醛、酮、羧羧酸及其衍生物的α-碳上的反应
羰基化合物的反应
O H3C
H
B
(过量 )
3.克诺文诺盖尔反应,醛酮与其它含活泼氢化合物的缩合。反应历程和羟醛缩
合相似,活泼氢化合物在碱催化下形成碳负离子,再向羰基发动亲核进攻,经加
成-消去过程而完成反应。
Z'
R' C O + CH2
..
B R' Z'
CC
+ H2O
R
Z
R
Z
Z 和 Z’为吸电基:-CN、-NO2、-CHO、-COR、-COOR、-SO2R 等。
H
86% 异冰片
H OH
14% 冰片
另外,亲核剂的体积大小对它的进攻方向及产物的生成也有影响。当 Nu 体积很
大时,3,5-位碳原子上的直立氢将阻碍其对羰基的进攻,Nu 只能从 3,5-位碳原子
上直立氢的反应接近羰基。
1, 3干扰
H H
t-Bu
O +
CH3 B(CH2CH2CH3)3Li
H 体积大
H3O t-Bu
攻;不过酸度太大,则可能抑制亲核剂的活性。
H3O + H2N-A
H2O + H3N-A
因此反应有一最佳 PH 值。此时介质既使羰基质子化,又能维持亲核剂有一定浓
度。
仲胺与含 α-H 的醛酮反应生成烯胺。仲胺的氮原子上只有一个氢原子,使 比亚胺还不稳定的烯胺得以生成。
O R1CH2CR2 + NHR2
R1CH H
OH
C NR2 R2
-H2O
R1CH C NR2 R2
R1CH C NR2 β R2
烯胺是重要的有机合成中间体,其 β-C 有很强的亲核性,具有碳负离子的性
第五章羰基亲核加成及相关反应
羟醛缩合反应历程
碱催化历程
至少要有两个α-氢才可失水,失水后形成共轭 体系α,β-不饱和酮稳定
亲核试剂:
含氧试剂:H2O、ROH、RO 含碳试剂:RC≡C-,C≡N-,R 含氮试剂:NH3,NH2,NH2NH2及NH2OH等
醛与酮:
醛与酮是较强的亲电试剂,易进行亲核加成,醛可与弱亲核 试剂反应(如NH3,CN-)
羧酸及其衍生物:
较弱的亲电试剂(+C) 只与强亲核试剂反应(如:R-,RO-等) 不与弱亲核试剂(如氨)反应
基本上不发生亲核取代反应
CH3 120o C CH3
O
HCN
CH3 C
CN CH3OH, H2SO4
71%~80% CH3109.5oOH
90%
CH3 CH2=C COOCH3
试剂的亲核性越强越易反应
带负电荷的亲核试剂,比其共轭酸亲核性强: OH->H2O
极性大的分子比极性小的分子亲核性强: HCN> H2O (pH)
亲核试剂可从醛(酮)所在平面的上面或下面进攻,新形 成一个手性中心,产物为外消旋体(对映异构体各占 50%)。
亲核试剂从空阻小的一边进攻羰基
换用仲丁基硼氢化锂,内侧进攻产物99.6%, 外侧产物0.4%
醛酮的简单亲核加成
强酸强碱
仅限醛、脂肪甲基酮及<8个碳原子的环酮
可极化性及亲核性:
Wittig试剂(磷叶立德):
内鎓(Onium)正盐(中性分子)R3P+
CHR'
(碳的电负性大于磷),具有相反的电荷在
相邻两个原子上。
硫叶立德:
磷酸 膦酸 氨 胺(C-N) 铵 磷 膦(C-P) 鏻
硫( )锍
醛酮反应
第12章 活泼亚甲基反应在醛、酮、羧酸及其衍生物中,与羰基相邻的α-亚甲基(1)也受羰基拉电子效应的影响,因此α-碳上的氢也表现出一定的酸性,并可离解出一个质子形成碳负离子(2)。
(2)经过共振成为烯醇负离子(3),得到一个质子形成烯醇式(4)。
(1)式和(4)式之间的互变称为烯醇互变异构。
(1)式称为酮式(keto form ),(4)式称为烯醇式(enol form )。
H+C C O-H+34(酮式)(烯醇式)醛、酮、酸酸及其衍生物的α-亚甲基上的氢受到邻位羰基的活化而呈一定的酸性,因此常称为活泼亚甲基化合物。
活泼亚甲基化合物烯醇化程度越高,α-氢酸性越大,亚甲基越活泼。
而烯醇化程度与分子结构有关,例如,丙酮在液态时含有1.5×10-4%的烯醇(pK a 20),而乙酰丙酮则由于其烯醇式可形成分子内氢键以及共轭效应,在己烷中的烯醇含量高达92%,酸性较丙酮大得多(pK a 9),与苯酚相近(pK a 9.98)。
C H 2C C O C H 3O CH 3H 3(8%) (92%)与羧酸相比(pK a 4.76),烯醇是较弱的酸。
一些活泼亚甲基化合物的酸性见表12.1。
除了含羰基化合物外,其它带有吸电子基团(如硝基、亚硝基、烷氧基等)的化合物均有不同程度的烯醇化作用。
表12.1 一些活泼亚甲基化合物的酸性 化合物 pK a 化合物pK a HCOCH 2CHO CH 3COCH 2COCH 3 RCH 2NO 2 CH 3COCH 2CO 2R NCCH 2CN 5 910 11 11CH 3SO 2CH 2SO 2CH 3EtO 2CH 2CO 2Et RCH 2CHO RCOCH 2R’ RO 2CCH 2R’ RCH 2CN 12.5 13 16 19-29 24.5 25醛、酮、羧酸及其衍生物的羰基活化α-氢的能力有以下次序: -CHO > -COCO 2R > -COPh > -COR > -CN > -COX > -CO 2R > -CO 2H 这些羰基化合物的许多重要反应与它们的α-活泼亚甲基有关。
第十六章 羧酸衍生物涉及碳负离子的反应及在合成中的应用
适当位置的开链双酯在醇钠存在下可进行分子 内酯缩合,该反应叫做狄克曼(Dieckmann)缩合,常用 来合成五、六元环化合物。
二、交叉酯缩合 两个相同酯缩合,产物较单一,若两个不同的
具有α氢的酯缩合,则会得到复杂产物。但无α氢 的酯与一个有α氢的酯缩合,又可得到较为单一的 产物。这种缩合称为交叉酯合 (crossedestercondensation)。
如无α氢的酯,像甲酸酯、苯甲酸酯、碳酸酯和 草酸酯,可与其他有α氢的酯缩合。它们在反应中提 供羰基,在另一酯的α位导入相应酰基。
具有氢的酮也可与酯在碱作用下发生交叉酯缩合, 由于酮的α 氢酸性较酯的强(酮pKa20~21,酯 pKa24.5),反应中酮生成α碳负离子,结果是酯酰基导 入酮的α位。
是一个卤代烃选择问题。
当采用单卤代烃时,该法可合成取代丙酮,如3甲基-2-己酮的合成,根据如下图示可知是由“三乙” 和卤代甲烷和卤代丙烷制备的。
当采用双卤代烃,且“三乙”钠盐与双卤代烃摩 尔比为2∶1时可制备二酮,如2,6-庚二酮是由 1molCH2Cl2 和2mol“三乙”制备的。
当采用1mol1,4-二卤代丁烷,1mol“三乙”和 2mol醇钠时,则得到环戊基甲基酮。
“三乙”不像丙二酸二乙酯那样,它不能生成 双钠盐,反应中是以两次单钠盐的生成并分别进行 亲核取代关环而成。由于“三乙”不能生成双钠盐, 因此不能合成三、四元环。
带有官能团的α卤代化合物与“三乙”反应, 与丙二酸二乙酯一样,可合成双官能团化合物,如 2,5-己二酮可由“三乙”和α卤代丙酮制备。
三、酯缩合产物和其他双重α 氢化合物的烃基化及 在合成中的应用
2.酯和腈α碳负离子生成及反应 与羧酸相同,酯和腈酸性α氢同样与二异丙基氨 基锂作用生成α碳负离子,继而与活泼卤代烃发生亲 核取代反应,在α位直接导入烃基,这也是形成C-C键 的重要反应。
醛酮的亲核加成反应
♪反应的决定速度步骤是CN¯向羰基碳原子的进攻 ♪羰基碳上连接的基团大小,对反应也有影响
综合电子效应和空间效应,醛、酮进行加成反应的难易顺 序可排列如下:
脂肪醛 > 芳香醛 > 脂肪甲基酮 > 环酮 > 芳香甲基酮 就芳香醛酮而言,主要考虑环上取代基的电子效应。例如:
1.与氢氰酸加成
C O + HCN
OH C
CN
α 羟基睛
在少量碱催化下,醛和脂肪族甲基酮与氢氰酸加成生成氰醇(或叫
羟基醇)。
应用范围:醛、甲基脂肪酮、C8以下环酮
(CH3)2CCN OH
练习:
H2O H2O/H
H
CH3 CH2=C-CN
(CH3)2CCOOH
CH3OH H
OH
(CH3)2CCH2NH2
缩醛化学性质与醚相似,对碱、氧化剂、还原剂都非常 稳定。但在稀酸中易水解生成原来的醛。
OC2H5 CH3CH
OC2H5
H2O H+
CH3CHO + 2C2H5OH
利用这一性质在有机合成中常用来保护羰基。
例题:
HOCH2
CHO O
HOOC
CHO
必须要先把醛基保护起来后再氧化。
HOCH2 在下,加水稀释,产物又可 分解成原来的醛或酮。
R OH C
H SO3Na
HCl R H2O H C=O + NaCl + SO2↑ + H2O
Na2 CO3 H2O
R H C=O + Na2SO3 + CO2↑ + H2O
鉴别醛酮。
醛酮羧酸及衍生物部分人名反应
关于醛、酮、羧酸及其衍生物部分学过的人名反应付玉状引文:熟记有机人名反应不仅是期末考试的要求,也是考研的重要内容,更是对化学先驱们的尊重与缅怀。
接下来,我将对有机化学课堂上讲解过的关于醛、酮、羧酸及其衍生物部分学过的人名反应进行总结。
摘要:按照首字母排列顺序,依次介绍相关人名反应的主要化学反应方程式,反应机理,应用以及发现过程中的一些小故事进行简介,醛、酮、羧酸及其衍生物部分学过的人名反应主要包括Baeyer-Villigery氧化、Beckmann重排、Cannizzaro反应、Claisen酯缩合、Clemmensen 还原、Dieckmann分子内缩合、Friedel-Crafts反应、Hofman降级反应、Mannich反应、Michael加成反应、Perkin反应、Reformatsky反应、Reimer-Timann反应、Witig反应和Wolff-Kishner-Huang还原反应。
关键词:有机反应人名醛酮羧酸及其衍生物正文:1.Baeyer-Villigery氧化重排反应——拜耳-维立格氧化重排反应Baeyer-Villigery氧化重排反应是酮在过氧化物氧化下,在羰基和一个邻近烃基之间引入一个氧原子,得到相应的酯的化学反应。
醛可以进行同样的反应,氧化的产物是相应的羧酸。
常用的氧化剂包括间氯过氧化苯甲酸、过氧化乙酸、过氧化三氟乙酸等,其中过氧化三氟乙酸是较好的催化剂,反应温度一般在10℃~40℃之间,产率高。
为避免生成的酯在酸性条件下发生酯交换反应,常在反应物中加入磷酸氢二钠,以保持溶液接近中性。
需要注意的是环酮发生反应得到的主要产物是内酯Baeyer-Villigery氧化重排反应机理:从表面上看来,该反应仅是一个氧原子对碳-碳键进行的插入反应。
事实上,该反应是一个典型的1,2-迁移反应,其机制与霍夫曼重排、频纳醇重排等是类似的。
首先,反应物的羰基被质子活化(反应1),从而易于接受过氧酸的亲核进攻(反应2)。
醛酮,羧酸,及其衍生物
醛酮,羧酸,及其衍生物一.羰基的性质1.与HCN加成(可用于制取α-羟基羧酸)2.与胺和氨气反应(反应可用来保护羰基,H+可使还原成羰基):与伯胺,氨气生成西弗碱与仲胺生成烯利用羰基和苯胺反应生成有色沉淀也可用于鉴别羰基3.与醇反应,生成缩醛,半缩醛,可用于羰基保护(酸性条件恢复)4.与亚硫酸氢钠的加成:得到α—羟基磺酸钠。
α—羟基磺酸钠是一种盐类化合物,亚硫酸氢钠水溶液与不溶于水的羰基化合物反应得到的α—羟基磺酸钠会溶入水中,使得反应进度大大加强。
(可用于鉴别醛,甲基酮,8碳以下环酮)5.α,β-不饱和醛酮的加成反应:l 与卤素的加成:加成位置是碳碳双键。
l 与质子酸的加成:加成位置是1,4-亲核加成。
l 与格氏试剂,烷基锂的加成:根据羰基附近的位阻效应来判定反应为1,4-加成还是1,2-加成。
可以加入卤化亚铜使得格氏试剂的反应的1,4-加成产物为主产物。
l 与二烷基铜锂的加成:1,4-加成为主要!l 对加成反应的要注意的三点:酸催化,碱催化,立体构型稳定。
酸和碱的催化过程虽然有一定的不同,但是反应的进行靠的是β-C的正电性得以让亲核试剂进攻!6.碘仿反应(甲基醛酮,α碳连着甲基的仲醇,α-羟基酸,用于鉴别及少一个碳的羧酸制备)7.羰基的还原a.羰基还原为亚甲基:Clemmensen还原法:Hg-Zn锌汞齐,HCl,加热。
Wolff-Kishner-Huang minlon 还原法:溶剂:高沸点的一缩二乙二醇,KOH。
还原剂:二氮烷。
加热!b.还原为醇:氢化催化:Pt催化LiAlH4还原:LiAlH4提供氢负离子,H2O提供氢离子。
可还原酯基。
三(叔丁基氧基)氢化铝锂可以保证还原羰基的同时不还原酯基。
NaBH4还原:不还原酯基,立体选择性,对水不敏感。
乙硼烷还原:B2H6还原羰基得到硼酸酯,水解得到醇。
羰基优先于碳碳双键被还原。
Meerwein-Ponndorf还原:Oppenauer氧化的逆反应,反应过程中硝基不受影响。
精细有机合成技术:醛酮与羧酸及其衍生物的缩合-诺文葛耳-多布纳缩合
2. 诺文葛耳-多布纳反应的应用
诺文葛耳-多布纳缩合在精细有机合成及中间体合成 中应用很多。主要用于制备α、β-不饱和酸及其衍生物, α、β-不饱和腈和硝基化合物等。其构型一般为E型。如 防腐防霉剂山梨酸的合成:
第三节 醛酮与羟酸及其衍生物的缩合
位阻小的酮 (如丙酮、பைடு நூலகம்乙酮、脂环酮等)与活性 较高的活泼亚甲基化合物(如丙二腈、氰乙酸、脂肪硝 化合物等)可顺利进行诺文葛耳-多布纳缩合,收率也较 高;但与丙二酸酯、β-酮酸酯及β-二酮的缩合收率不高。 而位阻大的酮反应较困难,收率也较低。如:
• 催化剂:氨-乙醇、丁胺、醋酸铵、吡啶、哌啶、甘氨 酸、β-氨基丙酸、碱性离子交换树脂羧酸盐、氢氧化 钠、碳酸钠等。对活性较大的反应物也可不用催化剂。
精细有机合成技术
邹静
醛酮与羟酸及其衍生物的缩合
Contents
目
录
1
2
3
铂金反应 诺文葛尔-多布纳缩合 达曾斯缩合
二、诺文葛耳-多布纳缩合
1.诺文葛耳-多布纳反应及其反应条件
定义:醛、酮与含活泼亚甲基的化合物在氨、胺或它们 的羧酸盐催化下,发生羟醛型缩合,脱水而形成α、β-不 饱和化合物的反应称为诺文葛耳-多布纳(KnoevenagelDoebner)反应。
• 反应结果在羰基α-碳上引入了亚甲基。其反应式如下:
➢ 诺文葛耳-多布纳缩合中,常见的亚甲基化合物有:丙 二酸及其酯类、乙酰二酰及其酯类,氰乙酰胺类,丙 二腈,丙二酰胺类,芳酮类,脂肪硝基化合物等。
➢ 其中所含吸电子基团的吸电子能力越强,反应活性越 高。
羧酸及羧酸衍生物的重要反应及重要反应机理
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载羧酸及羧酸衍生物的重要反应及重要反应机理地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第六章羧酸及羧酸衍生物的性质及重要反应机理一、羧酸的化学性质1.酸性羧酸具有酸性,诱导、共轭、场效应等对酸性强弱有影响。
利用羧酸的酸性可以制备羧酸酯和羧酸盐。
2.亲核取代反应这是羧酸在一定条件下转变成羧酸生物的反应。
大多数亲核取代反应是通过加成-消除历程完成的。
3.还原反应羧酸能被LiAlH4和B2H6还原成相应的伯醇。
4.α-H的卤化(Hell-Volhard-Zelinsky反应)通过控制卤素的用量可以制备一元或多元的卤代羧酸,并进一步制备羟基酸和氨基酸。
5.脱羧反应羧酸在适当的条件下,一般都能发生脱羧反应,这是缩短碳链的反应。
通常的脱羧反应表示如下:A为-COOH、-CN、-(C=O)R、-NO2、-CX3、-C=O、C6H5-等吸电子基团时,脱羧反应相当容易进行。
此外还有一些特殊的脱羧方法。
二元羧酸的脱羧规律是:乙二酸、丙二酸、加热失羧,丁二酸、戊二酸加热是水生成分子内酸酐,己二酸、庚二酸加热是水、失羧生成环酮。
根据以上反应可以得出一个结论,在有机反应中有成环可能时,一般易形成五元环或六元环。
这称为布朗克(Blanc)规则。
二、羧酸衍生物的化学性质1.亲核取代反应这是羧酸衍生物的转换反应。
转换的活性顺序为:RCOX>CRCOOOCR>RCOOR′>RCONR2酸和碱都能催化反应。
2.与有机金属化合物的反应选用空阻大的酰卤,反应能控制在酮的阶段。
选用甲酸酯,可以制备对称二级醇。
选用碳酸酯,可制备三个烃基相同的三级醇。
二元酸的环状酸酐可用来制备酮酸。
有机化学:第十四章 羰基α-取代反应和缩合反应
R CO
R'
NC H R'' MgX
3、先加成后消去--酸或碱催化 如:胺、
HO H
氨及氨的衍生物
NaO3S H
注意:
以上反应除与有机金属化合物的反应之外, 均为平衡过程 讨论参数:平衡常数
羰基化合物的结构特征之二: 羰基C=O的吸电子作用使得α-H具有明显的酸性,在碱性条件 下可以解离,生成烯醇负离子,从而成为亲核试剂,进攻羰基 碳或卤代烃,发生亲核加成反应、亲核取代反应。
酰卤可以发生该反应。
2. 烯醇负离子作为亲核试剂,进攻卤代烃的缺电子碳,则发生亲核取代反
应;进攻羰基碳则发生亲核加成反应。
O CC
O CC
烯醇负离子
X-X 亲电取代
O
R-Cl
CC
亲核取代 R
O
OH O
C
CCC
亲核 加成 O
-羟基酮
烷基化反应
a ld ol -反应 羟醛反应
O
R Y OO
C C -卤代反应 亲核取代
?
?
Kinetic enolate
Thermodynamic enolate Generally:
低温有利于形成动力学产物 高温则主要得到热力学产物
强碱有利于形成动力学控制的少取代烯醇负离子。 酸性有利于形成热力学控制的多取代烯醇。 对于弱碱条件下则影响因素会更多,选择性不高。
O CH3
O
CH3
C HO
加成-缩合
,-不饱和酮
1, 5-二羰基化合物
Michael 加成
Robinson成环
本章主要内容
一、α-氢的酸性及烯醇、烯醇负离子形成 二、α-卤代反应 三、Aldol 反应和 Aldol 缩合 四、酮和酯的烷基化反应 五、酮和酯的酰基化反应 六、α,β-不饱和羰基的亲核加成 七、β-二羰基化合物的反应与应用 八、其它缩合反应
有机化学羧酸及其衍生物讨论报告
一. 亲核加成消除反应机理 二.含活泼亚甲基化合物性质和应用
一. 亲核加成消除反应机理
• 羧酸中的羰基表现出与醛,酮中的羰基类似的反 应性;碳的亲核进攻和氢的亲电进攻。然而,羧 基结构中—OH基团的存在使得羧酸有着另一方面 的化学性质。如同在醇中一样,这个—OH可被转 变成离去基团。结果是,在羰基碳的亲核加成发 生后,离去基团离去,导致净的取代过程和新的 羰基化合物的生成。
二.含活泼亚甲基化合物性质和应用
1 . 什么是活泼亚甲基化合物
当一个饱和碳原子上连有硝基、羰基、氰基、酯基、苯基等吸电子基团时,与该碳 原子相连的氢原子就具有一定的酸性,也就是说这个碳原子被致活了,因此这类化合物 叫活泼亚甲基化合物。
2 . 常见的活泼亚甲基化合物
吸电子基及其活性次序 :活泼亚甲基化合物的酸性取 决于与之相连的吸电子集团的吸电效应。这种效应越强, 其a-氢的活性越高。 -NO2> -COR > -SO2R> -COOR> -CN > -C6H5> -CH=CH2
羰基碳受到亲核进攻
羰基碳是亲电性的,可能被亲核试剂进攻。在羧酸和羧酸衍生物(具有通式RCOL的底物,其 中L代表离去基团)中观察到了这类反应性。 羧酸衍生物 与醛和酮的加成产物不同,羧基碳上亲核进攻形成的中间体通过消除一个离去基团而分解。 总的结果是亲核剂通过所谓的加成消除过程而取代离去基团。在此转化中首先形成的物种含 有一个四面体的碳中心(与原料及产物不同),因此它被称为四面体中间体。羰基碳是亲电 性的,可能被亲核剂进攻。在羧酸和羧酸衍生物(具有通式RCOL的底物,其中L代表离去基团) 中观察到了这类反应性。 羧酸衍生物 与醛和酮的加成产物不同,羧基碳上亲核进攻形成的中间体通过消除一个离去基团而分解。 总的结果是亲核剂通过所谓的加成消除过程而取代离去基团。在此转化中首先形成的物种含 有一个四面体的碳中心(与原料及产物不同),因此它被称为四面体中间体。
精细有机合成技术:醛酮与羧酸及其衍生物的缩合-珀金反应
邹静
醛酮与羟酸及其衍生物的缩合
Contents
目
录
1
2
3
铂金反应 诺文葛尔-多布纳缩合 达曾斯缩合
一、珀金反应
威廉·亨利·珀金爵士FRS( Sir William Henry Perkin,1838年3 月12日-1907年7月14日):英国化 学家。他在18岁发现了首个苯胺染料 ——苯胺紫。
• 杂环芳醛也能发生类似反应,如糠醛与醋酐缩合,得呋 喃丙烯酸。
珀金反应一般需要较高的反应温度(150~200℃) 和较长的反应时间。这是由于羧酸是活性较弱的亚甲基 化合物,而催化剂羧酸盐的碱性又弱的缘故。但反应温 度过高,将会发生脱羧和消除副反应,生成烯烃。
➢ 珀金反应需在无水条件下进行。
3.珀金反应的应用
• 参加珀金反应的酸酐一般为具有两个或三个活泼α-H的 低级单酸酐。高级酸酐制备较难,来源亦少,可采用该 羧酸盐与醋酐代替,使其先生成相应的混合酸酐,再参 与缩合。如:
珀金反应的收率与芳醛结构有关。芳环上连有吸电 子基越多,吸电子能力愈强,反应越易进行,收率也较 高;芳环上连有给电子基时,反应较困难,收率一般较 低,甚至不发生反应。但醛基邻位有羟基或烷氧基时, 对反应还是有利的。
珀金反应可用于β-芳丙烯酸类化合物的制备。尽管 与诺文葛耳-多布纳反应相比,一般收率较低,但制备芳 环上有吸电子基的β-芳丙烯酸时,两种方法收率接近, 最主要的珀金反应采用的原料容易获得。
如胆囊造影剂碘番酸(Iopanic Acid) 中间体制备。
感谢观看
1.珀金反应及反应历程 芳香醛与脂肪酸酐在碱性催化剂作用下缩合,生成
β-芳丙烯酸类化合物的反应称为珀金(Perkin)反应。 反应如下:
羰基化合物的反应
(79%)
醛、酮的混合缩合(又称交叉缩合),即克莱森-施密特缩合,要得到单一的产物,
其中一个组分应无 α-H。
C6H5CHO + CH3CHO 羰基组分 α-H组分
NaOH 20oC
OH
C6H5CH CH2CHO ∆
C6H5CH=CHCHO
由于大共轭体系的形成,使乙醛的自缩合反应成为次要的
O C6H5CHO +
R1CH H
OH
C NR2 R2
-H2O
R1CH C NR2 R2
R1CH C NR2 β R2
烯胺是重要的有机合成中间体,其 β-C 有很强的亲核性,具有碳负离子的性
质。
O
+ N H
N β
RX
NX R
H3O
O R
+ N
HH
RX 可以是 α-卤代酮,α-卤代酯,卤代苄,酰氯等。
烯胺的烃基化产物水解后即脱去仲胺,恢复原来的羰基。
CN O + H2C
NH4OAc
COOH
CN
C
+ H2O
COOH
CH3NO2 NaOH
CH=CHNO2 + H2O
CHO
CH3COCH2COOEt Et3N
COCH3 CH=C
COOEt
+ H2O
CHO + CH2(COOH)2 吡啶
CH=CHCOOH + CO2 + H2O
O2N
O2N
4.柏金反应,芳香醛与酸酐在相应的羧酸盐(钾盐或钠盐)催化下缩合生成 α,
H
O H3C
H
B
(过量 )
3.克诺文诺盖尔反应,醛酮与其它含活泼氢化合物的缩合。反应历程和羟醛缩
精细有机合成技术:醛酮与羧酸及其衍生物的缩合-达曾斯缩合
• 通常是将α、β-环氧酸酯用碱水解后,继续加热 脱羧;也可以将碱水解物用酸中和,然后加热 脱羧制得醛或酮。如维生素A(Retinol)中间体 十四碳醛制备。
感谢观看
精细有机合成技术
邹静
醛酮与羟酸及其衍生物的缩合
Contents
目
录
1
2
3
铂金反应 诺文葛尔-多布纳缩合 达曾斯缩合
达曾斯缩合
1.达曾斯反应及其反应条件
醛或酮与α-卤代酸酯在强碱催化剂作用下缩合,生 成α、β-环氧酸酯(缩水甘油酸酯)的反应称为达曾斯 (Darzens)缩合反应。反应通式如下:
• 反应所用的α-卤代酸酯,一般以α-氯代酸酯最适 合。α-溴代酸酯和α-碘代酸酯虽然活性较大,因 易发生烃化副反应,使产品变得复杂而很少采 用。
参加达曾斯缩合反应的羰基化合物中,除脂肪醛收 率不高外,脂肪酮、芳酮、芳脂酮、脂环酮、不饱和酮 及芳醛等均可获得较好收率。如:
• 达曾斯缩合反应催化剂:醇钠、氨基钠、叔丁醇钾等。 前者应用最广,后者碱性最强,效果最好,所得产物收 率也比用其它催化剂时高。对于活性低的反应物用叔丁 酸钾和氨基钠比较合适。
• 由于α-卤代酸酯和催化剂均易水解,达曾斯反应需在 无水条件下进行,反应温度也不高。
• 此外,还可用α-卤代酮、对硝基苄氯、α-卤代酰胺等 替代α-卤代酸酯,生成相应的α、β-环氧取代衍生物。 如:
2.达曾斯反应的应用
由达曾斯缩合所得的α、β-环氧酸酯有顺、反两种构 型。一般以酯基与邻位碳原子上的大基团处于反式的异 构体占优势。达曾斯缩合反应的主要意义还在于其缩合 产物经水解、脱羧等反应,可以转化成比原反应物醛或 酮至少多一个碳原子的醛或酮。
(完整版)羰基的亲核加成及相关反应
羰基的亲核加成及相关反应羰基化合物包括醛、酮、羧酸及衍生物和CO 2。
5.1 羰基的结构CO δ+δ-亲电中心羰基碳的活性较大,易被亲核试剂进攻而发生亲核加成反应和亲核取代反应。
5.2 亲核加成反应的历程及影响因素 5.2.1 HCN 的加成 反应为碱催化。
]CN ][CO [k v ->=OH -+HCNCN -+ H 2O快-COδ+δ-CO -CNCOHCN+OH - 反应的平衡位置受电子效应和空间效应的影响。
酮正向反应的趋势较小(空阻大)。
二、亲核加成反应的一般特点 1.反应可以被酸或碱催化酸催化可提高羰基的亲电活性。
CO +H ++OH碱催化提高亲核试剂的亲核性。
NuH +OH --+H 2ONu H ->2.多数醛酮的亲核加成为可逆反应,用于分离与提纯。
5.2.2 影响羰基亲核加成反应活性的因素 一、羰基化合物的结构 1.电子效应羰基碳的正电性越大,亲核加成速度越大,反应活性越大。
羰基碳所连的吸电基(-I ,-C )使其亲核加成反应的活性增加,而供电基(+I ,+C )则使其活性降低。
活泼顺序:ClCHO > HCHO > RCHO > CH 3COR > RCOOR' > RCONR'2 > RCOO --I > +C(+C)(+C,空阻)( +C > -I)(+C)CO RR'活性极低(1)π-π共轭效应(增加其稳定性);(2)+C 效应(降低羰基碳的正电性);(3)加成产物失去共轭能,反应活化能高;(4)产物的张力大幅增加。
2.立体效应CO -sp 2活性:O CHH OC CH 3H OC CH 3CH 3O OC CH 3CH 2CH 2CH 3OC Ph Ph>>>>>二、试剂的亲核性对同一羰基化合物,试剂的亲核性越大,平衡常数越大,亲核加成越容易。
1.带负电荷的亲核试剂比起共轭酸(中性分子)的亲核性强。
羰基化合物的反应
O
O
O
O > RCCH3 > RCR' > ArCR
羰基具有平面结构,亲核剂可从平面的两边进攻羰基碳原子。如果羰基平面
两边的空间条件不同,进攻试剂将主要从空间阻碍较小的一边进攻。
樟脑分子中的桥环不能翻转,有碳桥的一边位阻很大。因此,负氢从位阻小
的碳桥对面进攻羰基碳。
O
1.NaBH4 2.H3O
H
OH +
OH H
(主)
若 Nu 体积很小时,3,5-位碳上直立氢的干扰趋于缓解,但加成过程中新生成的
C-O 单键与 2,6-位平伏 C-H 健之间产生的张力则转化为主要的影响因素。二者的
距离越接近,产生的张力越大。
b
HO
t-Bu
+ HBH3Na H
a
H3O a t-Bu
H3O t-Bu b
OH H
H (次) H
曼尼赫反应在合成上的重要性是由于曼尼赫碱受热立即分解生成 α、β-不饱和羰
NaOH
O CH
+ H2O
HCH=O + CH3CHO (过量 )
无 a-H 羰基活性大
OH
HCHO
(HOCH2)3C-CHO
C(CH2OH)4 + HCOOH
歧化反应
三次羟甲基化
季戊四醇
按碰撞理论,容易理解分子内的羟醛缩合进行得更快。特别重要的是鲁宾逊扩环 反应,它包括麦克尔加成和分子内的羟醛缩合两步:
C O + ROH
OH C
OR
ROH / H3O
半缩醛(酮)
缩羰在有机合成中是重要的保护基。例如(1):
OR C
OR
第四节 羰基化合物的卤取代反应3版
1、丙二酸酯的α-卤取代反应
COOC2H5 COOC2H5
Br2/CCl4
COOC2H5
Br
75%
COOC2H5
强碱作用,极性溶剂DMSO与CuCl2反应
COOC 2 H 5 COOC 2 H5
1 )NaH/DMS O 2)CuBr2
COOC 2 H5
Br
90%
COOC 2 H5
形成烯醇β-碳负离子的羧酸酯
Br
+
OH
CH2
CH2
CH3
-Br2
H2C
OH
CH2
CH2
CH3
OH
H3C
Br
Br
Br2 CH3
O
Br CH2
O
H3C
CH2
1. 5%
CH2
CH3
CH2
CH
CH3 58%
Br
热力学产物
*溴化剂或碘化剂/醋酸钠或吡啶等碱性物质(动力学控制产物)
*③ 羰基α-位取代基的电性效应的影响
酸催化反应:α-位有供电子基,利于反应。
CH2 H
X 2 or NBS (NCS ) H3C
O H3C
CH2X H
AcO
AcO
X=Br 70% X=Cl 25%
提高不对称酮区域选择性的一种方法 反应后生成的丙酮易于蒸馏除去 溴代产率高 烯醇酯形成
*2 烯醇硅烷醚的卤化反应
(1) 通式
R1 OSiMe 3 X2
R2
R3
(2)反应机理
X R1
(1)反应通式
O
H3C H3C CH3
CH3
1 )I 2 /Na OH/H2 O 2 )H +
羰基化合物的α-烷基化和催化烷基化反应_图文
从一些易得的环氧基硅烷基醚开始,合成α,α—二取代α—氨基酸衍 生物:
具有张力的氨基醇衍生的酮酯或酰胺与格氏试剂反应,制备对映体 纯叔-α -羟基酸 :
2.6 双内酰亚胺体系
甘氨酸和其它氨基酸经过二酮哌嗪,进行O—甲基化得到六元杂环产 物,水解以后以高对映体过量获得了α-甲基氨基酸。
2.7 用于羰基化合物的α-烷基化的手性辅剂一览表
图2.10所示的反应是anti -1,3—不对称诱导的一个实例。
2.3.4 降冰片体系
许多烷基化反应的例子涉及降冰片环系,在此环系中烯醇可以是环 内的或是环外的。由于是刚性的环系,无论是环内的或环外的烯醇 都显现出高度的不对称诱导(图2.11)。
2.4 配位型的环内手性传递
配位型的手性烯醇体系,金属离子在固定原有的手性和烯醇部分之 间的立体化学关系至关重要。
二取代羧酸的制备:
2.4.7 酰基磺内酰胺体系 Oppolzer发展的酰基磺内酰胺50。合成α,α-二取代羧酸衍生物:
制备对映选择性纯的氨基酸:50用N-[二(甲硫基)次甲基]甘氨酸甲 酯酰化。
磺内酰胺50是优良的手性辅剂。例,氯化亚铜(I)催化的氯化烷基镁 对α,β—二取代E—烯磺内酰胺57的1,4—加成的不对称诱导。
双环脯氨酸类似物衍生的光学活性β-氨基128,催化二乙基锌对醛的 对映选择性加成,光学产率高达100%。比(S)-脯氨酸衍生物(S)-129 效果好。
在同环桥键羟基氨基二茂铁(—)—130存在下,11种芳族和脂族醛与 Et2Zn进行烷基化反应。生成的醇具有67%一97%的e.e.值。这种 二茂铁催化剂成功地用于使芳族醛和直链或支链脂族醛的烷基化,
2.2 手性传递 手性烯醇:环内烯醇、环外烯醇和配位型环内烯醇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NaOH C6H5CHO
CH3COCH3 C6H5COCH3
C6H5CH=CHCHO C6H5CH=CHCOCH3 C6H5CH=CHCOC6H5
C6H5CH=CHCOCH=CHC6H5
(2) 羧酸及其衍生物α-碳上的反应
脂肪酸α-卤化反应
• 羧酸的-H酸性比醛、酮小,故而羧酸的-H远比醛和酮的-
7.醛、酮、羧酸及其衍生物的α-碳上的反应
(1) 醛和酮α-碳上的反应 (2) 羧酸及其衍生物α-碳上的反应
(1)醛和酮α-碳上的反应
α-氢的酸性
受羰基吸电子效应的影响,其α-氢表现出一酸性。 解离出一个质子形成碳负离子。 经过共振成为烯醇负离子,得到一个质子并形成烯醇。 (1)和(4)相互转化称为互变异构。
O 2 CH3COC2H5
1. EtONa/EtOH 2. H3+O
OO CH3CCH2COC2H5
迪克曼缩合反应
分子内的酯缩合称为迪克曼(Dieckmann)缩合。这个反应特 别适合于合成五元和六元环型-酮酸酯。
CO2C2H5 1. C2H5ONa
CO2C2H5
2.H3+O
CO2C2H5 O
CO2C2H5 1. C2H5ONa
• 这个反应称为卤仿反应。
O
C
加成
R CX3
HO
O
消除
O
R C CX3 OH
C
+ CX3
R OH
(I)
(II)
O
R
C
+ O-
HCX3
酮的烷基化
-烷基化反应
在强碱作用下,一元酮所形成的碳负离子或烯醇负离子是强的亲核试剂,能够与卤代 烷发生亲核取代,生成烷基化产物
O
O - Na+
NaNH2 Et2O
CH3 I
HO
1 酮式
-O
2 碳负离子
OH+
3 烯醇负离子
OH
4 烯醇式
烯醇化程度越高,α-氢的酸性越强,
OO
H OO
8%
92%
pKa = 9
活化α-氢的能力有如下次序
丙酮
pKa = 20
CHO>COPh>COR>CN>COX>CO2R>CO2H
-卤化反应
-位含有活泼氢的醛、酮在酸或碱催化下可与卤素作用,发生-氢的卤代反应:
O X2
C R CH3 X=Cl, Br or I
O C R CH2 X
卤仿反应
• -CX3强拉电子作用,生成的三卤代产物中的羰基很容易受OH-的亲
核进攻,OH-加成到羰基碳上,形成四面体过度态(I).
• (I)中的三卤甲基作为离去基团离去,生成羧酸(II)和三卤甲
基负离子,后者再获取一个质子后生成卤仿。
含有-H的酮与酯也可发生交叉缩合反应,生成-酮酸酯或-二酮
O
O
C6H5CCH3
+
C6H5COC2H5
1. C2H5ONa 2. H3+O
OO C6H5CCH2CC6H5
62%-71%
O CH3CCH3 + CH3CO2C2H5
1. C2H5ONa 2.H2SO4/H2O
OO CH3CCHCCH3
43%
H难以卤化,而且只限于氯化和溴化。
• -碘代酸需要间接的方法合成。 • 与羧酸相反,酰氯和酸酐的-H都容易被卤化。
脂肪酸在催化量的三氯化磷或三溴化磷存在下可进行氯化或溴化
2P + 3Br2 3RCH2CO2H + PBr3
2PBr3 3RCH2COBr + P(OH)3
酯缩合反应
克莱森缩合反应
含有-活性氢的酯在碱性条件下失去一分子醇生成-酮酸酯, 这个反应称为酯缩合反应,或者克莱森(Claisen)缩合反应。
CO2C2H5
2.H3+O
CO2C2H5 O
交叉的酯缩合反应
两种不同的酯亦可发生缩合反应,称为交叉的酯缩合反应
一种酯中没有-H,另一种酯中含有-H时,它们的缩合反应还是相当 有用的
O
O
HCOC2H5 + CH3COC2H5
1. C2H5ONa 2. H+3O
OO HCCH2COC2H5
79%
酮与酯的缩合
贝金反应
贝金(Perkin)反应是芳香醛与乙酸酐或取代的乙酸酐在相应的 羧酸钠盐或钾盐存在下缩合,生成,-不饱和羧酸的反应。
C6H5CHO + (CH3CO)2O
AcONa 175oC
C6H5CH CHCO2H
Ac2O, AcONa
O
CHO
150oC
O
CH CHCO2H
合成治疗吸血虫病药物呋喃丙胺
O
OH
C
CH
+ OH
H CH2 CH3
羟醛(沸点83oC/20mmHg)在直接蒸馏时,或在少量碘或氯化 氢存在下加热,可顺利失水而形成巴豆醛
CH3CHCH2CHO OH
I2
CH3CH CHCHO + H2O
脱水很容易进行
ቤተ መጻሕፍቲ ባይዱ
交叉羟醛缩合
不含-氢的醛或酮与含有-氢的醛或酮可发生交叉羟醛缩合反应
CH3CHO
O CH3
羟醛缩合反应
(1)醛和酮的自身缩合
在碱存在下,醛或酮也可发生类似于酯缩合的反应,称为羟醛缩合(Aldol condensation)反应。
O
C
+ OH
H CH3
O C H CH2
+ H2O
O
O
C
+C
H
CH2
H
CH3
O
O
C CH H CH2 CH3
O
O
C CH
+ H2O
H CH2 CH3