高中物理动量定理真题汇编(含答案)

合集下载

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。

最新高考物理动量定理真题汇编(含答案)

最新高考物理动量定理真题汇编(含答案)

(1)设物块与挡板碰撞后的一瞬间速度大小为 v1
根据动量定理有:
I mv0 mv1
解得: v1 1m/s
设碰撞后板的速度大小为 v2 ,碰撞过程动量守恒,则有:
mv0 Mv2 mv1
解得: v2 2.5m/s
(2)碰撞前,物块在平板车上运动的时间: t1
L v0
1s 4
碰撞后,长木板以 v2 做匀减速运动,加速度大小: a
最新高考物理动量定理真题汇编(含答案)
一、高考物理精讲专题动量定理
1.2022 年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某 滑道示意图如下,长直助滑道 AB 与弯曲滑道 BC 平滑衔接,滑道 BC 高 h=10 m,C 是半 径 R=20 m 圆弧的最低点,质量 m=60 kg 的运动员从 A 处由静止开始匀加速下滑,加速 度 a=4.5 m/s2,到达 B 点时速度 vB=30 m/s.取重力加速度 g=10 m/s2. (1)求长直助滑道 AB 的长度 L; (2)求运动员在 AB 段所受合外力的冲量的 I 大小; (3)若不计 BC 段的阻力,画出运动员经过 C 点时的受力图,并求其所受支持力 FN 的大 小.
(1)弹簧压缩到最短时物体 B 的速度大小; (2)弹簧压缩到最短时的弹性势能; (3)从 A 开始运动到弹簧压缩到最短的过程中,弹簧对 A 的冲量大小。
【答案】(1)
(2)
(3)
【解析】 【详解】 (1)弹簧压缩到最短时,A 和 B 共速,设速度大小为 v,由动量守恒定律有



(2)对 A、B 和弹簧组成的系统,由功能关系有
【答案】(1)100 m (2)1800 N s (3)3 900 N

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编( 含答案 )一、高考物理精讲专题动量定理1.半径均为R 5 2m的四分之一圆弧轨道 1 和 2 如下图固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R,让质量为 1kg 的小球从圆弧轨道 1 的圆弧面上某处由静止开释,小球在圆弧轨道 1 上转动过程中,协力对小球的冲量大小为5N s ,重力加快度 g 取10m / s2,求:(1)小球运动到圆弧轨道 1 最低端时,对轨道的压力大小 ;(2)小球落到圆弧轨道 2 上时的动能大小。

【答案】( 1)5(22)N (2)62.5J 2【分析】【详解】(1)设小球在圆弧轨道 1 最低点时速度大小为v0,依据动量定理有I mv0解得 v05m / s在轨道最低端,依据牛顿第二定律,2F mg m v0R2N解得 F 5 22依据牛顿第三定律知,小球对轨道的压力大小为 F 522N 2(2)设小球从轨道 1 抛出抵达轨道 2 曲面经历的时间为t,水平位移:x v0t竖直位移:y 1gt 2 2由勾股定理:x2 y2R2解得 t1s竖直速度:v y gt 10m / s 可得小球的动能E k 1 mv21m v02v y262.5J222.如下图,一质量m1=0.45kg 的平顶小车静止在圆滑的水平轨道上.车顶右端放一质量m2=0.4 kg 的小物体,小物体可视为质点.现有一质量m0 =0.05 kg 的子弹以水平速度v0=100 m/s射中小车左端,并留在车中,已知子弹与车互相作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最后小物体以 5 m/s的速度走开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】( 1)4.5N s( 2)5.5m【分析】① 子弹进入小车的过程中,子弹与小车构成的系统动量守恒,有:m0 v o (m0 m1 )v1,可解得 v110m / s ;对子弹由动量定理有:I mv1mv0 ,I4.5N s (或kgm/s);② 三物体构成的系统动量守恒,由动量守恒定律有:(m0 m1 )v1 (m0m1 )v2m2 v ;设小车长为 L,由能量守恒有:m2 gL 1( m0 m1 )v121(m0 m1 )v221m2v2 222联立并代入数值得 L= 5.5m;点睛:子弹击中小车过程子弹与小车构成的系统动量守恒,由动量守恒定律能够求出小车的速度,依据动量定理可求子弹对小车的冲量;对子弹、物块、小车构成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律能够求出小车的长度.3.质量0.2kg 的球 ,从 5.0m高处自由着落到水平钢板上又被竖直弹起,弹起后能达的最大高度为 4.05m. 假如球从开始着落到弹起达最大高度所用时间为 1.95s,不考虑空气阻力,g 取210m/s .求小球对钢板的作使劲.【分析】【详解】自由落体过程v12= 2gh1,得 v1=10m/s;v1=gt1得 t1=1s小球弹起后达到最大高度过程0- v22= -2 gh2,得 v2=9m/s0-v2=-gt2得 t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t ′=mv2-( -mv1)此中 t′=t-t1-t2 =0.05s得 F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作使劲大小为78N,方向竖直向下;4.如图,一轻质弹簧两头连着物体 A 和 B,放在圆滑的水平面上,某时辰物体小为的水平初速度开始向右运动。

高考物理动量守恒定律真题汇编(含答案)

高考物理动量守恒定律真题汇编(含答案)

3.如图所示,两块相同平板 P1、P2 置于光滑水平面上,质量均为 m。P2 的右端固定一轻质 弹簧,左端 A 与弹簧的自由端 B 相距 L。物体 P 置于 P1 的最右端,质量为 2m 且可以看作质 点。P1 与 P 以共同速度 v0 向右运动,与静止的 P2 发生碰撞,碰撞时间极短,碰撞后 P1 与 P2 粘连在一起,P 压缩弹簧后被弹回并停在 A 点(弹簧始终在弹性限度内)。P 与 P2 之间的 动摩擦因数为 μ,求:
(5)某同学在做这个实验时,记录下小球三个落点的平均位置 M、P、N,如图丙所 示.他发现 M 和 N 偏离了 OP 方向.这位同学猜想两小球碰撞前后在 OP 方向上依然动量 守恒,他想到了验证这个猜想的办法:连接 OP、OM、ON,作出 M、N 在 OP 方向上的投
影点 M 、 N .分别测量出 OP、 OM 、 ON 的长度.若在实验误差允许的范围内,满
(3)由于各种偶然因素,如所受阻力不同等,小球的落点不可能完全重合,落点应当比较
集中,但不是出现了错误,故 AB 错误;由于落点比较密集,又较多,每次测量距离很
难,故确定落点平均位置的方法是最小圆法,即用尽可能最小的圆把各个落点圈住,这个
圆的圆心位置代表落点的平均位置,故 C 正确;仅调节斜槽上固定位置 C,它的位置越 低,由于水平速度越小,则线段 OP 的长度越小,故 D 错误.故选 C;
注意三个易错点:碰撞只是 P1、P2 参与;碰撞过程有热量产生;P 所受摩擦力,其正压力
为 2mg
【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。中档题
4.如图,一质量为 M 的物块静止在桌面边缘,桌面离水平地面的高度为 h.一质量为 m 的 子弹以水平速度 v0 射入物块后,以水平速度 v0/2 射出.重力加速度为 g.求: (1)此过程中系统损失的机械能; (2)此后物块落地点离桌面边缘的水平距离.

高考物理动量定理真题汇编(含答案)及解析

高考物理动量定理真题汇编(含答案)及解析

高考物理动量定理真题汇编(含答案)及解析一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:221002v v L m a-==(2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2Cv N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg 。

用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触。

另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,C 的v -t 图象如图乙所示。

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。

现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。

若忽略空气阻力,重力加速度为g 。

(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。

请通过计算,说明你的观点。

【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L =-当2HL =时小球抛的最远2.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。

高考物理动量定理真题汇编(含答案)及解析

高考物理动量定理真题汇编(含答案)及解析

高考物理动量定理真题汇编(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。

现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。

若忽略空气阻力,重力加速度为g 。

(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。

请通过计算,说明你的观点。

【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L -当2HL =时小球抛的最远3.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 【答案】(1)0.32μ=(2)130F N =(3)9W J = 【解析】(1)由动能定理,有:2201122mgs mv mv μ-=-可得0.32μ=. (2)由动量定理,有'F t mv mv ∆=-可得130F N =. (3)'2192W mv J ==. 【考点定位】本题考查动能定理、动量定理、做功等知识4.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力多大? (2)考虑铁锤的重力,铁锤钉钉子的平均作用力又是多大? 【答案】(1)200N ,方向竖直向下;(2)205N ,方向竖直向下 【解析】 【详解】(1)不计铁锤受的重力时,设铁锤受到钉子竖直向上的平均作用力为1F ,取铁锤的速度v 的方向为正方向,以铁锤为研究对象,由动量定理得10F t mv -=-则10.5 4.0N 200N 0.01mv F t ⨯=== 由牛顿第三定律可知,铁锤钉钉子的平均作用力1F '的大小也为200N ,方向竖直向下。

高中物理动量守恒定律真题汇编(含答案)

高中物理动量守恒定律真题汇编(含答案)

高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。

高考物理动量定理真题汇编(含答案)精选全文完整版

高考物理动量定理真题汇编(含答案)精选全文完整版

可编辑修改精选全文完整版高考物理动量定理真题汇编(含答案)一、高考物理精讲专题动量定理1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。

已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=︒。

其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。

(1)请通过计算分析cd 棒的运动情况;(2)若t =0时刻起,求2s 内cd 受到拉力的冲量;(3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少?【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s ;(3)43.2J【解析】【详解】(1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图乙可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。

(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =(3)3 s 内电阻R 上产生的的热量为 2.88J Q =,则ab 棒产生的热量也为Q ,cd 棒上产生的热量为8Q ,则整个回路中产生的总热量为28. 8 J ,即3 s 内克服安培力做功为28. 8J 而重力做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W '-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s解得:43.2J F W '=2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。

用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。

另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。

求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。

【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。

(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。

2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。

【物理】物理动量定理题20套(带答案)含解析

【物理】物理动量定理题20套(带答案)含解析

【物理】物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N .3.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。

高中物理动量定理题20套(带答案)

高中物理动量定理题20套(带答案)

高中物理动量定理题20套(带答案)一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

质量m 0=0.005kg 的子弹以速度v 0=300m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g 取10m/s 2。

求: (1)物块的最大速度v 1; (2)木板的最大速度v 2;(3)物块在木板上滑动的时间t.【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。

【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m0v0=(m+m0)v1解得:v1=3m/s(2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m+m0)v1=(M+m+m0)v2。

高中物理动量定理真题汇编(含答案)

高中物理动量定理真题汇编(含答案)

高中物理动量定理真题汇编(含答案)一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。

(1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。

(2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。

请运用所学物理知识分析说明这样做的道理。

【答案】详情见解析 【解析】 【详解】(1)根据牛顿第二定律F ma =,加速度定义0i v v a t-=解得 0=-i Ft mv mv即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理0=-i Ft mv mv在动量变化相等的情况下,作用时间越长,作用力越小。

充满气体的塑料袋富有弹性,在碰撞时,容易发生形变,延缓作用过程,延长作用时间,减小作用力,从而能更好的保护快递物品。

3.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 【答案】(1)0.32μ=(2)130F N =(3)9W J = 【解析】(1)由动能定理,有:2201122mgs mv mv μ-=-可得0.32μ=. (2)由动量定理,有'F t mv mv ∆=-可得130F N =. (3)'2192W mv J ==. 【考点定位】本题考查动能定理、动量定理、做功等知识4.如图所示,真空中有平行正对金属板A 、B ,它们分别接在输出电压恒为U =91V 的电源两端,金属板长L =10cm 、两金属板间的距离d =3.2cm ,A 、B 两板间的电场可以视为匀强电场。

高中物理动量定理真题汇编(含答案)

高中物理动量定理真题汇编(含答案)

高中物理动量定理真题汇编(含答案)一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。

比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。

(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。

(2)若B 0=02c vl ,且粒子从0≤l ≤02T的任一时刻入射时,粒子离开磁场时的位置都不在y 轴上,求T 0的取值范围。

(3)若B 0=02c v l ,00l T v π=,在x >l 的区域施加一个沿-x 方向的匀强电场,在04T t =时刻入射的粒子,最终从入射点沿-x 方向离开磁场,求电场强度的大小。

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案)

t0=4m/s 的初速度从长木板的左端滑上长木板,与挡板碰撞后最终从板的左端滑离,挡板对
物 块的冲量大小为 2. 5N • s,已知板与水平面间的动摩擦因数为 = ,重力加速度为
g=10m/s2,不计物块与挡板碰撞的时间,不计物块的大小。求:
(1)物块与挡板碰撞后的一瞬间,长木板的速度大小; (2)物块在长木板上滑行的时间。
②三物体组成的系统动量守恒,由动量守恒定律有:
@
(m0 m1)v1 (m0 m1)v2 m2v ;
设小车长为
L,由能量守恒有:
m2
gL
1 2
(m0
m1 )v12
1 2
(m0
m1 )v22
1 2
m2v2
联立并代入数值得 L= ;
点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车
球与钢板作用的时间: t t总 t1 t2 1.75 0.9 0.8s 0.05s 由动量定理对全过程可列方程: mgt总 F t 0 0
可得钢板对小球的作用力 F mgt总 2101.75 N 700N ,方向竖直向上.
t
0.05
11.一垒球手水平挥动球棒,迎面打击一以速度 水平飞来的垒球,垒球随后在离打击 点水平距离为 的垒球场上落地。设垒球质量为,打击点离地面高度为,球棒与垒球的
作用时间为,重力加速度为
|
【答案】900N 【解析】 【详解】
,求球棒对垒球的平均作用力的大小。
由题意可知,垒球被击后做平抛运动,竖直方向:h= gt2
所以: 水平方向:x=vt
所以球被击后的速度: 选取球被击出后的速度方向为正方向,则:v0=-5m/s

设平均作用力为 F,则:Ft0=mv-mv0 代入数据得:F=900N 【点睛】 此题主要考查平抛运动与动量定理的应用,其中正确判断出垒球被击后做平抛运动是解答 的关键;应用动量定理解题时注意正方向.

高考物理动量定理真题汇编(含答案)含解析

高考物理动量定理真题汇编(含答案)含解析
(1)平板车的最大速度; (2)平板车达到最大速度所用的时间. 【答案】(1)0.6m/s (2)0.8s 【解析】 【详解】 (1)木块与平板车组成的系统动量守恒,以向右为正方向,由动量守恒定律得: mv0=(M+m)v, 解得:v=0.6m/s (2)对平板车,由动量定律得: μmgt=Mv 解得:t=0.8s
(1)物块 A 和物块 B 碰撞前的瞬间,物块 A 的速度 v 的大小; (2)物块 A 和物块 B 碰撞的过程中,物块 A 对物块 B 的冲量 I; (3)物块 A 和物块 B 碰撞的过程中,系统损失的机械能 ΔE. 【答案】(1)3 m/s (2)2 N·s,方向水平向右(3) 【解析】试题分析:物块 A 运动到和物块 B 碰撞前的瞬间,根据动能定理求得物块 A 的速 度;以物块 A 和物块 B 为系统,根据动量守恒求得碰后两物块速度,再根据动量定理求得 物块 A 对物块 B 的冲量.以物块 A 和物块 B 为系统,根据能量守恒求得系统损失的机械 能.
水平位移:
竖直位移:
x v0t
由勾股定理:
y 1 gt2 2
x2 y2 R2
解得 t 1s
竖直速度:
可得小球的动能
vy gt 10m / s
Ek
1 mv2 2
1m 2
v02 vy2
62.5J
4.两根平行的金属导轨,固定在同一水平面上,磁感强度 B=0.5T 的匀强磁场与导轨所在 平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离 l=0.20m,两根质量均 m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆 的电阻为 R=0.50Ω.在 t=0 时刻,两杆都处于静止状态.现有一与导轨平行,大小 0.20N 的 恒力 F 作用于金属杆甲上,使金属杆在导轨上滑动.经过 T=5.0s,金属杆甲的加速度为 a=1.37 m/s2,求此时两金属杆的速度各为多少?

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg 。

用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触。

另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,C 的v -t 图象如图乙所示。

求:(1)C 的质量m C ;(2)t =8s 时弹簧具有的弹性势能E p1,4~12s 内墙壁对物块B 的冲量大小I ; (3)B 离开墙后的运动过程中弹簧具有的最大弹性势能E p2。

【答案】(1)2kg ;(2)27J ,36N·S ;(3)9J 【解析】 【详解】(1)由题图乙知,C 与A 碰前速度为v 1=9m/s ,碰后速度大小为v 2=3m/s ,C 与A 碰撞过程动量守恒m C v 1=(m A +m C )v 2解得C 的质量m C =2kg 。

高考物理动量定理真题汇编(含答案)及解析

高考物理动量定理真题汇编(含答案)及解析

回,取竖直向上为正方向,
(1)求小球与地面碰撞前后的动量变化;
(2)若小球与地面的作用时间为 0.2s,则小球受到地面的平均作用力大小?(取
g=10m/s2).
【答案】(1)2kg•m/s;方向竖直向上;(2)12N;方向竖直向上;
【解析】
【分析】
【详解】
(1)小球与地面碰撞前的动量为:p1=m(-v1)=0.2×(-6) kg·m/s=-1.2 kg·m/s
x
1 2
mvt 2
解得: F2
mvt 2 2x
1.0 2.02 2 2.5
N
0.8N
(2)物块在运动过程中,应用动量定理有: F1t mv mv0
解得:
F1
m(v t
v0 )
物块在运动过程中,应用动能定理有:
F2 x
1 2
mv2
1 2
mv02
解得:
F2
m(v2 v02 ) 2x

F1
F2 时,由上两式得: v
小球与地面碰撞后的动量为 p2=mv2=0.2×4 kg·m/s=0.8 kg·m/s 小球与地面碰撞前后动量的变化量为 Δp=p2-p1=2 kg·m/s (2)由动量定理得(F-mg)Δt=Δp
所以 F= p +mg= 2 N+0.2×10N=12N,方向竖直向上.
t
0.2
6.如图所示,用 0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度 v=4.0m/s,如果打 击后铁锤的速度变为 0,打击的作用时间是 0.01s(取 g=10m/s2),那么:
【答案】 F 2mv cos ,方向沿 y 轴正方向 t
【解析】 【详解】
小球在 x 方向的动量变化为 px mv sin mv sin 0 小球在 y 方向的动量变化为 py mv cos (mv cos ) 2mv cos 根据动量定理 F t py 解得 F 2mv cos ,方向沿 y 轴正方向

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s);②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.3.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
3
3
所以 OB OAtan600 a ,离子离开磁场后打到板的正中间。
(2) 设 板 对 离 子 的 力 为 F , 垂 直 板 向 上 为 正 方 向 , 根 据 动 量 定 理 :
Ft Nmvsin300
Nmvsin300
2 3 Nmv0
F= 2Nmv0 3t
根据牛顿第三定律,探测板受到的冲击力大小为 2Nmv0 ,方向竖直向下。 3t
P末 =mv末 =m
v02
v
2 y
=2
102 gt 2 20
10kg m / s
5.如图所示,一个质量 m=4kg 的物块以速度 v=2m/s 水平滑上一静止的平板车上,平板车 质量 M=16kg,物块与平板车之间的动摩擦因数 μ=0.2,其它摩擦不计(取 g=10m/s2), 求: (1)物块相对平板车静止时,物块的速度; (2)物块相对平板车上滑行,要使物块在平板车上不滑下,平板车至少多长?
【解析】
【分析】
【详解】
(1)小球与地面碰撞前的动量为:p1=m(-v1)=0.2×(-6) kg·m/s=-1.2 kg·m/s 小球与地面碰撞后的动量为 p2=mv2=0.2×4 kg·m/s=0.8 kg·m/s 小球与地面碰撞前后动量的变化量为 Δp=p2-p1=2 kg·m/s (2)由动量定理得(F-mg)Δt=Δp
物块在平板车上做匀减速直线运动,平板车做匀加速直线运动,
由匀变速运动的平均速度公式得,对物块
s1
v
v 2
t
,对平板车
s2
v 2
t

物块在平板车上滑行的距离 s s1 s2 ,解得 s 0.8m ,
要使物块在平板车上不滑下,平板车至少长 0.8m.
6.正方体密闭容器中有大量运动粒子,每个粒子质量为 m,单位体积内粒子数量 n 为恒 量。为简化问题,我们假定:粒子大小可以忽略;其速率均为 v,且与器壁各面碰撞的机 会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学 知识,导出器壁单位面积所受粒子压力 f 与 m、n 和 v 的关系。(注意:解题过程中需要 用到、但题目没有给出的物理量,要在解题时做必要的说明)
(3)若射到探测板上的离子全部被板吸收,板对离子水平方向的力为 T,根据动量定理:
Tt Nmvcos300
3 3
Nmv0
,T=
3Nmv0 3t
离子对板的力大小为 3Nmv0 ,方向水平向右。 3t
所以水平面需要给探测板的摩擦力大小为 3Nmv0 ,方向水平向左。 3t
8.一个质量为 2kg 的物体静止在水平桌面上,如图 1 所示,现在对物体施加一个水平向右 的拉力 F,拉力 F 随时间 t 变化的图象如图 2 所示,已知物体在第 1s 内保持静止状态,第 2s 初开始做匀加速直线运动,第 3s 末撤去拉力,第 5s 末物体速度减小为 求:
所以 F= p +mg= 2 N+0.2×10N=12N,方向竖直向上.
t
0.2
4.以初速度 v0=10m/s 水平抛出一个质量为 m=2kg 的物体,若在抛出后 3s 过程中,它未与 地面及其它物体相碰,g 取 l0m/s2。求: (1)它在 3s 内所受重力的冲量大小; (2)3s 内物体动量的变化量的大小和方向; (3)第 3 秒末的动量大小。
前 3s 内拉力 F 的冲量。
第 2s 末拉力 F 的功率。
【答案】(1)
(2)
【解析】
【详解】
(1)冲量为:
即前 3s 内拉力 F 的冲量为
(2)设物体在运动过程中所受滑动摩擦力大小为 f,则在
内,由动量定理有:
设在
内物体的加速度大小为 a,则由牛顿第二定律有:
第 2s 末物体的速度为:
第 2s 末拉力 F 的功率为:
2 解得:v1= 2gh 2102.45 7 m/s,
同理,回弹过程的速度为 5m/s,方向竖直向上, 设向下为正,则对碰撞过程由动量定理可知: mgt-Ft=-mv′-mv 代入数据解得:F=35N 由牛顿第三定律小球对地面的平均作用力大小为 35N,方向竖直向下.
11.一位足球爱好者,做了一个有趣的实验:如图所示,将一个质量为 m、半径为 R 的质 量分布均匀的塑料弹性球框静止放在粗糙的足够大的水平台面上,质量为 M(M>m)的 足球(可视为质点)以某一水平速度 v0 通过球框上的框口,正对球框中心射入框内,不计 足球运动中的一切阻力。结果发现,当足球与球框发生第一次碰撞后到第二次碰撞前足球 恰好不会从右端框口穿出。假设足球与球框内壁的碰撞为弹性碰撞,只考虑球框与台面之 间的摩擦,求:
根据动量定理得: 考虑单位面积 ,整理可以得到:
根据牛顿第三定律可知,单位面积所受粒子的压力大小为

【点睛】 本题的关键是建立微观粒子的运动模型,然后根据动量定理列式求解平均碰撞冲力,要注 意粒子的运动是无规则的。
7.如图所示,在粗糙的水平面上 0.5a—1.5a 区间放置一探测板( a mv0 )。在水平面 qB
【答案】
【解析】 【分析】 根据“粒子器壁各面碰撞的机会均等”即相等时间内与某一器壁碰撞的粒子为该段时间内
粒子总数的 ,一个粒子每与器壁碰撞一次给器壁的冲量是 ,据此根据动量定理求与某
一个截面碰撞时的作用力 F; 【详解】 一个粒子每与器壁碰撞一次给器壁的冲量是: 在 时间内能达到面积为 S 容器壁上的粒子所占据的体积为: 由于粒子有均等的概率与容器各面相碰,即可能达到目标区域的粒子数为:
kg
m/s=2.3
1024kg
m/s
3.质量为 0.2kg 的小球竖直向下以 6m/s 的速度落至水平地面,再以 4m/s 的速度反向弹 回,取竖直向上为正方向, (1)求小球与地面碰撞前后的动量变化; (2)若小球与地面的作用时间为 0.2s,则小球受到地面的平均作用力大小?(取 g=10m/s2). 【答案】(1)2kg•m/s;方向竖直向上;(2)12N;方向竖直向上;
摩擦阻力和空气阻力, g 取10m / s2 ,问:
(1)运动员到达斜坡底端时的速率 v ;
(2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。
【答案】(1) 40m / s (2)1.2104W (3) 4.8103 N s 方向为竖直向下
【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒: mgh 1 mv2
0.1 2.0 107
s 5.0109 s
电子射出电场时在沿电场线方向的侧移量
代入数据
y 1 at2 2
y 1 5.01014 (5.0109)2 cm 0.63cm 2
(3)从电子进入电场到离开电场的过程中,由动量定理,有
Eet Δp
其动量增量的大小
Δp
=
eUL dv0
1.601019 91 0.1 3.2102 2.0107
(1)求离子从小孔 O 射入磁场后打到板上的位置。 (2)若离子与挡板碰撞前后没有能量的损失,则探测板受到的冲击力为多少? (3)若射到探测板上的离子全部被板吸收,要使探测板不动,水平面需要给探测板的摩擦 力为多少?
【答案】(1)打在板的中间(2) 2Nmv0 方向竖直向下(3) 3Nmv0 方向水平向左
(1)电子在电场中运动的加速度 a 的大小; (2)电子射出电场时在沿电场线方向上的侧移量 y; (3)从电子进入电场到离开电场的过程中,其动量增量的大小。
【答案】(1) 5.01014 m/s2 ;(2)0.63m;(3) 2.31024 kg m/s 。
【解析】
【详解】
(1)设金属板 A、B 间的电场强度为 E,则 E U ,根据牛顿第二定律速时据动能定理: qU 1 mv2 , 2
代入数据得 v
2 3
v0
在磁场中洛仑兹力提供向心力: qvB m v2 ,所以半径 r mv 2mv0 2 a
r
qB 3qB 3
轨迹如图:
OO 1 a , OOA 300 , OA 2 acos300 3 a
2
到达底端时的速率为: v 40m / s ; (2)滑雪者由滑到斜面底端时重力的瞬时功率为: PG mg v sin 30 1.2 104W ;
(3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动
根据牛顿第二定律 mg sin 300 ma ,可以得到: a g sin 30 5m / s2 根据速度与时间关系可以得到: t v 0 8s
高中物理动量定理真题汇编(含答案)
一、高考物理精讲专题动量定理
1.北京将在 2022 年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深
受广大观众的欢迎。一质量为 60kg 的运动员在高度为 h 80m,倾角为 30 的斜坡顶
端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略
【答案】(1)
(2)
【解析】
试题分析:对自由落体运动,有:
h=
解得: ,
则整个过程中重力的冲量 I=mg(t+t1)=mg(t+ ) (2)规定向下为正方向,对运动的全程,根据动量定理,有:
mg(t1+t)﹣Ft=0 解得:
F=
10.质量为 0.5kg 的小球从 h=2.45m 的高空自由下落至水平地面,与地面作用 0.2s 后,再 以 5m/s 的速度反向弹回,求小球与地面的碰撞过程中对地面的平均作用力.(不计空气阻 力,g=10m/s2) 【答案】35N 【解析】 小球自由下落过程中,由机械能守恒定律可知: mgh= 1 mv12;
相关文档
最新文档