基于巴特沃斯的低通滤波器的设计原理

合集下载

二阶低通滤波器

二阶低通滤波器

二阶低通滤波器概述二阶低通滤波器是一种常见的信号处理工具,用于消除高频噪声和保留低频成分。

它具有简单的结构和良好的性能,被广泛应用于音频处理、图像处理、通信系统等领域。

本文将介绍二阶低通滤波器的原理、设计方法以及实现步骤,并给出一个实际的例子。

原理二阶低通滤波器通过对输入信号进行滤波操作,将输入信号中的高频成分去除,只保留低频成分。

它的原理基于二阶巴特沃斯滤波器(Butterworth Filter),巴特沃斯滤波器是一种模拟滤波器,具有平坦的通带响应和陡峭的阻带响应。

以模拟二阶低通巴特沃斯滤波器为例,其传输函数为:H(s) = 1 / (s^2 + s/Q + 1)其中,s为复平面上的变量,Q为品质因数,决定了滤波器的带宽和衰减率。

当输入信号经过滤波器后,输出信号可由输入信号经传输函数求得。

为了实现离散的二阶低通滤波器,可以使用数字滤波器设计方法,例如双线性变换或者频率抽样法。

通过将连续时间传输函数进行离散化,可以得到离散二阶滤波器的差分方程。

设计方法设计二阶低通滤波器的方法主要有以下几种:1. 理想低通滤波器法理想低通滤波器法通过将输入信号在一定截止频率处进行截断,得到一个临界低频截断点。

然后使用 Fourier 变换将其转换成频域,通过将较高频率处的频谱截断,得到一个频率响应变为零的低通滤波器。

2. 巴特沃斯低通滤波器法巴特沃斯低通滤波器法是基于巴特沃斯滤波器的原理进行设计。

通过选择合适的参数,可以得到具有平坦通带响应和陡峭阻带响应的二阶低通滤波器。

巴特沃斯低通滤波器具有最大的平坦度和最小的群延迟。

3. 非线性规划法非线性规划法是一种优化方法,通过最小化滤波器的误差函数,得到最优的滤波器。

这种方法可以根据自己的需求进行自定义滤波器的设计。

实现步骤下面是一种基于巴特沃斯低通滤波器的二阶低通滤波器的实现步骤:1.确定滤波器的截止频率和品质因数。

截止频率决定了滤波器的截止频率,品质因数决定了滤波器的带宽和衰减率。

低通滤波器的设计与实现

低通滤波器的设计与实现

低通滤波器的设计与实现在信号处理和通信系统中,滤波器是一种重要的工具,用于调整信号的频率分量以满足特定的需求。

低通滤波器是一种常见的滤波器类型,它能够通过去除高于截止频率的信号分量,使得低频信号得以通过。

本文将探讨低通滤波器的设计原理和实现方法。

一、低通滤波器的设计原理低通滤波器的设计基于滤波器的频率响应特性,通过选择合适的滤波器参数来实现对信号频谱的调整。

常见的低通滤波器有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。

1. 巴特沃斯滤波器巴特沃斯滤波器是一种常见的低通滤波器,具有平坦的幅频特性,在通带内没有波纹。

其特点是递归性质,可以通过级联一阶巴特沃斯滤波器得到高阶滤波器。

巴特沃斯滤波器的设计需要确定截止频率和阶数两个参数。

截止频率确定了滤波器的频率范围,阶数决定了滤波器的陡峭程度。

常用的巴特沃斯滤波器设计方法有极点分布法和频率转换法。

2. 切比雪夫滤波器切比雪夫滤波器是一种具有优异滚降特性的低通滤波器,可以实现更陡峭的截止特性。

与巴特沃斯滤波器相比,切比雪夫滤波器在通带内存在波纹。

切比雪夫滤波器的设计需要确定截止频率、最大允许通带波纹和阶数三个参数。

最大允许通带波纹决定了滤波器的陡峭程度。

常用的切比雪夫滤波器设计方法有递归法和非递归法。

3. 椭圆滤波器椭圆滤波器是一种折衷设计,可以实现更陡峭的截止特性和更窄的过渡带宽度。

与切比雪夫滤波器相比,椭圆滤波器在通带内和阻带内都存在波纹。

椭圆滤波器的设计需要确定截止频率、最大允许通带和阻带波纹、过渡带宽和阶数五个参数。

最大允许通带和阻带波纹决定了滤波器的陡峭程度,过渡带宽决定了滤波器的频率选择性。

常用的椭圆滤波器设计方法有变换域设计法和模拟滤波器转换法。

二、低通滤波器的实现方法低通滤波器的实现方法多种多样,常见的包括模拟滤波器和数字滤波器两类。

1. 模拟滤波器模拟滤波器是基于模拟电路实现的滤波器,其输入和输出信号都是连续的模拟信号。

常见的模拟滤波器包括电容滤波器、电感滤波器和LC滤波器。

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计摘要随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。

物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。

就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。

本论文通过对各种低通滤波器的通频带、增益和截止频率的分析,采用通频带最大扁平度技术(巴特沃斯技术)来设计实现四阶高性能低通滤波器,通过Multisum仿真软件,验证了设计的正确性。

在这基础上,本文还对如何提高该滤波器的响应速度进行了研究,提出了一种有效的提高响应速度的方案,并通过仿真软件得以验证。

这在低通滤波器的理论以及实际工程应用中,都具有非常重要的意义。

关键词:有源低通滤波器,巴特沃斯,运算放大器Design of Butterworth Active Low Pass FilterABSTRACTWith the rapid development of social science and technology, various technological products can be seen everywhere in human society, which greatly enriches people's daily lives. IoT devices, wearable devices, and virtual instrument products have become extremely common in various applications and consumer occasions. For now, in almost all electronic products, various gains, bandwidths, and high-performance filters play a vital role. For example, in the voice signal input system of wearable devices, the use of high-performance low-pass The filter performs noise reduction, filtering, and echo cancellation of the speech signal to improve the sound quality of the system and the accuracy of speech recognition.In this paper, through the analysis of the passband, gain and cutoff frequency of various low-pass filters, the maximum flatness of the passband technology (Butterworth technology) is used to design and implement a fourth-order high-performance low-pass filter, through Multisum simulation software To verify the correctness of the design. On this basis, this paper also studies how to improve the response speed of the filter, and puts forward an effective scheme to improve the response speed, which is verified by simulation software. This is of great significance in the theory of low-pass filters and in practical engineering applications.KEYWORDS:active low-pass filter,butterworth,amplifier1绪论1.1 引言在近现代的科技发展中,滤波器作为一种必不可少的组成成分,在仪器仪表、智能控制、计算机科学、通信技术、电子应用技术和现代信号处理等领域有着十分重要的作用。

三阶巴特沃斯低通滤波

三阶巴特沃斯低通滤波

三阶巴特沃斯低通滤波巴特沃斯(Butterworth)滤波器是一种常见的无失真滤波器,可作为低通滤波器用于信号处理中。

它具有平坦的幅频特性和无尖锐过渡带的特点。

本文将介绍三阶巴特沃斯低通滤波器的设计原理和应用。

一、设计原理:三阶巴特沃斯低通滤波器是基于巴特沃斯滤波器的一种改进,通过改变滤波器的阶数可以实现更陡的下降斜率。

巴特沃斯滤波器的传递函数表达式为:H(s) = 1 / (1 + (s / ω_c)^2N)其中,s为复频域变量,ω_c为截止频率,N为滤波器的阶数。

由于本文是关于三阶巴特沃斯低通滤波器的介绍,所以将N取为3。

将传递函数转换为标准形式,可得:H(s) = 1 / (1 + 1.732(s / ω_c) + (s / ω_c)^2 + 1.732(s / ω_c)^3 + (s / ω_c)^6)根据滤波器的模拟原理,将复频域变量s替换为复变量z,并进行双线变换,可以得到巴特沃斯低通滤波器的差分方程:y[n] = (x[n] + 3x[n-1] + 3x[n-2] + x[n-3] - 3y[n-1] - 3y[n-2] - y[n-3]) / (1 + 2.6136 + 2.1585 + 0.6723)二、应用:三阶巴特沃斯低通滤波器在实际应用中具有广泛的用途,如音频信号处理、图像处理等。

1. 音频信号处理:音频信号常常包含高频噪声,通过将音频信号输入三阶巴特沃斯低通滤波器,可以达到去除高频噪声的效果。

比如,对不希望出现的尖锐噪声或杂音进行滤除,以提高音频质量。

2. 图像处理:在图像处理中,低通滤波器常被用来去除图像中的高频噪声,以提高图像的清晰度和质量。

三阶巴特沃斯低通滤波器通过限制图像的高频分量,可以有效滤除图像中的噪声,使图像更加平滑。

3. 信号平滑:信号的平滑是一种常见的信号处理操作,可以去除信号中的高频噪声,使信号变得平缓。

三阶巴特沃斯低通滤波器在信号平滑方面表现出色,具有平坦的幅频特性和较陡的下降斜率,可以滤除信号中不需要的高频成分。

基于Matlab的巴特沃斯数字低通滤波器的设计

基于Matlab的巴特沃斯数字低通滤波器的设计

stga"TcM d m n a , Tc [ . . . ] ; e(c , i oe, aul i ,00 20 3051 ) X k X k
s (c , TcM d m n a , Tc [ t Rp1 ) e ga Y i oe, aul i ,0An i ] ; t k Y k
D( ) sD2s … D ( ) s =D () ( ) 5 () 7
当阶段 为奇数 时 : D() 。sD () :s… D () s =D () sD () s
1 2 巴特 沃斯 滤 波器 的特性 .
() 8
巴特沃斯 滤波 器 的特 点是 通频 带 的频率 响应 曲线 最平 滑 , 即频 率 响应 曲线 在 通 频带 内最 大 限度 平坦 , 有起伏 , 没 而在阻频 带则 逐渐 下降 为零 . 在振 幅 的对 数对 角频率 的波 特 图上 , 一 边界角 频率 开 从某 始, 振幅 随着角 频率 的增 加而逐 步减 少 , 于 负无穷 大 . 趋 利用 巴特沃 斯低 通 滤波 器 对 低 频段 的音 频信 号
对 音 频 信 号进 行 了处理 .
关键词 : 巴特沃斯 ; 滤波器; t bቤተ መጻሕፍቲ ባይዱ仿真 Maa ; l
中 图分 类 号 : P9 T33 文献标识码 : A 文 章 篇 号 :0 824 ( 0 2 0 -0 30 1o .4 1 2 1 ) 20 1 -3
M tb功能强大 , aa l 其信号处理工具箱( i a P cs n ol x 可 以快速有效地实现数字滤波器的 S nl r e i To o) g o s g b 设计与仿真 , 为滤波器的设计提供 了一个方便 的平台. 利用 M tb aa 设计数字滤波器在数字通信系统 和 l 计算机领域 中有着广阔的应用前景. 巴特沃斯 滤波器是 I I R数字滤波器 的一种【] 由于其在滤波的过 1, 程中通频带 内具有最大限度平坦 , 使得对音频信号进行平滑处理有较好的效果. 本文所设计的巴特沃斯 数字低通滤波器对一段音频信号进行了滤波处理 , 滤除了高频分量 , 音频信号的听觉效果经过滤波后变 得低 沉 , 明所 设计 的低 通滤 波器 是有 效 的. 表

巴特沃斯滤波器原理

巴特沃斯滤波器原理

巴特沃斯滤波器原理巴特沃斯滤波器是一种常用的信号处理滤波器,广泛应用于通信领域、音频处理以及生物医学等多个领域。

其原理基于巴特沃斯滤波器是一种低通或高通滤波器,可以在频域将信号进行滤波处理。

在信号处理中,滤波器被用来选择所需频率范围的信号,同时剔除其他频率范围内的信号。

接下来将介绍巴特沃斯滤波器的原理和工作方式。

巴特沃斯滤波器的特点之一是具有平坦的通频带特性。

所谓的通频带是指信号在该频率范围内只有很小的幅度衰减。

这使得巴特沃斯滤波器在需要保持信号幅度不变的情况下滤除杂波或噪声时非常有效。

巴特沃斯滤波器在通带内频率响应是平坦的,而在截止频率处呈现急剧下降的特性。

该滤波器的设计主要是通过对巴特沃斯多项式进行分解得到传递函数,进而获得其频率响应。

在滤波器设计中,首先需要确定滤波器的阶数,即决定滤波器的陡降程度的参数。

阶数越高,滤波器的陡降就越大。

通过多次迭代优化设计,可以得到满足要求的滤波器。

在电子电路中,巴特沃斯滤波器通常由电容和电感组成。

根据电路中元件的连接方式和数值的不同,可以实现不同类型的滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

其中,对于低通滤波器来说,巴特沃斯滤波器能够保留低频信号,并滤除高频信号;而高通滤波器则相反,保留高频信号,滤除低频信号。

总的来说,巴特沃斯滤波器作为一种常用的信号处理工具,有着较好的频率特性和滤波效果。

其原理基于巴特沃斯多项式的分解和传递函数的设计,通过电路实现对信号的滤波。

在实际应用中,巴特沃斯滤波器被广泛应用于需要对信号频率进行精确调节和滤波的场景,为信号处理提供了有效的工具和方法。

1。

巴特沃斯滤波器原理

巴特沃斯滤波器原理

巴特沃斯滤波器原理巴特沃斯滤波器是一种常用的信号处理滤波器,它在信号处理领域有着广泛的应用。

巴特沃斯滤波器的原理是基于巴特沃斯函数而来的,它可以对信号进行低通滤波和高通滤波,从而实现对信号频率的调节和控制。

本文将详细介绍巴特沃斯滤波器的原理和工作方式。

巴特沃斯滤波器的原理基于巴特沃斯函数,该函数可以描述滤波器的频率响应特性。

巴特沃斯函数的形式为:H(ω) = 1 / [1 + (ω/ωc)^(2n)]其中,H(ω)表示频率响应,ω表示频率,ωc表示截止频率,n表示阶数。

从上式可以看出,巴特沃斯函数随着频率的增加而逐渐减小,当频率达到截止频率时,频率响应将下降至-3dB。

这就是巴特沃斯滤波器的频率特性,它可以实现对不同频率信号的滤波处理。

在实际应用中,巴特沃斯滤波器可以分为低通滤波器和高通滤波器两种类型。

低通滤波器可以通过调节截止频率来滤除高频信号,保留低频信号;而高通滤波器则可以滤除低频信号,保留高频信号。

这种灵活的频率调节方式使得巴特沃斯滤波器在信号处理中有着广泛的应用。

巴特沃斯滤波器的工作方式是通过电路中的电容和电感元件来实现的。

在低通滤波器中,电容和电感元件会形成一个低通滤波的电路,从而实现对高频信号的滤除;而在高通滤波器中,电容和电感元件会形成一个高通滤波的电路,从而实现对低频信号的滤除。

通过合理选择电容和电感的数值,可以实现对不同频率信号的滤波处理。

除了频率响应特性外,巴特沃斯滤波器还具有良好的群延迟特性。

群延迟是指滤波器对不同频率信号的传输延迟,巴特沃斯滤波器的群延迟特性较为平坦,可以保持信号的相位特性,不会引起信号失真。

总的来说,巴特沃斯滤波器是一种常用的信号处理滤波器,它基于巴特沃斯函数的频率响应特性,可以实现对不同频率信号的滤波处理。

通过合理选择截止频率和阶数,可以实现对信号频率的精确控制。

同时,巴特沃斯滤波器还具有良好的群延迟特性,可以保持信号的相位特性,不会引起信号失真。

因此,在实际应用中,巴特沃斯滤波器有着广泛的应用前景。

一阶归一化数字巴特沃斯低通滤波器

一阶归一化数字巴特沃斯低通滤波器

一阶归一化数字巴特沃斯低通滤波器数字巴特沃斯滤波器是一种常用的数字信号处理滤波器,可用于滤波和去噪等应用。

本文将介绍一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。

1.原理概述一阶归一化数字巴特沃斯低通滤波器是一种理想滤波器。

其设计目标是实现信号在截止频率以下的完美衰减,而在截止频率以上则不进行滤波。

该滤波器的频率响应特点可用模拟巴特沃斯低通滤波器的频率响应特点进行近似。

2.设计步骤实现一阶归一化数字巴特沃斯低通滤波器的设计,可以按照以下步骤进行:步骤一:确定截止频率根据滤波器的应用需求,选择合适的截止频率。

截止频率是指滤波器开始滤波的频率点,一般以赫兹为单位。

步骤二:计算模拟巴特沃斯低通滤波器的阶数根据所选截止频率,使用模拟巴特沃斯低通滤波器的阶数公式计算阶数。

对于一阶滤波器,阶数为1。

步骤三:计算截止频率对应的模拟巴特沃斯低通滤波器的增益根据所选截止频率,使用模拟巴特沃斯低通滤波器的增益公式计算增益。

对于一阶滤波器,增益为-3dB。

步骤四:进行归一化在设计数字巴特沃斯滤波器时,需要对模拟滤波器进行归一化。

归一化处理可将截止频率与折返频率映射到数字滤波器的单位圆上。

步骤五:数值实现根据归一化的模拟滤波器参数,使用双线性变换将其转换为数字滤波器的差分方程。

假设我们需要设计一个一阶归一化数字巴特沃斯低通滤波器,截止频率选取为1kHz。

根据步骤一,确定截止频率为1kHz。

根据步骤二,计算阶数为1。

根据步骤三,计算增益为-3dB。

在步骤四中,进行归一化处理,将1kHz映射到单位圆上。

最后,在步骤五中,根据归一化的模拟滤波器参数,使用双线性变换转换为数字滤波器的差分方程。

本文介绍了一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。

通过明确的设计步骤,我们可以根据所需的截止频率实现滤波器设计。

在应用中,可以根据实际需求调整截止频率和滤波器的阶数,以获得更好的滤波效果。

Butterworth (巴特沃斯)滤波器设计参考

Butterworth (巴特沃斯)滤波器设计参考
采样频率 fs, -3dB 频率点 fc
高通滤波器:
1 z 1 s C1 , 1 1 z
C1 c tan
c
2
,
c 1
(Note: 参考 陈佩青《数字信号处理教程》第二版 291 页 表 6-8)
2
其他带通、带阻滤波器频率变换式参考表 6-8 (下图)
3
参考设计: 1. 1 阶 Butterworth LPF 设计
频响如下
8
Butterworth 1~2 阶 LPF & HPF Filter Coefficients 以及制作成 Excel 表格分享在: /s/1hqw2mby 可以下载使用,选择对应的类型,设定相应的 fs & fc 就能自动计算出 Filter Coefficients。
(Note: 参考 陈佩青《数字信号处理教程》第二版 266 页 表 6-4)
上面的表达式是 s 域的表达式,下面是变化到 z 域的方法。
低通滤波器:
1 1 z 1 s C 1 1 z 1 C 1 c tan c 2 c 1, c 2 f c / f s
Butterworth (巴特沃斯)滤波器设计参考
-- By Water 在嵌入式音频产品开发过程中经常会到 LPF(Low Pass Filter 低通滤波器)和 HPF(High Pass Filter 高通滤 波器),一般情况下都是离线用工具(如: Matlab)设计好滤波器的参数(Filter Coefficients)再应用到产品中 去。但有些状况下需要用户自己根据需求来实时(Real-time)调整 Filter Frequency Response (滤波器频率响应), 这种情形下就需要在嵌入式系统中实时根据客户的设定需求来产生相应的 Filter Coefficients。 下文就汇总出了 N 阶 IIR LPF & HPF Butterworth 滤波器系数的设计方法, 具体的算法原理推导可以参考陈佩 青《数字信号处理教程》一书,此处只给出工程上可以应用的结论。

lpf滤波器设计原理

lpf滤波器设计原理

lpf滤波器设计原理
LPF(低通滤波器)是一种滤波器,它可以通过滤除高于截止频率的信号成分而传递低于截止频率的信号成分。

LPF的设计原理如下:
1. 截止频率选择:确定所需的截止频率,这是LPF滤波器的关键参数。

截止频率决定了滤波器对于高频信号的抑制程度。

通常,截止频率是以赫兹(Hz)为单位给出。

2. 滤波器类型选择:根据设计要求选择适当的LPF滤波器类型。

常见的LPF滤波器类型包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。

3. 滤波器设计:根据所选择的滤波器类型和截止频率,进行具体的滤波器设计。

设计过程通常涉及确定滤波器阶数、设计滤波器的传递函数等步骤。

设计可以基于模拟滤波器或数字滤波器的原理进行。

4. 滤波器实现:根据设计好的滤波器参数,可以选择使用模拟电路或数字信号处理器(DSP)等设备来实现LPF滤波器。

模拟电路可以使用电容、电感和放大器等元件构建滤波器,而DSP可以使用数字滤波算法实现滤波器功能。

5. 性能评估:对设计好的LPF滤波器进行性能评估,包括对频率响应、相位响应、幅频特性和群延迟等进行分析和测量。

根据评估结果,可以对滤波器进行调整和优化。

总之,LPF滤波器的设计原理主要涉及截止频率的选择、滤波器类型的选择、滤波器参数的设计和滤波器实现等步骤。

通过合理设计和实现,LPF滤波器可以有效滤除高频干扰信号,提取出所需的低频信号成分。

一种巴特沃斯低通滤波器构成的PWM转DAC设计

一种巴特沃斯低通滤波器构成的PWM转DAC设计

一种巴特沃斯低通滤波器构成的P WM 转D A C设计*龙顺宇,何程,杨伟,吴建奇(海南热带海洋学院海洋信息工程学院,三亚572022)*基金项目:海南省2020年教育发展专项资金项目(H n j g202091);海南热带海洋学院2020年校级教育教学改革研究项目(R H Y j gz d 202004);海南热带海洋学院2019年校级教改项目(R H Y J G 201908)㊂摘要:本文提出一种巴特沃斯有源低通滤波器构成的P WM 转D A C 设计,利用S T C 8单片机片内12位分辨率的P WM发生器产生了频率为10k H z ㊁占空比可变的P WM 信号㊂将信号送入巴特沃斯低通滤波器后,P WM 信号转换为直流电压,电压幅度与P WM 信号占空比呈正比变化,转换得到的直流电压纹波小于0.2m V ,转换分辨率可达1/12位㊂转换电路线性度较高㊁纹波小㊁谐波抑制比较高㊂相比于专用D A C 芯片或P A C 芯片而,该方案性价比高,可以适配于分辨率要求高㊁建立时间要求一般的应用场景㊂关键词:脉宽调制;数/模转换器;P A C 转换器;巴特沃斯滤波器中图分类号:T P 31 文献标识码:AP WM t o D A C D e s i g n C o m p o s e d o f B u t t e r w o r t h L o w -pa s s F i l t e r L o n g S h u n y u ,H e C h e n g ,Y a n g W e i ,W u J i a n qi (C o l l e g e o f O c e a n o g r a p h i c I n f o r m a t i o n E n g i n e e r i n g ,H a i n a n T r o p i c a l O c e a n U n i v e r s i t y ,S a n ya 572022,C h i n a )Ab s t r ac t :I n t h e p a p e r ,a P WM t o D A Cde s i g n i s p r o p o s e d ,w h i c h i s c o m p o s e d of B u t t e r w o r t h a c t i v e l o w -pa s s f i l t e r .I t u s e s t h e 12b i t r e s -o l u t i o n P WM g e n e r a t o r o n t h e S T C 8m ic r o c o n t r o l l e r t o g e n e r a t e a P WM s i g n a l w i t h a f r e q u e n c y o f 10k H z a nd a v a r i a b le d u t y c yc l e .A f -t e r s e nd i n g t he s i g n a l t o t h e B u t t e r w o r t h l o w -p a s sf i l t e r ,t h e P WM s ig n a l i s c o n v e r t e d i n t o a D C v o l t a g e ,a n d th e v o l t a g e a m pl i t u d e c h a n -g e s i n p r o p o r t i o n t o t h e P WM s i g n a l d u t y c y c l e .T h e c o n v e r t e d D C v o l t a g e r i p pl e i s l e s s t h a n 0.2m V ,a n d t h e c o n v e r s i o n r e s o l u t i o n c a n r e a c h 1/12b i t .T h e c o n v e r s i o n c i r c u i t h a s h i g h l i n e a r i t y ,s m a l l r i p p l e a n d h i g h h a r m o n i c s u p p r e s s i o n .C o m pa r e d w i t h a d e d i c a t e d D A C c h i p o r a P A C c h i p ,t h i s s o l u t i o n i s c o s t -e f f e c t i v e a n d c a nb e a d a p t e d t o a p p l ic a t i o n s c e n a r i o s w i t h h i g h r e s o l u t i o n r e q u i r e m e n t s a nd ge n e r -a l s e t u p t i m e r e qu i r e m e n t s .K e yw o r d s :P WM ;D A C ;P A C c o n v e r t e r ;B u t t e r w o r t h f i l t e r 0 引 言通用型8位㊁16位㊁32位微控制器芯片中通常不带D A C 资源,无法凭借芯片自身实现数/模转换[1-2]㊂若需要程控输出高精度模拟电压,大多采用专用D A C 芯片,该类专用芯片在价格㊁分辨率㊁建立时间㊁内部结构㊁电压范围㊁输出通道数量及通信接口形式上存在较大差异,价格不低甚至超过了主控单片机的成本[3-4]㊂基于此类场景的实际需求,将P WM 信号转换为D A C 的方法得以广泛使用,只需将P WM 信号通过一阶R C 或L C 低通滤波器即可得到直流电压,此类电路虽然简单但转换质量不高,无源滤波形式下会严重影响D A C建立时间指标,导致输出信号滞后,线性度差[5-6]㊂故而本文改进了滤波器形式,选用M C P 6002运算放大器设计一种巴特沃斯低通滤波器,在此基础上采用了S T C 8增强型P WM 资源,对转换原理㊁过程㊁实现进行探究,使得系统指标满足一般场景的需求㊂1 P WM 转D A C 的基本原理以单极性P WM 信号为例,从时域上进行分析,该信号的周期保持固定,只是高/低电平所占的脉宽(即占空比)发生了改变,理论研究时可以将P WM 信号进行时域分解,变成一个直流分量加平均幅值为零的方波形式,直流分量幅值与占空比呈正比变化[7-8]㊂若占空比变化,则直流分量也会跟随改变,若在P WM 输出后级连接低通滤波器就可以衰减交流成分,得到幅值随占空比变化而变化的模拟电压,虽然交流成分不可能完全去除,但得到的模拟电压已经较为平滑,其转换过程如图1所示㊂若从频域理解P WM 信号,可以结合傅里叶级数的相关方法㊂将周期不变㊁占空比变动的P WM 信号进行分图1 P WM 转D A C 基本原理解,可以将其看作是基波频率和无限多个整数倍谐波的总和,信号函数f (t)级数展开之后有:f (t )=U 0+ðɕn =1U n ˑc o s 2πn t T+V n ˑs i n 2πn t T(1) 式中,U 0为PWM 信号的直流分量,数值等于P WM 信号的实际幅度与占空比的积:U 0=12T ʏT-Tf (t )d t (2) 式中,U n 和V n 就是PWM 信号的交流分量,数值等于P WM 信号的载波频率乘以整数倍之后的高频谐波,可以将其表达为:U n =12T ʏT-T f (t )c o s 2πn tTd t (3)V n=12TʏT-T f (t )s i n 2πn tT d t (4) 设U m 代表P WM 信号的幅度,D 为P WM 信号的占空比,代入式(2)~式(4),可以得到此时P WM 信号的直流分量U 0为:U 0=U m ˑD(5) 此时P WM 信号的交流分量U n 和V n 为:U n =U m ˑ1n πs i n (n πD )-si n2n π1-D2(6)V n =0(7) 式(5)和式(6)中的D 必须合理取值,只有在合适的占空比范围内才能得到细分电压,U n 和V n 是P WM 信号的整数倍正弦高次谐波,对于输出的模拟电压而言是应该去除的成分,所以应用中需要设计低通滤波器(L P F ),L P F 尽可能衰减谐波导致的纹波,只保留直流分量,即P WM 转换后输出电压U D A C 应该为:U D A C =U m ˑD(8)2 硬件L P F 单元设计将P WM 信号转换为D A C 本质就是尽可能地去除交流分量,处理得到的直流分量部分与占空比大小呈正比变化,这样就能用P WM 信号占空比调节间接得到直流电压的幅度调节,最终实现P A C 转换(即P WM 到D A C 的转换)㊂通常情况下,硬件采用一阶或多阶R C ㊁L C 低通滤波器,此类无源滤波电路较为简单,但输出阻抗较大,对于多阶的组成形式而言阻抗更大,P WM 信号虽然可以得到处理,但是输出的直流电压带载能力大大降低,很容易被拉低幅值,影响使用㊂而用运算放大器构成的L P F 有很大改善,不存在负载驱动问题,还可以方便地扩展为多阶滤波形式,其线性度㊁频幅特性以及抗干扰性都更好㊂在设计具体硬件滤波器之前需确定相关参数,设定供电电压U m 为5V ,即P WM 信号高电平幅值为5V ,低电平为0V ㊂实验中单片机系统时钟为27MH z ,P WM 信号输出分辨率为12位,若要求输出电压精度为12位,则P WM 信号的输出频率应配置为单片机系统时钟除以输出电压精度再除以2分频系数,即27MH z /212/2=3.3k H z ㊂然后根据傅里叶级数计算L P F 所需的衰减倍数,当P WM 信号占空比D 为0.5时,基波的幅度U 0最大,此时L P F 能将基波以上的多次谐波幅度衰减至1/2个L S B 以下㊂在P WM 信号的交流分量中,n =1时的基波频率最低,将n =1代入式(6),可得基波幅度:U n =1=2ˑU m π=2ˑ5π=3.18309886V ʈ3.1831V (9) 则L P F 所需的最低衰减倍数U f 为:U f =12ˑU m 212ˑ1U n =1=52ˑ4096ˑ3.1831=0.0001917(10) 结合式(9)和式(10)可知,输出12位精度的直流电压时,L P F 衰减倍数U f 应为0.0001917,约-74.34d B ㊂从理论上计算至少需要4阶L P F 单元,可采用两级两阶巴特沃斯L P F 滤波器级联得到㊂按照相关计算在L T s pi c e 软件中进行电路仿真,取交流1V ㊁相位0ʎ㊁10H z~10k H z 扫描频率范围,得到的频率响应如图2所示,在3.3k H z 处的衰减约为-81d B ,满足大于-74.34d B 的需求,这样就可以留有一些裕量去衰减高频谐波,输出相位滞后于输入P WM 信号相位约400ʎ,因输出信号为直流电压,故相位滞后不产生实际影响㊂得到必要的参数后即可设计硬件电路,综合考虑运算放大器带宽㊁成本及电路复杂度之后,实际使用了一级三阶巴特沃斯L P F 滤波器构成所需电路,电路原理如图3所示㊂电路由单5V 供电,P WM _I N 为P WM 信号输入端子(由S T C 8产生),经施密特触发器74L V C 1G 14芯片整形㊁去毛刺之后送入由M C P 6002运放构成的三阶巴特沃斯L P F 滤波器,最后得到的D C _O U T 端子即为输出电压㊂3 系统软件设计实验中选取S T C 8A 8K 64S 4A 12产生了频率为图2 两级两阶巴特沃斯L P F滤波器频率响应图3 三阶巴特沃斯低通L P F 滤波器电路原理图10k H z ㊁分辨位数12位㊁占空比可在0至100%变化的P WM 信号㊂因设计具有通用性,单片机的选择并无特殊要求,有的单片机具备高级定时/计数器单元㊁P C A 单元或者增强型P WM 发生器,产生的P WM 信号支持4㊁6㊁8㊁12㊁16乃至32位(如意法半导体公司生产的S TM 32F 334可产生32位分辨率高精度P WM 信号),此类微控制器产生的P WM 信号就更加细分,从原理上分析,转换后的D A C 精度会更高,但在实际应用中也要考虑运放性能㊁干扰等实际原因,从而进行合理选择㊂为了方便控制P WM 输出脉宽,单片机系统中分配3个I /O 口用作P WM 信号输出使能(K 1按键)㊁P WM 信号脉宽增加(K 2按键)㊁P WM 信号脉宽减小(K 3按键),其软件流程如图4所示㊂当K 1按键按下时,单片机使能P WM 信号输出,所得P WM 占空比默认为50%,在此基础上按下K 2或K 3按键即可分别控制脉宽的增加或减小,P WM 配置部分源码如下:v o i d m a i n (){ //主函数 P _S W 2=0x 80;//访问扩展寄存器P WM C K S =0x 00;//系统时钟图4 软件控制P WM 调整流程图 P WM C =0x 0400;//设置P WM 周期 P WM 0C R=0x 80;//使能P WM 输出 P _S W 2=0x 00;//关闭访问扩展寄存器P WM C R=0x C 0; //启动P WM 模块 W h i l e (1){K E Y _I n i t();}//循环按键处理}4 系统测试与分析按照图4所示硬件电路原理图绘制P C B并打样贴片后可以得到实物样式如图5所示,由于M C P 6002芯片内部自带两个运算放大器单元,为此做了图5 设计实物样式双通道P WM 信号转D A C 单元㊂模块实物做好后用锂电池组为其供电,实测供电电压为4.8V ,然后将S T C 8A 8K 64S 4A 12产生的P WM 信号送入模块相关端子并测量输出电压,P WM 信号占空比与输出电压的实测数据如表1所列㊂从数据误差上看,转换后的D A C 线性度优于1%㊂该模块参数与12位精度的专用P A C 芯片G P 8500(即客益电子生产的P WM 信号转换为D A C 的专用芯片)以及专用的D A C 芯片T L C 5618(即T I 公司生产的12位D A C )做了指标对比,结果如表2所列㊂表1P WM信号占空比及输出电压数据表表2三种不同方案的D A C指标对比指标项P WM转D A C模块(本设计)G P8500芯片(P A C专用芯片)T L C5618芯片(D A C专用芯片)P WM信号频率10H z~300k H z50H z~50k H z-P WM信号占空比0~100%0~100%-建立时间4~10m s<20μs<2.5μs分辨率约12位12位12位从指标项的对比结果看,本设计中的P WM信号转D A C模块在分辨率上接近于专用芯片,性价比也有明显优势,但在D A C的建立时间指标项上还是相对较慢,比较适合做低速非隔离型D A C应用㊂5结语本设计作为单片机类电子工艺实训项目在实际实验中取得了较好的效果,在实测中发现了P WM信号载波频率及谐波分量会影响D A C的分辨率,若贸然降低P WM信号的载波频率,则基波频率和谐波频率也会发生变化㊂应先确定L P F参数,再考虑P WM信号配置,合理设计L P F结构才能达到指标要求㊂L P F阶数会影响D A C建立时间参数及输出线性度,因此需要根据实际需求进行设计适配㊂参考文献[1]吴财源,周华,钟球盛,等.基于双通信的多通道P WM式D A C模块设计[J].机电工程技术,2017,46(6):710.[2]陈启武,吴新春,王飞.基于S TM32的P WM D A C实现精密程控电压源的设计[J].今日电子,2016(6):5457.[3]游乙龙.基于单片机的P WM转D A C实现通用变频器的自动控制[J].机电工程技术,2015,44(6):9092.[4]赵月丽.P WM模拟D A C的关键参数分析[J].微型机与应用,2014,33(18):2022.[5]吴桂清,李泓霖,戴瑜兴,等.微控制器P WM接口实现高分辨率D/A转换器方法研究[J].电子学报,2012,40(8):16311634.[6]辛德环.传统数模转换器的优缺点分析及高性能P WMD A C的基本设计思想[J].机械工程师,2011(10):2933.[7]W S t e p h e n W o o d w a r d.几乎没有纹波的快速稳定同步P WM D A C滤波器[J].电子设计技术,2008(8):101.[8]秦健.一种基于P WM的电压输出D A C电路设计[J].现代电子技术,2004(14):8183.龙顺宇(实验师),主要研究方向为嵌入式应用㊁单片机智能㊁物联网技术应用㊂通信作者:龙顺宇,t l o n g s y@163.c o m㊂(责任编辑:薛士然收稿日期:2020-11-02)4结语为提高工地信息化管理水平,降低安全生产施工发生率,依托于智慧工地建设理念开展了基于人脸识别和检测的工地管理系统平台研究㊂智慧工地系统平台应紧密结合工程实际操作流程,尽量减少人工干预的可能性;同时,人脸识别数据采集应智能化,并且集成自动分析㊁自动记录功能㊁证据备份和检索功能㊂参考文献[1]吉林省住房和城乡建设厅关于推进智慧工地建设的指导意见[J].北方建筑,2020,5(5):8182.[2]王瑜,叶子明.基于B I M技术的智慧工地平台方案架构探讨[J].江西建材,2020(9):181182.[3]樊则森.建筑工业化与智能建造融合发展的几点思考[J].中国勘察设计,2020(9):2527.[4]谢佳霓,黄玉贤,沈玉香.智慧工地平台管控中B I M技术的应用研究[J].低温建筑技术,2020,42(8):124126.[5]黄凯,张梅,王涛,等.大型综合体项目智慧工地信息化平台建设关键技术[J].施工技术,2020,49(16):3639.[6]杜黎明,王燃.物联网技术在智慧工地中的应用研究[J].核动力工程,2020,41(S1):9295.[7]王淮.5G与人工智能在航道建设智慧监管上的应用[J].珠江水运,2020(15):1516.[8]王秋茗,孙广玲,陆小锋,等.智慧工地中低分辨率的安全帽状态识别[J].电子测量技术,2020,43(15):6367.[9]陈巨坤.智慧工地中的智能安全帽及其管理平台研究[D].广州:华南理工大学,2019.[10]董荣.基于智慧工地理念的塔机租赁公司定制化E R P设计[D].北京:中国矿业大学,2019.李建奎㊁陈阳㊁黄小星(工程师),李辉(助理工程师):主要研究方向为建筑工程项目管理㊂通信作者:李建奎,t k j g j i h d u9852@163.c o m㊂(责任编辑:薛士然收稿日期:2020-10-29)。

巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理

巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理

巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

关于“巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理”的详细说明。

1.巴特沃斯低通滤波器公式
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:
其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

2.巴特沃斯低通滤波器设计原理
巴特沃斯型低通滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。

其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。

滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。

滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的
所有电容元件值来实现的。

巴特沃斯数字低通滤波器的设计—双线性变换法

巴特沃斯数字低通滤波器的设计—双线性变换法

课程设计任务书2010—2011学年第一学期专业: 通信工程 学号: 080110509 姓名: 郭威课程设计名称: 数字信号处理课程设计设计题目: 巴特沃斯数字低通滤波器的设计—双线性变换法完成期限:自 2011 年 1 月 3 日至 2011 年 1 月 9 日共 1 周一.设计目的1.巩固所学的理论知识。

2.提高综合运用所学理论知识独立分析和解决问题的能力。

3.更好地将理论与实践相结合。

4.掌握信号分析与处理的基本方法与实现。

5.熟练使用MATLAB 语言进行编程实现。

二.设计内容已知四阶归一化低通巴特沃斯模拟滤波器系统函数为()16131.24142.36131.21234++++=s s s s s H a ,编写MATLAB 程序实现从()s H a 设计3dB 截止频率为2π=c w 的四阶低通巴特沃斯数字滤波器。

三.设计要求1、设采样周期为s T 1=,用双线性变换法进行设计;2、绘出滤波器的的幅频响应曲线并分析所得结果是否满足技术指标;3、和同组另一同学采用的脉冲响应不变法设计的结果进行比较分析。

四.设计条件计算机、MATLAB 语言环境五、参考资料[1] 丁玉美,高西全.数字信号处理.西安:电子科技大学出版社,2006.[2] 陈怀琛,吴大正,高西全. MATLAB 及在电子信息课程中的应用.北京:电子科技大学出版社,2003.[3] 楼顺天,李博苗.基于MATLAB 的系统分析与设计一信号处理 西安:西安电子科技大学出版社,1998.指导教师(签字): 教研室主任(签字): 批准日期: 年 月 日数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数字处理来达到频域滤波的目的。

本文是设计一个数字低通滤波器。

根据滤波器的设计思想,通过双线性变换法将巴特沃斯模拟低通滤波器变换到数字低通滤波器,利用MATLAB绘制出数字低通滤波器的系统幅频函数曲线。

关键词:数字滤波器;双线性变换法;巴特沃斯;MATLAB1课题描述 (1)2设计原理 (1)2.1 IIR数字滤波器设计原理 (1)2.2巴特沃斯低通滤波器的原理 (2)2.3双线性变换法 (3)3设计过程 (6)4结果分析 (8)总结 (11)参考文献 (12)1课题描述数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。

基于MATLAB做巴特沃斯低通滤波器

基于MATLAB做巴特沃斯低通滤波器

基于MATLAB设计巴特沃斯低通滤波器课程设计专业:XXXXXX姓名:XXX学号: XX指导老师:XXX2011年11 月26日通信系统仿真课程设计任务书院(系):电气信息工程学院目录1 绪论 (1)1.1 引言 (1)1.2 数字滤波器的设计原理 (1)1.3 数字滤波器的应用 (2)1.4 MATLAB的介绍 (3)1.5 本文的工作及安排 (3)2 滤波器分类及比较 (4)2.1 滤波器的设计原理 (4)2.2 滤波器分类 (4)2.3 两种类型模拟滤波器的比较 (6)3 巴特沃斯低通滤波器 (7)3.1 巴特沃斯低通滤波器简介 (7)3.2 巴特沃斯低通滤波器的设计原理 (7)4 MATLAB仿真及分析 (11)4.1 MATLAB工具箱函数 (11)4.2 巴特沃斯低通滤波器的MATLAB仿真 (11)另附程序调试运行截图: (13)5.1 总结 (13)5.2 展望 (13)1 绪论1.1 引言凡是有能力进行信号处理的装置都可以称为滤波器。

滤波器在如今的电信设备和各类控制系统里面应用范围最广、技术最为复杂,滤波器的好坏直接决定着产品的优劣。

自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。

使以数字滤波器为主的各种滤波器得到了飞速的发展,到70年代后期,数字滤波器的单片集成已被研制出来并得到应用。

80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。

90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。

当然,对数字滤波器本身的研究仍在不断进行。

[1]滤波器主要分成经典滤波器和数字滤波器两类。

从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。

本文主要对低通数字滤波器做主要研究。

1.2 数字滤波器的设计原理所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。

基于MATLAB的巴特沃斯低通滤波器的设计

基于MATLAB的巴特沃斯低通滤波器的设计
冲激响应不变法是使数字滤波器的单位冲激序列 h(n)模仿模拟滤波器的单 位冲激响应 ha(t)。将模拟滤波器的单位冲激响应加以等间隔抽样,使 h(n)正好 等于 ha(t)的抽样值,即满足:
h(n)= ha(nT) 其中 T 是抽样周期。 如果令 Ha(s)是 ha(t)的拉普拉斯变换,H(z)为 h(n)的 z 变换,利用 抽样序列的 z 变换与模拟信号的拉普拉斯变换的关系,得:
带就越平坦,过渡带也随之变窄,阻带幅度同过渡带下降的速度越迅速,总体
频响特性同理想低通滤波器的实际误差越小。
Ha ( j)
1
0.707
2 N=4 N=8
0
c
图 1.1 、N 同幅度特性关系
用 s 代替 j ,把幅度平方函数 H(a j) 2 变成 s 的函数:
H(a s)H(a - s) 1 (
式求出,
1 (p )2N 10p /10 c
1 ( s )2N 10 s /10 c 由(1.9)式得到:
(1.9) (1.10)
c ( p 100.1p -1)- 21N 由(1.10)式得到:
c (s 100.1s -1)- 21N
2 设计方案
方案一:用冲激响应不变法设计巴特沃斯低通滤波器
姓名: 班级: 学号: 时间:2011 年 6 月
设计题目
基于 MATLAB 的巴特沃斯低通滤波器的设计
设计要求
1. 通过实验加深对巴特沃斯低通滤波器基本原理的理解。 2.学习编写巴特沃斯低通滤波器的 MATLAB 仿真程序 3. 滤波器的性能指标如下:通带截止频率 fp=5kHz,通带最大衰减 p =2dB,阻带截止频率 fs=12kHz,阻带最小衰减 s =30dB
巴特沃斯低通滤波器的幅度平方函数 H(a j) 2 用下式表示:

巴特沃斯滤波器设计

巴特沃斯滤波器设计

巴特沃斯滤波器设计1、巴特沃斯滤波器设计原理低通滤波器的幅值响应如下图所示。

maxA 为通带内允许最大衰减;minA 为阻带内允许最小衰减,c ω为通带角频率,s ω为阻带角频率。

一个n 阶低通巴特沃斯滤波器的幅频函数为:1-7阶巴特沃斯多项式如下:常数ε的作用是调整通带内允许的最大衰减,使其可小于3dB。

逼近过程中,A 需要确定的参数为ε和巴特沃斯多项式的阶数n,其中,通带内允许最大衰减maxA。

首先,推导确定了ε的大小;阶数n的大小取决于阻带内允许的最小衰减minε。

习惯上,多用衰减(分贝数)表示幅频特性。

因此,巴特沃斯低通响应为:ωω时,产生通带内最大衰减,即当=c解上式,可得:ωω时,产生阻带内最小衰减当=s上式可写为:对上式求解,可得:把 的表达式带入,可得:例子:用matlab 重复以上计算过程:wp=90*pi; ws=150*pi; Rp=3; Rs=10;N_true=(10^(Rp/10)-1)/(10^(Rs/10)-1);%真数 Num_Base=wp/ws;%底数N=ceil(log10(N_true)/log10(Num_Base)/2); wc=ws/((10^(Rs/10)-1)^(1/(2*N)));附加:Matlab 计算对数的时候,没有以a 为底b 的对数的函数,因此需要通过lgblog lg b a a改为以10为底的对数或者自然对数进行计算。

来源:https:///view/06e71fc5c67da26925c52cc58bd63186bceb92ca.html2、matlab 的巴特沃斯滤波器设计matlab 中提供了函数进行巴特沃斯滤波器设计同样对应上边的例子,通带90πHz ,通带最大衰减3dB ,阻带150πHz ,阻带最小衰减10 dB 。

Matlab 计算方法如下:229010lg 1315010lg 110nc nc πωπω⎧⎡⎤⎛⎫⎪⎢⎥+= ⎪⎪⎢⎥⎝⎭⎪⎣⎦⎨⎡⎤⎪⎛⎫⎢⎥+=⎪⎪⎢⎥⎝⎭⎪⎣⎦⎩20.32901010.995261501019nc nc πωπω⎧⎛⎫⎪=-= ⎪⎪⎝⎭⎨⎛⎫⎪=-= ⎪⎪⎝⎭⎩两式相除有:2290150900.99526/0.110581509nncc πππωωπ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 整理得:()20.60.11058n=因此,0.110580.61log 2.15532n ==取3n =,带入215010lg 110n c πω⎡⎤⎛⎫⎢⎥+= ⎪⎢⎥⎝⎭⎣⎦,即21509nc πω⎛⎫= ⎪⎝⎭计算得:1/6150326.7388/9c rad s πω== 3n =,查表得对应的巴特沃斯滤波器,并去归一化:7323232711 3.488210221653.5 2.135 3.488210221c c c s s s s s s s s s ωωω⨯==++++++⨯⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Matlab 代码如下: wp=90*pi; ws=150*pi; Rp=3; Rs=10;[N,wc]=buttord(wp,ws,Rp,Rs,'s');[B,A]=butter(N,wc,'s');f=1:300;w=2*pi*f;H=freqs(B,A,w);figure(1)plot(f,20*log10(abs(H)));grid on,xlabel('频率(Hz)'),ylabel('幅度(dB)')title('巴特沃斯模拟滤波器')设计滤波器幅值响应如下:3、pscad和matlab关于滤波器的配合设计的滤波器的系数经常很大,连续的滤波器在pscad中用s的传递函数实现,pscad中该元件系数有限制要在-810之间,实际的滤波器不满足该条件。

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计引言巴特沃斯阶跃阻抗低通滤波器是一种常用于信号处理和电子电路设计中的滤波器类型。

它的设计原理是通过调整滤波器的阶数和截止频率,来实现对输入信号的频率成分进行筛选和衰减。

本文将详细介绍巴特沃斯阶跃阻抗低通滤波器的设计方法及其在实际应用中的一些注意事项。

巴特沃斯阶跃阻抗低通滤波器概述巴特沃斯阶跃阻抗低通滤波器是一种I IR(无无限冲激响应)滤波器,具有平坦的通带、陡峭的衰减特性以及相对较低的群延迟。

它广泛应用于音频处理、通信系统等领域。

巴特沃斯滤波器的设计步骤1.确定滤波器的阶数(n):阶数决定了滤波器的衰减程度和复杂度,一般取偶数值。

2.确定滤波器的截止频率(f c):截止频率即信号通过滤波器时频率衰减到原来的1/√2,是决定滤波器频率特性的关键参数。

3.计算滤波器的极点位置:根据巴特沃斯滤波器的特性方程,计算极点位置。

4.标准化滤波器:对计算得到的极点位置进行标准化处理,使得滤波器的截止频率为1。

巴特沃斯滤波器设计实例以下是一个以设计一个4阶巴特沃斯阶跃阻抗低通滤波器为例的设计过程。

步骤1:确定滤波器的阶数我们选择设计一个4阶的巴特沃斯阶跃阻抗低通滤波器。

步骤2:确定滤波器的截止频率假设我们需要将信号的截止频率设置在1k H z。

步骤3:计算滤波器的极点位置根据巴特沃斯滤波器的特性方程,我们可以计算出滤波器的极点位置。

对于一个4阶的巴特沃斯低通滤波器,其极点位置可以通过下式计算得到:p_k=-s in h(π*fc)*s in(π*(2k-1)/(2n)),k=1,2,...,n式中,f c是截止频率,n是滤波器阶数。

步骤4:标准化滤波器标准化滤波器是将计算得到的极点位置通过变换使得滤波器的截止频率为1。

标准化后的滤波器的特性方程为:H(s)=1/((s+p1)(s+p2)...(s+pn))巴特沃斯滤波器的应用注意事项-在实际设计中,应根据需要调整滤波器的阶数和截止频率,以满足对信号的频率特性要求。

巴特沃斯低通滤波器

巴特沃斯低通滤波器

巴特沃斯低通滤波器
巴特沃斯低通滤波器(Butterworth Low-pass Filter)是一种常见的电子滤波器。

它的工作原理是滤除输入信号中高于某个截止频率的频率成分,只保留低于该截止频率的成分。

巴特沃斯低通滤波器具有以下特点:
1. 平坦的通频带特性:在通频带范围内,巴特沃斯低通滤波器的增益是基本均匀的,不引入额外的频谱畸变;
2. 陡峭的截止特性:巴特沃斯低通滤波器的截止频率处存在一个陡峭的衰减区,可以有效地滤除高于该频率的信号成分;
3. 相位延迟:巴特沃斯低通滤波器会引入一定的信号相位延迟,这在某些应用场合可能需要考虑。

巴特沃斯低通滤波器的设计是基于巴特沃斯函数,它的频率响应曲线是一个幅度递减的多项式,在0Hz到截止频率处是平坦的,之后逐渐衰减。

其滤波器的阶数(order)决定了衰减的陡峭程度,阶数越高,衰减越陡峭。

巴特沃斯低通滤波器的数学表达式为:
H(s) = 1 / (1 + (s / wc)^(2*N))^0.5
其中,s是复频率变量,wc是截止频率,N是滤波器的阶数。

巴特沃斯低通滤波器可以在模拟领域和数字领域中实现,常用的实现方法包括RC电路和数字滤波算法。

巴特沃斯滤波器基本原理及相关参数计算(初稿)

巴特沃斯滤波器基本原理及相关参数计算(初稿)

Vo ( s ) = Va ( s ) (1+
Vo ( s ) = - Vo ( s ) sR3C1 (1+
Vo ( s ) [1+ sR3C1 (1+
V ( s ) R2 R2 R + sR2C2 + 2 )]= - i ; R1 R3 R1 R1 R2 )]= - Vi ( s ) R2 ; R3
2.积分器
其中,积分器的原理图如下图 2 所示:
图 2 积分器原理图 根据运算放大器的“虚短”和“虚断”法则可得:
Vi ( s ) = - Vo ( s ) sC ; R
故积分器的传递函数 H1 ( s ) 为:
H 2 (s) =
Vo ( s ) 1 1 == - H ,其中 H ; Vi ( s ) sRC s RC

解之得: R1
2 2 2nf 0 AC1 (2nf 0 AC1 ) 2 16n 2 f 02 A 2 ( A 1)C1 Q 2 8n 2 f 02 A 2 C1 Q

2nf 0 AC1 (2nf 0 AC1 ) 2 [1 4( A 1)Q 2 / n] 1 1 4Q 2 ( A 1) / n = ; R1 2 4f 0 AC1Q 8n 2 f 02 A 2 C1 Q
巴特沃斯滤波器的原理与计算
由于二阶巴特沃斯低通滤波器是由 RC 低通级和积分级组成, 所以在此先对 对有源一阶 RC 低通滤波器、积分器以及两者之间的区别与联系做简要介绍:
1.有源一阶 RC 低通滤波器
其中,有源一阶 RC 低通滤波器的原理图如下图 1 所示:
图 1 有源一阶 RC 低通滤波器原理图 根据运算放大器的“虚短”和“虚断”法则可得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告——基于虚拟仪器的幅频特性自动测试系统的实现2010年12月25日一、实验内容基于虚拟仪器的幅频特性自动测试系统的实现二、实验目的1、通过对滤波器的设计,充分了解测控电路中学习的各种滤波器的工作原理以及工作机制。

学习幅频特性曲线的拟合,学会基本MATLAB操作。

2、进一步掌握虚拟仪器语言LabVIEW设计的基本方法、常用组件的使用方法和设计全过程。

以及图形化的编程方法;学习非线性校正概念和用曲线拟合法实现非线性校正;练习正弦波、方波、三角波产生函数的使用方法;掌握如何使用数据采集卡以及EIVIS产生实际波形信号。

了解图形化的编程方法;练习DIO函数的使用方法;学习如何使用数据采集卡以及EIVIS产生和接受实际的数字信号。

3、掌握自主化学习的方法以及工程设计理念等技能。

三、实验原理滤波器是具有频率选择作用的电路或运算处理系统。

滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。

滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。

在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。

任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。

一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。

可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。

滤波器主要参数介绍:①通带截频f p=w p/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。

②阻带截频f r=wr/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。

③转折频率f c=w c/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。

④固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。

有源滤波器地设计,主要包括确定传递函数,选择电路结构,选择有源器件与计算无源元件参数四个过程。

巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。

一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。

二阶巴特沃斯滤波器的衰减率为每倍频12分贝、 三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。

巴特沃斯滤波器的振幅对角频率单调下降,并且也是唯一的无论阶数,振幅对角频率曲线都保持同样的形状的滤波器。

只不过滤波器阶数越高,在阻频带振幅衰减速度越快。

其他滤波器高阶的振幅对角频率图和低级数的振幅对角频率有不同的形状。

巴特沃斯低通滤波器与理想滤波器比较。

简单来说,理想低通滤波器的滤波效果是无失真的,其通频特性可以看做一个矩形,滤波不会发生混叠(实际的滤波器是不可能有理想的截止特性,总会在截止频率fc 之后总有一定的过滤带)。

巴特沃斯滤波器是滤波器的一种设计分类,类同于切比雪夫滤波器,它有高通,低通,带通,高通,带阻等多种滤波器。

它在通频带内外都有平稳的幅频特性,但有较长的过渡带,在过渡带上很容易造成失真。

切比雪夫滤波器则相反,过渡带很窄,但内部的幅频特性却很不稳定。

其他种类的滤波器一般都是折中设计的。

四、技术要求ﻩ1、设计一个模拟巴特沃滋二阶有源低通滤波器,指标如下:ﻩ截至频率:10KHzﻩﻩ通带内增益:2ﻩ2、组建一个低通滤波器的自动测试系统,测试低通滤波器的幅频特性:outf V f A )(log 20)(使用虚拟仪器进行单次频率步进为10Hz,扫频范围从0~200KHz使用虚拟仪器绘制副频特性图。

选择测量设备,绘制系统的组建结构图,给出完整的测试流程图,讨论减少误差的方法。

3、给定条件:ﻩ1)NI公司ELVIS试验平台,LabVIEW软件;2)OP07运算放大器,电阻电容若干;五、设计要求1.确定总体方案2.选择正确的电阻电容搭建模拟滤波器3.使用虚拟仪器ELVIS平台搭建自动测试系统4.绘制幅频特性图,完成报告六、具体设计过程,实验结果等1、传递函数的确定确定电路传递函数应首先按照应用特点,选择一种逼近方法。

本次设计中选择巴特沃斯逼近。

根据设计要求,确定电路阶数为二阶二阶低通滤波器的传递函数的一般形式为它的固有频率为a01/2,通带增益K p=b0/a0,阻尼系数为a1/w0。

其幅频特性与相频特性为这种逼近的基本原则是使幅频特性在通带内最为平坦,并且单调变化。

其幅频特性为n阶巴特沃斯低通滤波器的传递函数为2、电路结构的选择图1如图1所示为压控电压源型低通滤波电路,其使用元器件数目较少,对有源器件特性理想要求程度较低,结构简单,调整方便,对于一般应用场合性能比较优良,应用十分普遍。

但是它利用正反馈补偿RC 网络中能量损耗,反馈过强将降低电路稳定性,导致电路出现自激振荡。

图2如图2所示无限增益多路反馈型低通滤波电路,它与压控电压源型滤波电路使用的元器件数目差不多,由于没有正反馈,稳定性很高。

其不足之处是对有源器件性能要求比较高,而且调整不方便。

此处我们选择设计一个无限增益多路反馈型二阶低通滤波器,并将其与压控电压源型进行比较,得出最合适的设计方案。

3、有源器件的选择∞ + - + NR 0R u o (t )u i (t )C 1C 2R 2 R 1有源器件是有源滤波器电路的核心,其性能对滤波器影响很大。

在选择时应考虑两个因素:器件特性不理想;有源器件不可避免的会引入噪声,降低信噪比,从而限制有用信号幅值下降。

因此,有源器件的选择首先应按照信号带宽范围,选择具有足够单位增益带宽的器件;其次是按照信号幅值范围和信噪比要求,选择噪声足够低的器件。

4、无源元件参数设计⑴在给定的f c 下,参考下表选择电容C 1; ⑵根据C 1的实际值,按下式计算电阻换标系数K ;K =100/f c C 1⑶由表确定C 2及归一化电阻值r i ,再换算出R i。

图3题目要求:截至频率:10KHz 通带内增益:2 即选择C1=1000p f 计算的K=10根据R=Kr 计算得出R1=25.65,R2=32.92,R3=51.30;分别选择标称值为25、33、51的电阻;C1为1500P f,C2=150Pf ;根据传递函数表达式 计算参数得:f =10K Hz,W0=2∏f ,W=62900,aW 0=89900。

然后根据实际情况以及电路设计要求选择合适的电阻。

5.使用虚拟仪器EL VIS 平台搭建自动测试系统f /Hz <100 100~1000 (1~10)k (10~100)k>100kC 1/u F10~0.10.1~0.010.01~0.001(1000~100)×10-6(100~10) ×10-6126103.111 2.565 1.697 1.6254.0723.2924.9774.7233.1115.13010.18016.2520.20.150.050.033pK/k 1r k /2rk /3r 12/CC图4 6.测得多组频率、幅频数据f频率A幅值f频率A幅值f频率A幅值0 0 1000 8.021 8000 4.718 10 8.042 11008.0188500 4.385 50 8.0421200 8.0159000 4.187 100 8.042 1300 8.0119500 4.021 150 8.039 1400 8.007 10000 3.998 200 8.038 1500 8.012 15000 1.747 2508.037 16007.997 20000 1.005 300 8.036 1700 7.96825000 0.645350 8.036 1800 7.95630000 0.447400 8.035 1900 7.948 35000 0.327 450 8.034 2000 7.925 40000 0.248 500 8.033 2500 7.917 45000 0.195 5508.032 30007.834 50000 0.1566008.031 3500 7.712 55000 0.127650 8.03 40007.542 60000 0.105 7008.029 45007.318 65000 0.088750 8.0285000 7.033 70000 0.075800 8.0265500 6.674 75000 0.064 8508.024 6000 6.271 80000 0.054 900 8.024 6500 5.856 85000.0470950 8.0227000 5.454 900000.04110008.021 7500 5.0741000000.035图5 频率为100Hz时的幅值情况图6 频率为10000Hz时得情况图7 频率为100000时的情况7.绘制幅频特性图图8 根据传递函数绘制的波特图图9 根据实验结果拟合的波特图七、设计的心得体会课程设计是培养我们综合运用所学知识发现、提出、分析和解决实际问题,锻炼实践能力的重要环节,是对我们实际工作能力的具体训练和考察过程.随着科学技术发展的日新日异,模拟电路和虚拟仪器相结合的应用已经成为电子电路学科和实际生活应用的发展趋势。

我们这次课程设计就是基于模拟电路和虚拟仪器(LabVIEW)的开发平台而设计的巴特沃斯低通滤波器。

因此作为二十一世纪的大学来说掌握模拟电子电路知识和虚拟仪器方面的开发技术是十分重要的。

在精密测量中,进入测量电路的除了传感器输出的有价值的信号外,还往往有很多噪声,而传感器的输出信号一般很微弱,因此将测量信号从含有噪声的信号中分离出来是测量电路的一项重要任务,而低通滤波器就是分离干扰信号的经典电路,其在精密测量电路中有不可替代的作用。

这次课程设计时间很紧迫,虽然学校安排了一周的时间,但是我们其他的实习也都挤在一块儿来了,再加上期末复习,我们只有利用课余时间到实验室去做设计,尽管如此我们还是在规定的时间内完成了设计,所以它考验了我们良好的学习态度和积极性、合理安排时间的能力和刻苦专研的的精神。

回顾起此次低通滤波器的课程设计,至今我仍感慨颇多,从选题到定稿,从理论到实践,我们小组三个人都付出了很多努力,也收获了很多,在此次设计中不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。

由于我们本学期刚好开了测控电路这门课,也学了很多关于电路的设计知识,通过这次课程设计也使我懂得了理论与实际相结合的重要性,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能做出实际的有用的东西,从而提高自己的实际动手能力和独立思考的能力。

相关文档
最新文档