九年级数学基础知识检测试题.docx
九年级数学下册同步考点必刷基础练实际问题与反比例函数(解析版)
九年级数学下册考点必刷练精编讲义(人教版)基础第26章《反比例函数》26.2 实际问题与反比例函数知识点01:根据实际问题列反比例函数关系式1.(2021•饶平县校级模拟)如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.2.(2020•莫旗一模)一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480 C.v=D.v=解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.3.(2017秋•宝安区期末)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x 为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000C.y=D.y=解:由题意可得:y==.故选:C.4.(2021秋•长安区期末)如图,某校园艺社计划利用已有的一堵长为10m的墙,用篱笆围一个面积为12m2的矩形园子.(1)设矩形园子的相邻两边长分别为xm,ym,y关于x的函数表达式为y=(不写自变量取值范围);(2)当y≥4m时,x的取值范围为 1.2≤x≤3 ;(3)当一条边长为7.5m时,另一条边的长度为 1.6 m.解:(1)依题意得:xy=12,∴y=.故答案为:y=.(2)∵4≤y≤10,即4≤≤10,∴1.2≤x≤3.∴x的取值范围为1.2≤x≤3.故答案为:1.2≤x≤3.(3)当x=7.5时,y==1.6;当y=7.5时,=7.5,解得:x=1.6.∴当一条边长为7.5m时,另一条边的长度为1.6m.故答案为:1.6.5.(2021•株洲模拟)如图,矩形ABCD中,AB=3,BC=4,动点P从B点出发,在BC上移动至点C停止.记PA=x,点D到直线PA的距离为y,则y关于x的函数解析式是y =.解:如图,记AP边上的高为DE,∵矩形ABCD中,AD∥BC,∴∠DAE=∠APB,∵∠B=∠AED=90°,∴△ABP∽△DEA,∴=,∴=,∴y=.故答案为:y=.6.(2020•枣阳市校级模拟)如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O右侧用一个弹簧秤向下拉,改变弹簧秤与点O的距离x(cm),观察弹簧秤的示数y(N)的变化情况.实验数据记录如下:x(cm)…10 15 20 25 30 …y(N)…30 20 15 12 10 …猜测y与x之间的函数关系,并求出函数关系式为.解:由图象猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入得:k=300∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为:y=.故答案为:y=.7.(2021春•海州区期末)近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x之间的函数关系式是y=.解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,由于点(0.2,400)在此函数解析式上,∴k=0.2×400=80,∴y=.故答案为:y=.8.甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.解:∵路程为100,速度为v,∴时间t=,t是v的反比例函数.9.(2021•东胜区一模)A、B两地相距400千米,某人开车从A地匀速到B地,设小汽车的行驶时间为t小时,行驶速度为v千米/小时,且全程限速,速度不超过100千米/小时.(1)写出v关于t的函数表达式;(2)若某人开车的速度不超过每小时80千米,那么他从A地匀速行驶到B地至少要多长时间?(3)若某人上午7点开车从A地出发,他能否在10点40分之前到达B地?请说明理由.解:(1)根据题意,路程为400,设小汽车的行驶时间为t小时,行驶速度为v千米/小时,则v关于t的函数表达式为v=;(2)设从A地匀速行驶到B地要t小时,则≤80,解得:t≥5,∴他从A地匀速行驶到B地至少要5小时;(3)∵v≤100,≤100,解得:t≥4,∴某人从A地出发最少用4个小时才能到达B地,7点至10点40分,是3小时,∴他不能在10点40分之前到达B地.10.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:(s为常数,s≠0).解:本题通过范例,再联系日常生活、生产或学习当中可以举出许许多多与反比例函数有关的例子来,例如:实例1,三角形的面积S一定时,三角形底边长y是高x的反比例函数,其函数关系式可以写出(s为常数,s≠0).实例2,甲、乙两地相距100千米,一辆汽车从甲地开往乙地,这时汽车到达乙地所用时间y(小时)是汽车平均速度x(千米/小时)的反比例函数,其函数关系式可以写出.知识点02:反比例函数的应用11.(2022•牡丹区三模)当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:V(单位:m3) 1 1.5 2 2.5 3P(单位:96 64 48 38.4 32kPa)P与V的函数关系可能是()A.P=96V B.P=﹣16V+112C.D.P=16V2﹣96V+176解:观察发现:VP=1×96=1.5×64=2×48=2.5×38.4=3×32=96,故P与V的函数关系式为P=,故选:C.12.(2022•南宁模拟)学校的自动饮水机,通电加热时水温每分钟上升10℃,加热到100℃时,自动停止加热,水温开始下降.此时水温y(℃)与通电时间x(min)成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则水温要从20℃加热到100℃,所需要的时间为()ArrayA.6min B.7min C.8min D.10min解:∵通电加热时每分钟上升10℃,∴水温从20℃加热到100℃,所需时间为:=8(min),故选:C.13.(2022•皇姑区二模)研究发现,近视镜的度数y(度)与镜片焦距x(米)成反比例函数关系,小明佩戴的400度近视镜片的焦距为0.25米,经过一段时间的矫正治疗加之注意用眼健康,现在镜片焦距为0.4米,则小明的近视镜度数可以调整为()A.300度B.500度C.250度D.200度解:设函数的解析式为y=(x>0),∵400度近视眼镜镜片的焦距为0.25米,∴k=400×0.25=100,∴解析式为y=,∴当y=0.4时,x==250(度),答:小明的近视镜度数可以调整为250度,故选:C.14.(2022春•海州区校级期末)滑草是同学们喜欢的一项运动,滑道两边形如两条双曲线.如图,点A1、A2、A3……在反比例函数y=(x>0)的图象上,点B1、B2、B3,一反比例函数y=(k>1,x>0)的图象上,A1B1,∥A2B2……∥y轴,已知点A1、A2……的横坐标分别为1、2……,令四边形A1A2B2B1、A2A3B3B2…的面积分别为S1、S2……,若S10=21,则k的值为221 .解:∵A1B1∥A2B2…∥y轴,∴A1和B1的横坐标相等,A2和2的横坐标相等,…,A n和B n的横坐标相等,∵点A1,A2…的横坐标分别为1,2,…,∴点B1,B2…的横坐标分别为1,2,…,∵点A1,A2,A3…在反比例函数y=(x>0)的图象上,点B1,B2,B3…反比例函数y=(k>1,x>0)的图象上,∴A1B1=k﹣1,A2B2=﹣,∴S1=×1×(﹣+k﹣1)=(k﹣)=(k﹣1),同理得:A3B3=﹣=(k﹣1),A4B4=(k﹣1),…,∴S2=×1×[(k﹣1)+(k﹣1)]=×(k﹣1),S3=×1×[(k﹣1)+(k﹣1)]=×(k﹣1)…,∴S n=×(k﹣1),∵S10=21,∴××(k﹣1)=21,解得:k=221,故答案为:221.15.(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为400 Pa.解:设p=,∵函数图象经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.16.(2022•岳麓区校级模拟)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F甲、F乙、F丙、F丁,将相同重量的水桶吊起同样的高度,若F乙<F丙<F甲<F丁,则这四位同学对杆的压力的作用点到支点的距离最远的是乙同学.解:根据杠杆平衡原理:阻力×阻力臂=动力×动力臂可得,∵阻力×阻力臂是个定值,即水桶的重力和水桶对杆的拉力的作用点到支点的杆长固定不变,∴动力越小,动力臂越大,即拉力越小,压力的作用点到支点的距离越远,∵F乙最小,∴乙同学到支点的距离最远.故答案为:乙.17.(2022•青岛一模)如图,一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v (km/h)的图象为双曲线的一段,若这段公路行驶速度不得超过80km/h,则该汽车通过这段公路最少需要h.解:设双曲线的解析式为v=,∵A(40,1)在双曲线上,∴1=.∴k=40,∴双曲线的解析式为v=,∵≤80,∴t≥,即该汽车通过这段公路最少需要h.故答案为:.18.(2022•福州模拟)密闭容器内有一定质量的二氧化碳,在温度不变的情况下,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化,已知密度ρ是体积V的反比例函数关系,它的图象如图所示,则当ρ=3.3kg/m3时,相应的体积V是 3 m3.解:设ρ=,把(5,1.98)代入得:k=5×1.98=9.9,故ρ=,则当ρ=3.3kg/m3时,相应的体积V==3(m3).故答案为:3.19.(2022秋•莱阳市期中)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的压强P(Pa)与气球体积V(m3)之间成反比例关系,其图象如图所示.(1)求P与V之间的函数表达式;(2)当V=2.5m3时,求P的值;(3)当气球内的气压大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?解:(1)设这个函数解析式为:P=,代入点A的坐标(1.5,16000)得,=16000,∴k=24000,∴这个函数的解析式为P=;(2)由题可得,V=2.5m3,∴P==9600(Pa),∴气球内气体的压强是9600帕;(3)∵气球内气体的压强大于40000Pa时,气球将爆炸,∴为了安全起见,P≤40000kPa,∴≤40000,∴V≥m3,∴为了安全起见,气球的体积不少于立方米.20.(2022秋•中山区期中)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,当R=9Ω时,I=4A.(1)求蓄电池的电压;(2)若I≤10,求可变电阻R的变化范围.解:(1)根据电学知识,设,∵当R=9时,I=4.∴U=36,∴电压36V.(2)由题意,,∴36≤10R,∴R≥3.6,∴可变电阻R的变化范围是R≥3.6.21.(2022秋•历下区期中)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:x/厘米 1 2 3 5y/米14 7 2.8 请根据表中的信息解决下列问题:(1)直接写出y与x之间的函数表达式是y=;(2)当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为28 米;(3)若某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是多少厘米?解:(1)设y与x之间的函数表达式为y=,∴7=,∴k=14,∴y与x之间的函数表达式为y=;(2)当x=0.5时,y==28米,∴当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为28米;(3)当y≥35时,即≥35,∴x≤0.4,∴某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是0.4厘米,故答案为:(1)y=;(2)28.22.(2022秋•天桥区期中)把一定体积的钢锭拉成钢丝,钢丝的总长度y(m)是其横截面积x(mm2)的反比例函数,其图象如图所示.(1)求y与x的函数关系式;(2)当钢丝总长度不少于80m时,钢丝的横截面积最多是多少mm2?解:(1)由图象得,反比例函数图象经过点(4,32),设y与x的函数关系式使y=,则=32,解得k=128,∴y与x的函数关系式是y=;(2)当y=80时,即:=80,解得:x=1.6(mm2),∴钢丝的横截面积最多为1.6mm2.23.(2022秋•岳阳县校级月考)太阳能进入了千家万户,一个容量为180升的太阳能热水器,能连续的工作时间是y分钟,每分钟的排水量为x升.(1)写出y与x的函数关系式;(2)若热水器连续工作最长时间是1小时,求自变量x的取值范围.解:(1)由题意可得,y=,即y与x的函数关系式是y=;(2)当x=60时,y=3,即热水器连续工作最长时间是1小时时的每分钟的排水量最少是3升,∴x的取值范围为x≥3.24.(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?解:(1)设P与V的函数关系式为P=,则k=0.8×120,解得k=96,∴函数关系式为P=.(2)将P=48代入P=中,得=48,解得V=2,∴当气球内的气压为48kPa时,气球的体积为2立方米.(3)当V=0.6m3时,气球将爆炸,∴V=0.6,即=0.6,解得P=160kpa故为了安全起见,气体的压强不大于160kPa。
统编九年级数学上册《一元二次方程》《二次函数》基础练习(5套)
基础知识反馈卡•21.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若(a-1)x2+bx+c=0是关于x的一元二次方程,则() A.a≠0 B.a≠1C.a=1 D.a≠-12.一元二次方程2x2-(m+1)x+1=x(x-1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为()A.-1 B.1 C.-2 D.2二、填空题(每小题4分,共12分)3.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=_______________.4.若关于x的方程mx2+(m-1)x+5=0有一个解为2,则m的值是______.5.把一元二次方程(x-3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________.三、解答题(共7分)6.已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值.基础知识反馈卡•21.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.用配方法解方程x2-23x-1=0,正确的配方为()A.x-132=89B.x-232=59C.x-132+109=0D.x-132=1092.一元二次方程x2+x+14=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定二、填空题(每小题4分,共12分)3.方程x2-4x-12=0的解x1=________,x2=________.4.x2+2x-5=0配方后的方程为____________.5.用公式法解方程4x2-12x=3,得到x=________.三、解答题(共7分)6.已知关于x的一元二次方程x2-mx-2=0.(1)对于任意实数m,判断此方程根的情况,并说明理由;(2)当m=2时,求方程的根.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.一元二次方程x2=3x的根是()A.x=3 B.x=0C.x1=0,x2=3 D.x1=0,x2=-32.方程4(x-3)2+x(x-3)=0的根为() A.x=3 B.x=125C.x1=-3,x2=125 D.x1=3,x2=125二、填空题(每小题4分,共12分)3.方程x2-16=0的解是____________.4.如果(m+n)(m+n+5)=0,则m+n=______. 5.方程x(x-1)=x的解是________.三、解答题(共7分)6.解下列一元二次方程:(1)2x2-8x=0;(2)x2-3x-4=0.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是()A.4 B.3 C.-4 D.-32.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是()A.-3,2 B.3,-2 C.2,-3 D.2,3二、填空题(每小题4分,共12分)3.已知一元二次方程的两根之和为7,两根之积为12,则这个方程为____________________.4.已知方程x2-3x+m=0的一个根是1,则它的另一个根是______,m的值是______.5.已知x1,x2是方程x2-3x-3=0的两根,不解方程可求得x21+x22=________.三、解答题(共7分)6.已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,求m的值.基础知识反馈卡•21.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是()A.173(1+x%)2=127 B.173(1-2x%)=127C.173(1-x%)2=127 D.127(1+x%)2=1732.某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是() A.19% B.20% C.21% D.22%3.一个面积为120 cm2的矩形花圃,它的长比宽多2 m,则花圃的长是()A.10 m B.12 m C.13 m D.14 m二、填空题(每小题4分,共8分)4.已知一种商品的进价为50元,售价为62元,则卖出8件所获得的利润为__________元.5.有一个两位数等于其数字之和的4倍,其十位数字比个位数字小2,则这个两位数是________.三、解答题(共8分)6.某西瓜经营户以2元/千克的进价购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天赢利200元,应将每千克小型西瓜的售价降低多少元?础知识反馈卡•22.1.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若y=mx2+nx-p(其中m,n,p是常数)为二次函数,则() A.m,n,p均不为0 B.m≠0,且n≠0C.m≠0 D.m≠0,或p≠02.当ab>0时,y=ax2与y=ax+b的图象大致是()二、填空题(每小题4分,共8分)3.若y=xm-1+2x是二次函数,则m=________.4.二次函数y=(k+1)x2的图象如图J2211,则k的取值范围为________.图J2211三、解答题(共11分)5.在如图J2212所示网格内建立恰当直角坐标系后,画出函数y=2x2和y=-12x2的图象,并根据图象回答下列问题(设小方格的边长为1):图J2212(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y=2x2,当x______时,抛物线上的点都在x轴的上方,它的顶点是图象的最______点;(3)函数y=-12x2,对于一切x的值,总有函数y______0;当x______时,y有最______值是______.基础知识反馈卡•22.1.2时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列抛物线的顶点坐标为(0,1)的是()A.y=x2+1 B.y=x2-1C.y=(x+1)2 D.y=(x-1)22.二次函数y=-x2+2x的图象可能是()二、填空题(每小题4分,共8分)3.抛物线y=x2+14的开口向________,对称轴是________.4.将二次函数y=2x2+6x+3化为y=a(x-h)2+k的形式是________.三、解答题(共11分)5.已知二次函数y=-12x2+x+4.(1)确定抛物线的开口方向、顶点坐标和对称轴;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?基础知识反馈卡•*22.1.3时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是()A.y=2x2+x+2 B.y=x2+3x+2C.y=x2-2x+3 D.y=x2-3x+22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是()A.y=-(x-2)2-1 B.y=-12(x-2)2-1C.y=(x-2)2-1 D.y=12(x-2)2-1二、填空题(每小题4分,共8分)3.如图J2213,函数y=-(x-h)2+k的图象,则其解析式为____________.图J22134.已知抛物线y=x2+(m-1)x-14的顶点的横坐标是2,则m的值是________.三、解答题(共11分)5.已知当x=1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.基础知识反馈卡•22.2时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下表是二次函数y=ax2+bx+c的自变量x的值与函数y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的范围是()x 6.17 6.18 6.19 6.20y=ax2+bx+c -0.03 -0.01 0.02 0.04A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.202.二次函数y=2x2+3x-9的图象与x轴交点的横坐标是()A.32和3B.32和-3 C.-32和2 D.-32和-2二、填空题(每小题4分,共8分)3.已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m +2 011的值为__________.4.如图J2221是抛物线y=ax2+bx+c的图象,则由图象可知,不等式ax2+bx+c<0的解集是________.图J2221 图J2222三、解答题(共11分)5.如图J2222,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的关系式;(2)求不等式x2+bx+c>x+m的解集(直接写出答案).基础知识反馈卡•22.3时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.在半径为4 cm的圆中,挖去一个半径为x cm的圆,剩下一个圆环的面积为y cm2,则y与x的函数关系为()A.y=πx2-4 B.y=π(2-x)2C.y=-(x2+4) D.y=-πx2+16π2.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-52t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3 s B.4 s C.5 s D.6 s二、填空题(每小题4分,共8分)3.出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=________元,一天出售该种手工艺品的总利润y最大.4.如图J2231,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面4 m的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m,则校门的高度为(精确到0.1 m,水泥建筑物厚度忽略不计)________.图J2231三、解答题(共11分)5.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线y=-35x2+3x+1的一部分,如图J2232.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?说明理由.图J2232。
九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)1.下列说法正确的是()A.直线AB和直线BA是同一条直线B.直线是射线的2倍C.射线AB与射线BA是同一条射线D.三条直线两两相交,有三个交点2.如图,直线AB,CD交于点O,射线OM平分∠AOC,如果∠AOD=104°,那么∠BOM 等于()A.38°B.104°C.140°D.142°3.如图,OA⊥OB,若∠1=55°16′,则∠2的度数是()A.35°44′B.34°84′C.34°74′D.34°44′4.如图,AC⊥BC于点C,点D是线段BC上任意一点,若AC=6,则AD的长不可能是()A.5.5B.6C.7D.85.已知点P在直线MN外,点A、B、C均在直线MN上,P A=2.5cm,PB=3cm,PC=2.2cm,则点P到直线MN的距离()A.等于3cm B.等于2.5cmC.不小于2.2cm D.不大于2.2cm6.下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.不相交的两条直线叫做平行线7.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有()个.A.0B.1C.2D.38.如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②9.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°10.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补)C.∵AD∥BC,∴∠BAD+∠D=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行)11.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.12.如图,直线a,b相交于点O,若∠1+∠2=220°,则∠3=.13.如图,已知AO⊥BC于O,∠BOD=120°,那么∠AOD=°.14.如图,为了把河中的水引到C处,可过点C作CD⊥AB于D,然后沿CD开渠,这样做可使所开的渠道最短,这种设计的依据是.15.如图,AB⊥l1,AC⊥l2,已知AB=4,BC=3,AC=5,则点A到直线l1的距离是.16.如图,∠B的内错角是.17.在同一平面内,不重合的两条直线的位置关系是.18.若直线a∥b,a∥c,则直线b与c的位置关系是.19.如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是.20.如图,AB∥CD,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为度.21.为了解决“经过平面上的100个点中的任意两点最多能画出多少条直线”这个问题,数学课外兴趣小组的同学们讨论得出如下方法:当n=2,3,4时,画出最多直线的条数分别是:过两点画一条直线,三点在原来的基础上增加一个点,它与原来两点分别画一条直线,即增加两条直线,以此类推,平面上的10个点最多能画出1+2+3+…+9=45条直线.请你比照上述方法,解决下列问题:(要求作图分析)(1)平面上的20条直线最多有多少个交点?(2)平面上的100条直线最多可以把平面分成多少个部分?平面上n条直线最多可以把平面分成多少个部分?22.如图,直线AB,CD相交于点O,∠AOC=120°,OE平分∠BOC.(1)求∠BOE的度数;(2)若OF把∠AOE分成两个角,且∠AOF:∠EOF=2:3,判断OA是否平分∠DOF?并说明理由.23.如图,直线AB与直线MN相交,交点为O,OC⊥AB,OA平分∠MOD,若∠BON=20°,求∠COD的度数.24.如图,点P,点Q分别代表两个村庄,直线l代表两个村庄中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站.(1)若考虑到村庄P居住的老年人较多,计划建一个离村庄P最近的车站,请在公路l 上画出车站的位置(用点M表示),依据是;(2)若考虑到修路的费用问题,希望车站的位置到村庄P和村庄Q的距离之和最小,请在公路l上画出车站的位置(用点N表示),依据是.25.已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(以(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.答题纸为测量依据,结果精确到0.1cm).26.如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG ∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的角,根据,可判断角平分线EG、FH的位置关系是.27.(1)补全下面的图形,使之成为长方体ABCD﹣EFGH的直观图,并标出顶点的字母;(2)图中与棱AB平行的棱有;(3)图中棱CG和面ABFE的位置关系是.28.如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?29.如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)30.如图,AO∥CD,OB∥DE,∠O=40°,求∠D的度数.(1)请完成下列书写过程.∵AO∥CD(已知)∴∠O==40°()又∵OB∥DE(已知)∴=∠1=°()(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=°.参考答案1.解:A、直线AB和直线BA是同一条直线,故本选项说法正确.B、直线和射线不能度量,故本选项说法不正确.C、射线AB与射线BA方向相反,不是同一条射线,故本选项说法不正确.D、三条直线两两相交有三个或一个交点,故本选项说法不正确.故选:A.2.解:∵∠AOD=104°,∴∠AOC=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:D.3.解:∵OA⊥OB,∴∠AOB=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故选:D.4.解:∵AC⊥BC于点C,点D是线段BC上任意一点,AC=6,∴AD≥6,故选:A.5.解:当PC⊥MN时,PC的长是点P到直线MN的距离,即点P到直线MN的距离等于2.2cm,当PC不垂直于MN时,点P到直线MN的距离小于PC的长,即点P到直线MN的距离小于2.2cm,综上所述:点P到直线MN的距离不大于2.2cm,故选:D.6.解:A、对顶角相等,正确;B、两点之间所有连线中,线段最短,正确;C、等角的补角相等,正确;D、在同一平面内,不相交的两条直线叫做平行线,故本选项错误;故选:D.7.解:①相等的角不一定是对顶角,故说法错误;②同位角不一定相等,故说法错误;③过直线外一点有且只有一条直线与已知直线平行,故说法错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故说法正确;故选:B.8.解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.9.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.10.解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补),正确;C.∵AD∥BC,∴∠BCD+∠D=180°(两直线平行,同旁内角互补),故C选项错误;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),正确;故选:C.11.解:两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为:45.12.解:∵∠1=∠2,∠1+∠2=220°,∴∠1=∠2=110°,∴∠3=180°﹣110°=70°,故答案为:70°.13.解:∵AO⊥BC,∴∠AOB=90°,∵∠BOD=120°,∴∠AOD=∠BOD﹣∠AOB=120°﹣90°=30°,故答案是:30.14.解:过D点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.15.解:∵AB⊥l1,则点A到直线l1的距离是AB的长=4;故答案为:4.16.解:∠B的内错角是∠BAD;故答案为:∠BAD.17.解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.18.解:若直线a∥b,a∥c,则直线b与c的位置关系是平行,故答案为:平行.19.解:由图形得,有两个相等的同位角存在,这样做的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.20.解:∵AB∥CD,∴∠CMF=∠1=57°,∵MF平分∠CME,∴∠CME=2∠CMF=114°.又∵∠CME+∠EMD=180°,∴∠EMD=180°﹣∠CME=180°﹣114°=66°.故答案为:66.21.解:(1)当有2,3,4条直线时最多交点的个数分别是:∴20条直线最多有1+2+3+…+19=190个交点;(2)当有1,2,3条直线时最多可把平面分成的部分分别是:∴100条直线最多可把平面分成1+(1+2+3+…+100)=5051个部分,同理n条直线最多可把平面分成1+(1+2+3+…+n)=1+=.22.解:(1)∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠BOE=∠BOC=×60°=30°;(2)OA平分∠DOF,理由如下:∵∠BOE=30°,∴∠AOE=180°﹣30°=150°,∵∠AOF:∠EOF=2:3,∴∠AOF=60°,∠EOF=90°,∵∠AOD=∠BOC=60°,∴∠AOD=∠AOF,∴OA平分∠DOF.23.解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.24.解:(1)如图,点M即为所示.依据是直线外一点与直线上各点连接的所有线段中垂线段最短(2)如图,点N即为所示.依据是两点之间线段最短;故答案为:直线外一点与直线上各点连接的所有线段中垂线段最短;两点之间线段最短.25.解:(1)如图所示:(2)经测量AD=1.8cm,故答案为:1.8.26.解:如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据两直线平行,同位角相等可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG =∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的同位角,根据同位角相等,两直线平行,可判断角平分线EG、FH的位置关系是平行.故答案为:两直线平行,同位角相等;=;同位、同位角相等,两直线平行、平行.27.解:(1)如图即为补全的图形;(2)图中与棱AB平行的棱有CD、EF、GH;故答案为:CD、EF、GH;(3)图中棱CG和面ABFE的位置关系是:平行.故答案为:平行.28.解:∠BFC等于30度,理由如下:∵AB∥GE,∴∠B+∠BFG=180°,∵∠B=110°,∴∠BFG=180°﹣110°=70°,∵AB∥CD,AB∥GE,∴CD∥GE,∴∠C+∠CFE=180°,∵∠C=100°.∴∠CFE=180°﹣100°=80°,∴∠BFC=180°﹣∠BFG﹣∠CFE=180°﹣70°﹣80°=30°.29.证明:∵∠DGA=∠FHC=∠DHB,∴AE∥BF,(同位角相等,两直线平行)∴∠A=∠FBC,(两直线平行,同位角相等)又∵∠A=∠F,∴∠F=∠FBC,(等量代换)∴DF∥AC.(内错角相等,两直线平行)30.解:(1)∵AO∥CD(已知),∴∠O=∠1=40°(两直线平行,同位角相等),又∵OB∥DE(已知),∴∠D=∠1=40°(两直线平行,同位角相等).故答案为:∠1,两直线平行,同位角相等,∠D,40°,两直线平行,同位角相等;(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=(40或140)°.故答案为:(40或140)。
九年级数学基础知识计算复习试题
A D FCBE复习试题(一)一、选择题(每小题3分,共30分)1、下列一元二次方程中,没有实数根的是( ) A.2210x x +-= B.2x +22x+2=0C.2210x x ++= D.220x x -++=2、如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到△A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°3、在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为( )A .430.610⨯辆 B .33.0610⨯辆 C .43.0610⨯辆 D .53.0610⨯辆 4、给出下列命题:(1)平行四边形的对角线互相平分;(2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分;(4)对角线互相垂直的四边形是菱形.其中,真命题的个数是( ) A.4 B.3 C.2 D.1 5、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =-A .①②B .②③C .②④D .①③6、在△ABC 中,90C ∠= ,若4BC =,2sin 3A =,则AC 的长是( )A.6B.25C.35D.2137、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 8、如图,EF 是圆O 的直径,5cm OE =,弦8cm M N =,则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cmC.8cm D.3cm9、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( )A.抛物线的开口向上 B.抛物线的对称轴是直线1x =C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 10、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为( )y y y yx x x x二、填空题:(每小题4分,共16分)11、2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 .12、方程2(34)34x x -=-的根是.13、如图,有一块边长为4的正方形塑料摸板A B C D ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14、在Rt △ABC 中,90C ∠= ,D 为B C 上一点,30DAC ∠= ,2B D =,23AB =,则A C 的长是 .三、解答题15、解答下列各题: (1)323+—02)(-+2cos30°—23— (2)12012cos 30(2)(1)|12|3-⎛⎫-+-⨯--- ⎪⎝⎭.(3)解方程:22570x x --= (4)解方程:2430x x +-=.16、求不等式组的整数解:3(21)4213212x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩,①. ②≤17、先化简,再求值:22424412x x x x x x x -+÷--++-,其中x =2-2.OO A .O B.OC.O yxD ._ C _1 _ A _1_ A _ B _ C(第2题图)FOK M G EHN (第8题图)ADCB18、把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。
2021年九年级数学中考一轮复习知识点基础达标测评:直角三角形1(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:直角三角形1(附答案)1.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1B.2C.5D.无法确定2.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的三角形有()A.3对B.4对C.5对D.7对3.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.50°4.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG ⊥EF.正确结论有()A.1个B.2个C.3个D.4个5.有一直角三角板,30°角所对直角边长是6cm,则斜边的长是()A.3cm B.6cm C.10cm D.12cm6.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为()A.8B.4C.12D.67.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大B.上升时,OP减小C.无论怎样滑动,OP不变D.只要滑动,OP就变化8.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°9.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.6410.如图,以Rt△ABC的三边为边长向外作正方形,三个正方形的面积分别为S1、S2、S3,若S1=13,S2=12,则S3的值为()A.1B.5C.25D.14411.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.12.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个13.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是.14.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=°.15.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=4,则PC的长为.16.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB=.17.已知直角三角形的两边x,y的长满足|x﹣4|+=0,则第三边的长为.18.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为.19.三角形的三边长为a、b、c,且满足等式(a+b)2﹣c2=2ab,则此三角形是三角形(直角、锐角、钝角).20.若8,a,17是一组勾股数,则a=.21.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.22.已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为.23.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.24.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.25.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.26.如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.27.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.28.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.29.在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC的面积.30.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.31.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB =AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?32.如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,(1)试说明:△FBD≌△ACD;(2)延长BF交AC于E,且BE⊥AC,试说明:;(3)在(2)的条件下,若H是BC边的中点,连接DH与BE相交于点G.试探索CE,GE,BG之间的数量关系,并说明理由.参考答案1.解:过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,∵∠EDF+∠FDC=90°,∠GDC+∠FDC=90°,∴∠EDF=∠GDC,于是在Rt△EDF和Rt△CDG中,,∴△DEF≌△DCG,∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,所以,S△ADE=(AD×EF)÷2=(2×1)÷2=1.故选:A.2.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB;∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD;∴BE=CD,∴AD=AE,∵AO=AO,∴△AOD≌△AOE;∵∠DOC=∠EOB,∴△COD≌△BOE;∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF,△COF≌△BOF.∵∠ABO=∠ACO,AB=AC,∠AOB=∠AOC,∴△AOB≌△AOC,共7对,故选:D.3.解:∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∴∠ABC=40°,∵∠ACB=90°,∴∠A=90°﹣∠ABC=90°﹣40°=50°,∵CD∥AB,∴∠ACD=∠A=50°,故选:D.4.解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选:C.5.解:∵直角三角形中30°角所对的直角边为4cm,∴斜边长为12cm.故选:D.6.解:∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×4=8,∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=4∴BC=BD+DC=8+4=12,故选:C.7.解:∵AO⊥BO,点P是AB的中点,∴OP=AB,∴在滑动的过程中OP的长度不变.故选:C.8.解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.9.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.10.解:由勾股定理得:AC2+BC2=AB2,∵S1=S2+S3,∴S3=S1﹣S2=13﹣12=1.故选:A.11.解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.12.解:①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90°,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.13.解:∵斜边与直角边对应相等的两个直角三角形全等,∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.故答案为:AB=DC.14.解:当AP⊥ON时,∠APO=90°,则∠A=50°,当P A⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为:50或90.15.解:过P作PE⊥OB,交OB与点E,如图所示:∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PE=PD=4,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,∴PC=2PE=8.故答案为:8.16.解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.17.解:∵≥0,≥0,∴=0,=0,即x=4,y=3,在直角三角形中,(1)边长为4的边是斜边,则第三边的长为=;(2)边长为4的边是直角边,则第三边即斜边的长为=5,故答案为5或.18.解:由图可知,(b﹣a)2=5,4×ab=42﹣5=37,∴2ab=37,(a+b)2=(b﹣a)2+4ab=5+2×37=79.故答案为79.19.解:∵(a+b)2﹣c2=2ab,∴a2+2ab+b2﹣c2=2ab,∴a2+b2=c2,∴三角形是直角三角形.故答案为直角.20.解:①a为最长边,a=,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.21.解:设平板手推车的长度不能超过x米则x为最大值,且此时平板手推车所形成的三角形CBP为等腰直角三角形,BP=CP,BC最大.连接PO,与BC交于点N.∵直角走廊的宽为2m,∴PO=4m,∴NP=PO﹣ON=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CN=2NP=4(m).故答案为:422.解:以AB为腰作等腰Rt△ABE,连接EC,∵△ADC为等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠BAC+∠DAC,∴∠EAC=∠DAB,∴△EAC∽△BAD,∴,作EF⊥BC交BC延长线于F,∵∠ABC=45°,∠EBA=90°,∴∠EBF=45°,∴△EFB为等腰Rt△,∴EF=FB===7,∴EC==25,∴BD==.23.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD﹣CD=BF﹣EF.即BC=BE.24.解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.25.解:∵∠C=90°,∠A=30°,∴∠ABC=60°,∵BD是∠ABC的平分线,∴∠CBD=∠ABD=30°,∴∠ABD=∠A,∴AD=BD=20,∴CD=BD=10,∴BC===10.26.证明:∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM,∵N是BD的中点,∴MN⊥BD(等腰三角形三线合一).27.(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC==5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:S△ABC=×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10﹣t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②∵点E是边AC的中点,CD⊥AB,∴DE=AC=5,当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t﹣4,过点E作EF⊥AB于F,如图3所示:∵ED=EA,∴DF=AF=AD=3,在Rt△AEF中,EF=4;∵BM=t,BF=7,∴FM=t﹣7则在Rt△EFM中,(t﹣4)2﹣(t﹣7)2=42,∴t=.综上所述,符合要求的t值为9或10或.28.解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=.从上图我们还发现梯形的面积=三个三角形的面积和,即.两者列成等式化简即可得:a2+b2=c2;29.解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD==15,∴BC=BD+CD=6+15=21,∴S△ABC=BC•AD=×21×8=84.因此△ABC的面积为84.故答案为84.30.解:(1)11,60,61;(2)后两个数表示为和,∵,,∴.又∵n≥3,且n为奇数,∴由n,,三个数组成的数是勾股数.故答案为:11,60,61.31.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴CH⊥AB,所以CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,1.25﹣1.2=0.05(千米)答:新路CH比原路CA少0.05千米.32.解:(1)∵DB=DC,∠BDF=∠ADC=90°又∵DA=DF,∴△BFD≌△ACD;(2)∵△BFD≌△ACD,∴BF=AC,又∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,又∵BE=BE,∴△ABE≌△CBE,∴CE=AE=AC,∴CE=AC=BF;(3)CE,GE,BG之间的数量关系为:CE2+GE2=BG2,连接CG.∵BD=CD,H是BC边的中点,∴DH是BC的中垂线,∴BG=CG,在Rt△CGE中有:CG2=CE2+GE2,∴CE2+GE2=BG2.。
2021年九年级数学中考一轮复习知识点基础达标测评:图形的相似2(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:图形的相似2(附答案)1.已知甲、乙两地图的比例尺分别为1:5000和1:20 000,如果甲图上A、B两地的距离与乙图上C、D两地的距离恰好一样长,那么A、B两地的实际距离与C、D两地的实际距离之比为()A.5:2B.2:5C.1:4D.4:12.如果一个等腰三角形的顶角为36°,那么可求其底边与腰之比等于,我们把这样的等腰三角形称为黄金三角形.如图,在△ABC中,AB=AC=1,∠A=36°,△ABC 看作第一个黄金三角形;作∠ABC的平分线BD,交AC于点D,△BCD看作第二个黄金三角形;作∠BCD的平分线CE,交BD于点E,△CDE看作第三个黄金三角形;……以此类推,第2020个黄金三角形的腰长是()A.()2018B.()2019C.()2018D.()20193.如图,l1∥l2∥l3∥l4∥l5,且l1,l2,l3,l4,l5中相邻两条直线之间的距离都为1,△ABC 的顶点A,B,C分别在l1,l3,l5上,AB交l2于点D,BC交l4于点E,AC交l2于点F,若△DEF的面积是1,则△ABC的面积是()A.3.5B.4C.4.5D.54.若△ABC的各边都分别扩大到原来的2倍,得到△A1B1C1,下列结论正确的是()A.△ABC与△A1B1C1的对应角不相等B.△ABC与△A1B1C1不一定相似C.△ABC与△A1B1C1的相似比为1:2D.△ABC与△A1B1C1的相似比为2:15.如图,▱ABCD∽▱EFGH,AB∥EF,记四边形ABFE、四边形BCGF、四边形CDHG、四边形DAEH的面积分别S1,S2,S3,S4,若已知▱ABCD和▱EFGH的面积,则不用测量就可知的区域的面积为()A.S1﹣S2B.S1+S3C.S4﹣S2D.S3+S46.已知两个相似三角形的面积之比为4:9,则这两个相似三角形的对应边之比是()A.16:81B.4:9C.9:4D.2:37.已知∠P AQ=36°,点B为射线AQ上一固定点,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交射线AP于点D,连接BD;③以B为圆心,BA长为半径画弧,交射线AP于点C.根据以上作图过程及所作图形,下列结论中错误的是()A.∠CDB=72°B.△ADB∽△ABC C.CD:AD=2:1D.∠ABC=3∠ACB 8.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB 与CD相交于点P,则tan∠APD的值为()A.2B.C.3D.9.阳光通过窗口照到室内,在地上留下2.7m宽的亮区(如图),已知亮区一边到窗下的墙角的距离CE=8.7m,窗口高AB=1.8m,那么窗口底边离地面的高BC等于()A.2m B.4m C.6m D.1m10.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,将△OAB缩小为原来的,则点A的对应点A′的坐标是()A.(2,)B.(1,2)C.(4,8)或(﹣4,﹣8)D.(1,2)或(﹣1,﹣2)11.如图,在Rt△ABC中,∠C=90°,CD⊥AB,BE平分∠ABC交CD于F,EH⊥CD于H,则下列结论:①CD2=AD•BD;②AC2+BD2=BC2+AD2;③;④若F为BE中点,则AD=3BD,其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△BDE∽△DPE;②=;③DP2=PH•PB;④tan∠DBE=2﹣.其中正确的是()A.①②③④B.①②④C.②③④D.①③④13.已知==,且3x+4z﹣2y=40,则x的值为.14.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=.15.点C是线段AB的黄金分割点,且AB=4,则BC的长为.16.如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB =2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.17.定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形ABCD 中,对角线BD是它的相似对角线,∠ABC=70°,BD平分∠ABC,那么∠ADC=度.18.如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B 点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.19.若△ABC∽△DEF,请写出2 个不同类型的正确的结论、.20.如图,已知BD⊥AB于点B,AC⊥AB于点A,且BD=3,AC=2,AB=m,在线段AB 上找一点E,使△BDE与△ACE相似,若这样的点E有且只有两个,则m的值是.21.如图,在矩形ABCD中,∠ACB=30°,过点D作DE⊥AC于点E,延长DE交BC于点F,连接AF,若AF=,线段DE的长为.22.如图,AB和DE是直立在地面上的两根立柱,AB=7米,某一时刻AB在阳光下的投影BC=4米,DE在阳光下的投影长为6米,则DE的长为米.23.解答下列各题:(1)解方程:(x+2)(x+3)=2x+16(2)已知a、b、c均为非零的实数,且满足==,求的值24.(1)已知a=4,c=9,若b是a,c的比例中项,求b的值.(2)已知线段MN是AB,CD的比例中项,AB=4cm,CD=5cm,求MN的长.并思考两题有何区别.25.二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式.例如:化简:.解:将分子、分写同乘以得==.类比应用:(1)化简:=.(2)化简:++…+.拓展延伸:宽与长的比是的矩形叫黄金矩形,如图①,已知黄金矩形ABCD的宽AB=1.(1)黄金矩形ABCD的长BC=;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB为边的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否为黄金矩形,并证明你的结论;(3)在图②中,连结AE,则点D到线段AE的距离为.26.如图,在△ABC中,点D在边AB上,点F、E在边AC上,且DF∥BE,.求:的值.27.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为1,求△DEF的面积.28.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.29.已知四边形ABCD中,AB=AD,AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,△DGC∽△ADC.(1)求证:CD=CF;(2)H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=5,DC=3,求的值.30.如图,已知∠1=∠2,∠AED=∠C,求证:△ABC∽△ADE.31.如图,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在这个直角三角形内有一个内接正方形,正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上.(1)求BC边上的高;(2)求正方形EFGH的边长.32.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?参考答案1.解:把图上距离看作单位1,设A、B和C、D两地的实际距离分别为x和y,则:1:5000=1:x,解得x=5000,1:20000=1:y,解得y=20000,∴x:y=5000:20000=1:4.故选:C.2.解:∵AB=AC=1,∠A=36°,△ABC是第一个黄金三角形,∴底边与腰之比等于,即=,∴BC=AB=,同理:△BCD是第二个黄金三角形,△CDE是第三个黄金三角形,则CD=BC=()2,即第一个黄金三角形的腰长为1=()0,第二个黄金三角形的腰长为第一个黄金三角形的腰长为()1,第三个黄金三角形的腰长为()2,…,∴第2020个黄金三角形的腰长是()2020﹣1,即()2019,故选:B.3.解:如图,∵每相邻两条直线之间的距离为1,△DEF的面积为2,∴×DF×2=1,∴DF=1,∵DF∥BG,∴==,∴BG=2,∴S△ABC=S△ABG+S△BCG=×2×2+×2×2=4,故选:B.4.解:因为△ABC的各边都分别扩大到原来的2倍,得到△A1B1C1,那么△A1B1C1的各边为△ABC的2倍,即△ABC与△A1B1C1的相似比为1:2.故选:C.5.解:作CK⊥AB于K,GN⊥EF于N,FM⊥AB于M,HJ⊥CD于J,∵四边形ABCD和四边形EFGH都是平行四边形,AB∥EF,∴CK=FM+GN+HJ,四边形AEFB和四边形CDHG都是梯形,∵▱ABCD∽▱EFGH,∴==,设===a,∵AB=CD,EF=HG,∴EF=HG=aAB,GN=aCK,S1=(EF+AB)MF=(a+1)AB•MF,S3=(GH+CD)HJ=(a+1)AB•HJ,S平行四边形ABCD﹣S平行四边形EFGH=AB•CK﹣EF•GN=(AB•CK﹣a•AB•a•CK)=(1﹣a2)AB•CK,S1+S3=(a+1)AB•MF+(a+1)AB•HJ=(a+1)AB(MF+HJ)=(a+1)AB (CK﹣GN)=(a+1)AB(1﹣a)CK=(1﹣a2)AB•CK,∴S1+S3=S平行四边形ABCD﹣S平行四边形EFGH;故选:B.6.解:∵相似三角形的面积的比等于相似比的平方.∴两个相似三角形的面积之比为4:9时,这两个相似三角形的对应边之比是2:3.故选:D.7.解:由作图可知,MN垂直平分AB,AB=BC,∵MN垂直平分AB,∴DA=DB,∴∠A=∠DBA,∵∠P AQ=36°,∴∠CDB=∠A+∠DBA=72°,故A正确;∵AB=BC,∴∠A=∠ACB,又∵∠A=∠A,∴△ADB∽△ABC,故B正确;∵∠A=∠ACB=36°,∴∠ABC=180°﹣∠A﹣∠ACB=108°,∴∠ABC=3∠ACB,故D正确;∵∠ABD=36°,∠ABC=108°,∴∠CBD=∠ABC﹣∠ABD=72°,∴∠CBD=∠CDB=72°,∴CD=BC,∵∠A=∠ACB=36°,∴AB=BC,∴CD=AB,∵AD+DB>AB,AD=DB,∴2AD>AB,∴2AD>CD,故C错误.故选:C.8.解:如图:连接BE,,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2.故选:A.9.解:∵AE∥BD,∴,CD=CE﹣ED=8.7﹣2.7=6,∴CB===4m,∴BC=4m.故选:B.10.解:以O为位似中心,把△OAB缩小为原来的,则点A的对应点A′的坐标为(2×,4×)或[2×(﹣),4×(﹣)],即(1,2)或(﹣1,﹣2),故选:D.11.解:①、∵∠ACB=90°,CD⊥AB,∴△ACD∽CBD,∴=,即CD2=AD•DB,故①正确;②∵AC2﹣AD2=BC2﹣BD2=CD2,∴AC2+BD2=BC2+AD2故②正确;③作EM⊥AB,则BD+EH=BM,∵BE平分∠ABC,△BCE≌△BEM,∴BC=BM=BD+EH,∴,故③正确;④若F为BE中点,则CF=EF=BF,∴∠BCD=∠CBF=∠DBF=30°,∠A=30°,∴AB=2BC=4BD,∴AD=3BD,故④正确.故选:D.12.解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴∠CPD=∠CDP=75°,∴∠PDE=15°,∵∠PBD=∠PBC﹣∠HBC=60°﹣45°=15°,∴∠EBD=∠EDP,∵∠DEP=∠DEB,∴△BDE∽△DPE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,∴===,故②错误;∵∠PDH=∠PCD=30°,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴PD2=PH•CD,∵PB=CD,∴PD2=PH•PB,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴CM=PN=PB•sin60°=4×=2,PM=PC•sin30°=2,∵DE∥PM,∴∠EDP=∠DPM,∴∠DBE=∠DPM,∴tan∠DBE=tan∠DPM===2﹣,故④正确;故选:D.13.解:设===k(k≠0),则x=2k,y=3k,z=5k,∵3x+4z﹣2y=40,∴6k+20k﹣6k=40,解得k=2,∴x=2k=4.故答案为:4.14.解:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.15.解:当点C是线段AB的黄金分割点,BC>AC时,BC=AB=×4=2﹣2;当点C是线段AB的黄金分割点,AC<BC时,AC=AB=2﹣2,则BC=AB﹣AC=4﹣(2﹣2)=6﹣2;故答案为:2﹣2或6﹣2.16.解:如图,过点D作DF∥AE,则==,∵=,∴DF=2EC,∴DO=2OC,∴DO=DC,∴S△ADO=S△ADC,S△BDO=S△BDC,∴S△ABO=S△ABC,∵∠ACB=90°,∴C在以AB为直径的圆上,设圆心为G,当CG⊥AB时,△ABC的面积最大为:4×2=4,此时△ABO的面积最大为:×4=.故答案为:.17.解:如图所示,∵∠ABC=70°,BD平分∠ABC,∴∠ABD=∠DBC,又∵对角线BD是它的相似对角线,∴△ABD∽△DBC,∴∠A=∠BDC,∠ADB=∠C,∴∠A+∠C=∠ADC,又∵∠A+∠C+∠ADC=360°﹣70°=290°,∴∠ADC=145°,故答案为:145.18.解:由折叠的性质可知,AB=AF=1,∵矩形EFDC与矩形ABCD相似,∴=,即=,整理得,AD2﹣AD﹣1=0,AD=,由题意得,AD=,故答案为:.19.解:∵△ABC∽△DEF,∴∠ABC=∠DEF,==,故答案为:∠ABC=∠DEF;==.20.解:∵BD⊥AB于点B,AC⊥AB,∴∠A=∠B=90°,当∠ACE=∠BDE时,△ACE∽△BDE,∴==,∴AE=BE①,当∠ACE=∠BED时,△ACE∽△BED,∴=,即AE×BE=AC×BD=2×3=6②,由①②得:BE2=6,解得:BE=3,∴AE=2,∴AB=AE+BE=5,即m=5;当AE=2时,BE=3,两个三角形相似;当AE=3时,BE=2,两个三角形全等,符合题目要求;设AE=x,则BE=m﹣x,∴x:3=2:(m﹣x),整理得:x2﹣mx+6=0,方程有唯一解时,△=m2﹣24=0,解得:m=±2(负值舍去),∴m=2;当m=2时,AE:BE=2:3时,两个三角形相似;AE=BE=时,两个三角形相似;同样是两个点可以满足要求;综上所述,△BDE与△ACE相似,若这样的点E有且只有两个,则m的值是5或2;故答案为:5或2.21.解:∵四边形ABCD是矩形,∴AD∥BC,∠ADC=∠B=∠BCD=90°,AB=CD,AD=BC,AD∥BC,∴∠DAC=∠ACB=30°,∴AD=CD,∠DCE=60°,∵DF⊥AC,∴EF=CF,∠CDF=30°,∴CD=CF,设CF=x,则AB=CD=x,BC=AD=CD=3x,∴BF=BC﹣CF=3x﹣x=2x,在Rt△ABF中,由勾股定理得:(x)2+(2x)2=()2,解得:x=,∴CF=,EF=,AD=3,∵AD∥BC,∴△ADE∽△CFE,∴=,即=,∴DE=;故答案为:.22.解:如图所示,连接AC,过点D作DF∥AC交地面于点F,∵同一时刻物高与物高的比等于影长与影长的比,∴=即=∴DE=.则DE的长为米.故答案为.23.解:(1)(x+2)(x+3)=2x+16,x2+5x+6=2x+16,x2+3x﹣10=0,(x﹣2)(x+5)=0,解得x1=2,x2=﹣5;(2)若a+b+c≠0,由等比定理有====1,所以a+b﹣c=c,a﹣b+c=b,﹣a+b+c=a,于是有==8.若a+b+c=0,则a+b=﹣c,b+c=﹣a,c+a=﹣b,于是有==﹣1.24.解:(1)∵b是a,c的比例中项,∴a:b=b:c,∴b2=ac;b=±,∵a=4,c=9,∴b=±=±6,即b=±6;(2)∵MN是线段,∴MN>0;∵线段MN是AB,CD的比例中项,∴AB:MN=MN:CD,∴MN 2=AB•CD,∴MN=±;∵AB=4cm,CD=5cm,∴MN=±=±2;MN不可能为负值,则MN=2,通过解答(1)、(2)发现,c、MN同时作为比例中项出现,c可以取负值,而MN不可以取负值.25.解:类比应用:(1)根据题意可得:化简:==2+;故答案为:2+;(2)根据题意可得:原式=﹣1+﹣+…+﹣=3﹣1=2;拓展延伸:(1)∵宽与长的比是的矩形叫黄金矩形,若黄金矩形ABCD的宽AB=1.则黄金矩形ABCD的长BC为:1:==;故答案为:;(2)矩形DCEF是黄金矩形,理由如下:由裁剪可知:AB=AF=BE=EF=CD=1,根据黄金矩形的性质可知:AD=BC=1:==;∴FD=EC=AD﹣AF=﹣1=,∴=÷1=;所以矩形DCEF是黄金矩形;(3)如图,连接AE,DE,过点D作DG⊥AE于点G,∵AB=EF=1,AD=,∴AE==,在△AED中,S△AED=×AD×EF=AE×DG,即AD×EF=AE×DG,则×1=×DG,解得DG=.所以点D到线段AE的距离为.故答案为:.26.解:∵DF∥BE,∴,∵,∴,∴DE∥BC,∴,∵,∴,∴.27.解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵,,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴,同理,∴DF=9,EF=12,∴△DEF的面积为:.. 28.解:∵矩形ABCD∽矩形ECDF,∴=,即=,∴BC2﹣BC•AB﹣CD2=0,解得,BC=CD,∵BC、CD是正数,∴=.29.(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中,∴△ADC≌△ABC(SAS),∴CD=CB,∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;(2)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,∵∠ADC=2∠HAG,∴∠DGC=2∠HAG,∵∠DGC=∠HAG+∠AHG,∴∠HAG=∠AHG,∴HG=AG,∵∠GDC=∠DAC=∠F AG,∠DGC=∠AGF,∴△DGC∽△AGF,∴△AGF∽△ADC,∴==,即=.30.证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC,∵∠AED=∠C,∴△ABC∽△ADE.31.解:(1)作AD⊥BC于D,交EH于O,如图所示:∵在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,∴BC==25(cm),∵BC×AD=AB×AC,∴AD===12(cm);即BC边上的高为12cm;(2)设正方形EFGH的边长为xcm,∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.∴=,即=,解得:x=,即正方形EFGH的边长为cm.32.解:(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:=,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8,∵=,∴AB==8(米).答:树的高度为8米.(3)由(2)可知:AF=4.8(米),答:树的影子长度是4.8米。
九年级上册数学基础训练题
九年级上册数学基础训练题前言本文档为九年级上册数学基础训练题,旨在帮助学生巩固数学基础知识,提高数学解题能力。
以下内容包括了常见的数学基础训练题目,每题皆配有详细的解题步骤,希望能对学生有所帮助。
一、整数运算1.计算:$(-45) + (-72) = $?解:(−45)+(−72)=−1172.计算:$(-98) - 43 = $?解:(−98)−43=−1413.计算:$(-32) \times 5 = $?解:$(-32) \\times 5 = -160$4.计算:$(-75) \div 3 = $?解:$(-75) \\div 3 = -25$二、代数运算1.化简:$2x + 5y - 3x + 2y = $?解:2x+5y−3x+2y=−x+7y2.求解方程:3(x−4)=2x+5解:3(x−4)=2x+53x−12=2x+5x=17三、几何1.计算三角形的面积:已知底边长为6cm,高为8cm,求三角形的面积。
解:三角形的面积$S = \\frac{1}{2} \\times 底 \\times 高 = \\frac{1}{2} \\times 6 \\times 8 = 24 cm^2$2.计算正方体的体积:一边长为5cm的正方体的体积是多少?解:正方体的体积V=边长3=53=125cm3四、实数运算1.计算:$\sqrt{16} + \sqrt{25} = $?解:$\\sqrt{16} + \\sqrt{25} = 4 + 5 = 9$2.计算:$\frac{3}{5} + \frac{1}{3} = $?解:$\\frac{3}{5} + \\frac{1}{3} = \\frac{9}{15} + \\frac{5}{15} = \\frac{14}{15}$五、方程方程组1.求解方程组:2x+3y=85x−2y=1解:2x+3y=85x−2y=1解得$x = \\frac{17}{19}$,$y = \\frac{10}{19}$六、综合题1.小明用一个长方形围成了一块正方形的围墙,长方形的长是正方形边长的$2\\sqrt{2}$倍,宽是正方形边长的$\\sqrt{2}$倍,已知围墙的周长是56m,求围墙的面积。
河北省石家庄市桥西区2014届九年级毕业生基础知识与能力学习评价数学试题(扫描版)
2014年初中毕业生基础知识与能力学习评价数学试题参考答案及评分标准说明:1.在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数,只给整数分数. 一、选择题(本大题共16个小题,1~6每小题2分,7~16每小题3分,共42分.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CBBCCDBAADDACBDC二、填空题(共4个小题,每小题3分,共12分.) 17.4118. 3 19. 4 20. (8052,0) 三、解答题(本大题共6个小题,共66分.)21.(本小题满分9分)解:(1)由题意得:2⊗(-3)=2×2-(-3)+2×(-3) …………………2分 =1; …………………………4分(2)由题意得:221212>+-⨯x x …………………………6分 解得:2-<x . ………………………8分………………………9分22.(本小题满分10分)解:(1)根据条形图4+16+12+10+8=50(人), ………………………1分m =100﹣20﹣24﹣16﹣8=32; ………………………2分(2)∵=(5×4+10×16+15×12+20×10+30×8)=16(元),∴这组数据的平均数为:16元; ………………………………………4分 ∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10; ………………………………………6分0 1 2 3-1 -2 -3 -4∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15, ∴这组数据的中位数为:15; ………………………………………8分 (3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数为: 1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名. ………………………10分 23.(本小题满分10分)解:(1)∵点C (5,3)在反比例函数xky =的图象上, ∴3=5k ,∴ k =15, ∴反比例函数的解析式为xy 15=; …………………………2分(2)∵A (﹣6,0),B (4,0),C (5,3),∴AB =10,根据平行四边形的对边相等可知:CD =10,∴D (﹣5,3),∵点D ′与点D 关于x 轴对称,∴D ′(﹣5,﹣3), 把x =﹣5代入xy 15=得y =﹣3,∴点D ′在双曲线上; ……………………6分 (3)∵C (5,3),D ′(﹣5,﹣3),∴点C 和点D ′关于原点O 中心对称,∴D ′O =CO =D ′C ,∴S △AD ′C =2S △AOC =2×AO •CE =2××6×3=18, 即S △AD ′C =18. ………………………10分 24.(本小题满分11分)(1)∵点A (6,0),点B (0,6),∴OA =OB =6,∴△OAB 为等腰直角三角形,∴∠OBA =45°,∵OC ∥AB ,∴当C 点在y 轴左侧时,∠BOC =∠OBA =45°; 当C 点在y 轴右侧时,∠BOC =180°﹣∠OBA =135°;∴∠OBA =45°或135° …………………………………2分 (写对一个给1分)(2) ①如图,当C 在第二象限时,过C 点作CF ⊥x 轴于F ,则∠CFO =90°,∵OC ∥AD ,∴∠COF =∠DAO ,∴∠ADO =∠COD =90°,∴∠ADO =∠CFO ∴△OCF ∽△AOD , ∴OA OC OD CF =,即633=CF ,解得CF =, 在Rt △OCF 中,22CF OC OF -==,∴C 点坐标为)23233(,-. E同理,当C 在第一象限时,C 点坐标为)23233(,. ∴C 点坐标为)23233(,-;)23233(, ………………………………6分 ②直线BC 是⊙O 的切线.理由如下:如上图,在Rt △OCF 中,OC =3,CF =,∴sin ∠COF=OC CF =21∴∠COF =30°,∴∠OAD =30°,∴∠BOC =60°,∠AOD =60°,∵在△BOC 和△AOD 中,⎪⎩⎪⎨⎧=∠=∠=AO BO AOD BOC ODOC∴△BOC ≌△AOD (SAS ),∴∠BCO =∠ADO =90°,∴OC ⊥BC ,∴直线BC 为⊙O 的切线.同理证得C 在第一项象限时结论.………………………9分 (3)∵△OAB 为等腰直角三角形,∴AB =OA =6,∴当点C 到AB 的距离最大时,△ABC 的面积最大, 过O 点作OE ⊥AB 于E ,OE 的反向延长线交⊙O 于C , 如图,此时C 点到AB 距离的最大值为CE 的长, ∵△OAB 为等腰直角三角形,∴OE =AB =3,∴CE =OC +OE =3+3,△ABC 的面积=CE •AB =×(3+3)×6=9+18.∴当点C 在⊙O 上运动到第三象限的角平分线与圆的交点位置时, △ABC 的面积最大,最大值为9+18. …………………………11分25.(本小题满分12分)解:(1)x a y )(-=1201(1≤x ≤125,x 为正整数) ··········································· 2分 2250100x x y .-=(1≤x ≤120,x 为正整数) ··············································· 4分 (2)①∵40<a <100, ∴120-a >0,即1y 随x 的增大而增大 ,∴当x =125时,1y 最大值=(120-a )×125=15000-125a (万元) ·················· 6分② 50001005010050222+--=+-=)(..x x x y ∵-0. 5<0, ∴x =100时, 2y 最大值=5000(万元) ······································ 8分(3)由15000-125a >5000,得a <80,∴当40<a <80时,选择方案一; 由15000-125a =5000,,得a =80, ∴当a =80时,选择方案一或方案二均可; 由15000-125a <5000,得a >80∴当80<a <100时,选择方案二. ········································································ 12分26.(本小题满分14分)解:(1)∵点A (-1,0)在抛物线c x y +--=21)(上,∴c +---=2110)(,得c = 4,∴抛物线解析式为:412+--=)(x y …………2分令x =0,得y =3,∴C (0,3);令y =0,得x =﹣1或x =3,∴B (3,0). ………………………………………4分 (2)△CDB 为直角三角形. …………………………5分理由如下:由抛物线解析式,得顶点D 的坐标为(1,4). 如答图1所示,过点D 作DM ⊥x 轴于点M ,则OM =1, DM =4,BM =OB ﹣OM =2. 过点C 作CN ⊥DM 于点N ,则CN =1, DN =DM ﹣MN =DM ﹣OC =1. 在Rt △OBC 中,由勾股定理得:183322222=+=+=OC OB BC ;在Rt △CND 中,由勾股定理得:21122222=+=+=DN CN CD ; 在Rt △BMD 中,由勾股定理得:204222222=+=+=DM BM BD . ∵BC 2+CD 2=BD 2,∴△CDB 为直角三角形. …………………………………8分 (或证明∠DCB =90°亦可)(3)设直线BC 的解析式为y =kx +b ,∵B (3,0),C (0,3),∴⎩⎨⎧==+303b b k , 解得k =﹣1,b =3, ∴3+-=x y ; 同理:直线BD 的解析式为62+-=x y .直线QE 是直线BC 向右平移t 个单位得到,∴Q ( t ,3 ), E ( t +3 ,0 ) ∴直线QE 的解析式为:t x y ++-=3;连接CQ 并延长,射线CQ 交BD 于点G ,则G (,3). 在△COB 向右平移的过程中: (I )当0<t ≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK =CQ =t ,PB =PK =3﹣t . 设QE 与BD 的交点为F ,则:⎩⎨⎧++-=+-=t x y x y 362,解得⎩⎨⎧=-=ty tx 23, ∴F (3﹣t ,2t ).S =S △QPE ﹣S △PBK ﹣S △FBE =PE •PQ ﹣PB •PK ﹣BE •y F =t t t t t 323221232133212+-=⋅-⨯--⨯⨯)(;……………………11分(II )当<t <3时,如答图3所示: 设PQ 分别与BC 、BD 交于点K 、点J . ∵CQ =t ,∴KQ =t ,PK =PB =3﹣t .直线BD 解析式为62+-=x y ,∴J (t ,6﹣2t ). S =S △PBJ ﹣S △PBK = PB •PJ ﹣PB •PK =29321)3(21)26)(3(2122+-=----t t t t t . ……14分 综上所述,S 与t 的函数关系式为: ⎪⎩⎪⎨⎧<<+-≤<+-=)()(3232932123032322t t t t t t S .。
2021年九年级数学中考一轮复习知识点基础达标测评:数与式综合(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:数与式综合(附答案)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为+200米,那么低于海平面300米应记为()A.﹣300米B.+500米C.+300米D.﹣100米2.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2019+b2019的值为()A.0B.﹣1C.1D.23.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6B.5C.3D.24.﹣2018的相反数是()A.﹣2018B.2018C.D.﹣5.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)+G(2020)=90,则a的值为()A.11B.10C.9D.86.|a﹣2|+|b+1|=0,则a+b等于()A.﹣1B.1C.0D.﹣27.有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是()A.3B.C.D.﹣38.若a+b<0,a<0,b>0,则a,﹣a,b,﹣b的大小关系是()A.a<﹣b<b<﹣a B.﹣b<a<﹣a<b C.a<﹣b<﹣a<b D.﹣b<a<b<﹣a 9.体育课上的口令:立正,向右转,向后转,向左转之间可以相加.连结执行两个口令就把这两个口令加起来.例如:向右转+向左转=立正;向左转+向后转=向右转.如果分别用0,1,2,3分别代表立正,向右转,向后转,向左转,就可以用如图所示的加法表来表示,在表中填了部分的数值和代表数值的字母.下列对于字母a,b,c,d的值,说法错误的是()A.a=0B.b=1C.c=2D.d=310.下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3B.(+3)+(﹣8)=﹣(8﹣3)=﹣5 C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D.(+6)+(﹣4)=+(6+4)=+10 11.下列说法正确的是()①已知a,b是不为0的有理数,则的值为﹣1或3.②如果定义,当ab<0,a+b<0,|a|>|b|时,{a,b}的值为b﹣a.③若|a+3|=﹣3﹣a,|b﹣2|=b﹣2,则化简|b+3|﹣|a﹣2|的结果为a﹣b+5.A.①②B.①③C.②③D.①②③12.如果向东走2米可记作+2,那么向西走3米可记作.13.在有理数中最大的负整数是,最小的非负数.14.如图,已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,则t的值为.15.﹣3的绝对值等于.16.若,则xy=.17.﹣的倒数是.18.写出一个比﹣2小的有理数:.19.绝对值大于1而小于3.5的所有整数的和为.20.已知(a+3)2+|b﹣2|=0,则a﹣b的值是.21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.(4)若图中另有两个格点M、N,且M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),则N →A应记为什么?22.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC =2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?23.已知y=|2x+6|+|x﹣1|+4|x+1|,求y的最小值.24.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,b﹣a0,c﹣a0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.25.请根据情景对话回答下面的问题:小明:这条数轴上的两个点A、B表示的数都是绝对值是4的数,点A在点B的左边;小宇:点C表示负整数,点D表示正整数,且这两个数的差为3;小智:点E表示的数的相反数是它本身;(1)求A、B、C、D、E五个不同的点对应的数.(2)求这五个点表示的数的和.26.随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品改变原来的销售模式,实行网上销售,刚大学毕业的小明把自家的冬枣产品放到网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤):(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)此前的上个周日小明卖了100斤冬枣,现在用正数表示比前一天多的销售量,负数表示比前一天少的销售量.完成下面的销量变化表:星期一二三四五六日计划量的差额+4﹣3﹣5+14﹣8+21﹣6星期一二三四五六日实际销售量比前一天的变化量(3)求本周实际销售总量与计划总量相比,具体增加或减少了多少斤?27.在一条不完整的数轴上,有A、B、C三个点,C点在A点的右侧,B点在A、C两点之间,已知A点对应数为﹣5,AB=3,设A、C两点对应数的和为m,A、B、C三个点对应数的积为n.(1)求B点表示的数是;(2)若点B是线段AC的三等分点,求m的值;【注:把一条线段平均分成三等分的两个点,都叫线段的三等分点】(3)如图所示,把一把直尺放置在数轴上,发现A点、B点、C点与直尺的刻度0.6,刻度2.4,刻度6分别对应,求n的值.28.有一块面积为64米2的正方形纸片,第1次剪掉一半,第2次剪掉剩下纸片的一半,如此继续剪下去,第6次后剩下的纸片的面积是多少米?29.计算(1)6+(﹣4)+(﹣2)+(﹣5);(2)(﹣+﹣)×(﹣24);(3)﹣22+3×(﹣1)4﹣(﹣4)×2;(4)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].参考答案1.解:如果高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.故选:A.2.解:∵三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b 的形式,∴这两个三数组分别对应相等.∴a+b、a中有一个是0,由于有意义,所以a≠0,则a+b=0,所以a、b互为相反数.∴=﹣1,b=1,a=﹣1.∴a2019+b2019=(﹣1)2019+12019=0.故选:A.3.解:设BC=6x,∵2AB=BC=3CD,∴AB=3x,CD=2x,∴AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,∴11x=11,解得:x=1,∴AB=3,CD=2,∴B,D两点所表示的数分别是﹣2和6,∴线段BD的中点表示的数是2.故选:D.4.解:﹣2018的相反数是2018.故选:B.5.解:当x≥a时,则|x﹣a|=x﹣a,∴G(x)=a﹣x+x﹣a=0;当x<a时,则|x﹣a|=﹣(x﹣a)=﹣x+a,∴G(x)=a﹣x﹣x+a=2a﹣2x,∵G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,∴设第n个数时,即x=n,G(x)开始为0,即x=a=n,∴G(n)=2n﹣2n=0,∴G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n﹣6+…+2n﹣2n+0+0+…+0=2n×n﹣2(1+2+3+…+n)=2n2﹣2×=n2﹣n,即n2﹣n=90,解得n1=10,n2=﹣9(舍去).故选:B.6.解:∵|a﹣2|+|b+1|=0,∴a=2,b=﹣1,∴a+b=1.故选:B.7.解:由题意可得:1﹣3=﹣2,则输出﹣,故第二次输入﹣,得到:1﹣(﹣)=,输出.故选:C.8.解:按题意,可设a=﹣2,b=1,则﹣a=2,﹣b=﹣1.由于﹣2<﹣1<1<2,所以a<﹣b<b<﹣a.故选:A.9.解:根据题意,将表格中的数据填写完整如图所示:因此,a=0,b=1,c=1,d=3,故选:C.10.解:A、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意.B、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意,故选:B.11.解:①已知a,b是不为0的有理数,可分4种情况:a>0,b>0,此时ab>0,∴=1+1+1=3;a>0,b<0,此时ab<0,∴=1﹣1﹣1=﹣1;a<0,b<0,此时ab>0,∴=﹣1﹣1+1=﹣1;a<0,b>0,此时ab<0,∴=﹣1+1﹣1=﹣1;∴的值为﹣1或3,故①正确;②当ab<0,a+b<0,|a|>|b|时,a<0<b,∴{a,b}=b﹣a,故②正确;③若|a+3|=﹣3﹣a,|b﹣2|=b﹣2,则a+3≤0,b﹣2≥0,∴a≤﹣3,b≥2,∴b+3>0,a﹣2<0,∴|b+3|﹣|a﹣2|=b+3+a﹣2=a+b+1.故③错误.综上,正确的有①②.故选:A.12.解:向东走2米可记作+2,那么向西走3米可记作﹣3米,故答案为:﹣3米.13.解:在有理数中最大的负整数是﹣1,最小的非负数0,故答案为:﹣1,0.14.解:设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.故答案为:或4.15.解:﹣3的绝对值等3.故答案为:3.16.解:根据题意得,x+2=0,y﹣1=0,解得x=﹣2,y=1,∴xy=(﹣2)×1=﹣2.故答案为:﹣2.17.解:﹣的倒数是﹣8,故答案为:﹣8.18.解:比﹣2小的有理数为﹣3(答案不唯一),故答案为:﹣3.19.解:绝对值大于1而小于3.5的整数包括±2,±32+(﹣2)+3+(﹣3)=0.故答案为:0.20.解:∵(a+3)2≥0,|b﹣2|≥0,而(a+3)2+|b﹣2|=0,∴a+3=0,b﹣2=0,∴a=﹣3且b=2.∴a﹣b=﹣3﹣2=﹣5.故答案为:﹣5.21.解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4;+4;+3;0;+1;﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).22.解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为或8时,OP=OQ.23.解:令2x+6=0,x﹣1=0,x+1=0,解得:x=﹣3,x=1,x=﹣1.当x<﹣3时,则y=﹣2x﹣6﹣x+1﹣4x﹣4=﹣7x﹣9,则没有最小值;当﹣3≤x<﹣1时,则y=2x+6﹣x+1﹣4x﹣4=﹣3x+3,则最小值为﹣6;当﹣1≤x<1时,则y=2x+6﹣x+1+4x+4=5x+11,则最小值为6;当x≥1时,则y=2x+6+x﹣1+4x+4=7x+9,则最小值为16;故y的最小值为﹣6.24.解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0.25.解:(1)∵点E表示的数的相反数是它本身,∴E表示0,∵A.B表示的数都是绝对值是4的数,且点A在点B左边,∴A表示﹣4,B表示4,∵点C表示负整数,点D表示正整数,且这两个数的差是3,∴若C表示﹣1,则D表示2:若C表示﹣2.则D表示1.即A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0或﹣4,4,﹣2,1,0;(2)当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0时,这五个点表示的数的和是﹣4+4+(﹣1)+2+0=1;当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣2,1,0时,这五个点表示的数的和是﹣4+4+(﹣2)+1+0=﹣1.26.解:(1)21﹣(﹣8)=29(斤),答:销售量最多的一天比销售量最少的一天多销售29斤,故答案为29;(2)星期一实际销售100+4=104(斤),星期二实际销售100﹣3=97(斤),星期三实际销售100﹣5=95(斤),星期四实际销售100+14=114(斤),星期五实际销售100﹣8=92(斤),星期六实际销售100+21=121(斤),星期日实际销售100﹣6=94(斤),本周每天实际销售量比前一天的变化量分别为:+4,﹣7,﹣2,+19,﹣22,+29,﹣27,故列表如下:星期一二三四五六日+4﹣7﹣2+19﹣22+29﹣27实际销售量比前一天的变化量(3)+4﹣3﹣5+14﹣8+21﹣6=17(斤),答:本周实际销售总量与计划总量相比,具体增加了17斤.27.解:(1)∵A点对应数为﹣5,AB=3,C点在A点的右侧,B点在A、C两点之间,∴B点表示的数为﹣2,故答案为﹣2;(2)∵点B是AC的三等分点,∴当点B靠近点A时,AC=3AB=9,∵A点表示的数为﹣5,且C点在A点的右侧,∴C点表示的数为4,∴m=﹣5+4=﹣1;当点B靠近点C时,AC=AB=,∵A点表示的数为﹣5,且C点在A点的右侧,∴C点表示的数为,∴m=﹣5+=;(3)数轴上的一个单位长度对应刻度尺上是,∴BC的长为,∴C点表示的数为4,∴n=(﹣5)×(﹣2)×4=40.28.解:由题意得,64×()6=64×=1平方米,答:第六次后,还剩1平方米.29.解:(1)原式==4+(﹣10)=﹣6;(2)原式==4﹣30+14=﹣12;(3)原式=﹣4+3+8=7;(4)原式=﹣5﹣[﹣﹣(1﹣)÷4]=﹣5﹣(﹣﹣×)=﹣5﹣()=﹣5+=。
2021年九年级数学中考一轮复习知识点基础达标测评:整式及其运算 (含答案)
2021年九年级数学中考一轮复习基础达标测评:整式及其运算(附答案)1.在代数式:x2,3ab,x+5,,﹣4,,a2b﹣a中,整式有()A.4个B.5个C.6个D.7个2.代数式,4xy,,a,2009,,中单项式的个数是()A.3B.4C.5D.63.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x2+y2+z2是对称整式,x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式;④若某对称整式只含字母x,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.14.已知无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,则m+n等于()A.5B.﹣5C.1D.﹣15.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣56.下列说法中错误的是()A.(3.14﹣π)0=1B.若x2+=9,则x+=±3C.a﹣n(a≠0)是a n的倒数D.若a m=2,a n=3,则a m+n=67.下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个8.计算x5m+3n+1÷(x n)2•(﹣x m)2的结果是()A.﹣x7m+n+1B.x7m+n+1C.x7m﹣n+1D.x3m+n+19.下列各式运算正确的是()A.3y3•5y4=15y12B.(ab5)2=ab10C.(a3)2=(a2)3D.(﹣x)4•(﹣x)6=﹣x1010.下列说法正确的是()A.多项式乘以单项式,积可以是多项式也可以是单项式B.多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C.多项式乘以单项式,积的系数是多项式系数与单项式系数的和D.多项式乘以单项式,积的项数与多项式的项数相等11.已知a、b、c三个数中有两个奇数,一个偶数,n是整数,如果S=(a+n+1)+(b+2n+2)+(c+3n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶不能确定12.下列运算正确的是()A.a2•a5=a10B.(a﹣2)2=a2﹣4C.a6÷a2=a3D.(﹣a2)4=a813.下列式子中:①﹣;②a+b,③,④,⑤a2﹣2a+1,⑥x,是整式的有(填序号)14.单项式2πx2y的系数是.15.当k=时,多项式x2+(k﹣1)xy﹣3y2﹣2xy﹣5中不含xy项.16.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是.17.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=﹣2,mn=﹣4,则2(mn﹣3m)﹣3(2n﹣mn)的值为.18.若x m=2,x n=3,则x m+2n的值为.19.若a n=2,a m=5,则a m+n=.若2m=3,23n=5,则8m+2n=.20.已知2x=3,2y=5,则22x+y﹣1=.21.计算2a•a2﹣a3的结果是.22.已知,则(y﹣z)m+(z﹣x)n+(x﹣y)t的值为.23.已知多项式x4﹣y+3xy﹣2xy2﹣5x3y3﹣1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是,三次项的系数是.(3)按y的降幂排列为:.(4)若|x+1|+|y﹣2|=0,试求该多项式的值.24.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣B;(2)若2A﹣B与互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.25.化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.26.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(I)解方程:log x4=2;(Ⅱ)求值:log48;(Ⅲ)计算:(lg2)2+lg2•1g5+1g5﹣2018.27.x2•(﹣x)2•(﹣x)2+(﹣x2)328.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.29.计算:(1)()﹣2﹣(﹣2)0+(﹣0.2)2014×(﹣5)2014(2)(﹣2×1012)÷(﹣2×103)3÷(0.5×102)2(3)(﹣4xy3)•(﹣xy)3﹣(﹣x2y3)2(4)5a2b•(﹣2a3b5)+3a•(﹣4a2b3)230.化简:(a+3)2﹣a(a+2).31.化简:(x+5)(x﹣1)+(x﹣2)2.32.已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值.参考答案1.解:x2,3ab,x+5,﹣4,,a2b﹣a是整式,故选:C.2.解:根据单项式的定义,可知单项式有:4xy,a,2009,,.一共5个.故选:C.3.解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①正确;②反例:x3+y3+z3+x+y+z为对称整式,但是次数并不相同,故②不正确;③反例:xyz为单项式,但也是对称整式,故③不正确;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换,则x2y:y2x,则有一项为y2x;若z,x互换,则x2y:z2y,则有一项为z2y;若y,z互换,则x2y:x2z,则有一项为x2z;所以该多项式的项数至少为4,故④不正确.所以以上结论中错误的是②③④,三个.故选:B.4.解:(2x2﹣my+12)﹣(nx2+3y﹣6)=2x2﹣my+12﹣nx2﹣3y+6=(2﹣n)x2+(﹣m﹣3)y+18,∵无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,∴,得,∴m+n=﹣3+2=﹣1,故选:D.5.解:∵a﹣b=3,c+d=2,∴原式=a+c﹣b+d=(a﹣b)+(c+d)=3+2=5.故选:C.6.解:任何不为0的0次幂均等于1,因此选项A正确;当x2+=9时,x+=,因此选项B不正确;因为a﹣n=,因此选项C正确;因为a m+n=a m•a n=3×2=6,因此选项D正确;故选:B.7.解:①∵a5+a5=2a5,故①的答案不正确;②∵(﹣a)6•(﹣a)3•a=﹣a10故②的答案不正确;③∵﹣a4•(﹣a)5=a9,故③的答案不正确;④25+25=2×25=26.所以正确的个数是1,故选:B.8.解:x5m+3n+1÷(x n)2•(﹣x m)2=x5m+3n+1÷x2n•x2m=x5m+3n+1﹣2n+2m=x7m+n+1.9.解:A.3y3•5y4=15y7,故本选项错误;B.(ab5)2=a5b10,故本选项错误;C.(a3)2=(a2)3,故本选项正确;D.(﹣x)4•(﹣x)6=x10,故本选项错误;故选:C.10.解:A、多项式乘以单项式,单项式不为0,积一定是多项式,单项式为0,积是单项式,故本选项正确;B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的和,故本选项错误;C、多项式乘以单项式,积的系数是多项式系数与单项式系数的积,故本选项错误;D、由选项A知错误.故选:A.11.解:(a+n+1)+(b+2n+2)+(c+3n+3)=a+b+c+6(n+1).∵a+b+c为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴S是偶数.故选:A.12.解:A、a2•a5=a7,故选项计算错误;B、(a﹣2)2=a2﹣4a+4,故选项计算错误;C、a6÷a2=a4,故选项计算错误;D、(﹣a2)4=a8,故选项计算正确;13.解:①﹣,是单项式,符合题意;②a+b,是多项式符合题意,③,是单项式,符合题意;④,是分式不合题意,⑤a2﹣2a+1,是多项式符合题意,⑥x,是单项式,符合题意;即是整式的有:①②③⑤⑥.故答案为:①②③⑤⑥.14.解:单项式2πx2y的系数是2π,故答案为:2π.15.解:整理只含xy的项得:(k﹣3)xy,∴k﹣3=0,k=3.故答案为:3.16.解:﹣(3x3y m﹣1)+3(x n y+1)=﹣3x3y m+1+3x n y+3,=﹣3x3y m+3x n y+4,∵经过化简后的结果等于4,∴﹣3x3y m与3x n y是同类项,∴m=1,n=3,则m﹣n=1﹣3=﹣2,故答案为:﹣2.17.解:∵m+n=﹣2,mn=﹣4,∴原式=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣20+12=﹣8.故答案为:﹣8.18.解:∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为:18.19.解:∵a n=2,a m=5,∴a m+n=a m•a n=5×2=10;∵2m=3,23n=5,∴8m+2n=(23)m+2n=23m+6n=23m×26n=(2m)3×(23n)2=33×52=27×25=675.故答案为:10;675.20.解:22x+y﹣1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=,故答案为:.21.解:2a•a2﹣a3=2a3﹣a3=a3.故答案为:a3.22.解:设=k,则m=k(y+z﹣x),n=k(z+x﹣y),t=k(x+y﹣z).所以(y﹣z)m+(z﹣x)n+(x﹣y)t=k(y+z﹣x)(y﹣z)+k(z+x﹣y)(z﹣x)+k(x+y﹣z)(x﹣y)=k[y2+yz﹣xy﹣yz﹣z2+xz+z2+xz﹣yz﹣xz﹣x2+xy+x2+xy﹣xz﹣xy﹣y2+yz]=k×0=0故答案为:023.解:(1)该多项式的项为:x4,﹣y,3xy,﹣2xy2,﹣5x3y3,﹣1;(2)该多项式的次数是6,三次项的系数是﹣2;故答案为:6,﹣2;(3)按y的降幂排列为:﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1;故答案为:﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1;(4)∵|x+1|+|y﹣2|=0,∴x=﹣1,y=2,∴x4﹣y+3xy﹣2xy2﹣5x3y3﹣1=(﹣1)4﹣2+3×(﹣1)×2﹣2(﹣1)×22﹣5(﹣1)3×23﹣1=1﹣2﹣6+8+40﹣1=40.24.解:(1)2A﹣B=2(3x2+x+2)﹣(﹣3x2+9x+6)=6x2+2x+4+x2﹣3x﹣2=7x2﹣x+2;(2)依题意有:7x2﹣x+2+=0,14x2﹣2x+4+C﹣3=0,C=﹣14x2+2x﹣1;(3)∵x=2是C=2x+7a的解,∴﹣56+4﹣1=4+7a,解得a=﹣.故a的值是﹣.25.解:原式=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2,=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2,=xy2+xy,当中x=3,y=﹣时,原式=3×+3×(﹣)=﹣1=﹣.26.解:(I)log x4=2;∴x2=4,∵x>0,∴x=2;(II)解法一:log48=log4(4×2)=log44+log42=1+=;解法二:设log48=x,则4x=8,∴(22)x=23,∴2x=3,x=,即log48=;(II)(lg2)2+lg2•1g5+1g5﹣2018,=lg2(lg2+1g5)+lg5﹣2018,=lg2•1g10+lg5﹣2018,=lg2+1g5﹣2018,=1g10﹣2018,=1﹣2018,=﹣2017.27.解:原式=x2•x2•x2﹣x6=x6﹣x6=0.28.解:(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.29.解:(1)()﹣2﹣(﹣2)0+(﹣0.2)2014×(﹣5)2014,=4﹣1+(﹣0.2)2014×(﹣5)2014,=4﹣1+1=4;(2)(﹣2×1012)÷(﹣2×103)3÷(0.5×102)2,=(﹣2×1012)÷(﹣8×109)÷(0.25×104),=(0.25×103)÷(0.25×104),=0.1;(3)(﹣4xy3)•(﹣xy)3﹣(﹣x2y3)2,=(﹣4xy3)•(﹣x3y3)﹣x4y6,=﹣x4y6,=x4y6;(4)5a2b•(﹣2a3b5)+3a•(﹣4a2b3)2,=﹣10a5b6+3a•16a4b6,=﹣10a5b6+48a5b6,=38a5b6.30.解:原式=a2+6a+9﹣a2﹣2a=4a+9。
2021年九年级数学中考一轮复习知识点基础达标测评:函数综合(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:函数综合(附答案)1.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为()A.(4,44)B.(5,44)C.(44,4)D.(44,5)2.在平面直角坐标系中,点A的坐标为(﹣4,3),AB∥y轴,AB=5,则点B的坐标为()A.(1,3)B.(﹣4,8)C.(﹣4,8)或(﹣4,﹣2)D.(1,3)或(﹣9,3)3.在平面直角坐标系中,点P(3,4)到原点的距离是()A.3B.4C.5D.±54.如果每盒笔售价16元,共有10支,用y(元)表示笔的售价,x表示笔的支数,那么y 与x的关系式为()A.y=10x B.y=16x C.y=x D.y=x5.函数y=自变量的取值范围是()A.x≠2020B.x≠﹣2020C.x≠2021D.x≠﹣20216.根据如图所示的计算程序,若输入x=﹣2,则输出结果y的值为()A.﹣3B.3C.﹣7D.77.已知关于x的函数的图象如图所示,根据探究函数图象的经验,可以推断常数a,b的值满足()A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>08.如图1,在矩形MNPO中,动点R从点N出发,沿N→P→O→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPO的周长是()A.11B.15C.16D.249.在平面直角坐标系中,点(2,3)到x轴的距离是.10.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2020的纵坐标为.11.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),B 的位置为(4,210°),则C的位置为.12.在平面直角坐标系中有一点P(a+1,a﹣3),其中a为任意实数,m,n分别表示点P 到x轴和y轴的距离,则m+n的最小值为.13.已知变量x与y的四种关系:①y=|x|;②|y|=x;③2x2﹣y=0;④x+y2=1,其中y是x的函数的式子有个.14.如图,三角形ABC的高AD=4,BC=6,点E在BC上运动,若设BE的长为x,三角形ACE的面积为y,则y与x的关系式为.15.函数y=中,自变量x的取值范围是.16.已知f(x)=kx,f()=2,那么k=.17.如图是某物体的抛射曲线图,其中s表示物体与抛射点之间的水平距离,h表示物体的高度.那么此次抛射过程中,物体达到的最大高度是m.18.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是,则①BC=;②AC=.19.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.20.已知点A(3a+2,2a﹣4),试分别根据下列条件,求出a的值并写出点A的坐标.(1)点A在x轴上;(2)点A与点A'(﹣4,﹣)关于y轴对称;(3)经过点A(3a+2,2a﹣4),B(3,4)的直线,与x轴平行;(4)点A到两坐标轴的距离相等.21.育新实验学校八(二)班的学生从学校O点出发,要到某基地进行为期一周的校外实践活动,他们第一天的任务是进行体能训练,学生们先向正西方向行走了2km到A处,又往正南方向行走3km到B处,然后又折向正东方向行走6km到C处,再向正北方向走5km才到校外实践基地P处.如图,以点O为原点,取O点的正东方向为x轴的正方向,取O点的正北方向为y轴的正方向,以500m为一个单位长度建立平面直角坐标系.(1)在平面直角坐标系中,画出学生体能训练的行走路线图;(2)分别写出A,B,C,P点的坐标.(3)请在横线上直接写出O,P两点之间的距离.22.如图,在矩形ABCD中,AB=4cm,BC=3cm,点P从点A出发,沿A→B→C向终点C匀速运动,在边AB,BC上分别以4cm/s,3cm/s的速度运动,同时点Q从点A出发,沿A→D→C向终点C匀速运动,在边AD,DC上分别以3cm/s,4cm/s的速度运动,连接PQ,设点P的运动时间为t(s),四边形PBDQ的面积为S(cm2).(1)当点P到达边AB的中点时,求PQ的长;(2)求S与t之间的函数解析式,并写出自变量t的取值范围.23.为了探索函数y=x+(x>0)的图象与性质,我们参照学习函数的过程与方法.列表:x…12345…y…2…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图1所示:(1)补全表格,并用一条光滑曲线将所描的点顺次连接起来,作出函数图象;(2)点(x1,y1),(x2,y2)在函数图象上,若0<x1<x2≤1,则y1y2;若x1•x2=1,则y1y2(填“>”,“=”或“<”);若方程x+=k(x>0)有两个不相等的实数根,则k的取值范围是;由图象可得y=x+(x>0)≥2,小明想换个角度说明它的正确性,请你帮他证明.(3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元/平方米,侧面造价为0.5千元/平方米.设水池底面一边的长为x米,水池总造价为y千元.①请写出y与x的函数关系式;②若该农户预算不超过3.5千元,则水池底面一边的长x应控制在什么范围内?24.电话费b与通话时间a的关系如下表:通话时间a/分电话费b/元10.2+0.820.4+0.830.6+0.840.8+0.8(1)试用含a的式子表示b;(2)计算当a=100时,b的值.25.已知y=(m﹣2)x+|m|﹣2.(1)m满足什么条件时,y=(m﹣2)x+|m|﹣2是一次函数?(2)m满足什么条件时,y=(m﹣2)x+|m|﹣2是正比例函数?26.在如图所示的平面直角坐标系中.画出函数y=2x+4的图象.(1)若该函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积;(2)利用该函数图象直接写出:当y<0时,x的取值范围.27.已知一次函数y=(2﹣k)x﹣k2+4.(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?28.设一次函数y=kx+b﹣3(k,b是常数,且k≠0).(1)该函数的图象过点(﹣1,2),试判断点P(4,5k+2)是否也在此函数的图象上,并说明理由.(2)已知点A(a,y1)和点B(a﹣2,y1+2)都在该一次函数的图象上,求k的值.(3)若k+b<0,点Q(5,m)(m>0)在该一次函数上,求证:k>.29.如图所示的是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若海洋极地公园的坐标为(4,0),大唐芙蓉园的坐标为(2,﹣1),请建立平面直角坐标系,并用坐标表示大明宫国家遗址公园的位置.参考答案1.解:由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a n﹣a n﹣1=2n,a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,a n﹣a n﹣1=2n,相加得:a n﹣a1=2(2+3+4+…+n)=n2+n﹣2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.2.解:∵AB∥y轴,∴A、B两点的横坐标相同,又AB=5,∴B点纵坐标为:3+5=8或3﹣5=﹣2,∴B点的坐标为:(﹣4,﹣2)或(﹣4,8);故选:C.3.解:∵点P(3,4),∴点P到原点的距离是=5.故选:C.4.解:由题意得,y=x=x,故选:C.5.解:要使有意义,必须2021﹣x≠0,解得,x≠2021,故选:C.6.解:x=﹣2时,y=2x2﹣1=7,故选:D.7.解:由图象可知,当x>0时,y<0,∴a<0;x=﹣b时,函数值不存在,∴﹣b<0,∴b>0;故选:D.8.解:∵x=3时,及R从N到达点P时,面积开始不变,∴PN=3,同理可得OP=5,∴矩形的周长为2(3+5)=16.故选:C.9.解:点(2,3)到x轴的距离是3,故答案为:3.10.解:∵正方形OABC边长为1,∴OB=,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(0,2),同理可知OB2=2,∴B2点坐标为(﹣2,2),同理可知OB3=4,B3点坐标为(﹣4,0),B4点坐标为(﹣4,﹣4),B5点坐标为(0,﹣8),B6(8,﹣8),B7(16,0),B8(16,16),B9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2020÷8=252…4,∴B2020的横纵坐标符号与点B4相同,横纵坐标相同,且都在第三象限,∴B2020的坐标为(﹣21010,﹣21010).故答案为:(﹣21010,﹣21010).11.解:由题意,点C的位置为(4,150°).故答案为(4,150°).12.解:∵P(a+1,a﹣3),其中a为任意实数,m,n分别表示点P到x轴和y轴的距离,∴m=|a﹣3|,n=|a+1|,∴m+n=|a﹣3|+|a+1|,∴m+n的最小值即为|a﹣3|+|a+1|的最小值,∴①当a≤﹣1时,m+n=|a﹣3|+|a+1|=﹣2a+2≥4;②当﹣1<a<3时,m+n=|a﹣3|+|a+1|=4;③当a≥3时,m+n=|a﹣3|+|a+1|=a﹣3+a+1=2a﹣2≥4;综上,m+n≥4,∴m+n的最小值为4,故答案为:4.13.y是x的函数的式子有:①y=|x|;③2x2﹣y=0,共2个,故答案为:2.14.解:由线段的和差,得CE=6﹣x,由三角形的面积,得y=×4×(6﹣x)化简,得y=﹣2x+12,故答案为:y=﹣2x+12.15.解:由题意得,≥0,则或,解得,x>2或x≤1,故答案为:x>2或x≤1.16.解:由题意可得:k=2,解得.故答案为:.17.解:由函数图象可得,当S=6时,h有最大值3,∴此次抛射过程中,物体达到的最大高度是3m,故答案为:3.18.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=3,曲线开始AK=3,结束时AK=3,所以AB=AC=3.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=10,解得BC=4.故答案为4、3.19.解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.20.解:(1)依题意有2a﹣4=0,解得a=2,3a+2=3×2+2=8.故点A的坐标为(8,0);(2)依题意有3a+2=4,解得a=.点A的坐标为(4,﹣);(3)依题意有2a﹣4=4,解得a=4,3a+2=3×4+2=14,故点A的坐标为(14,4);(4)依题意有|3a+2|=|2a﹣4|,则3a+2=2a﹣4或3a+2+2a﹣4=0,解得a=﹣6或a=0.4,当a=﹣6时,3a+2=3×(﹣6)+2=﹣16,当a=0.4时,3a+2=3×0.4+2=3.2,2a﹣4=﹣3.2.故点A的坐标为(﹣16,﹣16)或(3.2,﹣3.2).21.解:(1)如图所示:(2)A(﹣4,0);B(﹣4,﹣6);C(8,﹣6);P(8,4);(3)O,P两点之间的距离为×=2(km).故O,P两点之间的距离为2km.故答案为:2km.22.解:(1)由题意得,当点P在线段AB上时,AP=4t,AQ=3t,当点P到达边AB的中点时,AP=2,即4t=2,解得,t=,∴AQ=,∴PQ===(cm);(2)当点P在边AB上时,S=×AB×AD﹣×AP×AQ=×4×3﹣×4t×3t=6﹣6t2(0<t<1);当点P在边BC上时,CP=3﹣3(t﹣1)=6﹣3t,CQ=4﹣4(t﹣1)=8﹣4t,S=×BC×CD﹣×CP×CQ=×3×4﹣(6﹣3t)(8﹣4t)=﹣6t2+24t﹣18(1<t<2);23.解:(1)当x=5时,y=x+=,故答案为,通过描点、连线绘制的函数图象如下:(2)从图象看,若0<x1<x2≤1,则y1>y2;若x1•x2=1,则y1=y2.从图象看,若方程x+=k(x<0)有两个不相等的实数根,则k的取值范围是为k>2;故答案为>,=,k>2;∵x>0,故>0,则(﹣)2≥0,即y=x+≥2;(3)①由题意,y=1+(2x+)×0.5=1+x+(x>0).②由题意1+x+≤3.5,∵x>0,可得2x2﹣5x+2≤0,解得:≤x≤2,∴水池底面一边的长x应控制在≤x≤2的范围内.24.解:(1)由题可得,b=0.2a+0.8;(2)当a=100时,b=0.2×100+0.8=20.8(元).25.解:(1)由题意得:m﹣2≠0,解得:m≠2;(2)由题意得:|m|﹣2=0,且m﹣2≠0,解得:m=﹣2.26.解:∵函数y=2x+4,∴当x=0,y=4,当y=0时,x=﹣2,即该函数图象过点(0,4),(﹣2,0),所画的函数图象如右图所示;(1)由图象可得,点A(﹣2,0),点B(0,4),则OA=2,OB=4,故△AOB的面积是=4;(2)由图象可得,当y<0时,x的取值范围是x<﹣2.27.解:(1)∵一次函数y=(2﹣k)x﹣k2+4的图象y随x的增大而减小,∴2﹣k<0,解得:k>2,∴当k>2时,y随x的增大而减小;(2)∵一次函数y=(2﹣k)x﹣k2+4的图象经过原点,∴,解得:k=﹣2,∴当k=﹣2时,它的图象经过原点.28.解:(1)点P(4,5k+2)在此函数的图象上,理由如下:∵该函数的图象过点(﹣1,2),∴2=﹣k+b﹣3,∴k﹣b=﹣5.把点P(4,5k+2)代入一次函数y=kx+b﹣3,5k+2=4k+b﹣3k﹣b=﹣5.∴点P(4,5k+2)也在此函数的图象上;(2)∵点A(a,y1)和点B(a﹣2,y1+2)都在该一次函数的图象上,∴解得k=﹣1.答:k的值为﹣1;(3)∵k+b<0,解得b<﹣k,∵点Q(5,m)(m>0)在该一次函数上,∴m=5k+b﹣3>0,解得b>3﹣5k所以3﹣5k<b<﹣k所以3﹣5k<﹣k解得k>.故得证.29.解:如图所示:大明宫国家遗址公园(1,5)。
人教版九年级数学上学期(第一学期)《一元二次方程》综合检测题及答案.docx
《第21章一元二次方程》一、选择题(本大题共10小题,每小题3分,共30分)1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=93.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠04.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.20125.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定6.对于任意实数k,关于x的方程x2﹣2(k+1)x﹣k2+2k﹣1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根 D.无法确定7.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定8.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A.7 B.﹣7 C.11 D.﹣119.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644 D.100x+80x=35610.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144二、填空题(本大题共6小题,每小题4分,共24分)11.一元二次方程x2﹣3=0的根为.12.把一元二次方程(x﹣3)2=4化为一般形式为:,二次项为,一次项系数为,常数项为.13.已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于.15.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.16.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程,能否求出x的值:(能或不能).三、解答题(一)(本大题共3小题,每小题6分,共18分)17.用公式法解方程:2x2﹣4x=5.18.用配方法解方程:x2﹣4x+1=019.用因式分解法解方程:(y﹣1)2+2y(1﹣y)=0.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.若a,b,c是△ABC的三条边,且a2﹣6a+b2﹣10c+c2=8b﹣50,判断此三角形的形状.21.如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m2,道路的宽应为多少?22.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.已知关于x的方程x2﹣2(m+1)x+m2=0.(1)当m取何值时,方程有两个不相等的实数根.(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?《第21章一元二次方程》参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:由题意得:a2﹣1≠0,解得a≠±1.故选C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.4.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.2012【考点】一元二次方程的解.【分析】将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可.【解答】解:∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a•12+b•1+5=0,∴a+b=﹣5,∴2013﹣a﹣b=2013﹣(a+b)=2013﹣(﹣5)=2018.故选:A.【点评】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.5.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.6.对于任意实数k,关于x的方程x2﹣2(k+1)x﹣k2+2k﹣1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根 D.无法确定【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1,b=﹣2(k+1),c=﹣k2+2k﹣1,∴△=b2﹣4ac=[﹣2(k+1)]2﹣4×1×(﹣k2+2k﹣1)=8+8k2>0∴此方程有两个不相等的实数根,故选C.【点评】此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定【考点】根的判别式;一次函数图象与系数的关系.【分析】先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,即可得出答案.【解答】解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.【点评】此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.8.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A.7 B.﹣7 C.11 D.﹣11【考点】根与系数的关系.【专题】计算题.【分析】根据已知两等式得到a与b为方程x2﹣6x+4=0的两根,利用根与系数的关系求出a+b与ab 的值,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将a+b与ab 的值代入计算即可求出值.【解答】解:根据题意得:a与b为方程x2﹣6x+4=0的两根,∴a+b=6,ab=4,则原式===7.故选A【点评】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.9.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644 D.100x+80x=356【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选C.【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144【考点】一元二次方程的应用.【专题】压轴题.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.【点评】此题主要考查了数字变化规律以及一元二次方程的解法,根据已知得出最大数与最小数的差为16是解题关键.二、填空题(本大题共6小题,每小题4分,共24分)11.一元二次方程x2﹣3=0的根为x1=,x2=﹣.【考点】解一元二次方程-直接开平方法.【分析】直接解方程得出答案,注意用直接开平方法.【解答】解:x2﹣3=0,x2=3,x=,x1=,x2=﹣.故答案为:x1=,x2=﹣.【点评】此题主要考查了直接开平方法解方程,题目比较典型,是中考中的热点问题.12.把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0 ,二次项为x2,一次项系数为﹣6 ,常数项为 5 .【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.【点评】去括号的过程中要注意符号的变化,以及注意不能漏乘,移项时要注意变号.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.13.已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是﹣6 .【考点】根与系数的关系;一元二次方程的解.【分析】根据根与系数的关系:x1+x2=﹣,x1•x2=,此题选择两根和即可求得.【解答】解:∵2是关于x的一元二次方程x2+4x﹣p=0的一个根,∴2+x1=﹣4,∴x1=﹣6,∴该方程的另一个根是﹣6.【点评】此题主要考查了一元二次方程的根与系数的关系.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于﹣2 .【考点】根与系数的关系.【专题】计算题.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2,x1•x2=1,然后变形+得,再把x1+x2=2,x1•x2=﹣1整体代入计算即可.【解答】解:∵x1,x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.15.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k ≠0 .【考点】根的判别式;非负数的性质:绝对值;非负数的性质:算术平方根.【专题】计算题.【分析】首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.【解答】解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.【点评】本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.16.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程(x+100)(200﹣x)=20000 ,能否求出x的值:能(能或不能).【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】如果把游泳池的长增加xm,那么游乐场的长和宽分别为(100+x)和(600÷2﹣100﹣x),然后矩形根据面积公式可列出方程.【解答】解:由于游泳池的长增加xm,那么游乐场的长和宽分别为(100+x)和(600÷2﹣100﹣x),即(x+100)(200﹣x)=20000,解得x=100.故填空答案:(x+100)(200﹣x)=20000,能.【点评】要会用x分别表示扩建前后长、宽和面积的变化.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.用公式法解方程:2x2﹣4x=5.【考点】解一元二次方程-公式法.【分析】先求出△的值,再代入求根公式计算即可.【解答】解:原方程可化为:2x2﹣4x﹣5=0,∵a=2,b=﹣4,c=﹣5,∴b2﹣4ac=(﹣4)2﹣4×2×(﹣5)=56>0,∴x==1±.∴x1=1+,x2=1﹣.【点评】此题考查了公式法解一元二次方程,用到的知识点是一元二次方程的求根公式,关键是求出△的值,注意△≥0.18.用配方法解方程:x2﹣4x+1=0【考点】解一元二次方程-配方法.【专题】配方法.【分析】首先把方程移项变形为x2﹣4x=﹣1的形式,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【解答】解:移项,得:x2﹣4x=﹣1,配方,得:x2﹣4x+(﹣2)2=﹣1+(﹣2)2,即(x﹣2)2=3,解这个方程,得:x﹣2=±;即x1=2+,x2=2﹣.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.19.用因式分解法解方程:(y﹣1)2+2y(1﹣y)=0.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先把方程变形为(y﹣1)2﹣2y(y﹣1)=0,然后利用因式分解法解方程.【解答】解:(y﹣1)2+2y(1﹣y)=0,(y﹣1)2﹣2y(y﹣1)=0,(y﹣1)(y﹣1﹣2y)=0,y﹣1=0或y﹣1﹣2y=0,所以y1=1,y2=﹣1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).四、解答题(二)(本大题共3小题,每小题7分,共21分)20.若a,b,c是△ABC的三条边,且a2﹣6a+b2﹣10c+c2=8b﹣50,判断此三角形的形状.【考点】配方法的应用;非负数的性质:偶次方;勾股定理的逆定理.【分析】先将已知等式利用配方法变形得到(a﹣3)2+(b﹣4)2+(c﹣5)2=0,再利用非负数的性质,分别求出a、b、c的值,然后利用勾股定理的逆定理得出△ABC是直角三角形.【解答】解:△ABC是直角三角形,理由如下:∵a2﹣6a+b2﹣10c+c2=8b﹣50,∴a2﹣6a+9+b2﹣8b+16+c2﹣10c+25=0,即(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a=3,b=4,c=5,∵32+42=52,即a2+b2=c2,∴△ABC是直角三角形.【点评】本题考查了配方法的应用、勾股定理的逆定理、非负数的性质,解题的关键是将已知等式利用配方法变形,利用非负数的性质解题.21.如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m2,道路的宽应为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】相等关系:试验地的面积=试验地的长×宽.如果设道路宽x,可根据此关系列出方程求出x 的值,然后将不合题意的舍去即可.【解答】解:设道路为x米宽,由题意得:(32﹣2x)(20﹣x)=570,整理得:x2﹣36x+35=0,解得:x=1,x=35,经检验是原方程的解,但是x=35>20,因此不合题意舍去.答:道路为1m宽.【点评】本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.如何表示出剩余矩形的长和宽是解决此题的关键.22.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【考点】解一元二次方程-直接开平方法.【专题】新定义.【分析】(1)根据规则为:a△b=a2﹣b2,代入相应数据可得答案;(2)根据公式可得(x+2)△5=(x+2)2﹣52=0,再利用直接开平方法解一元二次方程即可.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得(x+2)△5=(x+2)2﹣52=0,(x+2)2=25,两边直接开平方得:x+2=±5,x+2=5,x+2=﹣5,解得:x1=3,x2=﹣7.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.已知关于x的方程x2﹣2(m+1)x+m2=0.(1)当m取何值时,方程有两个不相等的实数根.(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.【考点】根的判别式.【分析】(1)根据题意可得△>0,进而可得[﹣2(m+1)]2﹣4m2>0解不等式即可;(2)根据(1)中所计算的m的取值范围,确定出m的值,再把m的值代入方程,解方程即可.【解答】解:(1)关于x的一元二次方程x2﹣2(m+1)x+m2=0有两个不相等的实数根,∴△>0,即:[﹣2(m+1)]2﹣4m2>0解得m>﹣;(2)∵m>﹣,∴取m=0,方程为x2﹣2x=0,解得x1=0,x2=2.【点评】此题主要考查了根的判别式,以及解一元二次方程,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【考点】解一元二次方程-因式分解法;一元二次方程的解.【专题】规律型.【分析】(1)分别利用因式分解法解各方程;(2)根据方程根的特征易得这n个方程都有一个根为1,另外一根等于常数项.【解答】解:(1)x2﹣1=0,解得x1=1,x2=﹣1,x2+x﹣2=0,解得x1=1,x2=﹣2,x2+2x﹣3=0,解得x1=1,x2=﹣3,…x2+(n﹣1)x﹣n=0,解得x1=1,x2=﹣n;(2)这n个方程都有一个根为1,另外一根等于常数项.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?【考点】二次函数的应用;二次函数的最值.【专题】应用题.【分析】本题的关键是根据题意列出一元二次方程,再求其最值.【解答】解:(1)设每千克应涨价x元,则(10+x)(500﹣20x)=6 000解得x=5或x=10,为了使顾客得到实惠,所以x=5.(2)设涨价z元时总利润为y,则y=(10+z)(500﹣20z)=﹣20z2+300z+5 000=﹣20(z2﹣15z)+5000=﹣20(z2﹣15z+﹣)+5000=﹣20(z﹣7.5)2+6125当z=7.5时,y取得最大值,最大值为6 125.(8分)答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.(10分)【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.。
九年级数学 第1章~第5章基础知识归纳与总结综合试题 北师大版
九年级数学 第1章~第5章基础知识归纳与总结综合试题 北师大版【模拟试题】(答题时间:40分钟)一. 选择题1. 关于x 的方程()a x x -=-12222是一元二次方程,则a 的值为() A. 2B. -2C. 0D. 不等于32. 直线y x =-12与双曲线y x=-2的交点坐标为() A. (2,1)和(2,1) B. (2,-1)和(-2,1) C. (2,1)和(-2,-1) D. (-2,-1)和(-2,1)3. 在直角三角形中,锐角顶点所引的两条线中线长为5和40,那么这个直角三角形的斜边长() A. 10B. 240C.13D. 2134. 如图EA ⊥AB ,BC ⊥AB ,EA =AB =2BC ,D 为AB 中点,有以下结论:(1)DE =AC (2)DE ⊥AC (3)∠CAB =30°(4)∠EAF =∠ADE ,其中结论正确的是()ECFA D BA. (1),(3)B. (2),(3)C. (3),(4)D. (1),(2),(4)5. 四边形ABCD 的对角线AC 、BD 相交于O ,设有下列条件:①AB =AD ;②∠AOB =90°;③BO =DO ,AO =CO ;④矩形ABCD ;⑤菱形ABCD ;⑥正方形ABCD ,则在下列推理中不成立的是() A.①②⑥⎫⎬⎭⇒ B.①④⑥⎫⎬⎭⇒ C.⑤③①⇒⎭⎬⎫D.⇒⎭⎬⎫③②⑤ 6. 若点(m ,n )在反比例函数y k x =上,则下列还有哪些点在反比例函数y kx =上?() A. (-m ,n )B. (-m ,-n )C. (m ,-n )D. (11m n,) 7. 如下图是哪一个物体的三视图()8. 如图,函数y ax=与y bx a =+在同一坐标系的图像可能为()二. 填空题1. 用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”的假设为__________。
反比例函数与几何综合专题(基础篇)九年级数学下册基础知识专项讲练(人教版)
专题26.14反比例函数与几何综合专题(基础篇)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为()A .y=B .y=C .y=D .y=2.如图,点A 在反比例函数y =﹣x(x <0)的图象上,过点A 作AC ⊥x 轴垂足为C ,OA 的垂直平分线交x 轴于点B ,当AC =1时,△ABC 的周长为()A .1B 1+C D2+3.如图,点A 是双曲线y =6x是在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不)A .13y x=-B .3y x =-C .16y x=-D .6y x=-4.如图,反比例函数ky x=(0x >)的图象经过点()1,2A 和点(),B m n ,过点B 作BC y⊥轴与C ,若ABC 的面积为2,则点B 的坐标为()A .23,3⎛⎫ ⎪⎝⎭B .2,33⎛⎫ ⎪⎝⎭C .()2,1D .()1,25.如图,菱形AOBC 的边BO 在x 轴正半轴上,点A (2,,反比例函数kyx=图象经过点C ,则k 的值为()A .12B .C .D .6.在ABC 中90ACB ∠=︒,将Rt ABC 放在如图所示的平面直角坐标系中,ABC 的边AC x ∥轴.1AC =,点B 在x 轴上,点C 在反比例函数2(0)y x x=>的图像上,将ABC 先向左平移3个单位长度,再向下平移5个单位长度得到111A B C △,此时点1A 在反比例函数()0ky x x=<的图像上.11B C 与此图像交于点P ,则点P 的纵坐标是()A .92-B .72-C .94-D .74-7.如图,点A 在双曲线y =6x上,过A 作AC ⊥x ,垂足为C ,OA 的垂直平分线交OC 于B ,且AC =1.5,则△ABC 的周长为()A .6.5B .5.5C .5D .48.如图,在平面直角坐标系中,O 是坐标原点,在OAB ∆中,AO AB =,AC OB ⊥于点C ,点A 在反比例函数()0ky k x=≠的图像上,若4OB =,3AC =,则k 的值为().A .12B .8C .6D .39.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,60BOC ∠=︒,顶点C 的坐标为(m ,反比例函数()0ky k x=<的图象与菱形对角线AO 交于点D ,连结BD ,当DB x ⊥轴时,k 的值是()A .B .C .D .-10.如图,平行于y 轴的直线l 分别与反比例函数k y x =(x >0)和1y x=-(x >0)的图象交于M 、N 两点,点P 是y 轴上一动点,若△PMN 的面积为2,则k 的值为()A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11.如图反比例函数图像过A(2,2),AB ⊥x 轴于B ,则△OAB 的面积为_______12.如图,点A 、B 是反比例函数y =kx(x >0)图象上的两点,且A 、B 两点的纵坐标分别为2和1,C 在x 轴上,AC =BC ,∠ACB =90°,则k =_____.13.如图,在平面直角坐标系中,△ABO 边AB 平行于y 轴,反比例函数(0)k y x x=>的图像经过OA 中点C 和点B ,且△OAB 的面积为9,则k =________14.我市某校想种植一块面积为400平方米的长方形草坪,要求两邻边均不小于10米,草坪的一边长y (米)与另一边长x (米)之间的关系如图中曲线AB 所示,其中AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D ,连接AB ,则四边形ACDB 的面积为______平方米.15.在平面直角坐标系中,OA =AB ,∠OAB =90°,反比例函数ky x=(x >0)的图像经过A 和B 两点其中A (2,m ),且点B 的纵坐标为n ,则n =______.16.如图,在平面直角坐标中,点O为坐标原点,直线y=kx﹣(k<0)交x轴的正半轴于点A,交y轴的正半轴于点B,若BC平分∠ABO交OA于点C,AC=2OC,则k 的值为____.17.如图,在平面直角坐标系中,等边△ABC的顶点A在反比例函数y=kx(x>0)图象上,C在x轴上,AB//x轴,BC与双曲线交于点D,且BD=3CD=6,则k=_______.18.如图,在平面直角坐标系xOy中,反比例函数8yx=的图象经过A(2,4),B两点,∠AOB=45°,则点B的坐标为________.三、解答题(本大题共6小题,共58分)19.(8分)如图,在平面直角坐标系中,O为坐标原点,某反比例函数的图象经过点()1,3A--.()1求该反比例函数的解析式;()2点(),3B m 和()3,C n 均在该反比例函数的图象上,点P 在x 轴上,请画出使PB PC+的值最小的P 点位置,并求出此时点P 的坐标.20.(8分)如图,点P 的坐标是(32)-,,过点P 作x 轴的平行线交y 轴于点A ,交双曲线(0)ky x x =>于点N ,作PM AN ⊥交双曲线(0)k y x x=>于点M ,连接AM .已知PN =4.(1)求k 的值;(2)求APM △的面积.21.(10分)如图,在平面直角坐标系中,O 为坐标原点,点A ,B 在函数()0ky x x=>的图象上(点A 的纵坐标大于点B 的纵坐标),点A 的坐标为(2,4),过点A 作AD ⊥x 轴于点D ,过点B 作BC ⊥x 轴于点C ,连结OA ,AB .(1)求k 的值.(2)若CD =2OD ,求四边形OABC 的面积.22.(10分)如图,矩形ABCD 的两边AD AB 、的长分别为3、8.边BC 落在x 轴上,E 是DC 的中点,连接AE ,反比例函数my x=的图象经过点E ,与AB 交于点F .(1)直接写出AE 的长;(2)若2AF AE -=,求反比例函数的解析式.23.(10分)如图,一次函数4y x =-+的图象与反比例函数()0ky k x=≠在第一象限内的图象交于()1,A n 和()3,B m 两点.(1)求反比例函数的表达式.(2)在第一象限内,当一次函数4y x =-+的值大于反比例函数()0ky k x=≠的值时,写出自变量x 的取值范围(3)求△AOB 面积.24.(12分)如图,已知平行四边形ABCD 的顶点A 、C 在反比例函数ky x=的图象上,顶点B 、D 在x 轴上.已知点()32A -,、(50)B -,.(1)直接写出点C 、D 的坐标;(2)求反比例函数的解析式;(3)求平行四边形ABCD 的对角线AC 、BD 的长;(4)求平行四边形ABCD 的面积S .参考答案1.C试题分析:利用三角形面积公式得出xy=10,进而得出答案.解:∵等腰三角形的面积为10,底边长为x ,底边上的高为y ,∴xy=10,∴y 与x 的函数关系式为:y=.故选C .考点:根据实际问题列反比例函数关系式.2.B【分析】依据点A 在反比例函数y =﹣x(x <0)的图象上,AC ⊥x 轴,AC =1,可得OC ,再根据CD 垂直平分AO ,可得OB =AB ,再根据△ABC 的周长=AB+BC+AC =OC+AC 进行计算即可.解:∵点A 在反比例函数y =﹣x(x <0)的图象上,AC ⊥x 轴,∴AC×OC ∵AC =1,∴OC ∵OA 的垂直平分线交x 轴于点B ,∴OB =AB ,∴△ABC 的周长=AB+BC+AC =OB+BC+AC =OC+AC +1,故选:B .【点拨】本题考查了线段垂直平分线的性质以及反比例函数图象上点的坐标特征,比较容易掌握.3.D【分析】连接OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,利用反比例函数的性质和等腰直角三角形的性质,根据“AAS”可判定△COD ≌△OAE ,设A 点坐标为(a ,6a ),得出OD =AE =6a,CD =OE =a ,最后根据反比例函数图象上点C 的坐标特征确定函数解析式.解:如图,连接OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A点、B点是正比例函数图象与双曲线y=6x的交点,∴点A与点B关于原点对称,∴OA=OB,∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,∴△COD≌△OAE(AAS),设A点坐标为(a,6a),得出OD=AE=6a,CD=OE=a,∴C点坐标为(-6a,a),∵-6a•a=-6,∴点C在反比例函数y=-6x图象上.故选:D.【点拨】本题主要考查了用待定系数法求反比例函数的解析式,解题时需要综合运用反比例函数图象上点的坐标特征、等腰直角三角形的性质.判定三角形全等是解决问题的关键环节.4.A【分析】根据三角形面积公式得到12•m•(2−n)=2,即2m−mn=4,再根据反比例函数图象上点的坐标特征得到mn=2,则可计算出m=3,n=23,从而可确定B点坐标.解:∵△ABC的面积为2,∴12•m •(2−n )=2,即2m −mn =4,∵反比例函数k y x=(x >0)的图象经过点A (1,2)和点B (m ,n ),∴1×2=mn ,∴2m −2=4,解得m =3,∴n =23,∴B (3,23).故选A .【点拨】本题考查了反比例函数比例系数k 的几何意义:在反比例函数k y x =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.也考查了反比例函数图象上点的坐标特征.5.C【分析】根据题意可求出菱形的边长.再根据边BO 在x 轴正半轴上,即可判断AC x ∥轴,从而可求出C 点坐标,代入反比例函数解析式求解即可.解:∵点A (2,,∴4OA =,∴菱形的边长为4,即4AC =.∵边BO 在x 轴正半轴上,∴AC x ∥轴,∴246C A x x AC =+=+=,C A y y ==∴C (6,.将C (6,代入k y x =,得:6k =解得:k =故选C .【点拨】本题考查两点的距离公式,菱形的性质,坐标与图形以及求反比例函数解析式.利用数形结合的思想是解题关键.6.A【分析】首先由边AC ∥x 轴,AC =1,点C 在函数2(0)y x x=>的图像上,求得点C 的坐标,继而求得点A 与点B 的坐标,然后由旋转的性质、平移的性质,求得△A 1B 1C 1各顶点的坐标,再由点A 1在函数()0k y x x=<的图像上,B 1C 1与此图像交于点P ,求得答案.解:∵边AC ∥x 轴,AC =1,∴点C 的横坐标为1,∵点C 在函数2(0)y x x =>的图像上,∴y =2,∴点C 的坐标为:(1,2),∴点A 的坐标为:(0,2),点B 的坐标为:(1,0),∵将ABC 先向左平移3个单位长度,再向下平移5个单位长度得到111A B C △,,∴A 1的坐标为:(-3,﹣3),B 1的坐标为:(-2,-5),C 1的坐标为:(-2,﹣3),∵点A 1在函数()0k y x x=<的图像上,∴k =xy =-3×(﹣3)=9,∴此反比例函数的解析式为:9y x =,∵线段B 1C 1的解析式为:x =-2∴点P 的横坐标为:-2,∴点P 的纵坐标为:92y =-.故选:A .【点拨】此题属于反比例函数综合题.考查了待定系数求反比例函数解析式、旋转的性质、平移的性质以及点与函数的关系.注意求得△A 1B 1C 1各顶点的坐标是关键.7.B【分析】由于BD 是OA 的垂直平分线,那么OB AB =,据图可知A 点的纵坐标是1.5,把 1.5y =代入反比例函数解析式,易求OC ,进而可求ABC ∆的周长.解:如图所示,BD Q 是OA 的垂直平分线,OB AB ∴=,1.5AC = ,∴点A 的纵坐标是1.5,把 1.5y =代入6y x=,得61.5x =,解得4x =,4OC ∴=,ABC ∴∆的周长 1.54 5.5AC AB BC AC OB BC AC OC =++=++=+=+=,故选:B .【点拨】本题考查了反比例函数图象上点的坐标特征、线段垂直平分线的性质,解题的关键是求出A 点的坐标.8.CC 点坐标,结合AC 长即可得到A 点坐标,根点A 在反比例函数的图像上,将点A 的坐标代入反比例函数解析式中可得k 值.解:∵AO AB =,∴OAB ∆为等腰三角形,又∵AC OB ⊥,∴C 为OB 中点,∵4OB =,∴2OC =,∵3AC =,∴A 点坐标为(2,3),将A 点坐标代入反比例函数(0)k y k x=≠得,32k =,∴6k =.故选:C .【点拨】本题考查反比例函数图像上的点的性质,等腰三角形的判定和性质.利用等腰三角形的性质求得反比例函数上点的坐标是解题关键.9.C【分析】延长AC交y轴于E,如图,根据菱形的性质得AC//OB,则AE⊥y轴,再由∠BOC=60°得到∠COE=30°,则根据含30度的直角三角形三边的关系得到CE OE=2,OC=2CE=4,接着根据菱形的性质得OB=OC=4,∠BOA=30°,于是在Rt△BDO中可计算出BD=3,所以D点坐标为(−4,3),然后利用反比例函数图象上点的坐标特征可求出k的值.解:延长AC交y轴于E,如图,∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∴AC//OB,∴AE⊥y轴,∵∠BOC=60°,∴∠COE=30°,∴CO=2CE而顶点C的坐标为(m,∴OE=CE=-m,CO=-2m,∵CO2=CE2+OE2,即(-2m)2=(-m)2+(2,解得m=-2∴OC=2CE=4,∴C(2,-∵四边形ABOC为菱形,∴OB =OC =4,∠BOA =30°,∴OD =2BD在Rt △BDO 中,DO 2=BD 2+OB 2,即(2BD )2=BD 2+42,∴BD =3,∴D 点坐标为(−4,3),∵反比例函数()0k y k x =<的图象经过点D ,∴k =故选:C .【点拨】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了含30度的直角三角形三边的关系.10.B【分析】由题意易得点M 到y 轴的距离即为△PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则有11k k MN a a a +⎛⎫=--= ⎪⎝⎭,进而根据三角形面积公式可求解.解:由平行于y 轴的直线l 分别与反比例函数k y x =(x >0)和1y x=-(x >0)的图象交于M 、N 两点,可得:点M 到y 轴的距离即为△PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,∴11k k MN a a a+⎛⎫=--= ⎪⎝⎭,∵△PMN 的面积为2,∴111222PMN k S MN a a a+=⋅=⨯⨯= ,解得:3k =;故选B .【点拨】本题主要考查反比例函数与几何的综合,熟练掌握反比例函数与几何的综合是解题的关键.11.2【分析】根据题意可得OB=2,AB=2,然后根据三角形的面积公式即可求出结论.解:∵反比例函数图像过A(2,2),AB ⊥x 轴于B ,∴OB=2,AB=2∴S △ABC =12OB·AB=2故答案为:2.【点拨】此题考查的是坐标与图形的面积,掌握三角形的面积公式是解决此题的关键.12.6【分析】过点A 作AG ⊥x 轴于点G ,过点B 作BH ⊥x 轴于点H ,易证△AGC ≌CHB ,根据全等三角形的性质,可得GC 和CH 的值,根据A 、B 的纵坐标,表示出横坐标,列方程求解即可.解:过点A 作AG ⊥x 轴于点G ,过点B 作BH ⊥x 轴于点H ,如图所示,则有∠AGC =∠CHB =90°,∴∠GAC +∠GCA =90°,∵∠ACB =90°,AC =BC ,∴∠ACG +∠HCB =90°,∴∠GAC =∠HCB ,∴△AGC ≌CHB (AAS ),∴AG =CH =2,GC =BH =1,∴=3∵A 、B 在反比例函数的图象上,∴,22k A ⎛⎫ ⎪⎝⎭,B (k ,1),∴32k k -=,∴k =6,故答案为:6.【点拨】本题考查了反比例函数图象上点的坐标特征,设计等腰直角三角形的性质,构造全等三角形是解题的关键.13.6【分析】延长AB 交x 轴于D ,根据反比例函数k y x =(x >0)的图象经过点B ,设B k m m ⎛⎫ ⎪⎝⎭,,则OD =m ,根据△OAB 的面积为9,列等式可表示AB 的长,表示点A 的坐标,根据线段中点坐标公式可得C 的坐标,从而得出结论.解:延长AB 交x 轴于D ,如图所示:∵AB y ∥轴,∴AD ⊥x 轴,∵反比例函数k y x=(x >0)的图像经过OA 中点C 和点B ,∴设B k m m ⎛⎫ ⎪⎝⎭,,则OD =m ,∵△OAB 的面积为9,∴192AB OD ⋅=,即12AB •m =9,∴AB =18m ,∴A (m ,18k m +),∵C 是OA 的中点,∴C 11822k m m +⎛⎫ ⎪⎝⎭,,∴11822k k m m+=⋅,∴k =6,故答案为:6.【点拨】本题主要考查了反比例函数上点的坐标特征,线段的中点坐标公式,三角形面积公式,解本题的关键是设未知数建立方程解决问题.14.750【分析】由题意得y 与x 的函数关系式为400y x =,则当10x =时,4004010y ==,当40x =时,4001040y ==,即可得40AC =,10BD =,401030CD =-=,即可得.解:∵长方形草坪的面积为400平方米,∴y 与x 的函数关系式为400y x =,∴当10x =时,4004010y ==,当40x =时,4001040y ==,∵AC x ⊥轴,BD x ⊥轴,∴40AC =,10BD =,401030CD =-=,∴四边形ABCD 的面积为:()()2401030750m 2+⨯=,故答案为:750.【点拨】本题考查了反比例函数的应用,解题的关键是理解题意,掌握反比例函数的性质.15【分析】过A 作AC ⊥y 轴,垂足为C ,作BD ⊥AC ,垂足为D ,通过证△AOC ≌△ABD 可得:OC =AD =m ,AC =BD =2,即可求得B 点的纵坐标.解:如图:过A 作AC ⊥y 轴,垂足为C ,作BD ⊥AC ,垂足为D ,∵∠BAO =90°,∴∠OAC +∠BAD =90°,∠BAD +∠ABD =90°,∴∠ABD =∠CAO ,∵∠D =∠ACO =90°,AO =AB ,∴△ACO ≌△DAB (AAS ),∴AD =CO ,BD =AC ,∵A (2,m ),∴OC =AD =m ,AC =BD =2.∴点B 坐标为()2,2m m +-∴()()222m m m =+-∴解得11m =+21m =(舍去)∴n =m ﹣2,.【点拨】本题考查反比例函数图像上点的坐标特征,全等三角形的判定和性质,关键是求得BD 的长.16.【分析】过点C 作CD ⊥AB 于点D ,则OC =CD ,利用面积法结合AB =2OC ,可得出AB =2OA ,利用勾股定理可得出OA =,利用一次函数图象上点的坐标特征可求出OA ,OB的长,结合OA =可求出k 值.解:如图,过点C 作CD ⊥D ,∵BC 平分∠ABO ,∴OC =CD ,∵12BOC S OC OB ∆=⋅,1122ABC S AC OB AB CD ∆=⋅=⋅,∴2ABC BOC S AC AB S OC OB∆∆===,∴AB =2OB ,∴OA ==,当x =0时,y,当y =0时,x =∴OB =-,=OA∴()-,解得:3k =-,故答案为:-.3【点拨】本题考查了角平分线的性质、三角形的面积、勾股定理以及一次函数图象上点的坐标特征,利用面积法找出OA=是解题的关键.173【分析】过点A、D分别作x轴和垂线,垂足分别为E、F,求得CD=2,AB=BC=AC=8,利用直角三角形的性质求得CE=4,CF=1,设A,,D,利用OF-OE=CE+CF=5,列方程求解即可.解:过点A、D分别作x轴和垂线,垂足分别为E、F,∵△ABC是等边三角形,BD=3CD=6,∴CD=2,AB=BC=AC=8,∵AB//x轴,∴∠ACE=∠BCF=30°,∴CE=4,CF=1,由勾股定理得AEDF设AOF,解得:k【点拨】本题考查了反比例函数图象上点的坐标特征,含30°角的直角三角形的三边关系,解题的关键是通过含30°角的直角三角形的三边关系表示点A 和点B 的坐标.18.3⎛ ⎝⎭【分析】将OA 绕O 点顺时针旋转90°到OC ,连接AB 、CB ,作AM ⊥y 轴于M ,CN ⊥x 轴于N ,通过证得△AOB ≌△COB (SAS ),得到AB =CB ,证得△AOM ≌△CON (AAS ),求得C (4,-2),设B 点的坐标为(m ,8m),根据AB =BC ,得到关于m 的方程,解方程求得m 的值,即可求得B 的坐标.解:将OA 绕O 点顺时针旋转90°到OC ,连接AB 、CB ,作AM ⊥y 轴于M ,CN ⊥x 轴于N ,∵点A 的坐标为(2,4),∴AM =2,OM =4,∵∠AOB =45°,∴∠BOC =45°,在△AOB 和△COB 中,OA OC AOB COB OB OB ⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△COB (SAS ),∴AB =CB ,∵∠AOM +∠AON =90°=∠CON +∠AON ,∴∠AOM =∠CON ,在△AOM 和△CON 中,AOM CON AMO ONC OA OC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOM ≌△CON (AAS ),∴CN =AM =2,ON =OM =4,∴C (4,-2),设B 点的坐标为(m ,8m ),∵AB =CB ,∴2222882442m m m m-+-=-++()()()(),解得m =-(负值不合题意,舍去)故答案为:⎛ ⎝.【点拨】本题考查了反比例函数图象上点的坐标特征,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.19.(1)3y x =;(2)P 点坐标为5()20【分析】(1)根据待定系数法即可求解;(2)先求出B,C 的坐标,再根据对称性作A 点关于x 轴的对称点’A ,连接'BA 交x 轴于P 点,求出直线'BA 的解析式即可得到P 点坐标.解:解:()1设反比例函数解析式为k y x=把()1,3A 代入,得133k =⨯=,∴反比例函数解析式为3y x=()2把(3,)B m 代入得33m =,解得1m =,B ∴点坐标为(3)1,;作A 点关于x 轴的对称点’A ,连接'BA 交x 轴于P 点,则’3(1)A -,,''PA PB PA PB BA +=+= ,设直线'BA 的解析式为y mx n =+,则331m n m n +=-⎧⎨+=⎩,解得25m n =⎧⎨=-⎩∴直线'BA 的解析式为25y x =-,当0y =时,250x -=,解得52x =P ∴点坐标为5()20.【点拨】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数的图像与性质、待定系数法的应用.20.(1)-14(2)4【分析】(1)由题意可得出3AP =,2N y =-.再根据PN =4,可求出AN =7,即得出N 的坐标,最后将N 的坐标代入反比例函数解析式,即可求出k 的值;(2)由题意可得出3M x =,代入所求出的反比例函数解析式,即得出M 的纵坐标,从而可求出PM 的长,最后由三角形面积公式计算即可.解:(1)由题意可知3AP =,2N =-.∵PN =4,∴AN =AP +PN =3+4=7,∴7N x =,∴N (7,-2).将N (7,-2)代入k y x =,得:27k -=解得:14=-k .(2)由题意可知3M x =.由(1)可知反比例函数解析式为:14y x =-,将3M x =代入14y x =-得:143M y =-∴1482(33P M PM y y =-=---=,∴11834223APM S AP PM =⋅=⨯⨯=△.【点拨】本题考查坐标与图形,求反比例函数的解析式,反比例函数与几何的综合.利用数形结合的思想是解题关键.21.(1)8(2)443【分析】(1)将点A 的坐标(2,4)代入()0k y x x=>,可得结果;(2)利用反比例函数的解析式可得点B 的坐标,利用三角形的面积公式和梯形的面积公式可得结果.(1)解:将点A 的坐标(2,4)代入()0k y x x =>,可得k =xy =2×4=8,∴k 的值为8;(2)∵k 的值为8,∴函数k y x =的解析式为8y x =,∵CD =2OD ,OD =2,∴CD =4,∴OC =6,∴点B 的横坐标为6,将x =6代入8y x =,得43y =,∴点B 的坐标为(6,43),∴S 四边形OABC =S △AOD +S 梯形ABCD =12×2×4+12×(43+4)×4=443.【点拨】本题主要考查了反比例函数图象上点的坐标特征,运用数形结合思想是解答此题的关键.22.(1)5(2)4y x=-【分析】(1)根据勾股定理即可求解;(2)设E 点的坐标为(x ,4),F 点的坐标是(x −3,1),代入m y x =求出x ,再求出m ,即可得出答案.解:(1)∵矩形ABCD 的两边AD AB 、的长分别为3、8,∵点E 为DC 的中点,∴CE =DE =4,在Rt △ADE 中,由勾股定理得:AE 5=;(2)∵AF −AE =2,∴AF =5+2=7,∴BF =8−7=1,设E 点的坐标为(x ,4),F 点的坐标是(x −3,1),代入m y x=得:m =4x =(x −3)•1,解得:x =−1,即m =−4,所以当AF −AE =2时反比例函数表达式是4y x=-.【点拨】本题考查了反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,矩形的性质等知识点,能求出E 点的坐标是解此题的关键.23.(1)3y x=.(2)1﹤x ﹤3.(3)4.【分析】(1)把A n 的值,再代入反比例函数解析式可求得k ,即可得出反比例函数的表达式;(2)根据A ,B 点的横坐标,结合图象可直接得出满足条件的x 的取值范围;(3)设一次函数与x 轴交于点C ,可求得C 点坐标,利用AOB AOC BOC S S S =-△△△可求得ABO 的面积.(1)解:(1)∵点A 在一次函数图象上,∴n =-1+4=3,∴A (1,3),∵点A 在反比例函数图象上,∴k =3×1=3,∴反比例函数的表达式为3.y x=(2)结合图象可知当一次函数值大于反比例函数值时,x 的取值范围为1<x <3.(3)如图,设一次函数与x 轴交于点C ,在y =-x +4中,令y =0可求得x =4,∴C (4,0),即OC =4,将B (3,m )代入y =-x +4,得m =1,∴点B 的坐标为(3,1).114341 4.22AOB AOC BOC S S S =-=⨯⨯-⨯⨯= 故△AOB 的面积为4.【点拨】本题是反比例函数与一次函数的综合题,主要考查函数图象的交点问题,掌握两函数图象的交点坐标满足每个函数解析式是解题的关键.24.(1)C (3,-2);D (5,0)(2)6y x =-(3)10BD =;AC =20S =【分析】(1)由题意,点A 、C ,点B 、D 关于原点对称,即可得出答案;(2)直接将点()32A -,代入反比例函数k y x =,即可求出解析式;(3)直接根据B 、D BD 的长,过点A 作AE ⊥x 轴于E ,有勾股定理可求出OA 的长,即可得出AC 的长;(4)由2ABD S S = ,即可求解.(1)解:由题意点A 、C ,点B 、D 关于原点对称,且()32A -,、(50)B -,,∴C (3,-2);D (5,0).(2)∵反比例函数图象经过点(-3,2),∴()326k xy ==-⨯=-反比例函数的解析式为6y x=-.(3)()5510BD =--=;过点A 作AE ⊥x 轴于E ,在Rt △AEO 中,AO ===∴2AC AO ==(4)Δ122210202ABD S S ==⨯⨯⨯=.【点拨】本题考查反比例函数,平行四边形,熟练运用反比例函数的对称性是解题的关键.。
2021年九年级数学中考一轮复习知识点基础达标测评:等腰三角形(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:等腰三角形(附答案)1.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.82.如图,等腰三角形ABC中,AB=AC,∠A=46°,CD⊥AB于D,则∠DCB等于()A.30°B.26°C.23°D.20°3.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个B.6个C.4个D.3个4.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条5.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.46.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若,则△A6B6A7的边长为()A.6B.12C.16D.327.如图,是半径为1的圆弧,△AOC为等边三角形,D是上的一动点,则四边形AODC 的面积s的取值范围是()A.≤s≤B.<s≤C.≤s≤D.<s<8.如图,已知等边△AEB和等边△BDC在线段AC同侧,则下面错误的是()A.△ABD≌△EBC B.△NBC≌△MBD C.DM=DC D.∠ABD=∠EBC 9.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径画弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形10.在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形;(2)有两个外角相等的等腰三角形是等边三角形;(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形;(4)三个外角都相等的三角形是等边三角形.其中正确的个数是()A.4个B.3个C.2个D.1个11.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④12.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的是()A.①③④B.①②③C.①③D.①②③④13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为.14.等腰三角形的两边长分别为4,8,则它的周长为.15.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为.16.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.17.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=10,则线段MN的长为.18.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB =8,则DE=.19.如图,BD为等边△ABC的边AC上的中线,E为BC延长线上一点,且DB=DE,若AB=6cm,则CE=cm.20.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=.21.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.22.如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度.23.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE 的中点,BE=AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.(1)若∠ABC=70°,求∠MNA的度数.(2)连接NB,若AB=8cm,△NBC的周长是14cm.求BC的长.25.在△ABC中,AD平分∠BAC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:AB =AC.26.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)27.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.28.已知:如图,∠EAC是△ABC的外角,AD平分∠EAC,且AD∥BC,求证:AB=AC.29.如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?30.如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.31.如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.(1)求证:AD=DC;(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF ⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.32.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE.(2)若BE∥AC,试判断△ABC的形状,并说明理由.参考答案1.解:①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上,∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选:D.2.解:∵∠A=46°,AB=AC,∴∠B=∠C=67°.∵∠BDC=90°,∴∠DCB=23°,故选:C.3.解:如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5、C6、C7即为第三个顶点的位置;作线段AB的垂直平分线,垂直平分线未经过格点.故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.故选:A.4.解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:B.5.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×12=6,故选:C.6.解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=,∴A2B1=,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=2,A4B4=8B1A2=4,A5B5=16B1A2=8,…∴△A n B n A n+1的边长为×2n﹣1,∴△A6B6A7的边长为×26﹣1=×25=16.故选:C.7.解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选:B.8.解:A、可以利用SAS验证,正确;B、可以利用AAS验证,正确;C、可证∠MBN=60°,若DM=DC=DB,则△DMB为等边三角形,即∠BDM=60°∵∠EAB=∠DBC,∴AE∥BD.∴∠BDM=∠EAD=60°.与已知不符,错误;D、可由∠ABE,∠DBC同加一个∠DBE得到,正确.所以错误的是第三个.故选C.9.解:由题可得,CA=CD,BA=BD,∴CB是AD的垂直平分线,即CE垂直平分AD,故A选项正确;∴∠CAD=∠CDA,∠CEA=∠CED,∴∠ACE=∠DCE,即CE平分∠ACD,故B选项正确;∵DB=AB,∴△ABD是等腰三角形,故C选项正确;∵AD与AC不一定相等,∴△ACD不一定是等边三角形,故D选项错误;故选:D.10.解:(1):因为外角和与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确.(2):两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误.(3):等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误.(4):三个外角都相等的三角形是等边三角形.正确;故选:C.11.解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.12.解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故③正确;④如图2,在AC上截取AE=P A,连接PE,∵∠P AE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=P A,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OP A和△CPE中,,∴△OP A≌△CPE(SAS),∴AO=CE,∴AB=AC=AE+CE=AO+AP;故④正确;本题正确的结论有:①③④故选:A.13.解:当为锐角时,如图∵∠ADE=40°,∠AED=90°,∴∠A=50°,当为钝角时,如图∠ADE=40°,∠DAE=50°,∴顶角∠BAC=180°﹣50°=130°.故答案为:50°或130°.14.解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故答案是:20.15.解:如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°16.解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.17.解:∵MN∥BC∴∠MEB=∠CBE,∠NEC=∠BCE∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE∴∠MEB=∠MBE,∠NEC=∠NCE∴ME=MB,NE=NC∴MN=ME+NE=BM+CN=10故答案为:1018.解:∵AD是∠BAC的平分线,∴∠CAD=∠BAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠ADE=∠BAD,∴AE=DE,∵BD⊥AD,∴∠ADE+∠BDE=∠BAD+∠ABD=90°,∴∠ABD=∠BDE,∴DE=BE,∴DE=AB,∵AB=8,∴DE=×8=4.故答案为:4.19.解:∵BD为等边△ABC的边AC上的中线,∴BD⊥AC,∵DB=DE,∴∠DBC=∠E=30°∵∠ACB=∠E+∠CDE=60°∴∠CDE=30°∴∠CDE=∠E,即CE=CD=AC=3cm.故填3.20.解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.21.解:由已知条件a2+2b2+c2﹣2b(a+c)=0化简得,(a﹣b)2+(b﹣c)2=0∴a﹣b=0,b﹣c=0即a=b,b=c∴a=b=c故答案为等边三角形.22.解:连接BC.设正方体的边长为1,则AB=AC=BC=,所以△ABC为等边三角形,∠BAC=60°.故答案是60.23.解:(1)连接AE,∵EF垂直平分AB∴AE=BE∵BE=AC∴AE=AC∵D是EC的中点∴AD⊥BC(2)设∠B=x°∵AE=BE∴∠BAE=∠B=x°∴由三角形的外角的性质,∠AEC=2x°∵AE=AC∴∠C=∠AEC=2x°在三角形ABC中,3x°+75°=180°x°=35°∴∠B=35°24.(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°;(2)①∵AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,∵△NBC的周长是14cm.∴BC=14﹣8=6cm.25.解:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,根据角平分线上的点到角两边的距离相等得出DE=DF,又∵BD=CD,∠DEB=∠DFC=90°,∴Rt△DEB≌Rt△DFC(HL)),∴∠B=∠C,∴AB=AC.26.证明:过点D作DG∥AC交BC于点G,如图所示.∵DG∥AC,∴∠GDF=∠E,∠DGB=∠ACB.在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GD=CE.∵BD=CE,∴BD=GD,∴∠B=∠DGB=∠ACB,∴△ABC是等腰三角形.27.解:(1)根据等腰三角形的定义判断,△ABC等腰直角三角形;∵BE为角平分线,而AE⊥AB,ED⊥CE,故AE=DE,故△ADE均为等腰三角形;∵BE=BE,∠ABE=∠DEB,∴△ABE≌△DBE(SAS),∴AB=BD,∴△ABD和△ADE均为等腰三角形;∵∠C=45°,ED⊥DC,∴△EDC也符合题意,综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;(2)AD与BE垂直.证明:∵△ABE≌△DBE(SAS),∴BA=BD,EA=EC,∴BE垂直平分相等AD,即AD⊥BE.(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE,在Rt△ABE和Rt△DBE中∴Rt△ABE≌Rt△DBE(HL),∴AB=BD,又△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°,又ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC,即AB+AE=BD+DC=BC=10.28.证明:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC.∴∠B=∠C.∴AB=AC.29.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+10=2x,解得:x=10;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=10﹣2t,∵三角形△AMN是等边三角形,∴t=10﹣2t,解得t=,∴点M、N运动秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知10秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣10,NB=30﹣2y,CM=NB,y﹣10=30﹣2y,解得:y=.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰△AMN,此时M、N运动的时间为秒.30.证明:∵BM=CN,BC=AC,∴CM=AN,又∵AB=AC,∠BAN=∠ACM,∴△AMC≌△BNA,则∠BNA=∠AMC,∵∠MAN+∠ANB+∠AQN=180°∠MAN+∠AMC+∠ACB=180°,∴∠AQN=∠ACB,∵∠BQM=∠AQN,∴∠BQM=∠AQN=∠ACB=60°.31.(1)证明:∵DC∥AB,∴∠CDB=∠ABD,又∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠CDB=∠CBD,∴BC=DC,又∵AD=BC,∴AD=DC;(2)△DEF为等边三角形,证明:∵BC=DC(已证),CF⊥BD,∴点F是BD的中点,∵∠DEB=90°,∴EF=DF=BF.∵∠ABC=60°,BD平分∠ABC,∴∠DBE=30°,∠BDE=60°,∴△DEF为等边三角形.32.(1)证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AE⊥BE,∴∠E=90°=∠ADB,∵AB平分∠DAE,∴∠1=∠2,在△ADB和△AEB中,,∴△ADB≌△AEB(AAS),∴AD=AE;(2)△ABC是等边三角形.理由:∵BE∥AC,∴∠EAC=90°,∵AB=AC,点D是BC的中点,∴∠1=∠2=∠3=30°,∴∠BAC=∠1+∠3=60°,∴△ABC是等边三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学基础知识检测试题(无答案)一、选择题(每小题1分共50分)1、- 1的相反数是()211A、-B、-2C、D、2222、我国最长的河流长江全长约6300千米,用科学记数法表示为()2千米B、6 . 3×10 2 千米A、63×10C、6 . 3×103千米D、6 . 3×10 4千米3、若 a >0,则4a 与 3a 的大小关系是 ()A 、 4a3> aB 、 4a < 3aC 、 4a =3aD 、不能确定4、下列计算中正确的是()A 、 3m 2+ 2m 3= 5m 5B 、X 6÷X 3=X 2C 、(- a 5) 2=a 10D 、 (a+1)2=a 2+15、如图,直线 a,b 被直线 c 的截,现给出以下条件:①∠ 1=∠ 5 ②∠ 1=∠ 7③∠ 2+∠ 3= 180④∠ 4=∠ 8 其中能 a ∥ b 的条件是 ()A、①②B、①③C、①④D、③④6、下列命题中,正确的是()A、在同一平面内,垂直于同一直线的两直线平行B、三点确定一个圆C、相等的角是对顶角D、两点间直线最短7、如右图:直线AB、CD相交于点O,EO⊥AD于O,则图中∠1与∠2的关系是( )A、互补的两角B、互余的两角 C、对顶角D一对相等的角8、下列四组线段中,能组成三角形的是( )A 、 1 cm , 2 cm , 3 cm B 、 5cm,4cm,7cmC 、2cm,4cm,1cmD、 10cm,10cm,21cm9、36的算术平方根是( )A、6B、6C、6D、610、在实数-2 ,0.31 ,, 0.80108,22中,无理37数的个数是()A、1个B、2个C、3个 D、4个11、若在 ABC中,∠A=2∠B=2∠C,则ABC为( )A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形12、若代数式x 2x 1 的值为0,则 х 的值是( )x 1A、 x=2 或 x=-1 B、 x=-1C、 x= 1D、 x=213、一个角的补角是 1 则这个角的余角的度数是()A、 300B、 450C、 600D、 90014、分式1,x 21,1的最简公分母是()x23x 2 x1A、( x-1 )( x-2)B、(x 2-1)(x-2)C、(x-2)(x+1)(x2-3x+2)2(x+1)D、 (x-2)15、如图在地图上从A地测B地的方向是北偏东300, 则从B地观测A地的方向是()A、南偏东 300B、南偏西 300C、南偏东 300D、南偏西 30016、用配方法将二次三项式a2-4a+5变形结果是()222D、A、( a- 2) +1B、(a+ 2 ) +1C、(a+ 2) -1(a- 2 ) 2- 117、已知立方体如图,过点A且与平面B'C 平等的条数有()A、1条B、2条C、3条D、4条18、已知 1.477 =1.215,14.77 =3.843则0.1477 的值是()A、 0.1215B、 0.01215C、 0.3843D、 0.0384319、甲、已两班学生参加植树造林,已知甲班每天比乙班多值5棵树,甲班植80棵树所用时间与乙班植70棵树所用的时间相等,若设甲班每天可植树x 棵,则可列方程正确的是()A、80= 70B、x5xC、8070D、8070 x x 5 80 70x 5x x x520、若a> b 则下列不等式不成立的是()A、 b< aB、a+c>b+cC、-a>-bD、ac2>bc2(c0)21、如图:梯形ABCD中,AD∥BC,AB=CD,AC,BD相交于点O,则图中全等三角形有()A、1对 B、2对C、3对D、4对22、计算:1 12x 的结果是( )x1 x 1 1 x1111A、C 、-D 、 x 11B 、-1x xx 123、不查表估计 76 的大小应在()A 、7~8 之间B 、 8.0~8.5 之间C 、 8.5~9.0 之间D 、9~10 之间24、分式方程x x 1m 有增根则系数的值是( )1x 1A、 m=1B、 m= -1C、 m= -2 D、无法确定25、以横线A,B,C三点为其中三个顶点作形状不同的平行四边形,一共可作()A、1个B、2个C、3个D、4个26、若 x 2 x y 1 20 ,则 x y 的值是()A、2B、-2C、8D、-827、下列图形中,既是中心对称图形,又是轴对称图形的是( )A、等腰三角形B、平行四边形 C、等腰梯形D、圆28、已知菱形的边长与一对角线长相等,则菱形中最大的角是()A、 900 B、 1C、 1350D、 150029、不等式1x 1 1 的非整数解有( )2 2A、1个 B、2个C、3个D、4个30、点P(-1,-3)关于原点对称点的坐标是()A、(-1,-3)B、(1,-3)C、(1,3) D、(-3,1)31、如图,直角梯形ABCD的中位线EF=a ,腰AB=6,则图中阴影部份的面积等于 ()1ab1(a b)2C、 abD、 a+bA、 2B、232、 在四边形ABCD中, 如果对角线AC=BD, 那么顺次连接此四边形各边中点所得四边形一定是( )A、等腰梯形B、矩形 C、菱形 D、正方形33、已知点M(1- a,a+2)在第二象限,则 a 的取值范围是()A、 a >2 B、-2< a < 1C、 a < -2D、 a > 134、袋中袋有条有4只红球,2只白球,1只黄球,从中任意摸出一个球,摸到红球的的概率是()A、4B、3C、2D、1 777735、圆锥的母线长5cm ,底面半径长为3cm,则这个侧面展开圆的圆心角是()A、 1800B、C、 2250D、 216036、函数19-5-2819-5-28yx3中自变量 x 的取值范围是()x4A、 x3B x>3C、 x 3 且 x 4D、 x337、在根式① a 2b②x③x 2xy④ 27a2 bc 中最商二次根式是2()A、①②B、③④C、①③D、①④38、下列计算正确的是()A、8282B、( 4)(9)49C、 2222D、11 42 9339、若一个三角形的外心在三角形外,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、不能确定40、如图:已知AB和CD是⊙O的两条直径,弦DE∥AB,若DE=400则∠BOC的度数是()A、 1100B、 800C、 400D、 700AEOB41、如图:已知AB和CD是⊙O的弦,半径OC⊥AB于D,且AB=8cm,OC=5cm,则AD的长为()A、 1cmB、2cmC、 2.5cmD、 3cm42、关于 x 的一元二次方程x22x 50 的根的情况是()A、有1个实数根B、有2个不相等的实数根C、有两个相等实数根D、无实数根43、用换元法解方程x 226x18x 22)x3x221 0,可设 y从而原方程可为(x3A、 y 2y 1 0B、 y 26y 1 0C、 y 2y 6 0D、 y2y 1 044、某中学为了了解初二年级数学的学习情况,在全校初二学生中抽取若干名学生进行测试,将成绩给制成如图的频率分布直方图,已知成绩在89.5~99.5 之间的学生有15人,则被抽取的学生共有()A、100人B、50人C、75人D、60人45、如果 a231,那么(), b32A、 a=bB、 a> bC、 a< bD、 ab=146、点A(1, y1),B( -1,y2 )都在直线1x 上,则 y1 与 y2 的关系是()y=2A、 y1< y2B、 y1= y2C、 y1y2D、 y1> y247、一辆汽车从车站开出,加速行始一段后开始匀速行驶,过了一段时间,汽车到达下一个车站,下面哪一幅图可以近似地画出汽车这段时间内的速度变化情况。
()A、B、C、D、48、下列方程中有实数根的是()A、2x 1 10B、C、x 11x0D、x 2x 10 x x249、函数y kx 1与yk (k 0) 在同一坐标中图象大致是()xABCD50、一元二次方程2x2kx 5 0 的两个实数根互为相反数,则K的值是()A、5B、5C、0D、12二、填空题(50-100题每小题1分,101-110题,每小题2分共70分)1151、计算203____。
252、将数0.0795 保留2个有效数字得_____。
53、用代数式表示“a,b 两数的平方和”是______。
54、 57.30=570____'55、已知x22 y 5 的一个解,则a=________。
y是方程 2x156、已知线段AB的中点为C,点O,E分别是AC、BC的中点,若DB=6cm,则AB=___cm。
57、化简: ( x2) 2( x 1)(x2) _____。
58已知 x y3, xy4, 则 xy 2x 2 y 的值是____。
59、如图,已知AXC=BD,要使ABCDCB只需增加一个条件____。
60、若ABCDEF,AB=DE,∠A=350,∠B= 750,则∠F=__度。
61、写出命题“等腰三角形的两腰相等”的逆命题是__________。
62、比较大小: 2 2_____3 2(用“>” ,“<”或“=”填空)63、分解因式:2x 38x _____。
64、已知正比例函数y kx ,当x 3 时y 6 则k=_____。
65、如果数据1,2,3,x 的平均数是4,则x =_____。
66、用反证法证明“若a∥b,b ∥ c, 则 a∥ c”第一步应假设_____。
67、在直角三角形中有一个角等于600,最短边为 2cm,则最大边长是____ cm.68、一次函数y2x1的图象在 y 轴上的截距是____。
69、不等式组3x60x1的解是_____。
70、洗衣机每台原价 a 元,在第一次降价10%的基础上再降价20%,则洗衣机现价为_____。
71、方程 x 24x40 的解是______。
72、如图,已知平行四边形ABCD中,AC, BD相交于D,AC=10cm,则OA=____ cm。
73、如图,已知在 Rt ABC中,∠ACB= Rt ∠ , CD⊥AB于D,若AC= 3, BC=4, 则CD=_____。
74、如图,已知DE∥BC, CD平分∠ACB, 且∠ACB =500则∠EDC=___度。
75、如图,已知在ABC中,AB=AC,DE是AB的中垂线,BCE的周长是24 cm,BC= 10cm,则AB=___cm。
76、如图,已知在矩形ABCD中,AC、BD交于O,若AB=2cm,∠DOC= 600则AC=___cm。
77、菱形的两条对角线长分别是6cm,8 cm,则菱形的面积是____cm。