【八年级】八年级数学上册22平方根教案新版北师大版
八年级数学上册2.2平方根第2课时平方根教学设计 (新版北师大版)
八年级数学上册2.2平方根第2课时平方根教学设计(新版北师大版)一. 教材分析平方根是八年级数学上册第2.2节的内容,主要介绍了平方根的定义、性质和运算方法。
本节内容是学生进一步理解实数体系的重要环节,也为后续学习二次根式打下基础。
教材通过例题和练习,使学生掌握平方根的概念,能够熟练求一个数的平方根,并理解平方根的性质。
二. 学情分析八年级的学生已经学习了有理数、无理数等概念,对实数体系有了一定的了解。
但是,学生对于平方根的理解可能还存在困难,需要通过具体的例题和实践活动来加深理解。
同时,学生对于数学符号和公式的记忆还不够牢固,需要在教学中加强巩固。
三. 教学目标1.理解平方根的定义,掌握求一个数的平方根的方法。
2.理解平方根的性质,能够运用平方根解决实际问题。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.平方根的定义和求法。
2.平方根的性质。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,通过案例分析和实践操作,使学生理解和掌握平方根的概念和性质,通过小组合作学习,培养学生的团队协作能力。
六. 教学准备1.PPT课件2.教学视频或案例七. 教学过程1.导入(5分钟)通过复习上节课的内容,引导学生回忆无理数的概念,为新课的学习做好铺垫。
2.呈现(15分钟)PPT展示平方根的定义和性质,通过讲解和例题,使学生理解平方根的概念,掌握求一个数的平方根的方法。
3.操练(15分钟)学生独立完成练习题,教师巡回指导,及时解答学生的疑问。
4.巩固(5分钟)学生分享解题心得,教师总结平方根的求法和性质,帮助学生巩固知识点。
5.拓展(5分钟)通过教学视频或案例,让学生了解平方根在实际生活中的应用,提高学生的数学素养。
6.小结(5分钟)教师引导学生总结本节课所学内容,加深对平方根的理解。
7.家庭作业(5分钟)布置适量作业,让学生巩固所学知识,提高解题能力。
北师大版八年级数学上册:2.2《平方根》教案
北师大版八年级数学上册:2.2《平方根》教案一. 教材分析《平方根》是北师大版八年级数学上册第2章“实数与平方根”的第2节内容。
本节内容是在学生已经掌握了有理数、无理数的概念,以及算术平方根的基础上,进一步研究平方根的概念和性质。
通过本节内容的学习,学生能够理解平方根的定义,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。
二. 学情分析学生在学习本节内容之前,已经掌握了有理数、无理数的概念,以及算术平方根的知识。
但是,对于平方根的性质和求法,以及平方根在实际生活中的应用,可能还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握平方根的知识。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.能够运用平方根的知识解决实际问题。
3.培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.平方根的概念和性质。
2.求一个数的平方根的方法。
3.平方根在实际生活中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握平方根的知识。
2.启发式教学法:通过提问和讨论,激发学生的思考,培养学生的创新能力。
3.实践操作法:通过实际操作,让学生掌握求一个数的平方根的方法。
六. 教学准备1.教学课件:制作平方根的概念、性质和求法的课件。
2.教学素材:准备一些实际问题,用于引导学生运用平方根的知识解决。
3.练习题:准备一些有关平方根的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算土地面积等,引出平方根的概念。
提问:你们知道这些实例中涉及到的数学知识吗?2.呈现(10分钟)展示平方根的定义和性质,引导学生理解和掌握。
同时,介绍求一个数的平方根的方法,如:分解因式法、配方法等。
3.操练(10分钟)让学生分组讨论,互相练习求一个数的平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些实际问题,让学生运用平方根的知识解决。
期八年级数学上册 2.2 平方根 第1课时 算术平方根教案 (新版)北师大版
2平方根第1课时算术平方根【知识与技能】1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.根据求一个数的算术平方根与平方是互逆运算,会利用这个互逆运算关系求某些非正负数的算术平方根.【过程与方法】经历求一个数的算术平方根与平方的互逆关系,提高学生逆向思维方法.【情感态度】学生动脑、动口,积极参与教学活动,培养他们对数学的好奇心和求知欲.【教学重点】了解算术平方根的概念,性质,会用根号表示一个正数的算术平方根.【教学难点】理解算术平方根的概念、性质.一、创设情境,导入新课上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a 叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.【教学说明】从平方入手,为学生下面学习算术平方根找到了突破口,让他们对算术平方根的求法与开平方这种互逆的关系形成了初步认识.二、思考探究,获取新知算术平方根的概念和求法.下面请大家根据勾股定理,结合图形完成填空:x2= ,y2= ,z2= ,w2=请大家分析一下,x、y、z、w中哪些是有理数?哪些是无理数?【教学说明】回忆勾股定理得到一个数的平方是一个正数,为下面给出算术平方根的概念作了开端.【归纳结论】因为没有任何整数或分数的平方等于2,3,5,所以x、y、w不是有理数,而是无理数,即,因为22=4.所以z=2,是有理数.若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0=0.下面我们根据算术平方根的定义求一些数的算术平方根.例1求下列各数的算术平方根:(1)900;(2)1;(3)49/64;(4)14.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?【教学说明】学生很容易看出一个正数的平方与求算术平方根是互为逆运算,有利于对算术平方根概念的理解.【答案】解:(1)因为302=900,所以900的算术平方根是30;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为(7/8)2=49/64,所以49/64的算术平方根是7/8;(4)14【归纳结论】在求算术平方根时是借助于平方来求的.在例题中的步骤采取语言叙述和符号表示相互补充的做法,目的是让大家在计算中进一步体会一个正数的平方与求算术平方根是互为逆运算,在以后的步骤中可以简化.三、运用新知,深化理解1.填空题.(1,则这个数是 .(2)49的算术平方根是 .(3)正数的平方为144/25,719的算术平方根为 .(4)(-1.44)2的算术平方根为 .(5的算术平方根为, = 2.求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)124.3.自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?【教学说明】学生独立完成,加深对算术平方根概念的理解,强化了算术平方根的求法和表示方法.【答案】1.(1)5;(2)2/3;(3)12/5,4/3;(4)1.44;(5)3,0.2.2.(1=7.4;(2=3.9; =1.5;(43.解:将h=19.6代入公式h=4.9t2得t2=4,所以 =2(秒)即铁球到达地面需要2秒.四、师生互动,课堂小结本节课你学习了哪些新知识?还有什么困难?请与同学们交流.【教学说明】教师引导学生回顾所学知识,加深印象.找出不足,共同提高.1.习题2.3第1、2、3题.2.完成本课时练习部分.本节课从一个数的平方入手,用逆向思维求一个数的算术平方根,学生容易接受,解决问题起来应该说是得心应手,但要注意算术平方根的符号表示方法.。
2.2平方根(第一课时)教学设计-2022-2023学年北师大版八年级上册数学
2.2平方根(第一课时)教学设计-2022-2023学年北师大版八年级上册数学本文档是针对北师大版八年级上册数学课程中2.2平方根(第一课时)的教学设计。
本课程主要介绍平方根的概念、性质及其应用。
通过本课教学,学生将能够理解平方根的定义和计算方法,掌握平方根的性质,能够灵活应用平方根解决实际问题。
一、教学目标1.知识目标:–了解平方根的定义和符号表示;–掌握平方根的计算方法;–理解平方根的性质和应用。
2.能力目标:–能够准确地计算简单的平方根;–能够应用平方根解决实际问题;–能够分析和解决与平方根相关的数学问题。
3.情感目标:–培养学生对数学的兴趣和好奇心;–提高学生的思维能力和问题解决能力;–培养学生的合作意识和团队合作能力。
二、教学重点和难点教学重点:•平方根的定义和计算方法;•平方根的性质和应用。
教学难点:•应用平方根解决实际问题;•分析和解决与平方根相关的数学问题。
三、教学过程1. 导入新知识•在黑板上展示一个平方根的符号,并引导学生猜测其含义。
•以一个简单的例子引出平方根的概念,并让学生思考其定义。
•引导学生思考如何计算一个数的平方根。
2. 讲解平方根的定义和计算方法•通过幻灯片或板书等方式,给学生讲解平方根的定义和计算方法。
•讲解平方根的符号表示方法,并指导学生如何进行平方根的计算。
•给学生提供一些简单的示例,让学生通过计算来巩固平方根的计算方法。
3. 引导学生发现平方根的性质•设计一些简单的问题,引导学生发现平方根的性质,如平方根的两个性质:非负性和反函数性质。
•引导学生通过数学推理和实际计算来验证这些性质。
4. 应用平方根解决实际问题•提供一些实际问题,让学生应用平方根解决问题。
•引导学生分析问题,提取关键信息,然后运用平方根的知识解决问题。
5. 练习与巩固•给学生一些练习题,让他们巩固平方根的计算方法和应用技巧。
•引导学生独立完成练习题,并及时给予反馈和指导。
6. 小结与反思•对本节课的内容进行小结,强调平方根的重要性和应用价值。
八年级数学上册22《平方根》导学案新版北师大版
精选教学设计平方根学习目标: 1.掌握算术平方根的定义;2.会求一个数的算术平方根。
学习内容(学习过程)一、自主预习(感知)1.算术平方根1. 计算: 4 2 = ; 7 2 = ; 9 2 = ;11 2 = 。
2 .填底数: ( )2 =16 ,()2 =49 , ( )2 =81 , ( )2=121.3. x2 =______ y2 =______z2 =______ w 2 =______二、合作研究(理解)算术平方根的观点:一般地 ,假如一个正数x 的平方等于 a ,即 x 2x 就叫做 a 的____记做;读叫=a ,那么这个数做.注:特别地 ,我们规定0 的算术平方根是0,即0 0.2.例 1 、求以下各数的算术平方根:49( 1) 900 ;(2)1;(3);(4)14.64例 2 、自由着落物体的高度h(米)与着落时间t(秒)的关系为h t2.有一铁球从19.6 米高的建筑物上自由着落,抵达地面需要多长时间?结论:( 1)算术平方根的观点,式子 a 中的两重非负性:一是a≥0,二是 a ≥0.( 2 )算术平方根的性质:一个正数的算术平方根是一个正数;0 的算术平方根是0 ;负数没有算术平方根.三、轻松试试(运用)1、求以下各数的算术平方根:36 ,121 , 15 , 0.81 ,10 4, 1.96 ,( 5 )0,106,9144 6 252 、如图,从帐篷支撑竿AB 的顶部 A 向地面拉一根绳索AC 固定帐篷.若绳索的长度为 5.5 米,地面固定点 C 到帐篷支撑竿底部B的距离是 4.5 米,则帐篷支撑竿的高是多少米?3 、一个正方形的面积变成本来的4 倍,其边长变成本来的多少倍?面积变成本来的9 倍,其边长变成原来的多少倍?面积变成本来的100 倍,其边长变成本来的多少倍?面积变成本来的n 倍,其边长变成本来的多少倍?四、拓展延长(提升)已知 x 2y 4 0,求 y x的值.五、收获清点(升华)六、当堂检测(达标)填空题:1 .若一个数的算术平方根是7 ,那么这个数是;2 . 9 的算术平方根是;3 . ( 2) 2的算术平方根是;34 .若 m 2 2 ,则 (m 2) 2= . A七、课外作业(稳固)1、必做题:①整理导教案并达成下一节课导教案中的预习案。
北师大版八年级数学上册:2.2《平方根》教学设计2
北师大版八年级数学上册:2.2《平方根》教学设计2一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。
本节主要让学生掌握平方根的概念,了解平方根的性质,会求一个数的平方根。
教材通过引入问题情境,让学生感受数学与生活的联系,培养学生的数学应用意识。
同时,平方根的学习也为后续学习立方根、算术平方根等概念打下基础。
二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和性质有一定的了解。
但平方根的概念与有理数的乘方有所不同,需要学生能够较好地理解和掌握。
此外,学生可能对实数的概念不是很清晰,需要在教学中引导学生正确理解实数与平方根的关系。
三. 教学目标1.理解平方根的概念,掌握平方根的性质。
2.能够求一个正数的平方根。
3.培养学生的数学思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.重点:平方根的概念和性质。
2.难点:求一个数的平方根,特别是非正数的平方根。
五. 教学方法1.情境教学法:通过引入生活情境,让学生感受数学与生活的联系。
2.启发式教学法:引导学生思考,发现规律,培养学生的数学思维能力。
3.练习法:通过大量的练习,让学生巩固所学知识。
六. 教学准备1.教学课件:制作平方根的概念、性质和求平方根的课件。
2.练习题:准备一些有关平方根的练习题,包括正数、负数和零的平方根。
3.教学视频:准备一个有关平方根的数学故事视频,用于导入新课。
七. 教学过程1.导入(5分钟)播放教学视频,让学生了解平方根的由来。
然后提问:什么是平方根?引导学生思考并回答。
2.呈现(15分钟)讲解平方根的概念,用PPT展示平方根的性质。
让学生观察并总结平方根的性质。
3.操练(15分钟)让学生分组讨论,每组找一个数的平方根,并解释如何找到这个平方根。
然后让学生上台展示并讲解。
4.巩固(10分钟)让学生独立完成练习题,检验学生对平方根的理解。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)引导学生思考:平方根有哪些应用?让学生举例说明,培养学生的数学应用意识。
八年级数学上册2.2平方根第1课时算术平方根教案 新版北师大版
八年级数学上册2.2平方根第1课时算术平方根教案新版北师大版一. 教材分析平方根是八年级数学上册第2.2节的内容,主要介绍平方根的定义、性质和运算方法。
本节课的内容是学生进一步学习数学的基础,对于培养学生的逻辑思维和运算能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方和二次根式,对于根式的概念和性质有一定的了解。
但平方根的概念和性质较为抽象,需要学生通过实例和练习来理解和掌握。
三. 教学目标1.理解平方根的定义和性质;2.掌握求一个数的平方根的方法;3.能够运用平方根的概念解决实际问题。
四. 教学重难点1.平方根的定义和性质;2.求一个数的平方根的方法。
五. 教学方法采用问题驱动法和案例教学法,通过引导学生自主探究和合作交流,让学生在实际问题中感受平方根的概念和性质,提高学生的数学思维和解决问题的能力。
六. 教学准备3.练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如测量身高、计算面积等,引导学生思考这些实例中是否涉及到平方根的概念。
通过讨论和回答问题,引出平方根的概念。
2.呈现(10分钟)讲解平方根的定义和性质,通过PPT展示相关的例题和解释,让学生理解和掌握平方根的概念。
3.操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生分组讨论,互相提问,巩固对平方根的理解。
教师可以提出一些问题,引导学生深入思考。
5.拓展(10分钟)讲解求一个数的平方根的方法,并通过PPT展示相关的例题和解释,让学生掌握求平方根的技巧。
6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
7.家庭作业(5分钟)布置一些有关平方根的练习题,让学生回家巩固所学知识。
8.板书(5分钟)板书本节课的重点内容,方便学生复习和记忆。
教学过程每个环节所用的时间如上所示,供您参考。
希望这份教案能够帮助您更好地进行教学。
北师大版八年级上册2.2.2平方根教案
在学生小组讨论中,我尽量以引导者的身份出现,鼓励学生发表自己的观点,但我也发现有些学生在讨论中较为沉默,可能是因为对自己的想法不够自信。我需要思考如何为这些学生提供更多的支持和鼓励,让他们在课堂上更加积极地参与进来。
4.培养学生数学运算与数据分析素养:让学生熟练运用平方根进行数学运算,并能对运算结果进行分析和解释,提高数据处理能力。
三、教学难点与重点
1.教学重点
(1)平方根的定义:平方根是解决本节课核心问题的基石,要使学生明确平方根的意义,理解一个数的平方根是指与该数相乘等于这个数的正数。
(举例:如9的平方根是3,因为3×3=9)
总的来说,今天的课让我看到了学生的潜力和不足。我会在今后的教学中,针对学生的具体情况,调整教学方法,尽量让每个学生都能跟上教学进度,理解和掌握平方根的知识。同时,我也会继续探索更多有趣、有效的教学策略,以提高学生的学习兴趣和效果。
2.教学难点
(1)负数的平方根:对于负数没有平方根的理解,学生容易产生疑惑,需要通过实例和图形帮助学生理解。
(举例:通过平面直角坐标系中点的坐标来解释负数的平方根)
(2)平方根的近似值计算:在实际问题中,我们经常需要计算平方根的近似值,如何引导学生使用合适的方法求近似值是难点。
(举例:使用牛顿迭代法或连续平方逼近法求√2的近似值)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是一个数乘以自身等于另一个数的正数解。它是解决几何图形面积、体积等问题的关键。
北师大版八年级数学上册:2.2《平方根》教学设计1
北师大版八年级数学上册:2.2《平方根》教学设计1一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。
本节课主要介绍平方根的概念,让学生理解并掌握平方根的定义,能够求一个数的平方根,并了解平方根的性质。
本节课的内容是学生进一步学习二次根式的基础,对于学生来说具有重要的意义。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方,对乘方的概念有一定的了解。
但是,平方根的概念与乘方概念有所区别,学生可能对平方根的理解存在一定的困难。
因此,在教学过程中,教师需要引导学生区分平方根和乘方,帮助学生更好地理解平方根的概念。
三. 教学目标1.让学生理解平方根的概念,掌握求一个数的平方根的方法。
2.让学生了解平方根的性质,能够运用平方根的性质解决问题。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.平方根的概念。
2.平方根的性质。
五. 教学方法采用问题驱动法、案例分析法、小组讨论法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学思维能力。
六. 教学准备1.准备相关多媒体教学课件。
2.准备平方根的相关案例和练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的实例,如测量身高、计算面积等,引导学生思考这些实例中是否存在平方根的概念。
通过引导学生回顾乘方的概念,为新课的学习做好铺垫。
2.呈现(15分钟)介绍平方根的定义,让学生通过观察、思考、讨论,理解并掌握平方根的概念。
同时,通过具体案例的讲解,让学生了解如何求一个数的平方根。
3.操练(15分钟)让学生独立完成一些求平方根的练习题,巩固所学知识。
教师在学生练习过程中进行个别辅导,帮助学生解决问题。
4.巩固(5分钟)通过小组讨论,让学生总结平方根的性质。
教师引导学生对比平方根和乘方的区别,加深学生对平方根概念的理解。
5.拓展(5分钟)利用平方根的性质,解决一些实际问题。
如计算物体的体积、求解方程等。
北师大版八年级数学上册:2.2《平方根》教学设计
北师大版八年级数学上册:2.2《平方根》教学设计一. 教材分析《平方根》是北师大版八年级数学上册第2章第2节的内容。
本节主要让学生了解平方根的概念,掌握求一个数的平方根的方法,以及了解平方根的性质。
通过学习本节内容,为学生进一步学习立方根、四次方根等概念打下基础。
二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。
但是,平方根的概念和求法对学生来说是一个新的内容,需要通过实例和练习来逐步理解和掌握。
此外,学生可能对平方根的性质有一定的困惑,需要通过大量的练习和讲解来加深理解。
三. 教学目标1.了解平方根的概念,掌握求一个数的平方根的方法。
2.理解平方根的性质,能够运用平方根的概念和性质解决实际问题。
3.培养学生的逻辑思维能力和数学运算能力。
四. 教学重难点1.平方根的概念和求法。
2.平方根的性质和运用。
五. 教学方法1.采用问题驱动法,引导学生通过探索和发现来学习平方根的概念和性质。
2.使用实例和练习,让学生通过动手操作和思考来掌握求一个数的平方根的方法。
3.采用分组讨论和合作交流的方式,让学生在小组内共同解决问题,提高学生的合作能力和沟通能力。
六. 教学准备1.PPT课件七. 教学过程导入(5分钟)教师通过提问:“你们知道什么是乘方吗?乘方和平方有什么关系?”引导学生回顾乘方的概念,为新课的学习做好铺垫。
呈现(15分钟)1.教师通过PPT展示平方根的定义,解释平方根的概念。
2.教师用实例来讲解如何求一个数的平方根,如求9的平方根。
操练(10分钟)1.学生独立完成练习题,求出指定数的平方根。
2.教师选取部分学生的作业进行点评和讲解。
巩固(10分钟)1.学生分组讨论,总结平方根的性质。
2.各小组汇报讨论结果,教师进行点评和讲解。
拓展(10分钟)1.教师提出一些实际问题,让学生运用平方根的概念和性质来解决。
2.学生独立思考和解决问题,教师进行指导。
小结(5分钟)教师引导学生回顾本节课所学的内容,总结平方根的概念和性质。
22平方根(第2课时)教学设计
第二章实数2 .平方根(第2 课时)成都市锦西中学赵天成西南交大附中田晓红、学生起点分析学生在七年级上册学习“棋盘上的故事”就认识了一种运算“乘方”,并能熟练计算任何一个数的平方.知道正数的平方是正数,负数的平方是正数,0 的平方是0.在八年级上册第二章《实数》的学习中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根.那么这一课时进一步学习平方根.本节也为后面学习“立方根”做基础.二、教学任务分析《平方根》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第二节.本节安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根.在具体的例子中抽象出概念,发展学生的抽象概括能力.本节课是第二课时,继续学习平方根的概念及其运用.并对“平方根”和“算术平方根” ,“平方”和“开平方”的概念做辨析,使学生在“引导-探索-类比-发现”中发展学习数学的能力.为此,本节课的教学目标是①了解平方根、开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.教学重点是①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点是①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.三、教学过程设计:本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节第一环节复习旧知引入新知;第二环节形成概念,辨析概念;第三环节例题和巩固练习;第四环节课堂小结;第五环节思维拓展;第六环节布置作业.第一环节复习旧知引入新知内容:方法一复习引入1 •什么叫算术平方根?3的平方等于9,那么9的算术平方根就是3.22的平方等于4,那么±_的算术平方根就是 5 _________ .5 25 25展厅的地面为正方形,其面积49平方米,则边长_7_米.2•到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算?平方与算术平方根之间的关系?已知折叠着的正方形ABCD面积为1,则边长为_1___•将它扩展,若面积变为原来的2倍,那么它的边长为®S_;若面积变为原来的3倍,则边长为見 :若面积变为原来的n倍,则边长为"n_ .方法二复习引入问题平方等于9,—,49的数还有吗?25目的:这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash情景引入,增加动画效果.效果借助多媒体吸引学生的注意力,激发学生的学习兴趣.说明数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望.第二环节:新课学习内容(一)探究新知填空2 1 21 2 1(2 ) =(4)1 L-:4 (不存在)=—41 21 /(一刃=(4)(二)形成概念(1)一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫做a 的算术平方根.表达式为:若x =a,那么x叫做a的平方根.记作- a.2例如:(± 4) =16,则+4和一4都是16的平方根;即16的平方根是土4; 4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系1.包含关系平方根包含算术平方根,算术平方根是平方根的一种.2. 只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2 .表示法不同:平方根表示为- a,而算术平方根表示为'' a.目的形成平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念平方根”与算术平方根”的区别与联系,使之与上一节课紧密联系.效果由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.说明平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方. 对这两个概念加以比较与区别有利于学生的理解与掌握.第三环节例题和新知巩固(一)例题示范求下列各数的平方根:49 2(1)64;⑵芮;(3)0.0004;⑷(—25);(5) 11解(1)T 8 2 =64,64的平方根是一8,即_、.64 = _8 ;(2);h =屠的平方根为-暫,即士才誤=「看;(3):(±0.02$ =0.0004,•. 0.0004的平方根是土0.02,即士J0.0004 = ±0.02 ;(4)':(=25$ =(-25$,二(-25 丫的平方根是土25,即士&-25$ =±25 ;(5):11的平方根是—,11目的这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达•能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.效果通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.(二)思考提升1. _______________________________________ (-5丫的平方根是,阿的算术平方根是,4的平方根是_______________________________________________ ;2. 64 =,\、-5 2 =,_、.64=,'- 0.04= _______ ;3. . a =,当a-0时,、a -.(三)巩固练习1 .下列说法正确的是①-3是, 81的平方根;②25的平方根是5;③—36的平方根是—6;④平方根等于0的数是0;⑤64的平方根是8.2. 下列说法不正确的是().(A)0的平方根是0(B) -22的平方根是-2 (C)非负数的平方根是互为相反数(D)—个正数的算术平方根一定大于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(A) a+1 (B).訂(C)a2+1 (D) . a2_14. X为何值, 有意义?X c C答因为-匚-0,所以X 一°2目的围绕本节课的重点知识(平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.效果学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达.第四环节课堂小结内容引导学生总结本课时的知识、方法.目的让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.效果在老师的引导下学生自己总结本节课的知识、方法,如平方根的概念若x2 = a,则x叫a的平方根,x - _ a平方根的个数正数有2个平方根,°的平方根是0,负数没有平方根.平方与开方之间的关系;求平方根的方法求一个数的平方根就是转化寻找哪个数平方等于这个数.第五环节提咼训练内容1.^ ,11的小数部分为a,5--.11的小数部分为b,求a b的值.2.已知实数a,b满足b2「厂4 • 9 = 6b①若a,b为厶ABC的两边,求第三边c的取值范围;②若a,b为厶ABC的两边,第三边c等于5,求厶ABC的面积.目的安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.第六环节作业布置习题2.4四、教学设计反思本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.教材是教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整.(一)注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的.所以在学习平方根的概念时,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的经验不符.对此,在平方根的引入时,可多提一些具体的问题.如“9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?” 等等,旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.再让学生去讨论一个正数有几个平方根?0 有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,然后通过具体的求平方根的练习,巩固新学的概念.(二)鼓励学生进行探究和交流本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流•如把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性.(三)设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系.类比概念“平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算.(四)根据学生实际,灵活使用教材教材上只安排了一道例题和几个想一想,为了让学生对新知巩固,我增加了部分练习题,围绕“平方根”这一知识点进行各种题型的变式练习.当然,选题要有层次,有梯度.老师们在进行教学时可以根据学生的实际情况作适当的取舍.(五)建议根据知识结构的逻辑关系与学生的认知规律,建议教材在内容安排上平方根置于算术平方根之前.。
八年级数学上册 2.2.2 平方根教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案
课题:2.2.2平方根教学目标:1.了解平方根、开平方的概念,明确算术平方根与平方根的区别和联系.2.进一步明确平方与开平方是互逆的运算关系.3.培养学生求同与求异的思维,通过比较提高思考问题、辨析问题的能力.教学重点与难点:重点:了解平方根与算术平方根的区别与联系,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.难点:平方根与算术平方根的区别和联系;负数没有平方根,即负数不能进行平方根的运算.课前准备:多媒体课件.教学过程:一、创设情境,引入新课(课件展示)1.什么叫做算术平方根?怎样表示?2.填空: 9的算术平方根,17的算术平方根.3.我们已经学习过哪些运算?它们中互为逆运算的是什么?4.什么叫乘方?什么叫幂?5.填空:(1)3 2= ,(-3)2= ;(2)()2=,(-)2= .6.平方等于9的数有几个?平方等于的数有几个?处理方式:提问学生一一作答,不足之处由其他学生补充.第1题:一般地,如果一个正数x的平方等于a,即x2=a ,那么这个正数x叫做a的算术平方根.a a”,a叫做被开方数.0的算术平方根是0.即0负数没有算术平方根.第2题: 9的算术平方根3 ,17的算术平方根17.第3题:学习过了加、减、乘、除、乘方五种运算.其中加法与减法互为逆运算;乘法与除法互逆.第4题:求相同因数的积的运算叫做乘方;乘方运算的结果叫做幂.第5题: 32=9,(-3)2=9;()2=,(-)2=.第6题:平方等于9的数有两个;平方等于0.64的数有两个.这6道题目小组交流,教师点拨,代表回答,从而引出课题.设计意图:这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,感知负数没有算术平方根、算术平方根是一个非负数,很显然,负数不是9的算术平方根,从而导入新课.本环节采用小组互查的方式,可以更好的激发学生的学习兴趣.二、合作探究,交流互动(一)探究新知:填空:(课件展示)32=()(-3)2=( ) ( )2=902=0(12)2=( ) ()214= ( )2=-4(12-)2=( )处理方式:让学生先思考后回答:9,9,14,14,0,不存在.(教师进一步引导学生发现:2(3)9±=,211()24±=,02=0,平方得-4的数不存在.)我们就说3和-3都是9的平方根,同理,14的平方根是,0的平方根是.类比算术平方根的概念,你能得出平方根的概念吗?引导学生回答,14的平方根是12和12-,0的平方根是0. (二)形成概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根.表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作.例如:(±4)2 =16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.处理方式:通过学生观察特例,让学生对照算术平方根概念归纳平方根概念并举例.(三)探索平方与开平方的关系:(课件展示)x2=a这种运算叫,x=. 乘方运算与开方运算的关系是什么?给出几组具体的数据,由平方探知开平方与平方的互逆关系.处理方式:x2=a,则x=x=a= x2.设计意图:形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化,明白它们之间的互逆关系.(四)平方根的性质:议一议:(课件展示)(1)一个正数有几个平方根? (2)0有几个平方根? (3)负数呢?处理方式:让学生照着前面引例回答,例如2(3)9±=,则一个正数9有两个平方根3和-3,它们互为相反数.因为只有零的平方为零, 所以0有一个平方根是零.因为任何数的平方都不是负数, 所以负数没有平方根, 例如-4没有平方根.然后教师总结,一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.设计意图:要求学生能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.(五)概念辨析:平方根与算术平方根的联系与区别?处理方式:学生讨论交流,在导学案上完成后再展示说明,学生之间互相补充.教师适时点评.平方根与算术平方根的联系与区别:联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根,算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a的平方根表示为±a,正数a的算术平方根表示为a.(4)取值X围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.设计意图:形成“平方根”的概念.在列举一些具体数据的感性认识的基础上,由平方运算反推出平方根的概念和定义,并让学生对有关平方根一些常见表示作对比,明白它们之间的异同,进一步理解平方根的概念,可以避免一些初学时的常见错误.平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.辨析开平方与平方的对比﹑辨析概念“平方根”与“算术平方根”的区别与联系,使之与上一节课紧密联系,并作以对比,这样有利于学生的理解与掌握,对这一抽象的概念掌握才能比较牢靠.三、例题解析,应用新知(一)例题示X(多媒体出示)例3 求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11.处理方式:先给学生10秒钟时间观察例3第(1)题,让学生口述解题过程,教师板书.在学生口述过程中,教师可进行有针对性的提问,让学生进一步理解并规X如何使用平方根.其余题目让四名学生主动到黑板板演,其他学生在练习本上完成.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正.跟踪训练:1. 判断下列各数是否有平方根?并说明理由.(1)(-3)2; (2)0; (3)-0.01; (4)-52; (5)-a2 ; (6) a2-2a+2.2. 25的平方根是_________;)2=_________.3. 求下列各数的平方根:1.44, 0, 8,10049, 441, 196, 10-4。
北师大版八年级数学上册:2.2《平方根》教学设计
北师大版八年级数学上册:2.2《平方根》教学设计一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。
本节内容是在学生已经掌握了有理数的乘方、算术平方根的基础上,进一步引导学生探索平方根的概念,理解平方根与算术平方根的联系和区别,以及掌握平方根的运算方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于有理数的乘方、算术平方根等概念有一定的了解。
但是,学生对于平方根的理解可能会存在一定的困难,因此需要通过实例来帮助学生直观地理解平方根的概念。
三. 教学目标1.理解平方根的概念,掌握平方根的运算方法。
2.能够运用平方根的概念解决实际问题。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.重点:平方根的概念,平方根的运算方法。
2.难点:平方根与算术平方根的联系和区别。
五. 教学方法采用讲授法、引导发现法、实践操作法、小组合作交流法等,结合多媒体教学手段,以学生为主体,教师为指导,引导学生自主探索、合作交流,从而达到理解平方根的概念,掌握平方根的运算方法。
六. 教学准备1.教学课件:制作平方根的教学课件,包括平方根的定义、例题、练习等。
2.教学素材:准备一些有关平方根的实际问题,以及一些关于平方根的图片素材。
3.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如:“一个正方形的边长是6厘米,求它的面积。
”让学生思考如何求解这个问题。
2.呈现(10分钟)引导学生回顾算术平方根的定义,然后给出平方根的定义:“一个非负数x的平方根是另一个非负数y,使得y²=x。
”接着,通过PPT展示一些平方根的例子,让学生观察、思考,加深对平方根的理解。
3.操练(10分钟)让学生自主完成一些关于平方根的练习题,如:求下列各数的平方根:(1)4;(2)-4;(3)9;(4)-9。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生分组讨论,总结平方根的运算方法,以及平方根与算术平方根的联系和区别。
2022秋八年级数学上册第二章实数2.2平方根1算术平方根教案新版北师大版
2.2.1 算术平方根一、学生起点分析学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.三、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:问题情境 初步探究 反馈练习 学习小结 作业布置 深入探究=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗? 目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=;(4)14的算术平方根是14. 内容4:回解课堂引入问题 22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的. 内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根. 第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ;4.若22=+m ,则=+2)2(m . 二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展 在教学中,根据学生的实际情况,在学有余力的情况下,可以对a 的双重非负性的知识进行适当的拓展.。
北师大版数学八年级上册2.2平方根第一课时教学设计
教师根据学生的课堂表现和作业完成情况,反思教学方法,调整教学策略,以提高教学效果。
二、学情分析
八年级学生在前期的数学学习过程中,已经掌握了有理数的乘法运算,具备了一定的数学基础。在此基础上,学习平方根的知识,有助于他们拓展数的概念,提高解决问题的能力。然而,由于平方根的概念较为抽象,学生可能会在理解上存在一定难度。因此,在教学过程中,应注重引导学生通过具体实例,感受平方根的实际意义,帮助他们建立直观的数学模型。
北师大版数学八年级上册2.2平方根第一课时教学设计
一、教学目标
(一)知识与技能
1.理解平方根的定义,掌握求一个数的平方根的方法,能正确计算并求解简单问题。
2.熟练运用平方根的性质,解决实际问题,如面积、速度等与平方根相关的问题。
3.了解平方根在生活中的应用,提高将数学知识应用于实际问题的能力。
(二)过程与方法
2.自主探究,合作交流
在新课讲解环节,鼓励学生通过实际操作、自主探究、合作交流的方式,发现平方根的性质和求法。教师在此过程中发挥引导作用,帮助学生搭建知识框架。
3.分层教学,关注个体差异
针对不同学生的学习能力,设计不同难度的练习题,让每一个学生都能在原有基础上得到提高。同时,关注学生的情感需求,鼓励他们积极参与课堂讨论,提高自信心。
2.结合生活实际,思考平方根在以下情境中的应用,并给出至少两个实例:
a.面积问题
b.速度问题
3.小组合作,探讨以下问题,并在下节课分享你们的讨论成果:
a.平方根在数学以外的领域有哪些应用?
b.如何运用平方根的知识解决实际问题?
4.选做作业(针对学有余力的同学):
a.请同学们预习下一节课的内容,了解立方根的定义和性质。
北师大版八年级数学上册:22平方根教学设计
(3)例题讲解:精选典型例题,讲解解题思路和方法,引导学生运用平方根知识解决问题。
(4)练习巩固:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题技巧。
(5)课堂小结:总结本节课的主要内容和收获,强化学生对平方根的认识。
北师大版八年级数学上册:22平方根教学设计
一、教学目标
(一)知识与技能
1.理解平方根的概念,掌握平方根的表示方法和性质。
-学生能够明确平方根的定义,即一个数的平方根是另一个数的平方,反之亦然。
-学会使用根号表示平方根,并能正确书写。
-掌握基本的平方根性质,如正数的平方根有两个且互为相反数,0的平方根是0,负数没有实数平方根。
-采用多元化评价方式,如口头提问、书面作业、小组展示等,全面了解学生的学习情况。
-鼓励学生自我评价和互评,培养他们的自我反思能力和批判性思维。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-利用多媒体展示生活中的实例,如建筑物的面积、物体的速度等,涉及平方根的计算。
-提问学生:“我们之前学习过平方,今天我们要学习一个与平方相关的新概念——平方根。你们知道平方根是什么吗?它在生活中有哪些应用呢?”
-写一篇小短文,描述平方根在这个问题中的作用和意义。
3.拓展提高:
-完成22.2节中的思考题,挑战一元二次方程的求解,特别是含有平方根的方程。
-探索平方根在其他学科领域的应用,如物理学中的运动学公式、几何学中的勾股定理等,并撰写简要报告。
4.小组合作任务:
-小组讨论课本22.3节中的例题,共同分析解题思路和方法。
-小组合作任务中,每个成员都要积极参与,共同完成任务。
北师大版八年级上册22 平方根1.doc
2.2平方根㈠教学目标:(一)教学知识点1.了解数的算术平方根的概念,会用根号表示•个数的算术平方根.2.了解求•个正数的算术平方根与平方是互逆的运算,会利用这个互.逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.(二)能力训练要求1.加捆概念形成过程的教学,提高学生的思维水平.2.鼓励学生进纤探索和交流,培养他们的创新意识和合作精神.(二)情感与价值观要求1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.2.训练学生动脑、动口、动手能力.教学重点:了解算水平方根的概念、性质,会用根号表小•个正数的算术平方根.教学难点:了解算术平方根的概念、性质.教学过程:I.新课导入上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在/=2 中,2是有理数,而a是无理数.在前面我们学过若.『=s则a叫x的平方,反过来A■叫a的什么呢?本节课我们就来•起研究这个问题.II.讲授新课[师]在讲新课之前,我们先回忆一卜'勾股足理,请同学们回答.[生]勾股足理就是在直角二角形中两条直角边的平方和等于斜边的平方.[师]F面请大家根据勾股定量,结合图形完成填空.根据F图填空[师]请大家思考后回答.[生]X2=2,V2=3】2=4,W2=5.[师]请大家再分析•下,X, V, •,哪些是有理数?哪些是无理数?[生]X, y, W是无理数,Z是有理数.[师]为什么呢?[生]因为没有任何整数或分数的平方等于2, 3, 5,所以x, V, z不是有理数,而2七4,所以=2.[师]这位同学分析得非常正确,那么大家能不能把上图中的x, v, z, w表示出来呢?请大家仔细看书后回答.[生]x= V2 ,y= A/3 ,z= -\/4 ,w= A/5.[师]若-个正数x的平方等于s即,则这个正数x就叫做。
秋八年级数学上册 2.2 平方根教案2 (新版)北师大版-(新版)北师大版初中八年级上册数学教案
平方根教学目标:知识与技能1、了解平方根的概念,会用根号表示一个数的平方根。
2、会求一个正数的平方根。
3、了解平方根和算术平方根的性质。
4、了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。
过程与方法通过回顾算术平方根的有关知识,能正确地进行推理和判断,会求一个数和平方根。
情感与价值观1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.教学重点:了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。
教学难点:平方根和算术平方根的区别。
负数没有平方根,即负数不能进行开平方运算。
教学过程:一、复习提问1、算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。
2、9的算术平方根是,3的平方是,还有其他的数的平方是9吗?二、讲授新课:平方等于254的数有几个?平方等于0.64的数呢? 学生活动:学生思考,然后交流,得出平方根的定义。
2.教师活动:一般地,如果一个数x 的平方等于a ,即a x 2,那么,这个数x 就叫做a 的平方根。
也叫做二次方根。
3和—3的平方都是9,即9的平方根有两个3和—3;9的算术平方根只有—个,是3。
3.学生活动:求出下列各数的平方根。
16,0,94,—25, 三、议一议:(1)一个正数的有几个平方根?(2)0有几个平方根?(3)负数呢?★教师活动:一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。
☆学生活动:正数的两个平方根有什么关系吗?讨论,交流得出:一个正数a 有两个平方根,一个是a 的算术平方根,“a ”,另一个是“a -”,它们互为相反数。
这两个平方根合起来,可以记做“a ±”,读作“正、负根号a ”。
开平方:求一个数a 的平方根的运算,叫做开平方。
其中a 叫做被开方数。
(已知指数和幂,求底数的运算是开方运算)★教师活动开平方和平方互为逆运算,我们可以利用平方运算来求平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【关键字】八年级
第二章实数
2.2平方根(一)
教学目标:
1、了解算术平方根的概念,会用根号表示一个数的算术平方根。
2、会求一个正数的算术平方根。
3、了解算术平方根的性质。
教学重点:算术平方根的概念、性质,会用根号表示一个正数的算术平方根。
教学难点:算术平方根的概念、性质。
教学过程:
一、问题引入
1.教师活动:回顾上节课的拼图活动及探索无理数的过程,提出问题:面积为13的正方形的边长究竟是多少?
学生活动:
(1)完成课本P32的填空:
a2=_____b2=____,
c2=_____d2=_____e2=______,f2=______
(2)a,b,c,d,e,f中哪些是有理数,哪些是无理数?你能表示它们吗?
2.师生互动
集体交流后,说明无理数也需要一种表示方法。
2、讲授新课:
算术平方根的概念:一般地,如果一个正数的平方等于,即,那么,这个正数就叫做的算术平方根。
记为:“”读做根号。
特别地,0的算术平方根是0。
那么,则= b2=3,则b=;……
这样的话,一个非负数的算术平方根就可以表示为。
例1 分别写出下列各数的算术平方根
(要求一个数的算术平方根,一般的方法是先按平方的概念来找哪个数的平方等于这个数。
)例2自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6 米高的建筑物上自由下落,到达地面需要多长时间?
学生活动:一个同学在黑板上板演,其他同学在练习本上做,然后交流。
师生互动:完成引例中的,则,以后我们可以利用计算器求出这个数的近似值。
三、随堂练习:P39 1
四、小结:
(1)内容总结:
①算术平方根的定义、表示;
②的双重非负性。
(2)方法归纳:
转化的数学方法:即将陌生的问题转化为熟悉的问题解决。
五、作业:
P40 习题2.3 1 2
§2.2平方根(二)
教学目标:
1、了解平方根的概念,会用根号表示一个数的平方根。
2、会求一个正数的平方根。
3、了解平方根和算术平方根的性质。
4、了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。
教学重点:了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。
教学难点:平方根和算术平方根的区别。
负数没有平方根,即负数不能进行开平方运算。
教学过程:
一、复习提问
1、算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。
2、9的算术平方根是 ,3的平方是 ,
还有其他的数的平方是9吗?
2、讲授新课:
1.想一想 平方等于25
4的数有几个?平方等于0.64的数呢? 学生活动:学生思考,然后交流,得出平方根的定义。
2.教师活动:
一般地,如果一个数x 的平方等于a ,即a x =2,那么,这个数x 就叫做a 的平方根。
也叫做二次方根。
3和—3的平方都是9,即9的平方根有两个3和—3;9的算术平方根只有—个,是3。
3.学生活动:
求出下列各数的平方根。
16,0,9
4,—25, 三、议一议:
(1)一个正数的有几个平方根?
(2)0有几个平方根?
(3)负数呢?
★教师活动:
一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。
☆学生活动:
正数的两个平方根有什么关系吗?
讨论,交流得出:
一个正数a 有两个平方根,一个是a 的算术平方根,“a ”,另一个是“a -
”,它们互为相反数。
这两个平方根合起来,可以记做“a ±”,读作“正、负根号a ”。
开平方:求一个数a 的平方根的运算,叫做开平方。
其中a 叫做被开方数。
(已知指数和幂,求底数的运算是开方运算)
★教师活动
开平方和平方互为逆运算,我们可以利用平方运算来求平方根。
四、例题精析:
例1 求下列各数的平方根:
(1)64,(2)
12149,(3)0.0004, (4)(-25)2, (5)11
注意书写格式。
五、随堂练习:P36 1、2
例2 若x x ,求2224140=+;
★教师活动:
通过例2,要学生进一步明白平方根与算术平方根在应用上的区别。
六、想一想 师生互动,讨论交流得出:
a a a ()(=2≥0) 七、小结:
1. 平方根的定义、表示方法、求法、性质。
平方根和算术平方根的区别和联系。
2.使学生学到由特殊到一般的归纳法。
八、作业:
P36 习题2.4和试一试 P53 3
此文档是由网络收集并进行重新排版整理.word 可编辑版本!。