7第六章简单的超静定问题
第6章简单的超静定问题
材料力学 任课教师:金晓勤
21
φ
代入变形几何条件得:
φ1 φ2
T1l T1l Tl GI P1 GI P 2 GI P 2
I P1T 32 T1 T2 I P1 I P 2 D 4 d 4 D 4 d 4 1 1 2 2 32 32 1004 904 2 1.165kNm 4 4 4 4 100 90 90 80
代入数据,得
FW 0.717 F Fst 0.283F
根据角钢许用应力,确定F
F
st
0.283F st Ast
F 698kN
根据木柱许用应力,确定F
0.717 F W W AW
许可载荷
F 1046kN
250 250
F 698kN
材料力学
将平衡方程与补充方程联立,求解,可得:
RA RB P RAl1 RB l2 E A E A 0 2 2 1 1
P RA E2 A2l1 1 E1 A1l2
P RB E1 A1l2 1 E2 A2l1
材料力学 任课教师:金晓勤
9
例题 木制短柱的4个角用4个40mm×40mm×4mm的等边角钢加固, 已知角钢的许用应力[σst]=160MPa,Est=200GPa;木材的许 用应力[σW]=12MPa,EW=10GPa,求许可载荷F。 F 解: 平衡方程: F FW Fst 变形协调关系: l st l w (1)
b
⑶物理方程
FN 1l1 FN 1l l1 E1 A1 E1 A1 cos FN 2l2 FN 2l l2 E2 A2 E2 A2
超静定问题
三、扭转超静定问题 扭转变形计算公式
Tl
GI p
T ( x)dx
l GI p
例3.两端固定的圆截面等直杆AB,在截面 C受外力偶矩m作用,求杆两端的支座反力 偶矩。
m
A
C
a
B
b
解:
A
m
C
ɑ
m
B
b
mA
mB
静力平衡方程为: mA mB m
变形协调条件为: AB AC CB 0
即: mA a mB b 0 GIp GIp
例题 6.1
有载荷F,垂直杆1,2的抗拉压刚度分别为E1A1,E2A2,若横 梁AB的自重不计,求两杆中的内力.
MA 0
1
A
C
2
L1
FN1a FN22a F2a 0
B
变形协调方程
a
a
F
FN1
FN 2
A
B
C L1
L2
a
a
F
2L1 L2
2 FN1L FN 2L E1 A1 E2 A2
FN1
1
2F 4E2 A2
第六章 简单的超静定问题 q
1.超静定问题及其解法
A
B
l
未知力个数等于独立的平衡方程数目,则仅由 平衡方程即可解出全部未知力,这类问题称为静 定问题,相应的结构称为静定结构.
未知力个数多于独立的平衡方程数目,则仅由平衡方程 无法确定全部未知力,这类问题称为超静定问题或静不定问 题,相应的结构称为超静定结构或静不定结构.
E1 A1
FN 2
4
4F E1 A1
E2 A2
L
1.8L LDB
例题 6.2 图示刚性梁AB受均布载荷作用,梁在A端铰支,在B点和 C点由两根钢杆BD和CE支承。已知钢杆的横截面面积
第六章简单的超静定问题共14页word资料
第六章简单的超静定问题知识要点1.超静定问题的概念(1)静定问题结构或结构的约束反力或内力均能通过静力学平衡方程求解的问题。
(2)超静定问题结构或构件的约束反力或内力不能仅凭静力学平衡方程全部求解的问题。
(3)超静定次数未知力(约束反力或内力)数超过独立的静力平衡方程书的数目。
(4)多余约束力超静定问题中,多余维持静力平衡所必需的约束(支座或杆件)。
(5)多余未知力与多余(支座或杆件)相应的支座反力或内力。
(6)基本静定系在求解静定结构时,解除多余约束,并代之以多余未知力,从而得到一个作用有荷载和多余未知力的静定结构,称之为原超静定结构的基本体静定系。
2.静不定问题的解题步骤(1) 静力平衡条件——利用静力学平衡条件,列出平衡方程。
(2) 变形相容条件——根据结构或杆间变形后应保持连续的变形相容条件,作出位移图,由位移图的几何关系列出变形间的关系方程。
(3) 物理关系——应用胡克定律列出力与变形间的关系方程。
(4) 将物理关系代入变形相容条件,得补充方程 。
补充方程和静力平衡方程,二者方程数之和正好等于未知数的个数,联立平衡方程和补充方程,求解全部未知数。
习题详解6-1 试作题6-1图(a )所示等直杆的轴力图。
解 解除题6-1图(a )所示等直杆的约束,代之以约束反力,作受力图,如题6-1图(b )所示。
由静力学平衡条件和变形协调条件 并将()EAa F EA a F F EA a F B DB A CD A AC -=∆-=∆=∆,22,代入式②,可得 联立式①,③,解得轴力如图6-1图(c )所示6-2 题6-2图(a )所示支架承受荷载F=10 kN,1,2,3各杆由同一材料制成,其横截面面积分别为232221200,150,100mm A mm A mm A ===。
试求各杆的轴力。
解 这是一个超静定问题,铰链A 的受力图,如题6-2图(c )所示。
利用静力学平衡条件列平衡方程变形的几何关系如题6-2图(b )所示,变形协调条件为应用胡克定律,三杆的变形为代入③,得补充方程联立式①,②,④,解得各杆的轴力分别为6-3 一刚性板有四根支柱支撑,四根支柱的长度和截面都相同,如 题6-3图(a )所示。
《材料力学》第6章 简单超静定问题 习题解
第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
简单的超静定问题 超静定问题及其解法
( wB ) FBy
C C F F
8FBy a 3 3EI
(b) (b)
B B
所以
3 14 Fa 3 8FBy a 0 3EI 3EI
MA
MA MA
A A
B B (c) (c) B B B (d) (d) FBy FBy
FA y
A A A
C C
7 FBy F 4
4)由整体平衡条件求其他约束反力
第六章 简单的超静定问题
§6-1 超静定问题及其解法
§6-2 拉压超静定问题
§6-3 扭转超静定问题 §6-4 简单超静定梁
§6-1 超静定问题及其解法
超静定问题与超静定结构:未知力个数多于独立 的平衡方程数。 超静定次数:未知力个数与独立平衡方程数之差。 变形几何相容方程:有多余约束的存在,杆件(或 结构)的变形受到多于静定结构的附加限制。根据 变形的几何相容条件,建立附加的方程。
7-6
目录
采用超静定结构
MA MA FA y FA y
A A 2a 2a (a) (a) A A
B B a a
F F
C C
例 求梁的支反力,梁的抗弯 刚度为EI。 解:
1)判定超静定次数
(b) (b)
B B F F FBy FBy B B B
C C
2)解除多余约束,建立相当系统 3)进行变形比较,列出变形协调 条件
FN1 FN 2 33.3kN
FN 2 2 33.3MPa A2
FN 1 1 66.7MPa A1
例:设温度变化为t,1、2杆的膨胀系数为1, 3杆
的膨胀系数为3,由温差引起的变形为l= •t •l,
求各杆温度应力。
第六章简单超静定问题
yc = 0
去掉多余约束而成为形式上 去掉多余约束而成为形式上 基本静定基。 的静定结构 — 基本静定基。
q A
l 2
q
C
l 2
B
AA
L/2
C
Rc
B
L/2
静力、几何、物理条件) 解超静定的步骤 —— (静力、几何、物理条件) 用多余约束反力代替多余约束( 静定基,原则:便于计算) 1、用多余约束反力代替多余约束(取静定基,原则:便于计算) 2、在多余约束处根据变形协调条件列出变形的几何方程 3、把物理条件代入几何方程列出力的补充方程求出多余反力 分析—— ω
A
l 2
1)研究对象,AB梁 研究对象 B 解:1)研究对象,AB梁, 受力分析: 受力分析:R A , RB , RC , ql
∑ Y = 0, R A + RB + RC − ql = 0
∑ M A = 0, RB l + 0.5RC l − 0.5ql 2 = 0
q A
RC
B
2)选用静定基,去C支座 选用静定基, 静定基 3)变形协调方程
C 2 δ
1
3 α
α
A
由温度引起杆变形而产生的应力( 1)温度应力:由温度引起杆变形而产生的应力(热应力)。 温度应力 由温度引起杆变形而产生的应力 热应力)。 温度引起的变形量 —
∆L = α∆tL
1、静定问题无温度应力。 静定问题无温度应力。 超静定问题存在温度应力。 2、超静定问题存在温度应力。
F
B 1
D 3 α α A 2
C
超静定结构的特征:内力按照刚度分配
∆l3
∆l2
A2
∆l1
A3
第六章简单的超静定问题
例1 木制短柱的四角用四个40404的等边角钢加固,角钢和 木材的许用应力分别为[]1=160M Fa和[]2=12MFa,弹性模
量分别为E1=200GFa 和 E2 =10GFa;求许可载荷P。 P 解:平衡方程: y Y 4F F P 0
N1
N2
4FN1
FN2
几何方程
2 FN1 FN3
X F
Y F
FN2
N1
N1
sin FN 2 sin 0
A P
cos FN 2 cos FN 3 P 0
A P
B 3
D
1
A
2
C 几何方程——变形协调方程: L1 L3 cos
物理方程——弹性定律:
L1 FN 1 L1 E1 A1 L3 FN 3 L3 E3 A3
(a)
Tb Ta
(b)
解: 1. 铜杆和钢管的横截面上各有一个未知内力矩 ── 扭矩Ta和Tb(图b),但只有一个独立的静力平衡方程
Ta+Tb= Me,故为一次超静定问题。
2. 位移相容条件为
Ba Bb
Tb Ta
(b)
3. 利用物理关系得补充方程为
Ga I pa Tal Tbl ,即 Ta Tb Ga I pa Gb I pb Gb I pb
P1 A11 / 0.07 308.6 160/ 0.07 705.4kN
FN 2 0.72P A2 2
P2 A2 2 / 0.72 2502 12 / 0.72 1042kN
求结构的许可载荷: 方法2:
1 L1 / E1 0.8mm 2 L 2 / E2 1.2mm
第六章——简单的超静定问题
(3)将变形与力之间的关系(胡克定律)代入变形几ห้องสมุดไป่ตู้方程得补充方程
(4)联立补充方程与静力平衡方程求解
杆件的轴力可以用静力平衡条件求出,这种情况称作静定问题。
2、超静定问题
只凭静力平衡方程已不能解出全部未知力,这种情况称做超静定问题。
二、超静定问题求解方法
1、超静定的次数
未知力数超过独立平衡方程数的数目,称作超静定的次数.
n=未知力的个数-独立平衡方程的数目
2、求解超静定问题的步骤
(1)确定静不定次数;列静力平衡方程
所有超静定结构,都是在静定结构上再加一个或几个约束,这些约束对于特定的工程要求是必要的,但对于保证结构平衡却是多余的,故称为多余约束。
未知力个数与平衡方程数之差,称为超静定次数或静不定次数。
求解超静定问题,需要综合考察结构的平衡,变形协调和物理等三个方面。
§6—2拉压超静定问题
一、静定与超静定问题
1、静定问题
章节
名称
学时
备注
第六章
简单的超静定问题
1教学目标:
2教学内容:
3重点、难点分析及解决策略
4教学方法:
5教学进程:
§6—1超静定问题及其解法
未知力个数等于独立的平衡方程数目,则仅由平衡方程即可解出全部未知力,这类问题称为静定问题,相应的结构称为静定结构。
未知力个数多于独立的平衡方程数目,则仅由平衡方程无法确定全部未知力,这类问题称为超静定问题或静不定问题,相应的结构称为超静定结构或静不定结构。
第六章简单超静定问题共68页
Δ1lΔ2lF EN 1A l11 1E1A F1N cl1oαs
l3
FN3l E3 A3
3
2
1
A
Δ1lΔ2lF EN 1A l11 1E1A F1N cl1oαs
l1 l3
A2 A1
由变形协调方程和物理方程,可得到补充方程。
FN1l FN3l cos E1A1cos E3A3
FN3
FN1
E3A3
超静定次数 ——未知力个数与独立平衡方程数 之差 多余约束 —— 保持结构静定多余的约束
B
D
A
F
B
BC
D
A
D
F
A F
二、求解超静定问题的基本方法
方法1:寻找补充方程法(适用于求解拉压超
静定) 因为未知力个数超过了独立的平衡方程数,必须寻 找补充方程。 寻找补充方程的途径: 利用结构的变形条件
结构受力后变形不是任意的,必须满足以下条件:
例题
两端固支的直杆AB,长度为l ,抗拉刚度为EA, 热膨胀系数为α l。
求:温度升高 t 后0c杆内的应力。
A
B
l
解:
本问题为一次超静定 A
静平衡方程
l
Fx 0 FRAFRB
变形协调方程
l lT lF0
FRA A
物理方程
lT l lt
lF
FRAl EA
联解,得: F RA F RB EA l t
FAFBF
变形条件:
FA
BFBF B0A
A
A
A
物理条件:
a
B
F
Fa EA
F
F
F
B FB
FBl EA
第6章简单超静定问题
M D 0, 1.5FN1 0.5FN2 0.5FN3 0
变形协调条件: 胡克定理:
2l2 l1 l3
2FN2 FN3 FN1
解法3:
l
1
2
3
a
a
=
a 2
A BD C
F
FN1
F 12
F FN2 3
FN3
7F 12
l
l
1
2
3
a
a
a 2
A BD C
F
+
1
2
3
a
a
a 2
A BD C
Fa/2
超静定结构(静不定结构): 仅凭静力 学平衡方程不能求解全部未知内力 B 或反力的结构。
超静定结构的未知力的数目多于独 立的平衡方程的数目;两者的差值 称为超静定的次数。
FB B
DC
A
B
D
C
1 32
y
aa
F N1
a
FaN3
F N2
FA A
F FC C
FB B
A F
A x
F
•习惯上把维持物体平衡并非必需的约束称为多余
Me =7 kN·m d1=0.6 m
2m
A
B
C
1m
1m
2m
d2
参考答案:
Me =7 kN·md1=0.6 m
2m
A
B
C
1m
1m
2m
d2
MC=FN·d1 (1) l = FNl / EA (2)
T 1 / GIP FNd1 2 / GIP (T M e ) (3)
则变形协调关系为:
l
材料力学简单的超静定问题
§6-4 简单超静定梁
1.基本概念: 超静定梁:支反力数目大于有效平衡方程数目的梁 多余约束:从维持平衡角度而言,多余的约束 超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统 2.求解方法: 解除多余约束,建立相当系统——比较变形,列变 形协调条件——由物理关系建立补充方程——利用 静力平衡条件求其他约束反力。
1Δ2l3cos
②
(3)代入物理关系,建立补充方程
1
N1 1 E1 A1
N1
E1 A1 cos
③
3
N3 E3 A3
13
2
A
2
1
3
A
§6-2 拉压超静定问题
(2)建立变形协调方程:如图三杆铰结, 画A节点位移图,列出变形相容条件。要 1 注意所设的变形性质必须与受力分析所 中设定的力的性质一致。由对称性知
C
(b)
F
B
F C
B
C
(c)
FBy
(c)
FBy FF
BB B
(d) (d) B
F CC C
C
(d) FBy
F(2a)2
1F 43a
(w B)F
(9a2a)
6EI
3EI
(wB)FBy
8FBya3 3EI
所以
14Fa3 8FBya3 0 3EI 3EI
FBy
7 4
F
4)由整体平衡条件求其他约束反力
M AF 2(a), F Ay 4 3F ( )
FCFFB 408.75
4.875kN
M C0 , M C2 F 4 F B 0
MC 4FB 2F
48.75240115kN.m
材料力学-简单超静定
EA
C
F
B
FRA
b L
F
FRB
a L
F
L
例 图示一长为l 的组合杆,由不同材料的实心圆截
面杆和空心圆截面杆套在一起而组成,内、外两杆
均在线弹性范围内工作,其扭转刚度分别为GaIpa和 GbIpb。组合杆的左端为固定端,右端固结于刚性板 上。当在刚性板处受力偶矩Me作用时,试求分别作 用在内、外杆上的扭矩。
FN1 FN2 FN3 /2
(2) 几何方程
B 1
1
C1 2
A1 l
C 1 3
B
C
A C'
aa
l1l3 Δ FN1l FN3l Δ EA E3A3
二、温度应力
a
t
A
EA
C
L
a
t
A
EA
C
L
b B
b B
静定结构无温度应力
超静定结构 有温度应力
B=0
FB
tL F B L =0
l
A
A
A
F
F
FN3’
(1)
(2)
ΔA1 ΔA2
(F FN3)l
2E1A1 cos2
FN' 3l cos
E3 A3
FN3
12
F E1A1
cos3
E3A3
FN1
FN2
F
2cosE1AE13cAo32s
讨论:1. 刚度引起的受力分配原则 2. 基本结构的不同取法
例2-12 如图所示,三杆的横截面积、长度和弹性
a
b
FAFFB
F
第六章_简单的超静定问题
第 1 页/共 3 页第六章 容易的超静定问题6-1 一次超静定解除A 端约束,加反力F A 变形协调 0=∆=∆L A 补充方程 0])3()2(2[1=-+-+=∆a F F a F F a F EAL A A A 解得 F F A 47=轴力图: 6-4 一次超静定解除杆2约束,加反力F E 变形协调 EAl F EA lF C C E E C E =∆=∆∆=∆,,2 补充方程 C E F F 2=平衡 F F F M C E A 320=+⇒=∑ 解得 kN F F kN F F C E 30536056====, 从而可得轴力 kN F kN F N N 603021==,应力 MPa AFMPa A F N N 60302211====σσ, 6-9 若杆未碰到支座B ,计算δ>∆L ,则杆必碰到支座B ,一次超静定解除下端支座B ,加反力F B变形协调 δ=∆=∆L B 补充方程 []δ=-++-+-=∆a F F F a F F EAEA a F L B D C B C B )()(221解得 kN aEAF F F D C B 155253=-+=δ (其中a =1.2m ,A =300mm 2)kN F F F F B D C A 85=-+= 轴力图:6-11 一次超静定解除B 端约束,加反力偶M B 变形协调 0=BA ϕ 补充方程 0)(221=-+=p e B p B BA GI aM M GI a M ϕ 解得 e B M M 331=,从而e A M M 3332= 扭矩图:6-14 拉杆EF 与GH 相同,且变形同为C 端位移,故两杆拉力相等 一次超静定第 3 页/共 3 页解除两杆约束,加反力F C 变形协调 ,,2122/EA L F L d LC CA =∆∆=ϕ []L d F M l d F GI C e C p CA )(1111-+-=ϕ (其中L =1m ) 补充方程21114)2(EA F d F M GI d C C e p =- 解得 kN d M F eC 1071==从而AB 段 m kN M T e ⋅==676max 最大切应力 MPa d T W T p 6.3016/31maxmax max ===πτ 6-15(a) 一次超静定解除B 端约束,加反力F B 变形协调 0==∆B B w补充方程 0931433=-=EIa F EI Fa w B B 解得 F F B 2714= 6-16 一次超静定基础梁AB 与CD 间的约束,加互相作使劲F C 变形协调 C B w w =补充方程 23213133)(EI l F EI l F F C C =- 解得 FF C 167135=。
第六章简单的超静定问题共51页
试校核该梁的强度.
列静力平衡方程
q
Fy 0
A
C
L2
FA
L2
FC
变形协调方程
B
FAF BF CqL 0
MA0
FB
L
qL2
FC 2FBL 2 0
5 qL 4
CqCF C0384 EI Z
FC L3 48 EI Z
7.5kNm0FC来自5 qL 8FB
3 16
qL
FA
3 16
qL
M 7.5kNm max
例题
6.2
点由两根钢杆BD和CE支承。已知钢杆的横截面面积ADB=200mm2, ACE=400mm2,其许用应力[σ]=170MPa,试校核钢杆的强度。
列静力平衡方程 MA0
FNCE 13k5 N 3FNBD
变形协调方程
D
F LN DB 31 C m L CE 3 E k / m 0 N 2 3 m F 0 N 1 1 . 5 0 B F6 m 0 1 Nm D .B 8 2 DlF N E 65 F4 3 NB m CE3 0 D 1 0 F N 0 6 0 m C 2 l E E
F
2m
列静力平衡方程 MA0
F12F2F
变形协调方程2 m F F L1 1 24 mm F 2 L24m
2m A
L2 2L1
4m
F2
1m 2
L1 EF11LA1! gTL1
F2L2 E2A2
L2tTEFL222LA222(EFt11LA1T! L2gTL1)
2 . 1 F 2 8 F 1 2 4 0 1 . 5 1 2 . 5 4 6 . 2 1 2 N 0
a
材料力学--简单的超静定问题
Mx 0, M A Me MB 0
2. 变形几何方程为:
AB 0
24
MA
MB
(a)
3. 根据位移相容条件利用物理关系得补充方程:
AB
M Bb GI p
(M B Me )a GI p
0
MB
Mea l
另一约束力偶矩MA可由平衡方程求得为
MA
A
A
2EA a
C
C
RA 解: 放 松B端,加支反力RA、RB
则,RA RB F 0 (1) 变形协调条件 : l总 0
F 2a
B EA
F
lAC
lCB
F RB a
2EA
RB 2a
EA
0
(2)
B
由(1)、(2)式得
RB
RB
F 5
,
RA
4F 5
14
B
D
C (2) 几何方程
1
3
aa
2
AA1 0
A
A0
l1 ( l3 ) cosa
(3) 物理方程及补充方程:
FN1l1 ( FN3l3 ) cosa
E1 A1
E3 A3
l3 A1
(4) 解平衡方程和补充方程,得:
FN1
FN2
l3
1
E1A1 cos2 a 2 cos3 a E1A1 /
(a)
26
Tb Ta
(b)
解: 1. 设铜杆和钢管的横截面上内力矩分别
第六章 简单的超静定问题
A
4m
F A
20kN m
ω1 =ω2 B B
A
M A
ω1 B
4m
B
F B ′ F 40kN B
L F 3q 5 P3 q 4 −FL =87 k L . 5N F B B ω1=2 8 − 4 = 8 B 8 IZ 3 IZ 3 E E 2 L L F 15 NP F F =q −F =7 .2 k L3 A FL B P2 2 L ω 2 = BL + + B q2 3 I 3 E E M = IZ −FE= 2 k2 IZ 2 L Z1 5 N m A B 2
EI1 P a A b
P3 a y= 1 3I E1
P P M A A y1 x y2
EI2 x y
(P ) ⋅a ab y = 2 E2 I
P2 a b a y=y +y = ( + ) 1 2 E 3 1 I2 I
(P ) 2 ab x= 2 I2 E
轴向拉压
对称弯曲
扭 转
内力分量 轴力F 轴力FN 应力分布规律 正应力均匀分布
A. 若取支反力 B为多余约束力,则变形协调条件是截面 的挠度 B=0; 若取支反力F 为多余约束力,则变形协调条件是截面B的挠度 的挠度ω B. 若取支承面 1对弹簧底面的作用力 c1为多余约束力,则变形协调条件为 若取支承面C 对弹簧底面的作用力F 为多余约束力, C1面的铅垂线位移 1=0; 面的铅垂线位移∆C C. 若取支承面 1对弹簧底面的作用力 c1为多余约束力,则变形协调条件为 若取支承面C 对弹簧底面的作用力F 为多余约束力, C1面的铅垂线位移 1等于弹簧的变形 面的铅垂线位移∆C 等于弹簧的变形; D. 若取弹簧与梁相互作用力为多余约束力,则变形协调条件为梁在 截面的挠 若取弹簧与梁相互作用力为多余约束力,则变形协调条件为梁在C截面的挠 等于弹簧的变形。 度ωc等于弹簧的变形。
简单的超静定问题 超静定问题及其解法
y
x
0:
FN1sin FN 2sin 0
0:
A FP FN3
FN1cos FN 2cos FN3 FP 0
y 未知力个数:3
FN1 FN2
x
平衡方程数:2
未知力个数>平衡方程数
FP
例 试判断下图结构是静定的还是超静定的?若是超 静定,则为几次超静定?
M n M n1 M n 2 M
(2)变形协调条件
M n2
1 2
M n1
1 2
(3)物理关系:
1
M n1l G
,
4 1
2
32
d
G
M n 2l
4 (d 2 d14 )
32
代入变形协调方程,得补充方程
d14 M n1 M n 2 4 (d 2 d14 )
选择此等直圆截面杆直径。
M A l C l M B D l
例一组合杆由实心杆1和空心管2结合在一起所组成,杆和管的材
料相同。剪切模量为G,试求组合杆承受外力偶矩M以后,杆和管
内的最大剪应力,并绘出横截面上应力分布的规律。如果杆和管 的材料不相同,结果又怎样?
M
M
d1 d2
解: (1)静力学关系
1 2 Mn
(4)补充方程与静力平衡方程联立,解得
4 d14 (d 2 d14 ) M n1 M 4 , M n 2 M 4 d2 d2
(5)最大切应力
杆1:
管2:
M n1 M n1 16Md1 1 4 Wp1 d 3 2 d1 16
M n2 M n2 16M 2 3 3 d1 4 Wp 2 d 2 d 2 [1 ( ) ] 16 d2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E3 A3
FN 1
FN 2
2COS
F E3 A3
EACOS
2
解超静定问题的步骤
(1)列 静力平衡方程 确定超静定次数; (2)根椐变形相容条件建立变形几何方程。变形几何方程的
个数与超静定次数相等; (3)将 物理方程 (胡克定律)代入变形几何方程得补充方程; (4)联立补充方程与静力平衡方程求解。
第六章
简单的超静定问题
• 超静定问题及其解法 • 拉压超静定问题 • 扭转超静定问题 • 简单超静定梁
§6—1 超静定问题及其解法
1,静定问题 约束反力或杆件的内力可以用静力平衡方程求出,这种情 况称作静定问题。
2,超静定问题
只凭静力平衡方程已不能解出全部未知力,这种情况称做超 静定问题。
F
A
C
2
3
1
A
B
C
P 40
80
FN1
FN2
80
FN3
P
几何方程
2 l2 l1 l3
物理方程
l1
F N1l1 EA
l 2
F N2l2 EA
l3
F N3l3 EA
2
3
1
A
B
C
l1
P l2
l3
4080807575补充方程
2 F N 2 l2 F N1l1 F N 3 l3 EA EA EA
2
3
1
A
B
2
A
F
B
D
C
3 1
2
A
FN1
FN3
FN2
αα
A
F
F
解:列静力平衡方程
F N1 F N2
F N1cosα F N 2cosα F N 3 F 0
这是一次超静定问题。
B
D
C
3 1
2
A
FN1
FN3
FN2
αα
A
F
F
由于1,2 两杆在 几何,物理 及 受力 方面都是对称。所以 变形后 A 点将沿铅垂方向下移。
B
D
C
3
1
2
FN1
A
F
B
D
C
FN3
FN2
αα
A
F
3 1
2
A A’
相容条件:变形后三杆仍绞结在一起。
B
D
C
3 1
2
B
D
3 1
2
A A’
A
l2
l1
l3
A’
变形几何方程为
l1 l3cos
物理方程为
l1
F N1l EA
l3 F N 3 l cosα
E3 A3
B
D
C
3 1
2
A
A’
B
D
3 1
l1 l3 2l2
方程物理
l1
F N1l EA
l 2
FN2l EA
l3
F N3l EA
3
2
1
3
2
1
C
B
A
l
a
a
B
C
A
l 3
l2 B
l1 A
C
G
(3) 补充方程
F N1 F N3 2F N 2
3
2
1
l
a
a
B
C
A
G
(4) 联立平衡方程与补充方程求解
H 0 F N1 F N2 F N3 G 0 F N1 2a F N 2 a 0 F N1 F N3 2F N 2
B
F
B
D
C
A F
F
3,超静定的次数 未知力个数与独立的静力平衡方程个数之差 ,称作超静定的次数。
4,多余约束 多于维持平衡所必需的支座或杆件。 5,多余未知力 与多余约束相应的支反力或内力。
一次超静定
F
A
C
B
B
D
C
F A
A
C
B
F
§6—2 拉压超静定问题
拉压虎克定律
l F N l
EA
材料在线弹性范围内工作
3
2
1
l
a
a
B
C
A
G
F
N
1
G 6
F
N
2
G 3
F
N
3
5G 6
1 杆缩短, 2,3 杆伸长
思考题 刚性梁 ABC 由抗拉刚度相等的三根杆悬挂着。
尺寸如图所示,拉力 P 为已知。写出平衡方程,几何方程,物 理方程,补充方程, 。
75
2
3
1
A
B
C
P 40
80
80
75
静力平衡方程
F N1 F N2 F N3 P 0 2F N 2 4F N3 P 0
解超静定问题注意
画变形图时,杆的变形与假设的轴力 符号要一致。
画受力图
列静力平衡方程
画变形几何关系图 列 变 形 几 何关系方 程
虎克定律
建立补充方程
解联立方程求出全部未知力
例题:图示平行杆系1、2、3 悬吊着横梁 AB ( AB 的变形略 去不计),在横梁上作用着荷载 G。如杆 1、2、3 的截面 积、长度、弹性模量均相同,分别 为 A ,l ,E 。试求 1、 2、3 三杆的轴力 FN1,FN2,FN3 。
MC 0
FN2 2a + FN1 a - P a = 0 这是一次超静定问题
注意:由受力图看出,假设, 1 杆伸长, 2 杆缩短。
1
a
2a
一,一般超静定问题
例题:两端固定的等直杆 AB 横截面积为 A ,弹性模量为 E,
在 C 点处承受轴力 F 的作用。计算约束反力。
A
a
C
F
B
A
a
C
F
B
FA
A
C F
B
FB
列静力平衡方程
FAFB F
这是一次超静定问题。
A
a
C
F
B
FA
A
A
C
C
C1
F
B
B
FB
变形相容条件:杆的总长度不变。
l AC lCB
2
A
l2
l1
l3
A’
补充方程为
F N1 F N 3 EA cos2
E3 A3
FN1
FN3
FN2
αα
A
F
补充方程 平衡方程
F N1 F N 3 EA cos2
E3 A3
F N1 F N2
F N1cos F N 2cos F N 3cos F 0
解得
FN 3
1
F
2EA COS 3
C
l1
P l2
l3
40
80
80
例题:刚性杆AB 如图所示。已知 1、2 杆的材料,横截面积 , 长度均相同。若两杆的横截面面积 A = 2cm2,材料的许用应 力 [] =100MPa。试求结构所能承受的最大荷载 Pmax 。
max
F
N max
A
[
]
1
a
2a
2
A
C
B
P
解:
1
a
2a
2
A
C
B
P
(1) 列静力平衡方程 取 AB 为研究对象
FA
A
a
C
F
B
A
C F
B
FB
A
C
l AC lCB
C1
B
变形几何方程为:
l AC lCB
物理方程为:
l AC
F Aa EA
l CB
FBb EA
A
a
C
F
B
补充方程为
FA
A
A
C
C
C1
F
B
B
FB
F Aa FBb EA EA
l AC lCB
A
a
C
F
B
F Aa FBb EA EA
FAFB F
FA
A
C F
B
FB
A
C
l AC lCB
C1
B
F
A
Fb l
F
B
Fa l
例题:设 1、2、3 三杆用铰链连结,l1 = l2 = l, A1 = A2 = A, E1 = E2 = E ,3 杆的长度 l3 ,横截面积 A3 ,弹性模量 E3 。 试求在沿铅垂方向的外力 F 作用下各杆的轴力。
B
D
C
3 1
3
2
1
l
a
a
B
C
A
G
解:(1) 平衡方程
x0
H 0
l
y0
F N1 F N2 F N3 G 0
MB 0 F N1 2a F N 2 a 0
这是一次超静定问题, 且假设均为拉杆。
3
a B
G
FN3
B
H
G
2
a
C
1
A
FN2
FN1
C
A
3
2
1
3
2
1
C
B
A
l
a
a
B
C
A
l 3
l2 B
l1 A
C
G
(2) 变形几何方程