A的对称点为点E,射线BE交矩形ABCD的边于点F,若AB=4,AD=6,当点F为矩形ABCD边的中点时,AP的长为_____.7、如图,在矩形ABCD中,AB=5,BC=6,点M,N分别在AD,BC上,且AM13=AD,BN13=BC,E为直线BC上一动点,连接DE,将DCE沿DE所在直线翻折得到DC E',当点C'恰好落在直线MN上时,tan∠DEC的值是_______.8、如图1,F是矩形ABCD边上一点,将矩形沿AF折叠,点D落在BC上点E处,G是BC上一点(如图2),将ABG沿AG折叠,点B落在AE上点H处,如图3,若GHE△的两条直角边的比为3:4,则ADAB=_________.9、综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ 与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.类型三折痕经过矩形的两边1.折痕过邻边的两点10、如图,在矩形ABCD中,AB=3,AD=4,E,F分别是边BC,CD上的点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当△AEC′是以AE为腰的等腰三角形时,BE 的长为________.2. 折痕过对边的两点11、如图,将▱ABCD 沿EF 对折,使点A 落在点C 处,若∠A=60°,AD =4,AB =6,则AE 的长为______.12、在矩形ABCD 中.AB =4,BC =8,点E 、P 分别是线段BC 、AD 上的点. (1)如图①,将矩形ABCD 沿直线PE 折叠,使顶点B 恰好落在顶点D 处,则折痕PE 长为________;(2)如图②,将矩形纸片ABCD 沿直线PE 折叠,则图中阴影部分的周长为________; (3)如图③,将矩形ABCD 沿直线PE 折叠,使点B 恰好落在CD 边的三等分点处,则折痕PE 的长为________;13、如图,在矩形ABCD 中,AB =6, AD =8,将此矩形折叠,使点C 与点A 重合,点D 落在点D ′处,折痕为EF ,则AD ′的长为________, DD ′的长为________.图③图①图②答案1、答案5 782、答案C3、答案2、3解析:4、10√33解析:5、33【解析】6、43或4104【解析】如图1中,当点F 是AD 的中点时, ∵四边形ABCD 是矩形, ∵∵A =90°,AB =6,AF =3, ∵BF =22AB AF +=2243+=5,由翻折可知:AB =BE =4,设P A =PE =x ,则PF =3﹣x ,EF =5﹣4=1,在Rt∵PEF 中,∵PE 2+EF 2=PF 2, ∵x 2+12=(3﹣x )2, ∵x =43, ∵P A =43如图2中,当点F 是CD 的中点时,延长AD 交BF 的延长线于H .∵∵C =90°,BC =6,CF =DF =2, ∵BF =22BC CF +=210, ∵DH ∵BC , ∵∵H =∵FBC ,∵∵DFH =∵BFC ,DF =FC , ∵∵DHF ∵∵CBF (AAS ),∵DH =BC =6,FH =BF =210, ∵AB =BE =4,∵EF =210﹣4,EH =210﹣4+210=410﹣4, 设P A =PE =y ,则PD =6﹣y ,PH =6﹣y +6=12﹣y , 在Rt∵PEH 中,∵PE 2+EH 2=PH 2, ∵y 2+(410﹣4)2=(12﹣y )2, ∵y =41043-,∵P A =41043-, 综上所述,P A 的长为43或41043-.故答案为:43或41043-.7、解:如图1,当E 点在B 点左侧时,由折叠可知,CD =C 'D ,∵AB =5,BC =6,AM 13=AD ,BN 13=BC ,∵AM =2,BN =2,∵MD =4,在Rt ∵DMC '中,C 'M 222516C D MD =-=-'=3,∵tan ∵C 'DM 34=,∵∵C 'DM +∵MC 'D =90°,∵MC 'D +∵EC 'M =90°,∵∵C 'DM =∵EC 'M ,∴''tan tan C DM EC M ∠=,∵34EN C N '=,∵348EN=,∵EN =6,∵CE =10,∵tan ∵DEC 51102CD EC ===;如图2,当E 点在B、C 之间时,由折叠可知,CD =C 'D =5,∵MD =4,∵C 'M =3,∵C 'N =2,设CE =x ,则C 'E =x ,NE =4﹣x ,在Rt ∵NEC '中,C 'E 2=NE 2+C 'N 2,∵x 2=(4﹣x )2+4,∵x 52=,∵EC 52=,∵tan ∵DEC 552CD EC ===2;综上所述:tan ∵DEC 的值为2或12, 故答案为:2或12. 8、53或54【解析】∵GHE △的两条直角边的比为3:4, ∴34GH HE =或43GH HE =. ①当34GH HE =时,设3GH m =,则4HE m =, ∵四边形ABCD 是矩形, ∴90B D ∠=∠=︒.由题意ABG 折叠形成GHE △,∴90GHE D ∠=∠=︒,3BG GH m ==, ∴225GE GH HE m =+=,∴8BE BG GE m =+=, ∵3tan tan 4GEH AEB ∠=∠=, ∴34AB GH BE HE ==, ∴6AB m =, ∴2210AE AB BE m =+=.由题意ADF 折叠形成AEF ,∴10AD AE m ==, ∴10563AD m AB m ==. ②当43GH HE =时,设4GH n =,则3HE n =, 由①得90GHE D ∠=∠=︒,4BG GH n ==, ∴225GE GH HE n =+=,∴9BE BG GE n =+=, ∵4tan tan 3GEH AEB ∠=∠=, ∴43AB GH BE HE ==, ∴12AB n =. ∴2215AE AB BE n =+=,由题意ADF 折叠形成AEF ,∴15AD AE n ==, ∴155124AD n AB n ==. 故答案为:53或54.9、(1)BME ∠或ABP ∠或PBM ∠或MBC ∠(2)①15,15;②MBQ CBQ ∠=∠,理由见解析(3)4011AP =cm【解析】(1)由折叠可得,点E 是AB 的中点,AB =BM ,∠BEM =90°,∠ABP =∠PBM ,EF ∥BC ,在Rt △BEM 中,∵sin ∠BME = ,∴∠BME =30°,∴∠MBC =∠BME =30°,∴∠ABM =60°,∴∠ABP =∠PBM =30°,故可填:∠ABP 或∠PBM 或∠MBC 或∠BME.(2)①由(1)可知,∠MBC =30°,∵BM =BA =BC ,∠BMQ =∠C =90°,BQ =BQ ,∴Rt △BMQ ≌△BCQ(HL),∴∠MBQ =∠CBQ =15°.②MBQ CBQ ∠=∠理由如下:∵四边形ABCD 是正方形,∴AB =BC ,∠A =∠C =90°.由折叠的性质,得BM =AB ,∠BMP =∠A =90°.∴∠BMQ =∠C =90°,BM =BC.∵BQ =BQ ,∴Rt △MBQ ≌Rt △CBQ(HL).∴∠MBQ =∠CBQ ;(3)4011AP =cm 理由如下:当点Q 在CF 上时,如解图,∵BM =BA =BC ,∠BMQ =∠C =90°, BQ =BQ ,∴Rt △BMQ ≌Rt △BCQ(HL),∴MQ =CQ =4-1=3,∴DQ =5,设AP =x ,则PD =8-x ,PQ =3+x ,在Rt △PDQ 中,由勾股定理得(8-x)2+52=(3+x)2,解得x =4011 ;10、43 或 78【解析】①当AE =AC ′时,如图,过点A 作AG ⊥C ′E 于点G ,∵AE ⊥EF ,∴∠AEB +∠FEC =90°,∠AEG +∠FEG =90°,∵∠FEC =∠FEC ′,∴∠AEB =∠AEG ,在△ABE 和△AGE 中,90ABE AGE AEB AEG ,AE AE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△AGE(AAS),∴EG =BE ,设BE =x ,则CE =C ′E =4-x ,∵AE =AC ′,AG ⊥C ′E ,∴C ′E =2EG =2BE =2x ,∴4-x =2x ,解得x =43 ;②当AE =C ′E 时,∵C ′E =4-x ,AB =3,BE =x ,∴AE 2=AB 2+BE 2,∴32+x 2=(4-x)2,解得x = 78 . 综上所述,BE 的长为 43 或 78 . 11、19412、5 24解析403799或13、 6,145【解析】如解图,过点F 作FG ⊥D ′D 于点G ,连接AC ,交EF 于点H ,∴AC =AB 2+BC 2 =62+82 =10.由折叠的性质可知,AD ′=CD =6,AH =CH =12A C =5,∠AD ′F =∠ADC =90°,AC ∥DD ′,DF =D ′F ,设DF 的长为x ,则AF =8-x ,在Rt △AD ′F中,AF 2=AD ′2+D ′F 2,即(8-x )2=62+x 2,解得x =74 ,∴AF =254,∵AC ∥DD ′,∴△FGD ∽△FHA ,∴GD FD =HA F A ,即GD 74 =5254,解得GD =75 ,∴DD ′=2GD =145.。

矩形折叠问题(解析版)-中考数学训练

矩形折叠问题(解析版)-中考数学训练

矩形折叠问题模型的概述:已知矩形的长与宽,利用勾股定理、相似三角形及翻折的性质,求各线段边长。

解题方法:不找以折痕为边长的直角三角形,利用未知数表示其它直角三角形三边,通过勾股定理/相似三角形知识求解。

问题:根据已知信息,求翻折后各边长。

模型一:思路:模型二:思路:模型三:思路:尝试借助一线三垂直知识利用相似的方法求解模型四:思路:模型五:思路:模型六:点M ,点N 分别为DC ,AB 中点思路:模型七:点A '为BC 中点思路:过点F 作FH ⊥AE ,垂足为点H设AE =A 'E =x ,则BE =8-x 由勾股定理解得x =174∴BE=154由于△EBA '∽△A 'CG ∽△FD 'G ∴A 'G =3415CG =1615GD '=2615DF =D 'F =AH =134HE =1EF =17【培优过关练】1.(2022秋·山东青岛·九年级统考期末)如图,在正方形ABCD 中,AB =9,点E 、F 分别在边AB 、CD上,∠FEB =120°.若将四边形EBCF 沿EF 折叠,点C 恰好落在AD 边C 上,则C D 的长度为()A.3B.33C.32D.3【答案】B 【分析】根据翻折的性质和正方形及勾股定理的有关性质求解.【详解】解:在正方形ABCD 中,CD =AB =9,CD ∥AB ,∠D =90°,∴∠FEB +∠EFC =180°,∴∠EFC =∠C FE =60°,∴∠C FD =180°-∠EFC -∠C FE =60°,∴∠DC F =30°,∴C F =2DF ,又∵C F =CF ,CF +DF =9,∴DF =3,C F =6,∴C D =62-32=33,故选:B .【点睛】本题考查了翻折及正方形的性质,勾股定理的应用是解题的关键.2.(2022秋·江苏徐州·九年级校考阶段练习)如图,在矩形纸片ABCD 中,点E 在边AD 上,沿着BE 折叠使点A 落在边CD 上的点F 处,若tan ∠ABE =13,AD =3,则DF 的长为()A.1B.2C.43D.32【答案】A 【分析】先根据折叠的性质和正切的定义得出EF BF=13,再证明△DEF ∽△CFB ,最后利用相似三角形的性质得出结论.【详解】解:由折叠可知,∠ABE =∠FBE ,∴tan ∠ABE =tan ∠FBE =13,∴EF BF =13,∵∠EFB =∠C =∠D =90°,∴∠DFE +∠DEF =90°,∠DFE +∠BFC =90°,∴∠DEF =∠BFC ,∴△DEF ∽△CFB ,∴EF FB =DF CB=13,∵BC =AD =3,∴DF =1,故选:A .【点睛】本题考查了矩形中的折叠问题,涉及三角函数,相似三角形判定与性质等知识,解题的关键是证明△DEF ∽△CFB .3.(2022秋·福建泉州·九年级福建省惠安第一中学校联考期中)如图,在平面直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为1,3 ,将矩形沿对角线AC 折叠,使点B 落在D 点的位置,且交y 轴交于点E ,则点D 的坐标是()A.-35,83B.-35,2C.-45,145D.-45,125【答案】D【分析】过D 作DF ⊥AO 于F ,根据折叠可以证明△CDE ≌△AOE ,然后利用全等三角形的性质得到OE =DE ,OA =CD =1,设OE =m ,那么CE =3-m ,DE =m ,利用勾股定理即可求出m ,然后利用已知条件可以证明△AEO ∽△ADF ,而AD =AB =3,接着利用相似三角形的性质即可求出DF 、AF 的长度,也就求出了点D 的坐标.【详解】如图,过D 作DF ⊥AO 于F ,∵点B 的坐标为1,3 ,∴AO =1,AB =3,根据折叠可知CD =BC =OA ,而∠ADC =∠AOE =90°,∠DEC =∠AEO∴△CDE ≌△AOE ,∴OE =DE ,OA =CD =1,设OE =m ,那么CE =3-m ,DE =m ,在Rt △DCE 中,CE 2=DE 2+CD 2,∴3-m 2=m 2+12,解得m =43,∵DF ⊥AF ,∴DF ∥EO ,∴△AEO ∽△ADF而AD =AB =3,∴AE =CE =3-43=53,∴AE AD =EO DF =AO AF ,即533=43DF =1AF,∴DF =125,AF =95,∴OF =95-1=45,∴D 的坐标为-45,125,故选:D .【点睛】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.4.(2023春·广东广州·九年级专题练习)如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 落在对角线BD 上,折痕为DG ,点A 的对应点为A ,那么AG 的长为()A.1B.43C.32D.2【答案】C【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A B的长,然后由勾股定理可得方程:x2+22=4-x2,解此方程即可解决问题.【详解】解:设AG=x,∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=3,∴BD=AD2+AB2=5,由折叠的性质可得:A D=AD=3,A G=AG=x,∠DA G=∠A=90°,∴∠BA G=90°,BG=AB-AG=4-x,A B=BD-A D=5-3=2,∵在Rt△A BG中,A G2+A B2=BG2,∴x2+22=4-x2,解得:x=3 2,∴AG=32.故选:C.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.5.(2022秋·湖南邵阳·九年级校联考期中)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△HFG;③四边形BGDE的面积等于35;④AG+DF=FG.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=12∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,利用勾股定理得到x2+42=(8-x)2,得到AG=3,GF=5,于是可对④进行判断;接着证明△DEF∽△HFG,于是可对②进行判断;根据S四边形BGDE=S矩形ABCD -S△ABG-S△EBC可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,,∴∠EBG=∠EBF+∠FBG=12∠CBF+12∠ABF=12∠ABC=45°,所以①正确;在Rt△ABF中,AF=BF2-AB2=102-62=8,∴DF=AD-AF=10-8=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=10-6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8-x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;在△DEF中,DF=2,设DE=a,则CE=EF=6-a∴6-a2=a2+22解得a=8 3∴EC=6-83=103∵SΔABG=12×6×3=9,S△BCE=12×10×103=503,∴S四边形BGDE =S矩形ABCD-S△ABG-S△EBC=6×10-9-503=1033≠35.所以③不正确.∵DF=2,DE=83,EF=103,GH=3,HF=4,GF=5∴DF GH =DEHF=EFFG∴△DEF∽△HFG故②正确故选:C.【点睛】本题考查了矩形的折叠问题,勾股定理,相似三角形的性质与判定,掌握以上知识是解题的关键.6.(2022秋·广东梅州·九年级校考阶段练习)如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为()A.185B.6C.325D.365【答案】D【分析】连接BF ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC =90°,根据勾股定理求出答案.【详解】解:连接BF ,交AE 于H ,∵BC =12,点E 为BC 的中点,∴BE =6,又∵AB =8,∴AE =AB 2+BE 2=36+64=10,由折叠知,BF ⊥AE (对应点的连线必垂直于对称轴),∴BH =AB ×BE AE=245,则BF =485,∵FE =BE =EC ,∴∠EFB =∠EBF ,∠EFC =∠ECF ,∵∠EFB +∠EBF +∠EFC +∠ECF =180°,∴∠BFC =90°,∴CF =BC 2-BF 2=122-485 2=365,故选:D .【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.7.(2022秋·广西贵港·九年级统考期中)如图,在矩形纸片ABCD 中,AB =8,BC =11,M 是BC 上的点,且CM =3,将矩形纸片ABCD 沿过点M 的直线折叠,使点D 落在AB 上的点P 处,点C 落在点C 处,折痕为MN ,当PC 与线段BC 交于点H 时,则线段BH 的长是()A.3B.5516C.4D.7316【答案】B 【分析】连接PM ,证明△PBM ≌△PC M 即可得到CM =C M =PB =3,证明△PBH ≌△C MH ,得出BH =HC =x ,然后列出关于x 的方程,解方程即可.【详解】解:连接PM ,如图所示:∵矩形纸片ABCD 中,AB =8,BC =11,∴CD =AB =8,∠A =∠B =∠C =∠D =90°,∵CM =3,∴BM =11-3=8,根据折叠可知,CD =PC =8,∠C =∠C =90°,C M =CM =3,∴∠B =∠C ,∴BM =PC =8,∵PM =PM ,∴Rt △PBM ≌Rt △PC M HL ,∴C M =PB =3,∵∠PHB =∠C HM ,∠B =∠C ,∴△PBH ≌△C MH ,∴BH =HC ,设BH =HC =x ,则HM =8-x ,∵HM 2=HC 2+C M 2,∴8-x 2=x 2+32,解得:x =5516,∴BH =5516,故B 正确.故选:B .【点睛】本题考查矩形的折叠问题,解题的关键是看到隐藏条件BM =PC =8,证明三角形全等,学会利用翻折不变性解决问题.8.(2022秋·山东枣庄·九年级校考期中)如图,边长为2的正方形ABCD 的对角线AC 与BD 交于点O ,将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处,折痕DF 交AC 于点M ,则OM =()A.12B.2-2C.3-1D.2-1【答案】B【分析】根据题意先求BD =2AB =22,OD =2,再求BE =EF =CF =BD -DE =BD -CD =22-2,进而根据△ODM ∽△CDF 的线段比例关系,即可求出OM 的长.【详解】解:如图,连接EF ,∵四边形ABCD 是正方形,∴AB =AD =BC =CD =2,∠BCD =∠COD =∠BOC =90°,OD =OC ,∴BD =2AB =22,OD =2,由折叠的性质可知,∠OEF =∠DCB =90°,∠EDF =∠CDF ,DE =CD ,∴∠BEF =90°,∴∠BFE =∠FBE =45°,∴△BEF 是等腰直角三角形,∴BE =EF =CF =BD -DE =BD -CD =22-2,∵∠DCB =∠COD =90°,∠EDF =∠CDF ,∴△ODM ∽△CDF ,∴OM CF =OD CD ,即OM 22-2=22,∴OM =2-2.故选:B .【点睛】本题主要考查图形的翻折,熟练掌握图形翻折的性质,正方形的性质,等腰直角三角形的性质及相似三角形的判定和性质是解题的关键.9.(2022·辽宁营口·统考中考真题)如图,在矩形ABCD 中,点M 在AB 边上,把△BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF ⊥EC ,垂足为F ,若CD =1,CF =2,则线段AE 的长为()A.5-2B.3-1C.13D.12【答案】A【分析】先证明△BFC≌△CDE,可得DE=CF=2,再用勾股定理求得CE=5,从而可得AD= BC=5,最后求得AE的长.【详解】解:∵四边形ABCD是矩形,∴BC=AD,∠ABC=∠D=90°,AD∥BC,∴∠DEC=∠FCB,∵BF⊥EC,∴∠BFC=∠CDE,∵把△BCM沿直线CM折叠,使点B落在AD边上的点E处,∴BC=EC,在△BFC与△CDE中,∠DEC=∠FCB ∠BFC=∠CDE BC=EC∴△BFC≌△CDE(AAS),∴DE=CF=2,∴CE=CD2+DE2=12+22=5,∴AD=BC=CE=5,∴AE=AD-DE=5-2,故选:A.【点睛】本题考查了矩形的性质、全等三角形的判定和性质、折叠的性质,勾股定理的应用,解决本题的关键是熟练掌握矩形中的折叠问题.10.(2022·贵州毕节·统考中考真题)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是()525【答案】D【分析】连接BF交AE于点G,根据对称的性质,可得AE垂直平分BF,BE=FE,BG=FG=12BF,根据E为BC中点,可证BE=CE=EF,通过等边对等角可证明∠BFC=90°,利用勾股定理求出AE,再利用三角函数(或相似)求出BF,则根据FC=BC2-BF2计算即可.【详解】连接BF,与AE相交于点G,如图,∵将△ABE沿AE折叠得到△AFE∴△ABE与△AFE关于AE对称∴AE垂直平分BF,BE=FE,BG=FG=12BF∵点E是BC中点∴BE=CE=DF=12BC=3∴AE=AB2+BE2=42+32=5∵sin∠BAE=BEAE =BG AB∴BG=BE⋅ABAE =3×45=125∴BF=2BG=2×122=245∵BE=CE=DF∴∠EBF=∠EFB,∠EFC=∠ECF∴∠BFC=∠EFB+∠EFC=180°2=90°∴FC=BC2-BF2=62-2452=185故选D【点睛】本题考查了折叠对称的性质,熟练运用对称性质证明相关线段相等是解题的关键.11.(2022·四川宜宾·统考中考真题)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()17151715【答案】C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明ΔAFD≌ΔEFB,得出AF=EF,DF= BF,设AF=EF=x,则BF=5-x,根据勾股定理列出关于x的方程,解方程得出x的值,最后根据余弦函数的定义求出结果即可.【详解】解:∵四边形ABCD为矩形,∴CD=AB=5,AB=BC=3,∠A=∠C=90°,根据折叠可知,BE=BC=3,DE=DE=5,∠E=∠C=90°,∴在△AFD和△EFB中∠A=∠E=90°∠AFD=∠EFB AD=BE=3 ,∴ΔAFD≌ΔEFB(AAS),∴AF=EF,DF=BF,设AF=EF=x,则BF=5-x,在RtΔBEF中,BF2=EF2+BE2,即5-x2=x2+32,解得:x=85,则DF=BF=5-85=175,∴cos∠ADF=ADDF =3175=1517,故C正确.故选:C.【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明ΔAFD≌ΔEFB,是解题的关键.12.(2022·浙江湖州·统考中考真题)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10B.HG=2C.EG∥FHD.GF⊥BC 【答案】D【分析】根据矩形的性质以及勾股定理即可判断A,根据折叠的性质即可求得HD,BG,进而判断B,根据折叠的性质可得∠EGB=∠FHD=90°,进而判断C选项,根据勾股定理求得CF的长,根据平行线线段成比例,可判断D选项【详解】∵BD是矩形ABCD的对角线,AB=6,BC=8,∴BC=AD=8,AB=CD=6∴BD=BC2+CD2=10故A选项正确,∵将△ABE沿BE翻折,将△DCF沿DF翻折,∴BG=AB=6,DH=CD=6∴DG=4,BH=BD-HD=4∴HG=10-BH-DG=10-4-4=2故B选项正确,∵EG⊥BD,HF⊥DB,∴EG∥HF,故C正确设AE=a,则EG=a,∴ED=AD-AE=8-a,∵∠EDG=∠ADB∴tan∠EDG=tan∠ADB即EGDG=ABAD=68=34∴a 4=34∴AE=3,同理可得CF=3若FG∥CD则CFBF=GDBG∵CF BF =35,GDBG=46=23,∴CF BF ≠GD BG,∴FG不平行CD,即GF不垂直BC,故D不正确.故选D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,平行线分线段成比例,掌握以上知识是解题的关键.13.(2022·江苏连云港·统考中考真题)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=435AD;③GE=6DF;④OC=22OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④【答案】B【分析】由折叠的性质知∠FGE=90°,∠GEC=90°,点G为AD的中点,点E为AB的中点,设AD =BC=2a,AB=CD=2b,在Rt△CDG中,由勾股定理求得b=2a,然后利用勾股定理再求得DF=FO=a2,据此求解即可.【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,∴∠FGE=∠OGF+∠OGE=12(∠DGO+∠AGO)=90°,同理∠GEC=90°,∴∠FGE+∠GEC=180°∴GF∥EC;故①正确;根据折叠的性质知DG=GO,GA=GO,∴DG=GO=GA,即点G为AD的中点,同理可得点E为AB的中点,设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,∴GC=3a,在Rt△CDG中,CG2=DG2+CD2,即(3a)2=a2+(2b)2,∴b=2a,∴AB=22a=2AD,故②不正确;设DF=FO=x,则FC=2b-x,在Rt△COF中,CF2=OF2+OC2,即(2b-x)2=x2+(2a)2,∴x =b 2-a 2b =a 2,即DF =FO =a 2,GE =a 2+b 2=3a ,∴GE DF =3aa 2=6,∴GE =6DF ;故③正确;∴OC OF =2a a 2=22,∴OC =22OF ;故④正确;∵∠FCO 与∠GCE 不一定相等,∴△COF ∽△CEG 不成立,故⑤不正确;综上,正确的有①③④,故选:B .【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14.(2021·广西来宾·统考中考真题)如图,矩形纸片ABCD ,AD :AB =2:1,点E ,F 分别在AD ,BC 上,把纸片如图沿EF 折叠,点A ,B 的对应点分别为A ,B ,连接AA 并延长交线段CD 于点G ,则EF AG的值为()A.22B.23C.12D.53【答案】A【分析】根据折叠性质则可得出EF 是AA 的垂直平分线,则由直角三角形性质及矩形性质可得∠AEO =∠AGD ,∠FHE =∠D =90°,根据相似三角形判定推出△EFH ∽△GAD ,再利用矩形判定及性质证得FH =AB ,即可求得结果.【详解】解:如图,过点F 作FH ⊥AD 于点H ,∵点A ,B 的对应点分别为A ,B ,∴EA =EA ,FB =FB ,∴EF是AA'的垂直平分线.∴∠AOE=90°.∵四边形ABCD是矩形,∴∠BAD=∠B=∠D=90°.∴∠OAE+∠AEO=∠OAE+∠AGD,∴∠AEO=∠AGD.∵FH⊥AD,∴∠FHE=∠D=90°.∴△EFH∽△GAD.∴EF AG =FH AD.∵∠AHF=∠BAD=∠B=90°,∴四边形ABFH是矩形.∴FH=AB.∴EF AG =FHAD=ABAD=12=22;故选:A.【点睛】本题考查了矩形的折叠问题,掌握折叠的性质、矩形及相似三角形的判定与性质是解题的关键.15.(2011·吉林长春·中考真题)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6【答案】D【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,CF=CE2-EF2=52-32=4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点睛】本题考查了翻折变换(折叠问题),勾股定理,解题的关键是利用勾股定理建立等式求解.16.(2020·广东深圳·统考中考真题)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°.其中正确的结论共有()A.1个B.2个C.3个D.4个【答案】C【分析】由折叠的性质可得四边形EBFG是菱形从而判断①②正确;由角平分线定理即可判断DG≠GH,由此推出③错误;根据F、C重合时的性质,可得∠AEB=30°,进而算出④正确.【详解】连接BE,由折叠可知BO=GO,∵EG⎳BF,∴∠EGO=∠FBO,又∵∠EOG=∠FOB,∴△EOG≌△FOB(ASA),∴EG=BF,∴四边形EBFG是平行四边形,由折叠可知BE=EG,则四边形EBFG为菱形,故EF⊥BG,GE=GF,∴①②正确;∵四边形EBFG为菱形,∴KG平分∠DGH,∴,DG≠GH,∴S△GDK≠S△GKH,故③错误;当点F与点C重合时,BE=BF=BC=12=2AB,∴∠AEB=30°,∠DEF=12∠DEB=75°,故④正确.综合,正确的为①②④.故选C.【点睛】本题考查矩形的性质,菱形的判断,折叠的性质,关键在于结合图形对线段和角度进行转换.17.(2020·内蒙古呼和浩特·中考真题)如图,把某矩形纸片ABCD沿EF,GH折叠(点E、H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A 、D点的对称点为D ,若∠FPG=90°,△A EP的面积为8,△D PH的面积为2,则矩形ABCD的长为()A.65+10B.610+52C.35+10D.310+52【答案】D【分析】设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出D′H=12x,由S△D′PH=12D′P·D′H=12A′P·D′H,可解得x=22,分别求出PE和PH,从而得出AD的长.【详解】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为8,△D′PH的面积为2,又∵∠FPG=90°,∠A′PF=∠D′PG=90°,∴∠A′PD′=90°,则∠A′PE+∠D′PH=90°,∴∠A′PE=∠D′HP,∴△A′EP∽△D′PH,∴A′P2:D′H2=8:2,∴A′P:D′H=2:1,∵A′P=x,∴D ′H =12x ,∵S △D ′PH =12D ′P ·D ′H =12A ′P ·D ′H ,即12⋅x ⋅12x =2,∴x =22(负根舍弃),∴AB =CD =22,D ′H =DH =2,D ′P =A ′P =CD =22,A ′E =2D ′P =42,∴PE =42 2+22 2=210,PH =22 2+2 2=10,∴AD =42+210+10+2=52+310,故选D .【点睛】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.18.如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则cos ∠ADF 的值为()A.1113B.1315C.1517D.1719【答案】C【分析】根据折叠的性质可得出DC =DE 、CP =EP ,由∠EOF =∠BOP 、∠B =∠E 、OP =OF 可得出△OEF ≌△OBP (AAS ),根据全等三角形的性质可得出OE =OB 、EF =BP ,设EF =x ,则BP =x 、DF =4-x 、BF =PC =3-x ,进而可得出AF =1+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出cos ∠ADF 的值.【详解】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∠EOF =∠BOP∠E =∠B =90°OF =OP,∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE -EF =4-x ,又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,∴AF =AB -BF =1+x .在Rt △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4-x )2,解得:x =35,∴DF =4-x =175,∴cos ∠ADF =AD DF =1517,故选C .【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF =1+x ,求出AF 的长度是解题的关键.19.(2022·山东泰安·统考中考真题)如图,四边形ABCD 为正方形,点E 是BC 的中点,将正方形ABCD沿AE 折叠,得到点B 的对应点为点F ,延长EF 交线段DC 于点P ,若AB =6,则DP 的长度为___________.【答案】2【分析】连接AP ,根据正方形的性质和翻折的性质证明Rt △AFP ≌Rt △ADP (HL ),可得PF =PD ,设PF =PD =x ,则CP =CD -PD =6-x ,EP =EF +FP =3+x ,然后根据勾股定理即可解决问题.【详解】解:连接AP ,如图所示,∵四边形ABCD 为正方形,∴AB =BC =AD =6,∠B =∠C =∠D =90°,∵点E 是BC 的中点,∴BE =CE =12AB =3,由翻折可知:AF =AB ,EF =BE =3,∠AFE =∠B =90°,∴AD =AF ,∠AFP =∠D =90°,在Rt △AFP 和Rt △ADP 中,AP =AP AF =AD ,∴Rt △AFP ≌Rt △ADP (HL ),∴PF =PD ,设PF =PD =x ,则CP =CD -PD =6-x ,EP =EF +FP =3+x ,在Rt △PEC 中,根据勾股定理得:EP 2=EC 2+CP 2,∴(3+x )2=32+(6-x )2,解得x =2,则DP 的长度为2,故答案为:2.【点睛】本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.20.(2022·贵州黔东南·统考中考真题)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm .【答案】53##123【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明ΔFEG ∼ΔFBM ,利用相似三角形对应边成比例可求出FG .【详解】解:连接DF ,如图,∵四边形ABCD 是正方形,∴AB =BC =CD =DA =4,∠A =∠B =∠C =∠CDA =90°.∵点M 为BC 的中点,∴BM =CM =12BC =12×4=2由折叠得,ME =CM =2,DE =DC =4,∠DEM =∠C =90°,∴∠DEF =90°,∠FEG =90°,设FE =x ,则有DF 2=DE 2+EF 2∴DF 2=42+x 2又在Rt ΔFMB 中,FM =2+x ,BM =2,∵FM 2=FB 2+BM 2∴FB =FM 2-BM 2=(2+x )2-22∴AF =AB -FB =4-(2+x )2-22在Rt ΔDAF 中,DA 2+AF 2=DF 2,∴42+4-2+x 2-22 2=42+x 2,解得,x 1=43,x 2=-8(舍去)∴FE =43,∴FM =FE +ME =43+2=103∴FB =2+43 2-22=83∵∠DEM =90°∴∠FEG =90°∴∠FEG =∠B ,又∠GFE =∠MFB .∴△FEG ∼ΔFBM∴FG FM =FE FB ,即FG 103=4383∴FG =53,故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.21.(2022·浙江丽水·统考中考真题)如图,将矩形纸片ABCD 折叠,使点B 与点D 重合,点A 落在点P处,折痕为EF .(1)求证:△PDE ≌△CDF ;(2)若CD =4cm ,EF =5cm ,求BC 的长.【答案】(1)证明见解析(2)163cm 【分析】(1)利用ASA 证明即可;(2)过点E 作EG ⊥BC 交于点G ,求出FG 的长,设AE =xcm ,用x 表示出DE 的长,在Rt △PED 中,由勾股定理求得答案.【详解】(1)∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠B =∠ADC =∠C =90°,由折叠知,AB =PD ,∠A =∠P ,∠B =∠PDF =90°,∴PD =CD ,∠P =∠C ,∠PDF =∠ADC ,∴∠PDF -∠EDF=∠ADC -∠EDF ,∴∠PDE =∠CDF ,在△PDE 和△CDF 中,∠P =∠CPD =CD ∠PDE =∠CDF,∴△PDE≌△CDF(ASA);(2)如图,过点E作EG⊥BC交于点G,∵四边形ABCD是矩形,∴AB=CD=EG=4cm,又∵EF=5cm,∴GF=EF2-EG2=3cm,设AE=xcm,∴EP=xcm,由△PDE≌△CDF知,EP=CF=xcm,∴DE=GC=GF+FC=3+x,在Rt△PED中,PE2+PD2=DE2,即x2+42=3+x2,解得,x=7 6,∴BC=BG+GC=76+3+76=163(cm).【点睛】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,根据翻折变换的性质将问题转化到直角三角形中利用勾股定理是解题的关键.22.(2022·河南·统考中考真题)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.【答案】(1)∠BME或∠ABP或∠PBM或∠MBC(2)①15,15;②∠MBQ=∠CBQ,理由见解析(3)AP=4011cm或2413cm【分析】(1)根据折叠的性质,得BE=12BM,结合矩形的性质得∠BME=30°,进而可得∠ABP=∠PBM=∠MBC=30°;(2)根据折叠的性质,可证RtΔBQM≅RtΔBQC HL,即可求解;(3)由(2)可得QM=QC,分两种情况:当点Q在点F的下方时,当点Q在点F的上方时,设AP= PM=x,分别表示出PD,DQ,PQ,由勾股定理即可求解.(1)解:∵AE=BE=12AB,AB=BM∴BE=12BM∵∠BEM=90°,sin∠BME=BEBM =12∴∠BME=30°∴∠MBE=60°∵∠ABP=∠PBM∴∠ABP=∠PBM=∠MBC=30°(2)∵四边形ABCD是正方形∴AB=BC,∠A=∠ABC=∠C=90°由折叠性质得:AB=BM,∠PMB=∠BMQ=∠A=90°∴BM=BC①∵BM=BC,BQ=BQ∴RtΔBQM≅RtΔBQC HL∴∠MBQ=∠CBQ∵∠MBC=30°∴∠MBQ=∠CBQ=15°②∵BM=BC,BQ=BQ∴RtΔBQM≅RtΔBQC HL∴∠MBQ =∠CBQ(3)当点Q 在点F 的下方时,如图,∵FQ =1cm ,DF =FC =4cm ,AB =8cm∴QC =CD -DF -FQ =8-4-1=3(cm ),DQ =DF +FQ =4+1=5(cm )由(2)可知,QM =QC设AP =PM =x ,PD =8-x ,∴PD 2+DQ 2=PQ 2,即8-x 2+52=x +3 2解得:x =4011∴AP =4011cm ;当点Q 在点F 的上方时,如图,∵FQ =1cm ,DF =FC =4cm ,AB =8cm∴QC =5cm ,DQ =3cm ,由(2)可知,QM =QC设AP =PM =x ,PD =8-x ,∴PD 2+DQ 2=PQ 2,即8-x 2+32=x +5 2解得:x =2413∴AP =2413cm .【点睛】本题主要考查矩形与折叠,正方形的性质、勾股定理、三角形的全等,掌握相关知识并灵活应用是解题的关键.23.(2022·吉林长春·统考中考真题)【探索发现】在一次折纸活动中,小亮同学选用了常见的A 4纸,如图①,矩形ABCD 为它的示意图.他查找了A 4纸的相关资料,根据资料显示得出图①中AD =2AB .他先将A 4纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E ,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H ,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想△ADG ≌△AFG .【问题解决】(1)小亮对上面△ADG≌△AFG的猜想进行了证明,下面是部分证明过程:证明:四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF=12∠BAD=45°,∠BFA=∠EFA.∴∠EFA=∠BFA=45°.∴AF=2AB=AD.请你补全余下的证明过程.【结论应用】(2)∠DAG的度数为________度,FGAF的值为_________;(3)在图①的条件下,点P在线段AF上,且AP=12AB,点Q在线段AG上,连结FQ、PQ,如图②,设AB=a,则FQ+PQ的最小值为_________.(用含a的代数式表示)【答案】(1)见解析(2)22.5°,2-1.(3)52a【分析】(1)根据折叠的性质可得AD=AF,∠AFG=∠D=90°,由HL可证明结论;(2)根据折叠的性质可得∠DAG=12∠DAF=22.5°;证明ΔGCF是等腰直角三角形,可求出GF的长,从而可得结论;(3)根据题意可知点F与点D关于AG对称,连接PD,则PD为PQ+FQ的最小值,过点P作PR⊥AD,求出PR=AR=24a,求出DR,根据勾腰定理可得结论.【详解】(1)证明:四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF=12∠BAD=45°,∠BFA=∠EFA.∴∠EFA=∠BFA=45°.∴AF=2AB=AD.由折叠得,∠CFG=∠GFH=45°,∴∠AFG=∠AFE+∠GFE=45°+45°=90°∴∠AFG=∠D=90°又AD=AF,AG=AG∴△ADG≌△AFG(2)由折叠得,∠BAF=∠EAF,又∠BAF+∠EAF=90°∴∠EAF=12∠BAE=12×90°=45°,由△ADG≌△AFG得,∠DAG=∠FAG=12∠FAD=12×45°=22.5°,∠AFG=∠ADG=90°,又∠AFB=45°∴∠GFC=45°,∴∠FGC=45°,∴GC=FC.设AB=x,则BF=x,AF=2x=AD=BC,∴FC=BC-BF=2x-x=(2-1)x∴GF=2FC=(2-2)x∴GF AF =(2-2)x2x=2-1.(3)如图,连接FD,∵DG=FG∴AG是FD的垂直平分线,即点F与点D关于AG轴对称,连接PD交AG于点Q,则PQ+FQ的最小值为PD的长;过点P作PR⊥AD交AD于点R,∵∠DAF=∠BAF=45°∴∠APR=45°.∴AR=PR又AR2+PR2=AP2=a22=a24∴AR=PR=24a,∴DR=AD-AR=2a-24a=342a在RtΔDPR中,DP2=AR2+PR2∴DP =AR 2+PR 2=24a 2+324a 2=52a ∴PQ +FQ 的最小值为52a 【点睛】本题主要考查了折叠的性质,全等三角形的判定与性质,最短路径问题,矩形的性质以及勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.24.(2021·湖北荆州·统考中考真题)在矩形ABCD 中,AB =2,AD =4,F 是对角线AC 上不与点A ,C重合的一点,过F 作FE ⊥AD 于E ,将△AEF 沿EF 翻折得到△GEF ,点G 在射线AD 上,连接CG .(1)如图1,若点A 的对称点G 落在AD 上,∠FGC =90°,延长GF 交AB 于H ,连接CH .①求证:△CDG ∽△GAH ;②求tan ∠GHC .(2)如图2,若点A 的对称点G 落在AD 延长线上,∠GCF =90°,判断△GCF 与△AEF 是否全等,并说明理由.【答案】(1)①见解析;②23;(2)不全等,理由见解析【分析】(1)①先根据同角的余角相等得出∠DCG =∠AGH ,再根据两角对应相等,两三角形相似即可得出结论;②设EF =x ,先证得△AEF ~△ADC ,得出EF AE =CD AD=24=12,再结合折叠的性质得出AE =EG =2x ,AG =4x ,AH =2EF =2x ,再由△CDG ~△GAH ,得出比例式AG DC =AH DG =HG CG ,求出EF 的长,从而得出HGCG的值,即可得出答案;(2)先根据两角对应相等,两三角形相似得出△AEF~△ACG,得出比例式AEAC =AFAG,得出EF=5 4,AE=52,AF=545,从而判定△GCF与△AEF是否全等.【详解】(1)①在矩形ABCD中,∠BAD=∠D=90°∴∠DCG+∠DGC=90°又∵∠FGC=90°∴∠AGH+∠DGC=90°∴∠DCG=∠AGH∴△CDG~△GAH②设EF=x∵△AEF沿EF折叠得到△GEF∴AE=EG∵EF⊥AD∴∠AEF=90°=∠D∴EF⎳CD⎳AB∴△AEF~△ADC∴EF CD =AE AD∴EF AE =CDAD=24=12∴AE=EG=2x∴AG=4x∵AE=EG,EF⎳AB∴EF AH =EGAG=12∴AH=2EF=2x ∵△CDG~△GAH∴AG DC =AHDG=HGCG∴4x2=2x4-4x=HGCG∴x=34∴4x2=32=HGCG∵∠FCG=90°∴tan∠GHC=CGHG =23(2)不全等理由如下:在矩形ABCD中,AC=AB2+AD2=22+42=25由②可知:AE=2EF∴AF=AE2+EF2=5EF由折叠可知,AG=2AE=4EF,AF=GF∵∠AEF=∠GCF,∠FAE=∠GAC∴△AEF~△ACG∴AE AC =AF AG∴2EF 25=54∴EF=54∴AE=52,AF=545∴FC=AC-AF=25-545=345∴AE≠FC,EF≠FC∴不全等【点睛】本题考查了矩形的性质,翻折变换,相似三角形的判定和性质,三角函数等知识,得出AE= 2EF是解题的关键.。

中考专题复习矩形折叠问题

中考专题复习矩形折叠问题

中考专题复习矩形折叠问题矩形折叠问题是中考数学中的一个经典题型,要求考生在给定条件下进行折纸后,求出折纸后的面积或者边长等相关问题。

本文将对中考专题复习矩形折叠问题进行详细介绍和分析。

1. 矩形折叠问题简介矩形折叠问题是指将一个完整的矩形纸张按照规定方式进行折叠后,求折叠后的形状和相关属性的问题。

常见的矩形折叠问题包括求折叠后的面积、边长、对角线长度等。

这些问题需要考生设计折纸方式,并利用数学知识进行求解。

矩形折叠问题考察了考生的空间想象能力、几何思维和数学推理能力。

2. 矩形折叠问题的解题步骤矩形折叠问题的解题步骤一般包括以下几步:(1)明确问题:理解题目描述,明确所求的目标。

(2)分析折叠方式:根据题目要求,分析如何将矩形纸张折叠,确定折叠方式,可以画图帮助理解。

(3)建立模型:将折纸过程进行数学建模,标记各个关键点、线段等,建立相应的几何关系。

(4)求解问题:根据已建立的模型,应用数学知识或者几何关系,求解问题,得到所需的结果。

(5)检查答案:将得到的结果与题目要求进行对照,检查是否满足条件。

3. 矩形折叠问题的例题及解析例题1:将一块长20cm、宽10cm的矩形纸张沿中线对折,然后再折叠形成一个三角形后,求该三角形的面积。

解析:首先,将矩形纸张沿中线对折,得到两个相等的长方形,其长为10cm,宽为20cm/2=10cm。

然后将其中一个长方形按对角线进行折叠,即可形成一个三角形。

由于对折前的长方形和对折后的三角形是全等的,所以该三角形的底边长为10cm,高为10cm,因此三角形的面积为(10cm×10cm)/2=50cm²。

例题2:将一块矩形纸张按照下图所示方式进行折叠,求折叠后形成的矩形的面积。

解析:根据题目给出的折叠图形,我们可以看到折叠后的矩形纸张的高等于原矩形纸张的宽,宽等于原矩形纸张的长减去原矩形纸张的宽。

因此,折叠后形成的矩形的面积为(20cm-10cm)×10cm=100cm²。

中考数学总复习——矩形的折叠问题

中考数学总复习——矩形的折叠问题

3
有角平分线,有平行, 就会产生等腰三角形.
12
例2.如图,矩形纸片ABCD中,AB=4cm,AD=8cm,点P
是BC边上一动点,将矩形ABCD沿直线AP翻折,点B
落在点B ′处,
(1)若B′到边AD,BC的距离之比为1:3,请求出BP的长;
A
15 E
4
1 B′
4
x
4
B′
D
A 30° 230°G E
(2)寻找相似三角形,根据 对应边成比例得方程。
(3)利用三角函数,得方程。
例1变式:如图,矩形纸片ABCD中,AB=6cm,AD=8cm ,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC 交AD于点E, (1)AE与CE有何数量关系? (2)求折叠后阴影部分的面积.
方法策略:图形折叠后,
相当于出现了角平分线,
4
A
D
4
B′
4 5-4
B′
x
B x P8
C
A
B′
D
B
P
C
方法策略:折叠后图形不明确, 4
应分类讨论,分析出可能出现情
形,可借助折叠纸片模拟分析。B 4 P
C
例2.如图,矩形纸片ABCD中,AB=4cm,AD=8cm,点P
是BC边上一动点,将矩形ABCD沿直线AP翻折,点B
落在点B ′处,
(4)设AP=x,△BA ′P与矩形ABCD重叠部分的面积为y,
D
43
4
6
3 B x PF
CB
F 23 P C
方法策略:折叠后图形不明确,应明确分析出可能 出现情形,一次分析验证,可借助折叠纸片模拟分 析。
例2.如图,矩形纸片ABCD中,AB=4cm,AD=8cm,点P 是BC边上一动点,将矩形ABCD沿直线AP翻折,点B 落在点B ′处,

2023年中考数学专题复习课件: 折叠问题

2023年中考数学专题复习课件: 折叠问题
第4题图
由(1)得∠AHG=45°,∴∠DHA=45°,∴∠DHF=90°,∴DH⊥BH,∵
∴,即Βιβλιοθήκη ,解得AG=,32 12 10
AG AB AB AE
9 10 10
AG 3 3 10
第4题图
∵S△ABE=
1 2
AE·BG= 1 AB·BE,∴BG=
2
AB BE 3 1 3 10
AE
10 10
(1)证明:由折叠的性质可得△ABE≌△AFE, ∴∠BAE=∠FAE, ∠AGF=90
第4题图
∵四边形ABCD是正方形,∴∠BAD=90°,∴∠BAE+∠FAE+∠FAH+∠
第4题图
(2)若AB=3,BE=1,求点D到直线BH的距离; (2)解:如图,连接DH. ∵四边形ABCD是正方形,∴AB=AD,由折叠的性质得,AB=AF,∴AD=
第2题图②
②求AE的长. ②解:由折叠的性质,得CH=BC=3,在Rt△CHD中,DC=2,∴DH=
CH 2 CD2 5 5
第2题图②
又∵∠HAE=∠CDH=90°,∴△HAE∽△CDH,

DH AE
CD ,即
HA
5 AE
2 3
5
,解得AE=
.
3 55
2
第2题图②
3. 如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.点P为AB边上 一点(不与A、B重合),将△ABC沿CP折叠后展开,再将∠C翻折,使点 C与点P重合,折痕分别为CP,MN,连接PM,PN.(1)若四边形PMCN 是正方形,求PC的长;
1
1
1
2
2
2

,∴NG= AB.
BF,∵∠A=90°,∴∠A=∠N

人教版九年级下册数学: 矩形折叠问题

人教版九年级下册数学: 矩形折叠问题

A' 图1
B(E) A
E
C
B
图2 A'
D
F
A
D
F
A
C
A'
图1
D
F
(A') C
B(E)
D A
B E
B'
图2
F
A
A`
C
EB
B`
图3
C
A` 图4
EB B`
变式:
如图,Rt△ABC中,点A、C分别在x轴、y轴上,AB=6,BC=3, 将Rt△ABC沿AC翻折得到△AB ′ C,且AB ′交OC于点D, 则点D坐标为___(___0__,__-__94_)_.
C
EB
矩形ABCD中,AD=5,AB=3,若 D
点E,点F分别是边AB,边AD上的
点,将⊿AEF沿EF对折,使点A落在
边BC上,记为A′.观察图形,请回 C 答问题:
A’B的范围是 1≤ A’B≤3 .
D
F A
E
B A'
F
A
(1)如图1,BA’ = 3 . (2)如图2,BA’ = 1 ,C Leabharlann (F)点D ′落在矩形外部
A
8
D 记AE、D`M与BC分别交于点E、F
添加一个条件,提出问题并作答。
6 M
B
E
FC
D′
(1)添加条件: D′F=CF,求DM长度.
(2)添加条件:CM=2,求DM长度.
(3)添加条件:△BCD′恰好为等腰三角形,求D′到BC 距离.
发现问:
A
D
M M
D′ M
B
D′ C (M)

最新北师版九年级初三数学上册思想方法专题:矩形中的折叠问题

最新北师版九年级初三数学上册思想方法专题:矩形中的折叠问题

思想方法专题:矩形中的折叠问题——体会矩形折叠中的方程思想及数形结合思想◆类型一 矩形折叠问题中直接求长度或角度1.将矩形ABCD 沿AE 折叠,得到如图所示的图形.已知∠CEB′=50°,则∠AEB′=_______°.第1题图 第2题图2.如图,在矩形ABCD 中,AB =6cm ,点E ,F 分别是边BC ,AD 上一点.将矩形ABCD 沿EF 折叠,使点C ,D 分别落在点C′,D′处.若C′E ⊥AD ,则EF 的长为______cm. ◆类型二 矩形折叠问题中利用勾股定理结合方程思想求长度3.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为( )A .2 3 B.323 C. 3 D .6第3题图 第4题图4.(2016·东营中考改编)如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处.已知折痕AE =55cm ,且EC ∶FC =BF ∶AB =3∶4,那么矩形ABCD 的周长为__________cm.◆类型三 矩形折叠问题中结合其他性质解决问题5.如图,在矩形OABC 中,OA 在x 轴上,OC 在y 轴上,且OA =2,AB =5,把△ABC 沿着AC 对折得到△AB′C ,AB′交y 轴于D 点,则D 点的坐标为_________.第5题图 第6题图6.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF 的长为______.7.★如图①,将矩形ABCD 沿DE 折叠,使顶点A 落在DC 上的点A′处,然后将矩形展平,沿EF 折叠,使顶点A 落在折痕DE 上的点G 处,再将矩形ABCD 沿CE 折叠,此时顶点B 恰好落在DE 上的点H 处,如图②.(1)求证:EG =CH ; (2)已知AF =2,求AD 和AB 的长.思想方法专题:矩形中的折叠问题答案1.65 2.6 23.A 解析:由题意可得∠OCE =∠BCE ,∠COE =∠B =90°.又∵OA =OC ,∴OE 垂直平分AC ,∴EA =EC ,∴∠CAE =∠OCE .∵AB ∥CD ,∴∠ACD =∠CAE .∴∠BCE =∠OCE=∠ACD =30°,∴BE =12CE .在Rt △BCE 中,CE 2-BE 2=BC 2,即CE 2-⎝⎛⎭⎫12CE 2=32,∴CE =2 3.故选A.4.36 解析:设EC =3x cm ,FC =4x cm ,则DE =EF =5x cm ,∴AB =DC =8x cm.又∵BF ∶AB =3∶4,∴BF =6x cm ,∴AD =BC =10x cm.在Rt △ADE 中,AD 2+DE 2=AE 2,即(10x )2+(5x )2=(55)2,解得x =1(取正值).∴AB =8cm ,AD =10cm ,∴矩形ABCD 的周长为2×(10+8)=36(cm).5.(0,2.1) 解析:∵矩形OABC 中,OA =2,AB =5,∴BC =2,OC =5.∵把△ABC 沿着AC 对折得到△AB ′C ,∴B ′C =BC ,∠B ′=∠B =90°,∴AO =CB ′,∠AOD =∠B ′.又∵∠ADO =∠CDB ′,∴△AOD ≌△CB ′D ,∴AD =CD .设OD =x ,则AD =CD =5-x .在Rt △AOD 中,AD 2=OA 2+OD 2,∴(5-x )2=22+x 2,∴x =2.1.∴D 点的坐标为(0,2.1).6.185解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12BC =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠EBF =∠BFE ,∠ECF =∠EFC .又∵∠EBF +∠BFE +∠EFC +∠ECF =180°,∴∠BFE +∠EFC =90°,即∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝⎛⎭⎫2452=185. 7.(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,AD =BC .由折叠的性质可得∠ADE =∠A ′DE =12∠ADC =45°,AE =EG ,BC =CH ,∴∠AED =90°-∠ADE =45°=∠ADE ,∴AE =AD =BC ,∴EG =CH ;(2)解:由折叠的性质可得∠FGE =∠A =90°,GF =AF = 2.由(1)可知∠ADE =45°,∴∠DFG =90°-∠ADE =45°=∠ADE ,∴DG =GF =2,∴DF =DG 2+FG 2=2,∴AD =AF +DF =2+2.由折叠的性质可知∠AEF =∠GEF ,∠BEC =∠HEC ,∴∠AEF +∠BEC =90°.又∵∠AEF +∠AFE =90°,∴∠BEC =∠AFE .由(1)可知AE =AD =BC .在△AEF 与△BCE 中,⎩⎪⎨⎪⎧∠AFE =∠BEC ,∠A =∠B =90°,AE =BC ,∴△AEF ≌△BCE (AAS),∴AF =BE ,∴AB =AE +BE =AD +AF =2+2+2=22+2.学习名言:1、学习必须与实干相结合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习16——矩形折叠问来源:家学网【相信自己,掌握未来,家学网值得信赖!】2012年05月18日思路分析:找到由折叠产生的所有等量关系,其中也需要用到方程思想(设未知数,并表示出其他线段长度)例2.在长方形ABCD 中,AB=4,BC=8,将图形沿着AC 对折,如图所示:(1)请说明△ABF △CFF(2)求思路分析:在多问设置的证明题中,前几问往往是为后面的问题服务的;所以得到全等之后,也就是得到了多组等量关系,此时我们再来设未知数,自然可以表示出其他线段了.例3. 在长方形 ABCD 中,AB=3,BC=5,将图形沿着 EF 对折,使得 B 点与 D 点重合。

(1)说明 DE=DF(2)求(3)求EF 的长度思路分析:(1)要说明 DE=DF,有两种思路:①可说明全等;② 可说明△DEF 是等腰三角形,DE、DF 是两腰所以这个题目既要有能力说明全等也要有能力说明等腰例4 如图①,将边长为4cm 的正方形纸片 ABCD 沿EF 折叠(点 E、F 分别在边 AB、CD 上),使点B 落在AD 边上的点 M 处,点 C 落在点 N 处,MN 与CD 交于点 P,连接 EP.(1)如图②,若M 为AD 边的中点,①,△AEM的周长= cm;②求证:EP=AE+DP;(2)随着落点 M 在AD 边上取遍所有的位置(点M 不与A、D 重合),△PDM的周长是否发生变化?请说明理由.思路分析:(1)①设 AE=x,由折叠的性质可知 EM=BE=12-x,在Rt△AEM 中,运用勾股定理求AE;②过点 F 作FG⊥AB,垂足为 G,连接 BM,根据折叠的性质得点 B 和点M 关于EF 对称,即BM⊥EF,又AB=FG,∠A=∠EGF=90°,可证△ABM≌△GFE,把求 EF 的问题转化为求 BM;(2)设AE=x,AM=y,则 BE=EM=12-x,MD=12-y,在Rt△AEM中,由勾股定理得出 x、y 的关系式,可证Rt△AEM∽Rt△DMP,根据相似三角形的周长比等于相似比求△DMP的周长.三.能力训练1.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是().A.2+B.2+2 C.12 D.182.如图,已知矩形纸片 ABCD,点 E 是 AB 的中点,点 G 是BC 上的一点,∠BEG>60°,现沿直线 EG 将纸片折叠,使点 B 落在纸片上的点 H 处,连接 AH,则与∠BEG相等的角的个数为( )A.4 B.3 C.2 D.13.如图所示,把一长方形纸片沿MN 折叠后,点D,C 分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于()(A)144°(B)126°(C)108°(D)72°4.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG,记与点A 重合点为A',则△A'BG 的面积与该矩形的面积比为()A.B.C.D.第4题图第5题图5.如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的处,点A 对应点为,且=3,则AM 的长是()A.1.5 B.2 C.2.25 D.2.56.如图,在矩形 ABCD 中,AB=12cm,BC=6cm,点 E、F 分别在 AB、CD 上,将矩形 ABCD 沿EF折叠,使点 A、D 分别落在矩形 ABCD 外部的点 A’,D’处,则整个阴影部分图形的周长为()A.18cm B.36cm C.40cm D.72cm7.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN,则线段CN 的长是()A.3cm B.4cm C.5cm D.6cm8.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A 点的直线折叠,使得B 点落在AD 边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD 长与宽的比值为.9.如图矩形纸片ABCD,AB=5cm,BC=10cm,CD 上有一点E,ED=2cm,AD 上有一点P,PD=3cm,过P 作PF⊥AD交BC 于F,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是cm.10.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B′的位置,AB′与CD 交于点E.(1)试找出一个与△AED 全等的三角形,并加以证明.(2)若AB=8,DE=3,P 为线段AC 上的任意一点,PG⊥AE 于G,PH⊥EC 于H,试求PG+PH 的值,并说明理由.思维拓展:1.如图,折叠矩形的一边 AD,折痕为AE,点E 在边CD 上,折叠后点 D 落在BC 边的点 F 处,已知 AB=8cm,AD=10cm,求AE 的长.2.如图,四边形 OABC 是一张放在平面直角坐标系中的矩形纸片,点 A 在x 轴上,点 C 在y 轴上,将边 BC 折叠,使点 B 落在边 OA 的点D 处.已知折痕,且,求直线 CE 与x 轴交点 P 的坐标;3.已知:在矩形 AOBC 中,OB=4,OA=3.分别以OB,OA 所在直线为 x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与 B,C重合),过 F 点的反比例函数的图象与 AC 边交于点 E.请探索:是否存在这样的点 F,使得将△CEF沿EF 对折后,C 点恰好落在 OB 上?若存在,求出点 F 的坐标;若不存在,请说明理由.4.如图,在矩形ABCD 中,AB=3,AD=1,点P 在线段AB 上运动,设AP= ,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原。

(1)当时,折痕EF 的长为;当点E 与点A 重合时,折痕EF 的长为;(2)请写出使四边形EPFD 为菱形的的取值范围,并求出当时菱形的边长;(3)令,当点E 在AD、点F 在BC 上时,写出与的函数关系式。

当取最大值时,判断与是否相似?若相似,求出的值;若不相似,请说明理由。

5.问题解决如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕.当时,求的值.类比归纳在图(1)中,若则的值等于;若则的值等于;若(为整数),则的值等于.(用含的式子表示)联系拓广如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于.(用含的式子表示)参考答案例1 由题意可得:AD=BC=10,又由折叠可知:AF=AD=10 DE=EF∴ 在Rt△ABF 中,根据勾股定理可得:∴BF=6,∴ FC=10-6=4 。

设DE= ,则,故,在Rt△CEF中,根据勾股定理可得:,解得:即:DE=5另解:本题亦可以由长方形的面积 S 长方形ABCD=S△ABF+S△ADE+S△AEF+S△ECF列出方程:解得例2 解:(1)由题意可得:AD=BC=8,CD=AB=4又由折叠可知:AE=AD=8,CE=CD=4,∠E=∠D=90°在△ABF 与△CEF 中:∠B=∠E=90°∠AFB=∠CFE(对顶角相等)AB=CE=4∴△ABF△CFF(AAS)(2)∵ △ABF△CFF,∴AF=FC,BF=EF设 EF= ,则 BF= ,∴ 在Rt△CEF 中,由勾股定理可得:解得:即EF=3∴此题中对于△ABF,同样可以通过设未知数,利用勾股定理求解。

例3 解:(1)方法一:由题意可得:CD=AB=3,∠ADC=90°由折叠可得:DG=CD=3,∠G=∠C=90°,∠GDF=∠B=90°∴ ∠1+∠2=90°,∠3+∠2=90°∴ ∠1=∠3故在△DEG与△DCF中:∠G=∠C(已证)DG=CD(已证)∴ △DEG≌△DCF(ASA)∠1=∠3(已证)∴ DE=DF方法二:∵ 长方形 ABCD ∴ AD∥BC∴ ∠4=∠6(两直线平行,内错角相等)又由折叠可知∠4=∠5∴ ∠5=∠6(等量代换)∴ DE=DF(等角对等边)(2)求解:由折叠可知:EG=AE设,则,∴故在Rt△DEG中,根据勾股定理可得:解得:故EG DE=例 4能力训练答案1.B2. B3. B4. C5. B6. B7. A8.9.10.(1)△AED≌△CEB′证明:∵四边形ABCD 是矩形,∴BC=B′C=AD,∠B=∠B′=∠D又∠B′EC=∠DEA∴△AED≌△CEB′(2)延长HP 交AB 于M,则PM⊥AB ∵∠1=∠2,PG⊥AB′∴PM=PG∵CD∥AB∴∠2=∠3∴∠1=∠3∴AE=CH=8-3=5在Rt△ADE 中,DE=3AD= =4∵PH+PM=AD∴PG+PH=AD=4.思维拓展答案:1.52.(16,0)3. 设存在这样的点 F,将△CEF沿EF 对折后,C 点恰好落在 OB 边上的 M 点,过点 E 作EN⊥OB,垂足为 N.由题意得:EN=AO=3,EM=EC=4-1/3k,MF=CF=3- 1/4k,∵∠EMN+∠FMB=∠FMB+∠MFB=90°,∴∠EMN=∠MFB.又∵∠ENM=∠MBF=90°,∴△EMN∽△MFB.∴ EN/MB=EM/MF,∴ 3/MB=(4-1/3k)/(3-1/4k)=[4(1-1/12k)]/[3(1-1/12k)],∴MB= 9/4.∵MB²+BF²=MF²,∴ (9/4)²+(k/4)²=(3-1/4k)²,解得 k= 21/8.∴BF= k/4=21/32.∴存在符合条件的点 F,它的坐标为(4, 21/32).4. 解:(1)3,(2).当时,如图1,连接,为折痕,,令为,则,在中,,,解得,此时菱形边长为.(3)如图2,过作,易证,,当与点重合时,如图3,连接,,,.显然,函数的值在轴的右侧随的增大而增大,当时,有最大值.此时,.综上所述,当取最大值时,,5.解:方法一:如图(1-1),连接.由题设,得四边形和四边形关于直线对称.∴垂直平分.∴∵四边形是正方形,∴∵设则在中,.∴解得,即在和在中,,,设则∴解得即分∴方法二:同方法一,如图(1-2),过点做交于点,连接∵∴四边形是平行四边形.∴同理,四边形也是平行四边形.∴∵在与中∴∵∴类比归纳(或);;联系拓广相关推荐•中考数学专题复习16——矩形折叠问2012-05-18•中考数学“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

相关文档
最新文档